]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/lldb/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / lldb / source / Plugins / Process / gdb-remote / GDBRemoteRegisterContext.cpp
1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "GDBRemoteRegisterContext.h"
11
12 // C Includes
13 // C++ Includes
14 // Other libraries and framework includes
15 #include "lldb/Core/RegisterValue.h"
16 #include "lldb/Core/Scalar.h"
17 #include "lldb/Target/ExecutionContext.h"
18 #include "lldb/Target/Target.h"
19 #include "lldb/Utility/DataBufferHeap.h"
20 #include "lldb/Utility/DataExtractor.h"
21 #include "lldb/Utility/StreamString.h"
22 // Project includes
23 #include "ProcessGDBRemote.h"
24 #include "ProcessGDBRemoteLog.h"
25 #include "ThreadGDBRemote.h"
26 #include "Utility/ARM_DWARF_Registers.h"
27 #include "Utility/ARM_ehframe_Registers.h"
28 #include "Utility/StringExtractorGDBRemote.h"
29
30 using namespace lldb;
31 using namespace lldb_private;
32 using namespace lldb_private::process_gdb_remote;
33
34 //----------------------------------------------------------------------
35 // GDBRemoteRegisterContext constructor
36 //----------------------------------------------------------------------
37 GDBRemoteRegisterContext::GDBRemoteRegisterContext(
38     ThreadGDBRemote &thread, uint32_t concrete_frame_idx,
39     GDBRemoteDynamicRegisterInfo &reg_info, bool read_all_at_once)
40     : RegisterContext(thread, concrete_frame_idx), m_reg_info(reg_info),
41       m_reg_valid(), m_reg_data(), m_read_all_at_once(read_all_at_once) {
42   // Resize our vector of bools to contain one bool for every register.
43   // We will use these boolean values to know when a register value
44   // is valid in m_reg_data.
45   m_reg_valid.resize(reg_info.GetNumRegisters());
46
47   // Make a heap based buffer that is big enough to store all registers
48   DataBufferSP reg_data_sp(
49       new DataBufferHeap(reg_info.GetRegisterDataByteSize(), 0));
50   m_reg_data.SetData(reg_data_sp);
51   m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
52 }
53
54 //----------------------------------------------------------------------
55 // Destructor
56 //----------------------------------------------------------------------
57 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() {}
58
59 void GDBRemoteRegisterContext::InvalidateAllRegisters() {
60   SetAllRegisterValid(false);
61 }
62
63 void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) {
64   std::vector<bool>::iterator pos, end = m_reg_valid.end();
65   for (pos = m_reg_valid.begin(); pos != end; ++pos)
66     *pos = b;
67 }
68
69 size_t GDBRemoteRegisterContext::GetRegisterCount() {
70   return m_reg_info.GetNumRegisters();
71 }
72
73 const RegisterInfo *
74 GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) {
75   RegisterInfo *reg_info = m_reg_info.GetRegisterInfoAtIndex(reg);
76
77   if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) {
78     const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
79     uint8_t reg_size = UpdateDynamicRegisterSize(arch, reg_info);
80     reg_info->byte_size = reg_size;
81   }
82   return reg_info;
83 }
84
85 size_t GDBRemoteRegisterContext::GetRegisterSetCount() {
86   return m_reg_info.GetNumRegisterSets();
87 }
88
89 const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) {
90   return m_reg_info.GetRegisterSet(reg_set);
91 }
92
93 bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info,
94                                             RegisterValue &value) {
95   // Read the register
96   if (ReadRegisterBytes(reg_info, m_reg_data)) {
97     const bool partial_data_ok = false;
98     Status error(value.SetValueFromData(
99         reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
100     return error.Success();
101   }
102   return false;
103 }
104
105 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(
106     uint32_t reg, llvm::ArrayRef<uint8_t> data) {
107   const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
108   if (reg_info == NULL)
109     return false;
110
111   // Invalidate if needed
112   InvalidateIfNeeded(false);
113
114   const size_t reg_byte_size = reg_info->byte_size;
115   memcpy(const_cast<uint8_t *>(
116              m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)),
117          data.data(), std::min(data.size(), reg_byte_size));
118   bool success = data.size() >= reg_byte_size;
119   if (success) {
120     SetRegisterIsValid(reg, true);
121   } else if (data.size() > 0) {
122     // Only set register is valid to false if we copied some bytes, else
123     // leave it as it was.
124     SetRegisterIsValid(reg, false);
125   }
126   return success;
127 }
128
129 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg,
130                                                        uint64_t new_reg_val) {
131   const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
132   if (reg_info == NULL)
133     return false;
134
135   // Early in process startup, we can get a thread that has an invalid byte
136   // order
137   // because the process hasn't been completely set up yet (see the ctor where
138   // the
139   // byte order is setfrom the process).  If that's the case, we can't set the
140   // value here.
141   if (m_reg_data.GetByteOrder() == eByteOrderInvalid) {
142     return false;
143   }
144
145   // Invalidate if needed
146   InvalidateIfNeeded(false);
147
148   DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val)));
149   DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *));
150
151   // If our register context and our register info disagree, which should never
152   // happen, don't
153   // overwrite past the end of the buffer.
