]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/lldb/source/Symbol/CompactUnwindInfo.cpp
MFV r225523, r282431:
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / lldb / source / Symbol / CompactUnwindInfo.cpp
1 //===-- CompactUnwindInfo.cpp -----------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10
11 // C Includes
12 // C++ Includes
13 #include <algorithm>
14
15 #include "lldb/Core/ArchSpec.h"
16 #include "lldb/Core/Log.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/Section.h"
19 #include "lldb/Core/Section.h"
20 #include "lldb/Core/StreamString.h"
21 #include "lldb/Symbol/CompactUnwindInfo.h"
22 #include "lldb/Symbol/ObjectFile.h"
23 #include "lldb/Symbol/UnwindPlan.h"
24 #include "lldb/Target/Process.h"
25 #include "lldb/Target/Target.h"
26
27 #include "llvm/Support/MathExtras.h"
28
29 using namespace lldb;
30 using namespace lldb_private;
31
32
33 namespace lldb_private {
34
35     // Constants from <mach-o/compact_unwind_encoding.h>
36
37     enum {
38         UNWIND_IS_NOT_FUNCTION_START           = 0x80000000,
39         UNWIND_HAS_LSDA                        = 0x40000000,
40         UNWIND_PERSONALITY_MASK                = 0x30000000,
41     };
42
43     enum {
44         UNWIND_X86_MODE_MASK                         = 0x0F000000,
45         UNWIND_X86_MODE_EBP_FRAME                    = 0x01000000,
46         UNWIND_X86_MODE_STACK_IMMD                   = 0x02000000,
47         UNWIND_X86_MODE_STACK_IND                    = 0x03000000,
48         UNWIND_X86_MODE_DWARF                        = 0x04000000,
49
50         UNWIND_X86_EBP_FRAME_REGISTERS               = 0x00007FFF,
51         UNWIND_X86_EBP_FRAME_OFFSET                  = 0x00FF0000,
52
53         UNWIND_X86_FRAMELESS_STACK_SIZE              = 0x00FF0000,
54         UNWIND_X86_FRAMELESS_STACK_ADJUST            = 0x0000E000,
55         UNWIND_X86_FRAMELESS_STACK_REG_COUNT         = 0x00001C00,
56         UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION   = 0x000003FF,
57
58         UNWIND_X86_DWARF_SECTION_OFFSET              = 0x00FFFFFF,
59     };
60
61     enum {
62         UNWIND_X86_REG_NONE     = 0,
63         UNWIND_X86_REG_EBX      = 1,
64         UNWIND_X86_REG_ECX      = 2,
65         UNWIND_X86_REG_EDX      = 3,
66         UNWIND_X86_REG_EDI      = 4,
67         UNWIND_X86_REG_ESI      = 5,
68         UNWIND_X86_REG_EBP      = 6,
69     };
70     enum {
71         UNWIND_X86_64_MODE_MASK                         = 0x0F000000,
72         UNWIND_X86_64_MODE_RBP_FRAME                    = 0x01000000,
73         UNWIND_X86_64_MODE_STACK_IMMD                   = 0x02000000,
74         UNWIND_X86_64_MODE_STACK_IND                    = 0x03000000,
75         UNWIND_X86_64_MODE_DWARF                        = 0x04000000,
76
77         UNWIND_X86_64_RBP_FRAME_REGISTERS               = 0x00007FFF,
78         UNWIND_X86_64_RBP_FRAME_OFFSET                  = 0x00FF0000,
79
80         UNWIND_X86_64_FRAMELESS_STACK_SIZE              = 0x00FF0000,
81         UNWIND_X86_64_FRAMELESS_STACK_ADJUST            = 0x0000E000,
82         UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT         = 0x00001C00,
83         UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION   = 0x000003FF,
84
85         UNWIND_X86_64_DWARF_SECTION_OFFSET              = 0x00FFFFFF,
86     };
87
88     enum {
89         UNWIND_X86_64_REG_NONE       = 0,
90         UNWIND_X86_64_REG_RBX        = 1,
91         UNWIND_X86_64_REG_R12        = 2,
92         UNWIND_X86_64_REG_R13        = 3,
93         UNWIND_X86_64_REG_R14        = 4,
94         UNWIND_X86_64_REG_R15        = 5,
95         UNWIND_X86_64_REG_RBP        = 6,
96     };
97 };
98
99
100 #ifndef UNWIND_SECOND_LEVEL_REGULAR
101 #define UNWIND_SECOND_LEVEL_REGULAR 2
102 #endif
103
104 #ifndef UNWIND_SECOND_LEVEL_COMPRESSED
105 #define UNWIND_SECOND_LEVEL_COMPRESSED 3
106 #endif
107
108 #ifndef UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET
109 #define UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(entry)            (entry & 0x00FFFFFF)
