]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/lldb/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp
MFV: Import atf-0.18.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / lldb / source / Plugins / Process / gdb-remote / GDBRemoteRegisterContext.cpp
1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "GDBRemoteRegisterContext.h"
11
12 // C Includes
13 // C++ Includes
14 // Other libraries and framework includes
15 #include "lldb/Core/DataBufferHeap.h"
16 #include "lldb/Core/DataExtractor.h"
17 #include "lldb/Core/RegisterValue.h"
18 #include "lldb/Core/Scalar.h"
19 #include "lldb/Core/StreamString.h"
20 #ifndef LLDB_DISABLE_PYTHON
21 #include "lldb/Interpreter/PythonDataObjects.h"
22 #endif
23 #include "lldb/Target/ExecutionContext.h"
24 #include "lldb/Utility/Utils.h"
25 // Project includes
26 #include "Utility/StringExtractorGDBRemote.h"
27 #include "ProcessGDBRemote.h"
28 #include "ProcessGDBRemoteLog.h"
29 #include "ThreadGDBRemote.h"
30 #include "Utility/ARM_GCC_Registers.h"
31 #include "Utility/ARM_DWARF_Registers.h"
32
33 using namespace lldb;
34 using namespace lldb_private;
35
36 //----------------------------------------------------------------------
37 // GDBRemoteRegisterContext constructor
38 //----------------------------------------------------------------------
39 GDBRemoteRegisterContext::GDBRemoteRegisterContext
40 (
41     ThreadGDBRemote &thread,
42     uint32_t concrete_frame_idx,
43     GDBRemoteDynamicRegisterInfo &reg_info,
44     bool read_all_at_once
45 ) :
46     RegisterContext (thread, concrete_frame_idx),
47     m_reg_info (reg_info),
48     m_reg_valid (),
49     m_reg_data (),
50     m_read_all_at_once (read_all_at_once)
51 {
52     // Resize our vector of bools to contain one bool for every register.
53     // We will use these boolean values to know when a register value
54     // is valid in m_reg_data.
55     m_reg_valid.resize (reg_info.GetNumRegisters());
56
57     // Make a heap based buffer that is big enough to store all registers
58     DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
59     m_reg_data.SetData (reg_data_sp);
60     m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
61 }
62
63 //----------------------------------------------------------------------
64 // Destructor
65 //----------------------------------------------------------------------
66 GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
67 {
68 }
69
70 void
71 GDBRemoteRegisterContext::InvalidateAllRegisters ()
72 {
73     SetAllRegisterValid (false);
74 }
75
76 void
77 GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
78 {
79     std::vector<bool>::iterator pos, end = m_reg_valid.end();
80     for (pos = m_reg_valid.begin(); pos != end; ++pos)
81         *pos = b;
82 }
83
84 size_t
85 GDBRemoteRegisterContext::GetRegisterCount ()
86 {
87     return m_reg_info.GetNumRegisters ();
88 }
89
90 const RegisterInfo *
91 GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg)
92 {
93     return m_reg_info.GetRegisterInfoAtIndex (reg);
94 }
95
96 size_t
97 GDBRemoteRegisterContext::GetRegisterSetCount ()
98 {
99     return m_reg_info.GetNumRegisterSets ();
100 }
101
102
103
104 const RegisterSet *
105 GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set)
106 {
107     return m_reg_info.GetRegisterSet (reg_set);
108 }
109
110
111
112 bool
113 GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
114 {
115     // Read the register
116     if (ReadRegisterBytes (reg_info, m_reg_data))
117     {
118         const bool partial_data_ok = false;
119         Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
120         return error.Success();
121     }
122     return false;
123 }
124
125 bool
126 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
127 {
128     const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
129     if (reg_info == NULL)
130         return false;
131
132     // Invalidate if needed
133     InvalidateIfNeeded(false);
134
135     const uint32_t reg_byte_size = reg_info->byte_size;
136     const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
137     bool success = bytes_copied == reg_byte_size;
138     if (success)
139     {
140         SetRegisterIsValid(reg, true);
141     }
142     else if (bytes_copied > 0)
143     {
144         // Only set register is valid to false if we copied some bytes, else
145         // leave it as it was.