154   if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
155     return false;
156
157   // Grab a pointer to where we are going to put this register
158   uint8_t *dst = const_cast<uint8_t *>(
159       m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
160
161   if (dst == NULL)
162     return false;
163
164   if (data.CopyByteOrderedData(0,                          // src offset
165                                reg_info->byte_size,        // src length
166                                dst,                        // dst
167                                reg_info->byte_size,        // dst length
168                                m_reg_data.GetByteOrder())) // dst byte order
169   {
170     SetRegisterIsValid(reg, true);
171     return true;
172   }
173   return false;
174 }
175
176 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
177 bool GDBRemoteRegisterContext::GetPrimordialRegister(
178     const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
179   const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
180   const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];
181
182   if (DataBufferSP buffer_sp =
183           gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg))
184     return PrivateSetRegisterValue(
185         lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(),
186                                           buffer_sp->GetByteSize()));
187   return false;
188 }
189
190 bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info,
191                                                  DataExtractor &data) {
192   ExecutionContext exe_ctx(CalculateThread());
193
194   Process *process = exe_ctx.GetProcessPtr();
195   Thread *thread = exe_ctx.GetThreadPtr();
196   if (process == NULL || thread == NULL)
197     return false;
198
199   GDBRemoteCommunicationClient &gdb_comm(
200       ((ProcessGDBRemote *)process)->GetGDBRemote());
201
202   InvalidateIfNeeded(false);
203
204   const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
205
206   if (!GetRegisterIsValid(reg)) {
207     if (m_read_all_at_once) {
208       if (DataBufferSP buffer_sp =
209               gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) {
210         memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()),
211                buffer_sp->GetBytes(),
212                std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize()));
213         if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) {
214           SetAllRegisterValid(true);
215           return true;
216         }
217       }
218       return false;
219     }
220     if (reg_info->value_regs) {
221       // Process this composite register request by delegating to the
222       // constituent
223       // primordial registers.
224
225       // Index of the primordial register.
226       bool success = true;
227       for (uint32_t idx = 0; success; ++idx) {
228         const uint32_t prim_reg = reg_info->value_regs[idx];
229         if (prim_reg == LLDB_INVALID_REGNUM)
230           break;
231         // We have a valid primordial register as our constituent.
232         // Grab the corresponding register info.
233         const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
234         if (prim_reg_info == NULL)
235           success = false;
236         else {
237           // Read the containing register if it hasn't already been read
238           if (!GetRegisterIsValid(prim_reg))
239             success = GetPrimordialRegister(prim_reg_info, gdb_comm);
240         }
241       }
242
243       if (success) {
244         // If we reach this point, all primordial register requests have
245         // succeeded.
246         // Validate this composite register.
247         SetRegisterIsValid(reg_info, true);
248       }
249     } else {
250       // Get each register individually
251       GetPrimordialRegister(reg_info, gdb_comm);
252     }
253
254     // Make sure we got a valid register value after reading it
255     if (!GetRegisterIsValid(reg))
256       return false;
257   }
258
259   if (&data != &m_reg_data) {
260 #if defined(LLDB_CONFIGURATION_DEBUG)
261     assert(m_reg_data.GetByteSize() >=
262            reg_info->byte_offset + reg_info->byte_size);
263 #endif
264     // If our register context and our register info disagree, which should
265     // never happen, don't
266     // read past the end of the buffer.
267     if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
268       return false;
269
270     // If we aren't extracting into our own buffer (which
271     // only happens when this function is called from
272     // ReadRegisterValue(uint32_t, Scalar&)) then
273     // we transfer bytes from our buffer into the data
274     // buffer that was passed in
275
276     data.SetByteOrder(m_reg_data.GetByteOrder());
277     data.SetData(m_reg_data, reg_info->byte_offset, reg_info->byte_size);
278   }
279   return true;
280 }
281
282 bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info,
283                                              const RegisterValue &value) {
284   DataExtractor data;
285   if (value.GetData(data))
286     return WriteRegisterBytes(reg_info, data, 0);
287   return false;
288 }
289
290 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
291 bool GDBRemoteRegisterContext::SetPrimordialRegister(
292     const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
293   StreamString packet;
294   StringExtractorGDBRemote response;
295   const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
296   // Invalidate just this register
297   SetRegisterIsValid(reg, false);
298
299   return gdb_comm.WriteRegister(
300       m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin],
301       {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
302        reg_info->byte_size});
303 }
304
305 bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info,
306                                                   DataExtractor &data,
307                                                   uint32_t data_offset) {
308   ExecutionContext exe_ctx(CalculateThread());
309
310   Process *process = exe_ctx.GetProcessPtr();
311   Thread *thread = exe_ctx.GetThreadPtr();
312   if (process == NULL || thread == NULL)
313     return false;
314
315   GDBRemoteCommunicationClient &gdb_comm(
316       ((ProcessGDBRemote *)process)->GetGDBRemote());
317
318 #if defined(LLDB_CONFIGURATION_DEBUG)
319   assert(m_reg_data.GetByteSize() >=
320          reg_info->byte_offset + reg_info->byte_size);
321 #endif
322
323   // If our register context and our register info disagree, which should never
324   // happen, don't
325   // overwrite past the end of the buffer.