110 #endif
111
112 #ifndef UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX
113 #define UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(entry)        ((entry >> 24) & 0xFF)
114 #endif
115
116 #define EXTRACT_BITS(value, mask) \
117         ( (value >> llvm::countTrailingZeros(static_cast<uint32_t>(mask), llvm::ZB_Width)) & \
118           (((1 << llvm::CountPopulation_32(static_cast<uint32_t>(mask))))-1) )
119
120
121
122 //----------------------
123 // constructor 
124 //----------------------
125
126
127 CompactUnwindInfo::CompactUnwindInfo(ObjectFile& objfile, SectionSP& section_sp) :
128     m_objfile (objfile),
129     m_section_sp (section_sp),
130     m_section_contents_if_encrypted (),
131     m_mutex (),
132     m_indexes (),
133     m_indexes_computed (eLazyBoolCalculate),
134     m_unwindinfo_data (),
135     m_unwindinfo_data_computed (false),
136     m_unwind_header ()
137 {
138
139 }
140
141 //----------------------
142 // destructor
143 //----------------------
144
145 CompactUnwindInfo::~CompactUnwindInfo()
146 {
147 }
148
149 bool
150 CompactUnwindInfo::GetUnwindPlan (Target &target, Address addr, UnwindPlan& unwind_plan)
151 {
152     if (!IsValid (target.GetProcessSP()))
153     {
154         return false;
155     }
156     FunctionInfo function_info;
157     if (GetCompactUnwindInfoForFunction (target, addr, function_info))
158     {
159         // shortcut return for functions that have no compact unwind
160         if (function_info.encoding == 0)
161             return false;
162
163         ArchSpec arch;
164         if (m_objfile.GetArchitecture (arch))
165         {
166
167             Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
168             if (log && log->GetVerbose())
169             {
170                 StreamString strm;
171                 addr.Dump (&strm, NULL, Address::DumpStyle::DumpStyleResolvedDescriptionNoFunctionArguments, Address::DumpStyle::DumpStyleFileAddress, arch.GetAddressByteSize()); 
172                 log->Printf ("Got compact unwind encoding 0x%x for function %s", function_info.encoding, strm.GetData());
173             }
174
175             if (function_info.valid_range_offset_start != 0 && function_info.valid_range_offset_end != 0)
176             {
177                 SectionList *sl = m_objfile.GetSectionList ();
178                 if (sl)
179                 {
180                     addr_t func_range_start_file_addr = 
181                               function_info.valid_range_offset_start + m_objfile.GetHeaderAddress().GetFileAddress();
182                     AddressRange func_range (func_range_start_file_addr,
183                                       function_info.valid_range_offset_end - function_info.valid_range_offset_start,
184                                       sl);
185                     unwind_plan.SetPlanValidAddressRange (func_range);
186                 }
187             }
188
189             if (arch.GetTriple().getArch() == llvm::Triple::x86_64)
190             {
191                 return CreateUnwindPlan_x86_64 (target, function_info, unwind_plan, addr);
192             }
193             if (arch.GetTriple().getArch() == llvm::Triple::x86)
194             {
195                 return CreateUnwindPlan_i386 (target, function_info, unwind_plan, addr);
196             }
197         }
198     }
199     return false;
200 }
201
202 bool
203 CompactUnwindInfo::IsValid (const ProcessSP &process_sp)
204 {
205     if (m_section_sp.get() == nullptr)
206         return false;
207
208     if (m_indexes_computed == eLazyBoolYes && m_unwindinfo_data_computed)
209         return true;
210
211     ScanIndex (process_sp);
212
213     return m_indexes_computed == eLazyBoolYes && m_unwindinfo_data_computed;
214 }
215
216 void
217 CompactUnwindInfo::ScanIndex (const ProcessSP &process_sp)
218 {
219     Mutex::Locker locker(m_mutex);
220     if (m_indexes_computed == eLazyBoolYes && m_unwindinfo_data_computed)
221         return;
222
223     // We can't read the index for some reason.