146         SetRegisterIsValid(reg, false);
147     }
148     return success;
149 }
150
151 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
152 bool
153 GDBRemoteRegisterContext::GetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
154                                                 GDBRemoteCommunicationClient &gdb_comm)
155 {
156     char packet[64];
157     StringExtractorGDBRemote response;
158     int packet_len = 0;
159     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
160     if (gdb_comm.GetThreadSuffixSupported())
161         packet_len = ::snprintf (packet, sizeof(packet), "p%x;thread:%4.4" PRIx64 ";", reg, m_thread.GetProtocolID());
162     else
163         packet_len = ::snprintf (packet, sizeof(packet), "p%x", reg);
164     assert (packet_len < ((int)sizeof(packet) - 1));
165     if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
166         return PrivateSetRegisterValue (reg, response);
167
168     return false;
169 }
170 bool
171 GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data)
172 {
173     ExecutionContext exe_ctx (CalculateThread());
174
175     Process *process = exe_ctx.GetProcessPtr();
176     Thread *thread = exe_ctx.GetThreadPtr();
177     if (process == NULL || thread == NULL)
178         return false;
179
180     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
181
182     InvalidateIfNeeded(false);
183
184     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
185
186     if (!GetRegisterIsValid(reg))
187     {
188         Mutex::Locker locker;
189         if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read register."))
190         {
191             const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
192             ProcessSP process_sp (m_thread.GetProcess());
193             if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
194             {
195                 char packet[64];
196                 StringExtractorGDBRemote response;
197                 int packet_len = 0;
198                 if (m_read_all_at_once)
199                 {
200                     // Get all registers in one packet
201                     if (thread_suffix_supported)
202                         packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
203                     else
204                         packet_len = ::snprintf (packet, sizeof(packet), "g");
205                     assert (packet_len < ((int)sizeof(packet) - 1));
206                     if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
207                     {
208                         if (response.IsNormalResponse())
209                             if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
210                                 SetAllRegisterValid (true);
211                     }
212                 }
213                 else if (reg_info->value_regs)
214                 {
215                     // Process this composite register request by delegating to the constituent
216                     // primordial registers.
217                     
218                     // Index of the primordial register.
219                     bool success = true;
220                     for (uint32_t idx = 0; success; ++idx)
221                     {
222                         const uint32_t prim_reg = reg_info->value_regs[idx];
223                         if (prim_reg == LLDB_INVALID_REGNUM)
224                             break;
225                         // We have a valid primordial regsiter as our constituent.
226                         // Grab the corresponding register info.
227                         const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
228                         if (prim_reg_info == NULL)
229                             success = false;
230                         else
231                         {
232                             // Read the containing register if it hasn't already been read
233                             if (!GetRegisterIsValid(prim_reg))
234                                 success = GetPrimordialRegister(prim_reg_info, gdb_comm);
235                         }
236                     }
237
238                     if (success)
239                     {
240                         // If we reach this point, all primordial register requests have succeeded.
241                         // Validate this composite register.