326   if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
327     return false;
328
329   // Grab a pointer to where we are going to put this register
330   uint8_t *dst = const_cast<uint8_t *>(
331       m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
332
333   if (dst == NULL)
334     return false;
335
336   if (data.CopyByteOrderedData(data_offset,                // src offset
337                                reg_info->byte_size,        // src length
338                                dst,                        // dst
339                                reg_info->byte_size,        // dst length
340                                m_reg_data.GetByteOrder())) // dst byte order
341   {
342     GDBRemoteClientBase::Lock lock(gdb_comm, false);
343     if (lock) {
344       if (m_read_all_at_once) {
345         // Invalidate all register values
346         InvalidateIfNeeded(true);
347
348         // Set all registers in one packet
349         if (gdb_comm.WriteAllRegisters(
350                 m_thread.GetProtocolID(),
351                 {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())}))
352
353         {
354           SetAllRegisterValid(false);
355           return true;
356         }
357       } else {
358         bool success = true;
359
360         if (reg_info->value_regs) {
361           // This register is part of another register. In this case we read the
362           // actual
363           // register data for any "value_regs", and once all that data is read,
364           // we will
365           // have enough data in our register context bytes for the value of
366           // this register
367
368           // Invalidate this composite register first.
369
370           for (uint32_t idx = 0; success; ++idx) {
371             const uint32_t reg = reg_info->value_regs[idx];
372             if (reg == LLDB_INVALID_REGNUM)
373               break;
374             // We have a valid primordial register as our constituent.
375             // Grab the corresponding register info.
376             const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
377             if (value_reg_info == NULL)
378               success = false;
379             else
380               success = SetPrimordialRegister(value_reg_info, gdb_comm);
381           }
382         } else {
383           // This is an actual register, write it
384           success = SetPrimordialRegister(reg_info, gdb_comm);
385         }
386
387         // Check if writing this register will invalidate any other register
388         // values?
389         // If so, invalidate them
390         if (reg_info->invalidate_regs) {
391           for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
392                reg != LLDB_INVALID_REGNUM;
393                reg = reg_info->invalidate_regs[++idx]) {
394             SetRegisterIsValid(reg, false);
395           }
396         }
397
398         return success;
399       }
400     } else {
401       Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
402                                                              GDBR_LOG_PACKETS));
403       if (log) {
404         if (log->GetVerbose()) {
405           StreamString strm;
406           gdb_comm.DumpHistory(strm);
407           log->Printf("error: failed to get packet sequence mutex, not sending "
408                       "write register for \"%s\":\n%s",
409                       reg_info->name, strm.GetData());
410         } else
411           log->Printf("error: failed to get packet sequence mutex, not sending "
412                       "write register for \"%s\"",
413                       reg_info->name);
414       }
415     }
416   }
417   return false;
418 }
419
420 bool GDBRemoteRegisterContext::ReadAllRegisterValues(
421     RegisterCheckpoint &reg_checkpoint) {
422   ExecutionContext exe_ctx(CalculateThread());
423
424   Process *process = exe_ctx.GetProcessPtr();
425   Thread *thread = exe_ctx.GetThreadPtr();
426   if (process == NULL || thread == NULL)
427     return false;
428
429   GDBRemoteCommunicationClient &gdb_comm(
430       ((ProcessGDBRemote *)process)->GetGDBRemote());
431
432   uint32_t save_id = 0;
433   if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) {
434     reg_checkpoint.SetID(save_id);
435     reg_checkpoint.GetData().reset();
436     return true;
437   } else {
438     reg_checkpoint.SetID(0); // Invalid save ID is zero
439     return ReadAllRegisterValues(reg_checkpoint.GetData());
440   }
441 }
442
443 bool GDBRemoteRegisterContext::WriteAllRegisterValues(
444     const RegisterCheckpoint &reg_checkpoint) {
445   uint32_t save_id = reg_checkpoint.GetID();
446   if (save_id != 0) {
447     ExecutionContext exe_ctx(CalculateThread());
448
449     Process *process = exe_ctx.GetProcessPtr();
450     Thread *thread = exe_ctx.GetThreadPtr();
451     if (process == NULL || thread == NULL)
452       return false;
453
454     GDBRemoteCommunicationClient &gdb_comm(
455         ((ProcessGDBRemote *)process)->GetGDBRemote());
456
457     return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
458   } else {
459     return WriteAllRegisterValues(reg_checkpoint.GetData());
460   }
461 }
462
463 bool GDBRemoteRegisterContext::ReadAllRegisterValues(
464     lldb::DataBufferSP &data_sp) {
465   ExecutionContext exe_ctx(CalculateThread());
466
467   Process *process = exe_ctx.GetProcessPtr();
468   Thread *thread = exe_ctx.GetThreadPtr();
469   if (process == NULL || thread == NULL)
470     return false;
471
472   GDBRemoteCommunicationClient &gdb_comm(
473       ((ProcessGDBRemote *)process)->GetGDBRemote());
474
475   const bool use_g_packet =
476       gdb_comm.AvoidGPackets((ProcessGDBRemote *)process) == false;
477
478   GDBRemoteClientBase::Lock lock(gdb_comm, false);
479   if (lock) {
480     if (gdb_comm.SyncThreadState(m_thread.GetProtocolID()))
481       InvalidateAllRegisters();
482
483     if (use_g_packet &&
484         (data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())))
485       return true;
486
487     // We're going to read each register
488     // individually and store them as binary data in a buffer.