224     if (m_indexes_computed == eLazyBoolNo)
225     {
226         return;
227     }
228
229     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
230     if (log)
231         m_objfile.GetModule()->LogMessage(log, "Reading compact unwind first-level indexes");
232
233     if (m_unwindinfo_data_computed == false)
234     {
235         if (m_section_sp->IsEncrypted())
236         {
237             // Can't get section contents of a protected/encrypted section until we have a live
238             // process and can read them out of memory.
239             if (process_sp.get() == nullptr)
240                 return;
241             m_section_contents_if_encrypted.reset (new DataBufferHeap (m_section_sp->GetByteSize(), 0));
242             Error error;
243             if (process_sp->ReadMemory (
244                         m_section_sp->GetLoadBaseAddress (&process_sp->GetTarget()), 
245                         m_section_contents_if_encrypted->GetBytes(), 
246                         m_section_sp->GetByteSize(), error) == m_section_sp->GetByteSize() && error.Success())
247             {
248                 m_unwindinfo_data.SetAddressByteSize (process_sp->GetTarget().GetArchitecture().GetAddressByteSize());
249                 m_unwindinfo_data.SetByteOrder (process_sp->GetTarget().GetArchitecture().GetByteOrder());
250                 m_unwindinfo_data.SetData (m_section_contents_if_encrypted, 0);
251             }
252         }
253         else
254         {
255             m_objfile.ReadSectionData (m_section_sp.get(), m_unwindinfo_data);
256         }
257         if (m_unwindinfo_data.GetByteSize() != m_section_sp->GetByteSize())
258             return;
259         m_unwindinfo_data_computed = true;
260     }
261
262     if (m_unwindinfo_data.GetByteSize() > 0)
263     {
264         offset_t offset = 0;
265
266                 // struct unwind_info_section_header
267                 // {
268                 // uint32_t    version;            // UNWIND_SECTION_VERSION
269                 // uint32_t    commonEncodingsArraySectionOffset;
270                 // uint32_t    commonEncodingsArrayCount;
271                 // uint32_t    personalityArraySectionOffset;
272                 // uint32_t    personalityArrayCount;
273                 // uint32_t    indexSectionOffset;
274                 // uint32_t    indexCount;
275         
276         m_unwind_header.version = m_unwindinfo_data.GetU32(&offset);
277         m_unwind_header.common_encodings_array_offset = m_unwindinfo_data.GetU32(&offset);
278         m_unwind_header.common_encodings_array_count = m_unwindinfo_data.GetU32(&offset);
279         m_unwind_header.personality_array_offset = m_unwindinfo_data.GetU32(&offset);
280         m_unwind_header.personality_array_count = m_unwindinfo_data.GetU32(&offset);
281         uint32_t indexSectionOffset = m_unwindinfo_data.GetU32(&offset);
282
283         uint32_t indexCount = m_unwindinfo_data.GetU32(&offset);
284
285         if (m_unwind_header.version != 1)
286         {
287             m_indexes_computed = eLazyBoolNo;
288         }
289
290         // Parse the basic information from the indexes
291         // We wait to scan the second level page info until it's needed
292
293             // struct unwind_info_section_header_index_entry 
294             // {
295             //     uint32_t        functionOffset;
296             //     uint32_t        secondLevelPagesSectionOffset;
297             //     uint32_t        lsdaIndexArraySectionOffset;
298             // };
299
300         offset = indexSectionOffset;
301         for (uint32_t idx = 0; idx < indexCount; idx++)
302         {
303             uint32_t function_offset = m_unwindinfo_data.GetU32(&offset);      // functionOffset
304             uint32_t second_level_offset = m_unwindinfo_data.GetU32(&offset);  // secondLevelPagesSectionOffset
305             uint32_t lsda_offset = m_unwindinfo_data.GetU32(&offset);          // lsdaIndexArraySectionOffset
306
307             if (second_level_offset > m_section_sp->GetByteSize() || lsda_offset > m_section_sp->GetByteSize())
308             {
309                 m_indexes_computed = eLazyBoolNo;
310             }
311
312             UnwindIndex this_index;
313             this_index.function_offset = function_offset;     // 
314             this_index.second_level = second_level_offset;
315             this_index.lsda_array_start = lsda_offset;
316
317             if (m_indexes.size() > 0)
318             {