242                         SetRegisterIsValid (reg_info, true);
243                     }
244                 }
245                 else
246                 {
247                     // Get each register individually
248                     GetPrimordialRegister(reg_info, gdb_comm);
249                 }
250             }
251         }
252         else
253         {
254 #if LLDB_CONFIGURATION_DEBUG
255             StreamString strm;
256             gdb_comm.DumpHistory(strm);
257             Host::SetCrashDescription (strm.GetData());
258             assert (!"Didn't get sequence mutex for read register.");
259 #else
260             Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
261             if (log)
262             {
263                 if (log->GetVerbose())
264                 {
265                     StreamString strm;
266                     gdb_comm.DumpHistory(strm);
267                     log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\":\n%s", reg_info->name, strm.GetData());
268                 }
269                 else
270                 {
271                     log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\"", reg_info->name);
272                 }
273             }
274 #endif
275         }
276
277         // Make sure we got a valid register value after reading it
278         if (!GetRegisterIsValid(reg))
279             return false;
280     }
281
282     if (&data != &m_reg_data)
283     {
284         // If we aren't extracting into our own buffer (which
285         // only happens when this function is called from
286         // ReadRegisterValue(uint32_t, Scalar&)) then
287         // we transfer bytes from our buffer into the data
288         // buffer that was passed in
289         data.SetByteOrder (m_reg_data.GetByteOrder());
290         data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
291     }
292     return true;
293 }
294
295 bool
296 GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info,
297                                          const RegisterValue &value)
298 {
299     DataExtractor data;
300     if (value.GetData (data))
301         return WriteRegisterBytes (reg_info, data, 0);
302     return false;
303 }
304
305 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
306 bool
307 GDBRemoteRegisterContext::SetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
308                                                 GDBRemoteCommunicationClient &gdb_comm)
309 {
310     StreamString packet;
311     StringExtractorGDBRemote response;
312     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
313     packet.Printf ("P%x=", reg);
314     packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
315                               reg_info->byte_size,
316                               lldb::endian::InlHostByteOrder(),
317                               lldb::endian::InlHostByteOrder());
318
319     if (gdb_comm.GetThreadSuffixSupported())
320         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
321
322     // Invalidate just this register
323     SetRegisterIsValid(reg, false);
324     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
325                                               packet.GetString().size(),
326                                               response,
327                                               false))
328     {
329         if (response.IsOKResponse())
330             return true;
331     }
332     return false;
333 }
334
335 void
336 GDBRemoteRegisterContext::SyncThreadState(Process *process)
337 {
338     // NB.  We assume our caller has locked the sequence mutex.
339     
340     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote());
341     if (!gdb_comm.GetSyncThreadStateSupported())
342         return;
343
344     StreamString packet;
345     StringExtractorGDBRemote response;
346     packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID());
347     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
348                                               packet.GetString().size(),
349                                               response,
350                                               false))
351     {
352         if (response.IsOKResponse())
353             InvalidateAllRegisters();
354     }
355 }
356
357 bool
358 GDBRemoteRegisterContext::WriteRegisterBytes (const lldb_private::RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
359 {
360     ExecutionContext exe_ctx (CalculateThread());
361
362     Process *process = exe_ctx.GetProcessPtr();
363     Thread *thread = exe_ctx.GetThreadPtr();
364     if (process == NULL || thread == NULL)
365         return false;
366
367     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
368 // FIXME: This check isn't right because IsRunning checks the Public state, but this
369 // is work you need to do - for instance in ShouldStop & friends - before the public
370 // state has been changed.
371 //    if (gdb_comm.IsRunning())
372 //        return false;
373
374     // Grab a pointer to where we are going to put this register
375     uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
376
377     if (dst == NULL)
378         return false;
379
380
381     if (data.CopyByteOrderedData (data_offset,                  // src offset
382                                   reg_info->byte_size,          // src length
383                                   dst,                          // dst
384                                   reg_info->byte_size,          // dst length
385                                   m_reg_data.GetByteOrder()))   // dst byte order
386     {
387         Mutex::Locker locker;
388         if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register."))
389         {
390             const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
391             ProcessSP process_sp (m_thread.GetProcess());
392             if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
393             {
394                 StreamString packet;
395                 StringExtractorGDBRemote response;
396                 
397                 if (m_read_all_at_once)
398                 {
399                     // Set all registers in one packet
400                     packet.PutChar ('G');
401                     packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
402                                               m_reg_data.GetByteSize(),
403                                               lldb::endian::InlHostByteOrder(),
404                                               lldb::endian::InlHostByteOrder());
405
406                     if (thread_suffix_supported)
407                         packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
408
409                     // Invalidate all register values
410                     InvalidateIfNeeded (true);
411
412                     if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
413                                                               packet.GetString().size(),
414                                                               response,
415                                                               false))
416                     {
417                         SetAllRegisterValid (false);
418                         if (response.IsOKResponse())
419                         {
420                             return true;
421                         }
422                     }
423                 }
424                 else
425                 {
426                     bool success = true;
427
428                     if (reg_info->value_regs)
429                     {
430                         // This register is part of another register. In this case we read the actual
431                         // register data for any "value_regs", and once all that data is read, we will
432                         // have enough data in our register context bytes for the value of this register
433                         
434                         // Invalidate this composite register first.
435                         
436                         for (uint32_t idx = 0; success; ++idx)
437                         {
438                             const uint32_t reg = reg_info->value_regs[idx];
439                             if (reg == LLDB_INVALID_REGNUM)
440                                 break;
441                             // We have a valid primordial regsiter as our constituent.