489     const RegisterInfo *reg_info;
490
491     for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != NULL; i++) {
492       if (reg_info
493               ->value_regs) // skip registers that are slices of real registers
494         continue;
495       ReadRegisterBytes(reg_info, m_reg_data);
496       // ReadRegisterBytes saves the contents of the register in to the
497       // m_reg_data buffer
498     }
499     data_sp.reset(new DataBufferHeap(m_reg_data.GetDataStart(),
500                                      m_reg_info.GetRegisterDataByteSize()));
501     return true;
502   } else {
503
504     Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
505                                                            GDBR_LOG_PACKETS));
506     if (log) {
507       if (log->GetVerbose()) {
508         StreamString strm;
509         gdb_comm.DumpHistory(strm);
510         log->Printf("error: failed to get packet sequence mutex, not sending "
511                     "read all registers:\n%s",
512                     strm.GetData());
513       } else
514         log->Printf("error: failed to get packet sequence mutex, not sending "
515                     "read all registers");
516     }
517   }
518
519   data_sp.reset();
520   return false;
521 }
522
523 bool GDBRemoteRegisterContext::WriteAllRegisterValues(
524     const lldb::DataBufferSP &data_sp) {
525   if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
526     return false;
527
528   ExecutionContext exe_ctx(CalculateThread());
529
530   Process *process = exe_ctx.GetProcessPtr();
531   Thread *thread = exe_ctx.GetThreadPtr();
532   if (process == NULL || thread == NULL)
533     return false;
534
535   GDBRemoteCommunicationClient &gdb_comm(
536       ((ProcessGDBRemote *)process)->GetGDBRemote());
537
538   const bool use_g_packet =
539       gdb_comm.AvoidGPackets((ProcessGDBRemote *)process) == false;
540
541   GDBRemoteClientBase::Lock lock(gdb_comm, false);
542   if (lock) {
543     // The data_sp contains the G response packet.
544     if (use_g_packet) {
545       if (gdb_comm.WriteAllRegisters(
546               m_thread.GetProtocolID(),
547               {data_sp->GetBytes(), size_t(data_sp->GetByteSize())}))
548         return true;
549
550       uint32_t num_restored = 0;
551       // We need to manually go through all of the registers and
552       // restore them manually
553       DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(),
554                                  m_reg_data.GetAddressByteSize());
555
556       const RegisterInfo *reg_info;
557
558       // The g packet contents may either include the slice registers (registers
559       // defined in
560       // terms of other registers, e.g. eax is a subset of rax) or not.  The
561       // slice registers
562       // should NOT be in the g packet, but some implementations may incorrectly
563       // include them.
564       //
565       // If the slice registers are included in the packet, we must step over
566       // the slice registers
567       // when parsing the packet -- relying on the RegisterInfo byte_offset
568       // field would be incorrect.
569       // If the slice registers are not included, then using the byte_offset
570       // values into the
571       // data buffer is the best way to find individual register values.
572
573       uint64_t size_including_slice_registers = 0;
574       uint64_t size_not_including_slice_registers = 0;
575       uint64_t size_by_highest_offset = 0;
576
577       for (uint32_t reg_idx = 0;
578            (reg_info = GetRegisterInfoAtIndex(reg_idx)) != NULL; ++reg_idx) {
579         size_including_slice_registers += reg_info->byte_size;
580         if (reg_info->value_regs == NULL)
581           size_not_including_slice_registers += reg_info->byte_size;
582         if (reg_info->byte_offset >= size_by_highest_offset)
583           size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
584       }
585
586       bool use_byte_offset_into_buffer;
587       if (size_by_highest_offset == restore_data.GetByteSize()) {
588         // The size of the packet agrees with the highest offset: + size in the
589         // register file
590         use_byte_offset_into_buffer = true;
591       } else if (size_not_including_slice_registers ==
592                  restore_data.GetByteSize()) {
593         // The size of the packet is the same as concatenating all of the
594         // registers sequentially,
595         // skipping the slice registers
596         use_byte_offset_into_buffer = true;
597       } else if (size_including_slice_registers == restore_data.GetByteSize()) {
598         // The slice registers are present in the packet (when they shouldn't
599         // be).
600         // Don't try to use the RegisterInfo byte_offset into the restore_data,
601         // it will
602         // point to the wrong place.
603         use_byte_offset_into_buffer = false;
604       } else {
605         // None of our expected sizes match the actual g packet data we're
606         // looking at.
607         // The most conservative approach here is to use the running total byte
608         // offset.
609         use_byte_offset_into_buffer = false;
610       }
611
612       // In case our register definitions don't include the correct offsets,
613       // keep track of the size of each reg & compute offset based on that.