319                 m_indexes[m_indexes.size() - 1].lsda_array_end = lsda_offset;
320             }
321
322             if (second_level_offset == 0)
323             {
324                 this_index.sentinal_entry = true;
325             }
326
327             m_indexes.push_back (this_index);
328         }
329         m_indexes_computed = eLazyBoolYes;
330     }
331     else
332     {
333         m_indexes_computed = eLazyBoolNo;
334     }
335 }
336
337 uint32_t
338 CompactUnwindInfo::GetLSDAForFunctionOffset (uint32_t lsda_offset, uint32_t lsda_count, uint32_t function_offset)
339 {
340         // struct unwind_info_section_header_lsda_index_entry 
341         // {
342         //         uint32_t        functionOffset;
343         //         uint32_t        lsdaOffset;
344         // };
345
346     offset_t first_entry = lsda_offset;
347     uint32_t low = 0;
348     uint32_t high = lsda_count;
349     while (low < high)
350     {
351         uint32_t mid = (low + high) / 2;
352         offset_t offset = first_entry + (mid * 8);
353         uint32_t mid_func_offset = m_unwindinfo_data.GetU32(&offset);  // functionOffset
354         uint32_t mid_lsda_offset = m_unwindinfo_data.GetU32(&offset);  // lsdaOffset
355         if (mid_func_offset == function_offset)
356         {
357             return mid_lsda_offset;
358         }
359         if (mid_func_offset < function_offset)
360         {
361             low = mid + 1;
362         }
363         else
364         {
365             high = mid;
366         }
367     }
368     return 0;
369 }
370
371 lldb::offset_t
372 CompactUnwindInfo::BinarySearchRegularSecondPage (uint32_t entry_page_offset, uint32_t entry_count, uint32_t function_offset, uint32_t *entry_func_start_offset, uint32_t *entry_func_end_offset)
373 {
374     // typedef uint32_t compact_unwind_encoding_t;
375     // struct unwind_info_regular_second_level_entry 
376     // {
377     //     uint32_t                    functionOffset;
378     //     compact_unwind_encoding_t    encoding;
379
380     offset_t first_entry = entry_page_offset;
381
382     uint32_t low = 0;
383     uint32_t high = entry_count;
384     uint32_t last = high - 1;
385     while (low < high)
386     {
387         uint32_t mid = (low + high) / 2;
388         offset_t offset = first_entry + (mid * 8);
389         uint32_t mid_func_offset = m_unwindinfo_data.GetU32(&offset);   // functionOffset
390         uint32_t next_func_offset = 0;
391         if (mid < last)
392         {
393             offset = first_entry + ((mid + 1) * 8);
394             next_func_offset = m_unwindinfo_data.GetU32(&offset);       // functionOffset
395         }
396         if (mid_func_offset <= function_offset)
397         {
398             if (mid == last || (next_func_offset > function_offset))
399             {
400                 if (entry_func_start_offset)
401                     *entry_func_start_offset = mid_func_offset;
402                 if (mid != last && entry_func_end_offset)
403                     *entry_func_end_offset = next_func_offset;
404                 return first_entry + (mid * 8);
405             }
406             else
407             {
408                 low = mid + 1;
409             }
410         }
411         else
412         {
413             high = mid;
414         }
415     }
416     return LLDB_INVALID_OFFSET;
417 }
418
419 uint32_t
420 CompactUnwindInfo::BinarySearchCompressedSecondPage (uint32_t entry_page_offset, uint32_t entry_count, uint32_t function_offset_to_find, uint32_t function_offset_base, uint32_t *entry_func_start_offset, uint32_t *entry_func_end_offset)
421 {
422     offset_t first_entry = entry_page_offset;
423
424     uint32_t low = 0;
425     uint32_t high = entry_count;
426     uint32_t last = high - 1;
427     while (low < high)
428     {
429         uint32_t mid = (low + high) / 2;
430         offset_t offset = first_entry + (mid * 4);
431         uint32_t entry = m_unwindinfo_data.GetU32(&offset);   // entry
432         uint32_t mid_func_offset = UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET (entry);
433         mid_func_offset += function_offset_base;
434         uint32_t next_func_offset = 0;
435         if (mid < last)
436         {
437             offset = first_entry + ((mid + 1) * 4);
438             uint32_t next_entry = m_unwindinfo_data.GetU32(&offset);       // entry
439             next_func_offset = UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET (next_entry);
440             next_func_offset += function_offset_base;
441         }