442                             // Grab the corresponding register info.
443                             const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
444                             if (value_reg_info == NULL)
445                                 success = false;
446                             else
447                                 success = SetPrimordialRegister(value_reg_info, gdb_comm);
448                         }
449                     }
450                     else
451                     {
452                         // This is an actual register, write it
453                         success = SetPrimordialRegister(reg_info, gdb_comm);
454                     }
455
456                     // Check if writing this register will invalidate any other register values?
457                     // If so, invalidate them
458                     if (reg_info->invalidate_regs)
459                     {
460                         for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
461                              reg != LLDB_INVALID_REGNUM;
462                              reg = reg_info->invalidate_regs[++idx])
463                         {
464                             SetRegisterIsValid(reg, false);
465                         }
466                     }
467                     
468                     return success;
469                 }
470             }
471         }
472         else
473         {
474             Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
475             if (log)
476             {
477                 if (log->GetVerbose())
478                 {
479                     StreamString strm;
480                     gdb_comm.DumpHistory(strm);
481                     log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData());
482                 }
483                 else
484                     log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name);
485             }
486         }
487     }
488     return false;
489 }
490
491
492 bool
493 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
494 {
495     ExecutionContext exe_ctx (CalculateThread());
496
497     Process *process = exe_ctx.GetProcessPtr();
498     Thread *thread = exe_ctx.GetThreadPtr();
499     if (process == NULL || thread == NULL)
500         return false;
501
502     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
503
504     StringExtractorGDBRemote response;
505
506     Mutex::Locker locker;
507     if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers."))
508     {
509         SyncThreadState(process);
510         
511         char packet[32];
512         const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
513         ProcessSP process_sp (m_thread.GetProcess());
514         if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
515         {
516             int packet_len = 0;
517             if (thread_suffix_supported)
518                 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
519             else
520                 packet_len = ::snprintf (packet, sizeof(packet), "g");
521             assert (packet_len < ((int)sizeof(packet) - 1));
522
523             if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false))
524             {
525                 if (response.IsErrorResponse())
526                     return false;
527
528                 std::string &response_str = response.GetStringRef();
529                 if (isxdigit(response_str[0]))
530                 {
531                     response_str.insert(0, 1, 'G');
532                     if (thread_suffix_supported)
533                     {
534                         char thread_id_cstr[64];
535                         ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
536                         response_str.append (thread_id_cstr);
537                     }
538                     data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size()));
539                     return true;
540                 }
541             }
542         }
543     }
544     else
545     {
546         Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
547         if (log)
548         {
549             if (log->GetVerbose())
550             {
551                 StreamString strm;
552                 gdb_comm.DumpHistory(strm);
553                 log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData());
554             }
555             else
556                 log->Printf("error: failed to get packet sequence mutex, not sending read all registers");
557         }
558     }
559
560     data_sp.reset();
561     return false;
562 }
563
564 bool
565 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
566 {
567     if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
568         return false;
569
570     ExecutionContext exe_ctx (CalculateThread());
571
572     Process *process = exe_ctx.GetProcessPtr();
573     Thread *thread = exe_ctx.GetThreadPtr();
574     if (process == NULL || thread == NULL)
575         return false;
576
577     GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
578
579     StringExtractorGDBRemote response;
580     Mutex::Locker locker;
581     if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers."))
582     {
583         const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
584         ProcessSP process_sp (m_thread.GetProcess());
585         if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
586         {
587             // The data_sp contains the entire G response packet including the
588             // G, and if the thread suffix is supported, it has the thread suffix
589             // as well.