614       uint32_t running_byte_offset = 0;
615       for (uint32_t reg_idx = 0;
616            (reg_info = GetRegisterInfoAtIndex(reg_idx)) != NULL;
617            ++reg_idx, running_byte_offset += reg_info->byte_size) {
618         // Skip composite aka slice registers (e.g. eax is a slice of rax).
619         if (reg_info->value_regs)
620           continue;
621
622         const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
623
624         uint32_t register_offset;
625         if (use_byte_offset_into_buffer) {
626           register_offset = reg_info->byte_offset;
627         } else {
628           register_offset = running_byte_offset;
629         }
630
631         const uint32_t reg_byte_size = reg_info->byte_size;
632
633         const uint8_t *restore_src =
634             restore_data.PeekData(register_offset, reg_byte_size);
635         if (restore_src) {
636           SetRegisterIsValid(reg, false);
637           if (gdb_comm.WriteRegister(
638                   m_thread.GetProtocolID(),
639                   reg_info->kinds[eRegisterKindProcessPlugin],
640                   {restore_src, reg_byte_size}))
641             ++num_restored;
642         }
643       }
644       return num_restored > 0;
645     } else {
646       // For the use_g_packet == false case, we're going to write each register
647       // individually.  The data buffer is binary data in this case, instead of
648       // ascii characters.
649
650       bool arm64_debugserver = false;
651       if (m_thread.GetProcess().get()) {
652         const ArchSpec &arch =
653             m_thread.GetProcess()->GetTarget().GetArchitecture();
654         if (arch.IsValid() && arch.GetMachine() == llvm::Triple::aarch64 &&
655             arch.GetTriple().getVendor() == llvm::Triple::Apple &&
656             arch.GetTriple().getOS() == llvm::Triple::IOS) {
657           arm64_debugserver = true;
658         }
659       }
660       uint32_t num_restored = 0;
661       const RegisterInfo *reg_info;
662       for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != NULL;
663            i++) {
664         if (reg_info->value_regs) // skip registers that are slices of real
665                                   // registers
666           continue;
667         // Skip the fpsr and fpcr floating point status/control register writing
668         // to
669         // work around a bug in an older version of debugserver that would lead
670         // to
671         // register context corruption when writing fpsr/fpcr.
672         if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 ||
673                                   strcmp(reg_info->name, "fpcr") == 0)) {
674           continue;
675         }
676
677         SetRegisterIsValid(reg_info, false);
678         if (gdb_comm.WriteRegister(m_thread.GetProtocolID(),
679                                    reg_info->kinds[eRegisterKindProcessPlugin],
680                                    {data_sp->GetBytes() + reg_info->byte_offset,
681                                     reg_info->byte_size}))
682           ++num_restored;
683       }
684       return num_restored > 0;
685     }
686   } else {
687     Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
688                                                            GDBR_LOG_PACKETS));
689     if (log) {
690       if (log->GetVerbose()) {
691         StreamString strm;
692         gdb_comm.DumpHistory(strm);
693         log->Printf("error: failed to get packet sequence mutex, not sending "
694                     "write all registers:\n%s",
695                     strm.GetData());
696       } else
697         log->Printf("error: failed to get packet sequence mutex, not sending "
698                     "write all registers");
699     }
700   }
701   return false;
702 }
703
704 uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber(
705     lldb::RegisterKind kind, uint32_t num) {
706   return m_reg_info.ConvertRegisterKindToRegisterNumber(kind, num);
707 }
708
709 void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) {
710   // For Advanced SIMD and VFP register mapping.
711   static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM};  // (s0, s1)
712   static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM};  // (s2, s3)
713   static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM};  // (s4, s5)
714   static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM};  // (s6, s7)
715   static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM};  // (s8, s9)
716   static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM};  // (s10, s11)
717   static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM};  // (s12, s13)
718   static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM};  // (s14, s15)
719   static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM};  // (s16, s17)
720   static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM};  // (s18, s19)
721   static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21)
722   static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23)
723   static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25)
724   static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27)
725   static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29)
726   static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31)
727   static uint32_t g_q0_regs[] = {
728       26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3)
729   static uint32_t g_q1_regs[] = {
730       30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7)
731   static uint32_t g_q2_regs[] = {
732       34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11)
733   static uint32_t g_q3_regs[] = {
734       38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15)
735   static uint32_t g_q4_regs[] = {
736       42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19)
737   static uint32_t g_q5_regs[] = {
738       46, 47, 48, 49,
739       LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23)
740   static uint32_t g_q6_regs[] = {
741       50, 51, 52, 53,
742       LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27)
743   static uint32_t g_q7_regs[] = {
744       54, 55, 56, 57,
745       LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31)
746   static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM};  // (d16, d17)
747   static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM};  // (d18, d19)
748   static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21)
749   static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23)
750   static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25)
751   static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27)
752   static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29)
753   static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31)
754
755   // This is our array of composite registers, with each element coming from the
756   // above register mappings.