442         if (mid_func_offset <= function_offset_to_find)
443         {
444             if (mid == last || (next_func_offset > function_offset_to_find))
445             {
446                 if (entry_func_start_offset)
447                     *entry_func_start_offset = mid_func_offset;
448                 if (mid != last && entry_func_end_offset)
449                     *entry_func_end_offset = next_func_offset;
450                 return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX (entry);
451             }
452             else
453             {
454                 low = mid + 1;
455             }
456         }
457         else
458         {
459             high = mid;
460         }
461     }
462
463     return UINT32_MAX;
464 }
465
466 bool
467 CompactUnwindInfo::GetCompactUnwindInfoForFunction (Target &target, Address address, FunctionInfo &unwind_info)
468 {
469     unwind_info.encoding = 0;
470     unwind_info.lsda_address.Clear();
471     unwind_info.personality_ptr_address.Clear();
472
473     if (!IsValid (target.GetProcessSP()))
474         return false;
475
476     addr_t text_section_file_address = LLDB_INVALID_ADDRESS;
477     SectionList *sl = m_objfile.GetSectionList ();
478     if (sl)
479     {
480         SectionSP text_sect = sl->FindSectionByType (eSectionTypeCode, true);
481         if (text_sect.get())
482         {
483            text_section_file_address = text_sect->GetFileAddress();
484         }
485     }
486     if (text_section_file_address == LLDB_INVALID_ADDRESS)
487         return false;
488
489     addr_t function_offset = address.GetFileAddress() - m_objfile.GetHeaderAddress().GetFileAddress();
490     
491     UnwindIndex key;
492     key.function_offset = function_offset;
493     
494     std::vector<UnwindIndex>::const_iterator it;
495     it = std::lower_bound (m_indexes.begin(), m_indexes.end(), key);
496     if (it == m_indexes.end())
497     {
498         return false;
499     }
500
501     if (it->function_offset != key.function_offset)
502     {
503         if (it != m_indexes.begin())
504             --it;
505     }
506
507     if (it->sentinal_entry == true)
508     {
509         return false;
510     }
511
512     auto next_it = it + 1;
513     if (next_it != m_indexes.begin())
514     {
515         // initialize the function offset end range to be the start of the 
516         // next index offset.  If we find an entry which is at the end of
517         // the index table, this will establish the range end.
518         unwind_info.valid_range_offset_end = next_it->function_offset;
519     }
520
521     offset_t second_page_offset = it->second_level;
522     offset_t lsda_array_start = it->lsda_array_start;
523     offset_t lsda_array_count = (it->lsda_array_end - it->lsda_array_start) / 8;
524
525     offset_t offset = second_page_offset;
526     uint32_t kind = m_unwindinfo_data.GetU32(&offset);  // UNWIND_SECOND_LEVEL_REGULAR or UNWIND_SECOND_LEVEL_COMPRESSED
527
528     if (kind == UNWIND_SECOND_LEVEL_REGULAR)
529     {
530             // struct unwind_info_regular_second_level_page_header
531             // {
532             //     uint32_t    kind;    // UNWIND_SECOND_LEVEL_REGULAR
533             //     uint16_t    entryPageOffset;
534             //     uint16_t    entryCount;
535
536             // typedef uint32_t compact_unwind_encoding_t;
537             // struct unwind_info_regular_second_level_entry 
538             // {
539             //     uint32_t                    functionOffset;
540             //     compact_unwind_encoding_t    encoding;
541
542         uint16_t entry_page_offset = m_unwindinfo_data.GetU16(&offset); // entryPageOffset
543         uint16_t entry_count = m_unwindinfo_data.GetU16(&offset);       // entryCount
544
545         offset_t entry_offset = BinarySearchRegularSecondPage (second_page_offset + entry_page_offset, entry_count, function_offset, &unwind_info.valid_range_offset_start, &unwind_info.valid_range_offset_end);
546         if (entry_offset == LLDB_INVALID_OFFSET)
547         {
548             return false;
549         }
550         entry_offset += 4;                                              // skip over functionOffset
551         unwind_info.encoding = m_unwindinfo_data.GetU32(&entry_offset); // encoding
552         if (unwind_info.encoding & UNWIND_HAS_LSDA)
553         {
554             SectionList *sl = m_objfile.GetSectionList ();
555             if (sl)
556             {
557                 uint32_t lsda_offset = GetLSDAForFunctionOffset (lsda_array_start, lsda_array_count, function_offset);