590             const char *G_packet = (const char *)data_sp->GetBytes();
591             size_t G_packet_len = data_sp->GetByteSize();
592             if (gdb_comm.SendPacketAndWaitForResponse (G_packet,
593                                                        G_packet_len,
594                                                        response,
595                                                        false))
596             {
597                 if (response.IsOKResponse())
598                     return true;
599                 else if (response.IsErrorResponse())
600                 {
601                     uint32_t num_restored = 0;
602                     // We need to manually go through all of the registers and
603                     // restore them manually
604
605                     response.GetStringRef().assign (G_packet, G_packet_len);
606                     response.SetFilePos(1); // Skip the leading 'G'
607                     DataBufferHeap buffer (m_reg_data.GetByteSize(), 0);
608                     DataExtractor restore_data (buffer.GetBytes(),
609                                                 buffer.GetByteSize(),
610                                                 m_reg_data.GetByteOrder(),
611                                                 m_reg_data.GetAddressByteSize());
612
613                     const uint32_t bytes_extracted = response.GetHexBytes ((void *)restore_data.GetDataStart(),
614                                                                            restore_data.GetByteSize(),
615                                                                            '\xcc');
616
617                     if (bytes_extracted < restore_data.GetByteSize())
618                         restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder());
619
620                     //ReadRegisterBytes (const RegisterInfo *reg_info, RegisterValue &value, DataExtractor &data)
621                     const RegisterInfo *reg_info;
622                     // We have to march the offset of each register along in the
623                     // buffer to make sure we get the right offset.
624                     uint32_t reg_byte_offset = 0;
625                     for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, reg_byte_offset += reg_info->byte_size)
626                     {
627                         const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
628
629                         // Skip composite registers.
630                         if (reg_info->value_regs)
631                             continue;
632
633                         // Only write down the registers that need to be written
634                         // if we are going to be doing registers individually.
635                         bool write_reg = true;
636                         const uint32_t reg_byte_size = reg_info->byte_size;
637
638                         const char *restore_src = (const char *)restore_data.PeekData(reg_byte_offset, reg_byte_size);
639                         if (restore_src)
640                         {
641                             if (GetRegisterIsValid(reg))
642                             {
643                                 const char *current_src = (const char *)m_reg_data.PeekData(reg_byte_offset, reg_byte_size);
644                                 if (current_src)
645                                     write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0;
646                             }
647
648                             if (write_reg)
649                             {
650                                 StreamString packet;
651                                 packet.Printf ("P%x=", reg);
652                                 packet.PutBytesAsRawHex8 (restore_src,
653                                                           reg_byte_size,
654                                                           lldb::endian::InlHostByteOrder(),
655                                                           lldb::endian::InlHostByteOrder());
656
657                                 if (thread_suffix_supported)
658                                     packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
659
660                                 SetRegisterIsValid(reg, false);
661                                 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
662                                                                           packet.GetString().size(),
663                                                                           response,
664                                                                           false))
665                                 {
666                                     if (response.IsOKResponse())
667                                         ++num_restored;
668                                 }
669                             }
670                         }
671                     }
672                     return num_restored > 0;
673                 }
674             }
675         }
676     }
677     else
678     {
679         Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
680         if (log)
681         {
682             if (log->GetVerbose())
683             {
684                 StreamString strm;
685                 gdb_comm.DumpHistory(strm);
686                 log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData());
687             }
688             else
689                 log->Printf("error: failed to get packet sequence mutex, not sending write all registers");
690         }
691     }
692     return false;
693 }
694
695
696 uint32_t
697 GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (uint32_t kind, uint32_t num)
698 {
699     return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
700 }
701
702
703 void
704 GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch)
705 {
706     // For Advanced SIMD and VFP register mapping.
707     static uint32_t g_d0_regs[] =  { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1)
708     static uint32_t g_d1_regs[] =  { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3)
709     static uint32_t g_d2_regs[] =  { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5)
710     static uint32_t g_d3_regs[] =  { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7)
711     static uint32_t g_d4_regs[] =  { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9)
712     static uint32_t g_d5_regs[] =  { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11)
713     static uint32_t g_d6_regs[] =  { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13)
714     static uint32_t g_d7_regs[] =  { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15)
715     static uint32_t g_d8_regs[] =  { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17)
716     static uint32_t g_d9_regs[] =  { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19)
717     static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21)
718     static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23)
719     static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25)
720     static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27)
721     static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29)
722     static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31)
723     static uint32_t g_q0_regs[] =  { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3)
724     static uint32_t g_q1_regs[] =  { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7)
725     static uint32_t g_q2_regs[] =  { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11)
726     static uint32_t g_q3_regs[] =  { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15)
727     static uint32_t g_q4_regs[] =  { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19)
728     static uint32_t g_q5_regs[] =  { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23)
729     static uint32_t g_q6_regs[] =  { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27)
730     static uint32_t g_q7_regs[] =  { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31)
731     static uint32_t g_q8_regs[] =  { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17)
732     static uint32_t g_q9_regs[] =  { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19)
733     static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21)
734     static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23)
735     static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25)
736     static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27)
737     static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29)
738     static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31)
739
740     // This is our array of composite registers, with each element coming from the above register mappings.