757   static uint32_t *g_composites[] = {
758       g_d0_regs,  g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,
759       g_d6_regs,  g_d7_regs,  g_d8_regs,  g_d9_regs,  g_d10_regs, g_d11_regs,
760       g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs,  g_q1_regs,
761       g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
762       g_q8_regs,  g_q9_regs,  g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs,
763       g_q14_regs, g_q15_regs};
764
765   // clang-format off
766     static RegisterInfo g_register_infos[] = {
767 //   NAME     ALT     SZ   OFF  ENCODING          FORMAT          EH_FRAME             DWARF                GENERIC                 PROCESS PLUGIN  LLDB    VALUE REGS    INVALIDATE REGS SIZE EXPR SIZE LEN
768 //   ======   ======  ===  ===  =============     ==========      ===================  ===================  ======================  =============   ====    ==========    =============== ========= ========
769     { "r0",   "arg1",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r0,          dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,               0 },     nullptr,           nullptr,  nullptr,       0 },
770     { "r1",   "arg2",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r1,          dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,               1 },     nullptr,           nullptr,  nullptr,       0 },
771     { "r2",   "arg3",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r2,          dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,               2 },     nullptr,           nullptr,  nullptr,       0 },
772     { "r3",   "arg4",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r3,          dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,               3 },     nullptr,           nullptr,  nullptr,       0 },
773     { "r4",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r4,          dwarf_r4,            LLDB_INVALID_REGNUM,     4,               4 },     nullptr,           nullptr,  nullptr,       0 },
774     { "r5",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r5,          dwarf_r5,            LLDB_INVALID_REGNUM,     5,               5 },     nullptr,           nullptr,  nullptr,       0 },
775     { "r6",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r6,          dwarf_r6,            LLDB_INVALID_REGNUM,     6,               6 },     nullptr,           nullptr,  nullptr,       0 },
776     { "r7",     "fp",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r7,          dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,               7 },     nullptr,           nullptr,  nullptr,       0 },
777     { "r8",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r8,          dwarf_r8,            LLDB_INVALID_REGNUM,     8,               8 },     nullptr,           nullptr,  nullptr,       0 },
778     { "r9",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r9,          dwarf_r9,            LLDB_INVALID_REGNUM,     9,               9 },     nullptr,           nullptr,  nullptr,       0 },
779     { "r10", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r10,         dwarf_r10,           LLDB_INVALID_REGNUM,    10,              10 },     nullptr,           nullptr,  nullptr,       0 },
780     { "r11", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r11,         dwarf_r11,           LLDB_INVALID_REGNUM,    11,              11 },     nullptr,           nullptr,  nullptr,       0 },
781     { "r12", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r12,         dwarf_r12,           LLDB_INVALID_REGNUM,    12,              12 },     nullptr,           nullptr,  nullptr,       0 },
782     { "sp",     "r13",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_sp,          dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,              13 },     nullptr,           nullptr,  nullptr,       0 },
783     { "lr",     "r14",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_lr,          dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,              14 },     nullptr,           nullptr,  nullptr,       0 },
784     { "pc",     "r15",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_pc,          dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,              15 },     nullptr,           nullptr,  nullptr,       0 },
785     { "f0",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,              16 },     nullptr,           nullptr,  nullptr,       0 },
786     { "f1",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,              17 },     nullptr,           nullptr,  nullptr,       0 },
787     { "f2",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,              18 },     nullptr,           nullptr,  nullptr,       0 },
788     { "f3",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,              19 },     nullptr,           nullptr,  nullptr,       0 },
789     { "f4",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,              20 },     nullptr,           nullptr,  nullptr,       0 },
790     { "f5",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,              21 },     nullptr,           nullptr,  nullptr,       0 },
791     { "f6",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,              22 },     nullptr,           nullptr,  nullptr,       0 },
792     { "f7",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,              23 },     nullptr,           nullptr,  nullptr,       0 },
793     { "fps", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,              24 },     nullptr,           nullptr,  nullptr,       0 },
794     { "cpsr","flags",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_cpsr,        dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,              25 },     nullptr,           nullptr,  nullptr,       0 },
795     { "s0",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,              26 },     nullptr,           nullptr,  nullptr,       0 },
796     { "s1",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,              27 },     nullptr,           nullptr,  nullptr,       0 },
797     { "s2",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,              28 },     nullptr,           nullptr,  nullptr,       0 },
798     { "s3",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,              29 },     nullptr,           nullptr,  nullptr,       0 },
799     { "s4",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,              30 },     nullptr,           nullptr,  nullptr,       0 },
800     { "s5",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,              31 },     nullptr,           nullptr,  nullptr,       0 },
801     { "s6",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,              32 },     nullptr,           nullptr,  nullptr,       0 },
802     { "s7",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,              33 },     nullptr,           nullptr,  nullptr,       0 },
803     { "s8",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,              34 },     nullptr,           nullptr,  nullptr,       0 },
804     { "s9",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,              35 },     nullptr,           nullptr,  nullptr,       0 },
805     { "s10", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,              36 },     nullptr,           nullptr,  nullptr,       0 },