558                 addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress();
559                 unwind_info.lsda_address.ResolveAddressUsingFileSections (objfile_header_file_address + lsda_offset, sl);
560             }
561         }
562         if (unwind_info.encoding & UNWIND_PERSONALITY_MASK)
563         {
564             uint32_t personality_index = EXTRACT_BITS (unwind_info.encoding, UNWIND_PERSONALITY_MASK);
565
566             if (personality_index > 0)
567             {
568                 personality_index--;
569                 if (personality_index < m_unwind_header.personality_array_count)
570                 {
571                     offset_t offset = m_unwind_header.personality_array_offset;
572                     offset += 4 * personality_index;
573                     SectionList *sl = m_objfile.GetSectionList ();
574                     if (sl)
575                     {
576                         uint32_t personality_offset = m_unwindinfo_data.GetU32(&offset);
577                         addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress();
578                         unwind_info.personality_ptr_address.ResolveAddressUsingFileSections (objfile_header_file_address + personality_offset, sl);
579                     }
580                 }
581             }
582         }
583         return true;
584     }
585     else if (kind == UNWIND_SECOND_LEVEL_COMPRESSED)
586     {
587             // struct unwind_info_compressed_second_level_page_header
588             // {
589             //     uint32_t    kind;    // UNWIND_SECOND_LEVEL_COMPRESSED
590             //     uint16_t    entryPageOffset;         // offset from this 2nd lvl page idx to array of entries
591             //                                          // (an entry has a function offset and index into the encodings)
592             //                                          // NB function offset from the entry in the compressed page 
593             //                                          // must be added to the index's functionOffset value.
594             //     uint16_t    entryCount;             
595             //     uint16_t    encodingsPageOffset;     // offset from this 2nd lvl page idx to array of encodings
596             //     uint16_t    encodingsCount;
597
598         uint16_t entry_page_offset = m_unwindinfo_data.GetU16(&offset);     // entryPageOffset
599         uint16_t entry_count = m_unwindinfo_data.GetU16(&offset);           // entryCount
600         uint16_t encodings_page_offset = m_unwindinfo_data.GetU16(&offset); // encodingsPageOffset
601         uint16_t encodings_count = m_unwindinfo_data.GetU16(&offset);       // encodingsCount
602
603         uint32_t encoding_index = BinarySearchCompressedSecondPage (second_page_offset + entry_page_offset, entry_count, function_offset, it->function_offset, &unwind_info.valid_range_offset_start, &unwind_info.valid_range_offset_end);
604         if (encoding_index == UINT32_MAX || encoding_index >= encodings_count + m_unwind_header.common_encodings_array_count)
605         {
606             return false;
607         }
608         uint32_t encoding = 0;
609         if (encoding_index < m_unwind_header.common_encodings_array_count)
610         {
611             offset = m_unwind_header.common_encodings_array_offset + (encoding_index * sizeof (uint32_t));
612             encoding = m_unwindinfo_data.GetU32(&offset);   // encoding entry from the commonEncodingsArray
613         }
614         else 
615         {
616             uint32_t page_specific_entry_index = encoding_index - m_unwind_header.common_encodings_array_count;
617             offset = second_page_offset + encodings_page_offset + (page_specific_entry_index * sizeof (uint32_t));
618             encoding = m_unwindinfo_data.GetU32(&offset);   // encoding entry from the page-specific encoding array
619         }
620         if (encoding == 0)
621             return false;
622
623         unwind_info.encoding = encoding;
624         if (unwind_info.encoding & UNWIND_HAS_LSDA)
625         {
626             SectionList *sl = m_objfile.GetSectionList ();
627             if (sl)
628             {
629                 uint32_t lsda_offset = GetLSDAForFunctionOffset (lsda_array_start, lsda_array_count, function_offset);
630                 addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress();
631                 unwind_info.lsda_address.ResolveAddressUsingFileSections (objfile_header_file_address + lsda_offset, sl);