741     static uint32_t *g_composites[] = {
742         g_d0_regs, g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,  g_d6_regs,  g_d7_regs,
743         g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs,
744         g_q0_regs, g_q1_regs,  g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
745         g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs
746     };
747
748     static RegisterInfo g_register_infos[] = {
749 //   NAME    ALT    SZ  OFF  ENCODING          FORMAT          COMPILER             DWARF                GENERIC                 GDB    LLDB      VALUE REGS    INVALIDATE REGS
750 //   ======  ====== === ===  =============     ============    ===================  ===================  ======================  ===    ====      ==========    ===============
751     { "r0", "arg1",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r0,              dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,      0 },        NULL,              NULL},
752     { "r1", "arg2",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r1,              dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,      1 },        NULL,              NULL},
753     { "r2", "arg3",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r2,              dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,      2 },        NULL,              NULL},
754     { "r3", "arg4",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r3,              dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,      3 },        NULL,              NULL},
755     { "r4",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r4,              dwarf_r4,            LLDB_INVALID_REGNUM,     4,      4 },        NULL,              NULL},
756     { "r5",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r5,              dwarf_r5,            LLDB_INVALID_REGNUM,     5,      5 },        NULL,              NULL},
757     { "r6",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r6,              dwarf_r6,            LLDB_INVALID_REGNUM,     6,      6 },        NULL,              NULL},
758     { "r7",   "fp",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r7,              dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,      7 },        NULL,              NULL},
759     { "r8",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r8,              dwarf_r8,            LLDB_INVALID_REGNUM,     8,      8 },        NULL,              NULL},
760     { "r9",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r9,              dwarf_r9,            LLDB_INVALID_REGNUM,     9,      9 },        NULL,              NULL},
761     { "r10",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r10,             dwarf_r10,           LLDB_INVALID_REGNUM,    10,     10 },        NULL,              NULL},
762     { "r11",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r11,             dwarf_r11,           LLDB_INVALID_REGNUM,    11,     11 },        NULL,              NULL},
763     { "r12",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r12,             dwarf_r12,           LLDB_INVALID_REGNUM,    12,     12 },        NULL,              NULL},
764     { "sp",   "r13",  4,   0, eEncodingUint,    eFormatHex,   { gcc_sp,              dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,     13 },        NULL,              NULL},
765     { "lr",   "r14",  4,   0, eEncodingUint,    eFormatHex,   { gcc_lr,              dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,     14 },        NULL,              NULL},
766     { "pc",   "r15",  4,   0, eEncodingUint,    eFormatHex,   { gcc_pc,              dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,     15 },        NULL,              NULL},
767     { "f0",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,     16 },        NULL,              NULL},
768     { "f1",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,     17 },        NULL,              NULL},
769     { "f2",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,     18 },        NULL,              NULL},
770     { "f3",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,     19 },        NULL,              NULL},
771     { "f4",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,     20 },        NULL,              NULL},
772     { "f5",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,     21 },        NULL,              NULL},
773     { "f6",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,     22 },        NULL,              NULL},
774     { "f7",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,     23 },        NULL,              NULL},
775     { "fps",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,     24 },        NULL,              NULL},
776     { "cpsr","flags", 4,   0, eEncodingUint,    eFormatHex,   { gcc_cpsr,            dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,     25 },        NULL,              NULL},
777     { "s0",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,     26 },        NULL,              NULL},
778     { "s1",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,     27 },        NULL,              NULL},
779     { "s2",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,     28 },        NULL,              NULL},
780     { "s3",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,     29 },        NULL,              NULL},
781     { "s4",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,     30 },        NULL,              NULL},
782     { "s5",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,     31 },        NULL,              NULL},
783     { "s6",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,     32 },        NULL,              NULL},
784     { "s7",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,     33 },        NULL,              NULL},
785     { "s8",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,     34 },        NULL,              NULL},
786     { "s9",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,     35 },        NULL,              NULL},
787     { "s10",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,     36 },        NULL,              NULL},
788     { "s11",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,     37 },        NULL,              NULL},
789     { "s12",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,     38 },        NULL,              NULL},
790     { "s13",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,     39 },        NULL,              NULL},
791     { "s14",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,     40 },        NULL,              NULL},
792     { "s15",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,     41 },        NULL,              NULL},
793     { "s16",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,     42 },        NULL,              NULL},
794     { "s17",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,     43 },        NULL,              NULL},
795     { "s18",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,     44 },        NULL,              NULL},
796     { "s19",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,     45 },        NULL,              NULL},
797     { "s20",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,     46 },        NULL,              NULL},
798     { "s21",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,     47 },        NULL,              NULL},