806     { "s11", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,              37 },     nullptr,           nullptr,  nullptr,       0 },
807     { "s12", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,              38 },     nullptr,           nullptr,  nullptr,       0 },
808     { "s13", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,              39 },     nullptr,           nullptr,  nullptr,       0 },
809     { "s14", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,              40 },     nullptr,           nullptr,  nullptr,       0 },
810     { "s15", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,              41 },     nullptr,           nullptr,  nullptr,       0 },
811     { "s16", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,              42 },     nullptr,           nullptr,  nullptr,       0 },
812     { "s17", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,              43 },     nullptr,           nullptr,  nullptr,       0 },
813     { "s18", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,              44 },     nullptr,           nullptr,  nullptr,       0 },
814     { "s19", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,              45 },     nullptr,           nullptr,  nullptr,       0 },
815     { "s20", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,              46 },     nullptr,           nullptr,  nullptr,       0 },
816     { "s21", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,              47 },     nullptr,           nullptr,  nullptr,       0 },
817     { "s22", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,              48 },     nullptr,           nullptr,  nullptr,       0 },
818     { "s23", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,              49 },     nullptr,           nullptr,  nullptr,       0 },
819     { "s24", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,              50 },     nullptr,           nullptr,  nullptr,       0 },
820     { "s25", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,              51 },     nullptr,           nullptr,  nullptr,       0 },
821     { "s26", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,              52 },     nullptr,           nullptr,  nullptr,       0 },
822     { "s27", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,              53 },     nullptr,           nullptr,  nullptr,       0 },
823     { "s28", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,              54 },     nullptr,           nullptr,  nullptr,       0 },
824     { "s29", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,              55 },     nullptr,           nullptr,  nullptr,       0 },
825     { "s30", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,              56 },     nullptr,           nullptr,  nullptr,       0 },
826     { "s31", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,              57 },     nullptr,           nullptr,  nullptr,       0 },
827     { "fpscr",nullptr,  4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,              58 },     nullptr,           nullptr,  nullptr,       0 },
828     { "d16", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,              59 },     nullptr,           nullptr,  nullptr,       0 },
829     { "d17", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,              60 },     nullptr,           nullptr,  nullptr,       0 },
830     { "d18", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,              61 },     nullptr,           nullptr,  nullptr,       0 },
831     { "d19", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,              62 },     nullptr,           nullptr,  nullptr,       0 },
832     { "d20", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,              63 },     nullptr,           nullptr,  nullptr,       0 },
833     { "d21", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,              64 },     nullptr,           nullptr,  nullptr,       0 },
834     { "d22", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,              65 },     nullptr,           nullptr,  nullptr,       0 },
835     { "d23", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,              66 },     nullptr,           nullptr,  nullptr,       0 },
836     { "d24", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,              67 },     nullptr,           nullptr,  nullptr,       0 },
837     { "d25", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,              68 },     nullptr,           nullptr,  nullptr,       0 },
838     { "d26", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,              69 },     nullptr,           nullptr,  nullptr,       0 },
839     { "d27", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,              70 },     nullptr,           nullptr,  nullptr,       0 },
840     { "d28", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,              71 },     nullptr,           nullptr,  nullptr,       0 },
841     { "d29", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,              72 },     nullptr,           nullptr,  nullptr,       0 },
842     { "d30", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,              73 },     nullptr,           nullptr,  nullptr,       0 },
843     { "d31", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,              74 },     nullptr,           nullptr,  nullptr,       0 },
844     { "d0",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,              75 },   g_d0_regs,           nullptr,  nullptr,       0 },
845     { "d1",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,              76 },   g_d1_regs,           nullptr,  nullptr,       0 },
846     { "d2",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,              77 },   g_d2_regs,           nullptr,  nullptr,       0 },
847     { "d3",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,              78 },   g_d3_regs,           nullptr,  nullptr,       0 },
848     { "d4",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,              79 },   g_d4_regs,           nullptr,  nullptr,       0 },
849     { "d5",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,              80 },   g_d5_regs,           nullptr,  nullptr,       0 },
850     { "d6",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,              81 },   g_d6_regs,           nullptr,  nullptr,       0 },
851     { "d7",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,              82 },   g_d7_regs,           nullptr,  nullptr,       0 },
852     { "d8",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,              83 },   g_d8_regs,           nullptr,  nullptr,       0 },
853     { "d9",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,              84 },   g_d9_regs,           nullptr,  nullptr,       0 },
854     { "d10", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,              85 },  g_d10_regs,           nullptr,  nullptr,       0 },
855     { "d11", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,              86 },  g_d11_regs,           nullptr,  nullptr,       0 },
856     { "d12", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,              87 },  g_d12_regs,           nullptr,  nullptr,       0 },
857     { "d13", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,              88 },  g_d13_regs,           nullptr,  nullptr,       0 },
858     { "d14", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,              89 },  g_d14_regs,           nullptr,  nullptr,       0 },
859     { "d15", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,              90 },  g_d15_regs,           nullptr,  nullptr,       0 },
860     { "q0",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,              91 },   g_q0_regs,           nullptr,  nullptr,       0 },
861     { "q1",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,              92 },   g_q1_regs,           nullptr,  nullptr,       0 },
862     { "q2",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,              93 },   g_q2_regs,           nullptr,  nullptr,       0 },
863     { "q3",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,              94 },   g_q3_regs,           nullptr,  nullptr,       0 },
864     { "q4",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,              95 },   g_q4_regs,           nullptr,  nullptr,       0 },
865     { "q5",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,              96 },   g_q5_regs,           nullptr,  nullptr,       0 },
866     { "q6",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,              97 },   g_q6_regs,           nullptr,  nullptr,       0 },
867     { "q7",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,              98 },   g_q7_regs,           nullptr,  nullptr,       0 },
868     { "q8",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,              99 },   g_q8_regs,           nullptr,  nullptr,       0 },
869     { "q9",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,             100 },   g_q9_regs,           nullptr,  nullptr,       0 },
870     { "q10", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,             101 },  g_q10_regs,           nullptr,  nullptr,       0 },
871     { "q11", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,             102 },  g_q11_regs,           nullptr,  nullptr,       0 },
872     { "q12", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,             103 },  g_q12_regs,           nullptr,  nullptr,       0 },
873     { "q13", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,             104 },  g_q13_regs,           nullptr,  nullptr,       0 },
874     { "q14", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,             105 },  g_q14_regs,           nullptr,  nullptr,       0 },
875     { "q15", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,             106 },  g_q15_regs,           nullptr,  nullptr,       0 }
876     };
877   // clang-format on
878
879   static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
880   static ConstString gpr_reg_set("General Purpose Registers");
881   static ConstString sfp_reg_set("Software Floating Point Registers");
882   static ConstString vfp_reg_set("Floating Point Registers");
883   size_t i;
884   if (from_scratch) {
885     // Calculate the offsets of the registers
886     // Note that the layout of the "composite" registers (d0-d15 and q0-q15)
887     // which comes after the
888     // "primordial" registers is important.  This enables us to calculate the
889     // offset of the composite
890     // register by using the offset of its first primordial register.  For
891     // example, to calculate the
892     // offset of q0, use s0's offset.
893     if (g_register_infos[2].byte_offset == 0) {
894       uint32_t byte_offset = 0;
895       for (i = 0; i < num_registers; ++i) {
896         // For primordial registers, increment the byte_offset by the byte_size
897         // to arrive at the
898         // byte_offset for the next register.  Otherwise, we have a composite
899         // register whose
900         // offset can be calculated by consulting the offset of its first
901         // primordial register.
902         if (!g_register_infos[i].value_regs) {
903           g_register_infos[i].byte_offset = byte_offset;
904           byte_offset += g_register_infos[i].byte_size;
905         } else {
906           const uint32_t first_primordial_reg =
907               g_register_infos[i].value_regs[0];
908           g_register_infos[i].byte_offset =
909               g_register_infos[first_primordial_reg].byte_offset;
910         }
911       }
912     }
913     for (i = 0; i < num_registers; ++i) {
914       ConstString name;
915       ConstString alt_name;
916       if (g_register_infos[i].name && g_register_infos[i].name[0])
917         name.SetCString(g_register_infos[i].name);
918       if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
919         alt_name.SetCString(g_register_infos[i].alt_name);
920
921       if (i <= 15 || i == 25)
922         AddRegister(g_register_infos[i], name, alt_name, gpr_reg_set);
923       else if (i <= 24)
924         AddRegister(g_register_infos[i], name, alt_name, sfp_reg_set);
925       else
926         AddRegister(g_register_infos[i], name, alt_name, vfp_reg_set);
927     }
928   } else {
929     // Add composite registers to our primordial registers, then.
930     const size_t num_composites = llvm::array_lengthof(g_composites);
931     const size_t num_dynamic_regs = GetNumRegisters();
932     const size_t num_common_regs = num_registers - num_composites;
933     RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
934
935     // First we need to validate that all registers that we already have match
936     // the non composite regs.
937     // If so, then we can add the registers, else we need to bail
938     bool match = true;
939     if (num_dynamic_regs == num_common_regs) {
940       for (i = 0; match && i < num_dynamic_regs; ++i) {
941         // Make sure all register names match
942         if (m_regs[i].name && g_register_infos[i].name) {
943           if (strcmp(m_regs[i].name, g_register_infos[i].name)) {
944             match = false;
945             break;
946           }
947         }
948
949         // Make sure all register byte sizes match
950         if (m_regs[i].byte_size != g_register_infos[i].byte_size) {
951           match = false;
952           break;
953         }
954       }
955     } else {
956       // Wrong number of registers.
957       match = false;
958     }
959     // If "match" is true, then we can add extra registers.
960     if (match) {
961       for (i = 0; i < num_composites; ++i) {
962         ConstString name;
963         ConstString alt_name;
964         const uint32_t first_primordial_reg =
965             g_comp_register_infos[i].value_regs[0];
966         const char *reg_name = g_register_infos[first_primordial_reg].name;
967         if (reg_name && reg_name[0]) {
968           for (uint32_t j = 0; j < num_dynamic_regs; ++j) {
969             const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
970             // Find a matching primordial register info entry.
971             if (reg_info && reg_info->name &&
972                 ::strcasecmp(reg_info->name, reg_name) == 0) {
973               // The name matches the existing primordial entry.
974               // Find and assign the offset, and then add this composite
975               // register entry.
976               g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
977               name.SetCString(g_comp_register_infos[i].name);
978               AddRegister(g_comp_register_infos[i], name, alt_name,
979                           vfp_reg_set);
980             }
981           }
982         }
983       }
984     }
985   }
986 }