799     { "s22",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,     48 },        NULL,              NULL},
800     { "s23",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,     49 },        NULL,              NULL},
801     { "s24",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,     50 },        NULL,              NULL},
802     { "s25",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,     51 },        NULL,              NULL},
803     { "s26",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,     52 },        NULL,              NULL},
804     { "s27",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,     53 },        NULL,              NULL},
805     { "s28",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,     54 },        NULL,              NULL},
806     { "s29",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,     55 },        NULL,              NULL},
807     { "s30",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,     56 },        NULL,              NULL},
808     { "s31",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,     57 },        NULL,              NULL},
809     { "fpscr",NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,     58 },        NULL,              NULL},
810     { "d16",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,     59 },        NULL,              NULL},
811     { "d17",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,     60 },        NULL,              NULL},
812     { "d18",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,     61 },        NULL,              NULL},
813     { "d19",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,     62 },        NULL,              NULL},
814     { "d20",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,     63 },        NULL,              NULL},
815     { "d21",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,     64 },        NULL,              NULL},
816     { "d22",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,     65 },        NULL,              NULL},
817     { "d23",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,     66 },        NULL,              NULL},
818     { "d24",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,     67 },        NULL,              NULL},
819     { "d25",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,     68 },        NULL,              NULL},
820     { "d26",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,     69 },        NULL,              NULL},
821     { "d27",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,     70 },        NULL,              NULL},
822     { "d28",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,     71 },        NULL,              NULL},
823     { "d29",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,     72 },        NULL,              NULL},
824     { "d30",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,     73 },        NULL,              NULL},
825     { "d31",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,     74 },        NULL,              NULL},
826     { "d0",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,     75 },   g_d0_regs,              NULL},
827     { "d1",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,     76 },   g_d1_regs,              NULL},
828     { "d2",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,     77 },   g_d2_regs,              NULL},
829     { "d3",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,     78 },   g_d3_regs,              NULL},
830     { "d4",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,     79 },   g_d4_regs,              NULL},
831     { "d5",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,     80 },   g_d5_regs,              NULL},
832     { "d6",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,     81 },   g_d6_regs,              NULL},
833     { "d7",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,     82 },   g_d7_regs,              NULL},
834     { "d8",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,     83 },   g_d8_regs,              NULL},
835     { "d9",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,     84 },   g_d9_regs,              NULL},
836     { "d10",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,     85 },  g_d10_regs,              NULL},
837     { "d11",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,     86 },  g_d11_regs,              NULL},
838     { "d12",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,     87 },  g_d12_regs,              NULL},
839     { "d13",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,     88 },  g_d13_regs,              NULL},
840     { "d14",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,     89 },  g_d14_regs,              NULL},
841     { "d15",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,     90 },  g_d15_regs,              NULL},
842     { "q0",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,     91 },   g_q0_regs,              NULL},
843     { "q1",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,     92 },   g_q1_regs,              NULL},
844     { "q2",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,     93 },   g_q2_regs,              NULL},
845     { "q3",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,     94 },   g_q3_regs,              NULL},
846     { "q4",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,     95 },   g_q4_regs,              NULL},
847     { "q5",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,     96 },   g_q5_regs,              NULL},
848     { "q6",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,     97 },   g_q6_regs,              NULL},
849     { "q7",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,     98 },   g_q7_regs,              NULL},
850     { "q8",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,     99 },   g_q8_regs,              NULL},
851     { "q9",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,    100 },   g_q9_regs,              NULL},
852     { "q10",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,    101 },  g_q10_regs,              NULL},
853     { "q11",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,    102 },  g_q11_regs,              NULL},
854     { "q12",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,    103 },  g_q12_regs,              NULL},
855     { "q13",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,    104 },  g_q13_regs,              NULL},
856     { "q14",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,    105 },  g_q14_regs,              NULL},
857     { "q15",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,    106 },  g_q15_regs,              NULL}
858     };
859
860     static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
861     static ConstString gpr_reg_set ("General Purpose Registers");
862     static ConstString sfp_reg_set ("Software Floating Point Registers");
863     static ConstString vfp_reg_set ("Floating Point Registers");
864     size_t i;
865     if (from_scratch)
866     {
867         // Calculate the offsets of the registers
868         // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the
869         // "primordial" registers is important.  This enables us to calculate the offset of the composite
870         // register by using the offset of its first primordial register.  For example, to calculate the
871         // offset of q0, use s0's offset.
872         if (g_register_infos[2].byte_offset == 0)
873         {
874             uint32_t byte_offset = 0;
875             for (i=0; i<num_registers; ++i)
876             {
877                 // For primordial registers, increment the byte_offset by the byte_size to arrive at the
878                 // byte_offset for the next register.  Otherwise, we have a composite register whose
879                 // offset can be calculated by consulting the offset of its first primordial register.
880                 if (!g_register_infos[i].value_regs)
881                 {
882                     g_register_infos[i].byte_offset = byte_offset;
883                     byte_offset += g_register_infos[i].byte_size;
884                 }
885                 else
886                 {
887                     const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0];
888                     g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset;
889                 }
890             }
891         }
892         for (i=0; i<num_registers; ++i)
893         {
894             ConstString name;
895             ConstString alt_name;
896             if (g_register_infos[i].name && g_register_infos[i].name[0])
897                 name.SetCString(g_register_infos[i].name);
898             if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
899                 alt_name.SetCString(g_register_infos[i].alt_name);
900
901             if (i <= 15 || i == 25)
902                 AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set);
903             else if (i <= 24)
904                 AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set);
905             else
906                 AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set);
907         }
908     }
909     else
910     {
911         // Add composite registers to our primordial registers, then.
912         const size_t num_composites = llvm::array_lengthof(g_composites);
913         const size_t num_dynamic_regs = GetNumRegisters();
914         const size_t num_common_regs = num_registers - num_composites;
915         RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
916
917         // First we need to validate that all registers that we already have match the non composite regs.
918         // If so, then we can add the registers, else we need to bail
919         bool match = true;
920         if (num_dynamic_regs == num_common_regs)
921         {
922             for (i=0; match && i<num_dynamic_regs; ++i)
923             {
924                 // Make sure all register names match
925                 if (m_regs[i].name && g_register_infos[i].name)
926                 {
927                     if (strcmp(m_regs[i].name, g_register_infos[i].name))
928                     {
929                         match = false;
930                         break;
931                     }
932                 }
933                 
934                 // Make sure all register byte sizes match
935                 if (m_regs[i].byte_size != g_register_infos[i].byte_size)
936                 {
937                     match = false;
938                     break;
939                 }
940             }
941         }
942         else
943         {
944             // Wrong number of registers.
945             match = false;
946         }
947         // If "match" is true, then we can add extra registers.
948         if (match)
949         {
950             for (i=0; i<num_composites; ++i)
951             {
952                 ConstString name;
953                 ConstString alt_name;
954                 const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0];
955                 const char *reg_name = g_register_infos[first_primordial_reg].name;
956                 if (reg_name && reg_name[0])
957                 {
958                     for (uint32_t j = 0; j < num_dynamic_regs; ++j)
959                     {
960                         const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
961                         // Find a matching primordial register info entry.
962                         if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0)
963                         {
964                             // The name matches the existing primordial entry.
965                             // Find and assign the offset, and then add this composite register entry.
966                             g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
967                             name.SetCString(g_comp_register_infos[i].name);
968                             AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set);
969                         }
970                     }
971                 }
972             }
973         }
974     }
975 }