632             }
633         }
634         if (unwind_info.encoding & UNWIND_PERSONALITY_MASK)
635         {
636             uint32_t personality_index = EXTRACT_BITS (unwind_info.encoding, UNWIND_PERSONALITY_MASK);
637
638             if (personality_index > 0)
639             {
640                 personality_index--;
641                 if (personality_index < m_unwind_header.personality_array_count)
642                 {
643                     offset_t offset = m_unwind_header.personality_array_offset;
644                     offset += 4 * personality_index;
645                     SectionList *sl = m_objfile.GetSectionList ();
646                     if (sl)
647                     {
648                         uint32_t personality_offset = m_unwindinfo_data.GetU32(&offset);
649                         addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress();
650                         unwind_info.personality_ptr_address.ResolveAddressUsingFileSections (objfile_header_file_address + personality_offset, sl);
651                     }
652                 }
653             }
654         }
655         return true;
656     }
657     return false;
658 }
659
660 enum x86_64_eh_regnum {
661     rax = 0,
662     rdx = 1,
663     rcx = 2,
664     rbx = 3,
665     rsi = 4,
666     rdi = 5,
667     rbp = 6,
668     rsp = 7,
669     r8 = 8,
670     r9 = 9,
671     r10 = 10,
672     r11 = 11,
673     r12 = 12,
674     r13 = 13,
675     r14 = 14,
676     r15 = 15,
677     rip = 16   // this is officially the Return Address register number, but close enough
678 };
679
680 // Convert the compact_unwind_info.h register numbering scheme
681 // to eRegisterKindGCC (eh_frame) register numbering scheme.
682 uint32_t
683 translate_to_eh_frame_regnum_x86_64 (uint32_t unwind_regno)
684 {
685     switch (unwind_regno)
686     {
687         case UNWIND_X86_64_REG_RBX:
688             return x86_64_eh_regnum::rbx;
689         case UNWIND_X86_64_REG_R12:
690             return x86_64_eh_regnum::r12;
691         case UNWIND_X86_64_REG_R13:
692             return x86_64_eh_regnum::r13;
693         case UNWIND_X86_64_REG_R14:
694             return x86_64_eh_regnum::r14;
695         case UNWIND_X86_64_REG_R15:
696             return x86_64_eh_regnum::r15;
697         case UNWIND_X86_64_REG_RBP:
698             return x86_64_eh_regnum::rbp;
699         default:
700             return LLDB_INVALID_REGNUM;
701     }
702 }
703
704 bool
705 CompactUnwindInfo::CreateUnwindPlan_x86_64 (Target &target, FunctionInfo &function_info, UnwindPlan &unwind_plan, Address pc_or_function_start)
706 {
707     unwind_plan.SetSourceName ("compact unwind info");
708     unwind_plan.SetSourcedFromCompiler (eLazyBoolYes);
709     unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
710     unwind_plan.SetRegisterKind (eRegisterKindGCC);
711
712     unwind_plan.SetLSDAAddress (function_info.lsda_address);
713     unwind_plan.SetPersonalityFunctionPtr (function_info.personality_ptr_address);
714
715     UnwindPlan::RowSP row (new UnwindPlan::Row);
716
717     const int wordsize = 8;
718     int mode = function_info.encoding & UNWIND_X86_64_MODE_MASK;
719     switch (mode)
720     {
721         case UNWIND_X86_64_MODE_RBP_FRAME:
722         {
723             row->SetCFARegister (translate_to_eh_frame_regnum_x86_64 (UNWIND_X86_64_REG_RBP));
724             row->SetCFAOffset (2 * wordsize);
725             row->SetOffset (0);
726             row->SetRegisterLocationToAtCFAPlusOffset (x86_64_eh_regnum::rbp, wordsize * -2, true);
727             row->SetRegisterLocationToAtCFAPlusOffset (x86_64_eh_regnum::rip, wordsize * -1, true);
728             row->SetRegisterLocationToIsCFAPlusOffset (x86_64_eh_regnum::rsp, 0, true);
729             
730             uint32_t saved_registers_offset = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_RBP_FRAME_OFFSET);
731
732             uint32_t saved_registers_locations = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_RBP_FRAME_REGISTERS);
733
734             saved_registers_offset += 2;
735
736             for (int i = 0; i < 5; i++)
737             {
738                 uint32_t regnum = saved_registers_locations & 0x7;
739                 switch (regnum)
740                 {
741                     case UNWIND_X86_64_REG_NONE:
742                         break;
743                     case UNWIND_X86_64_REG_RBX:
744                     case UNWIND_X86_64_REG_R12:
745                     case UNWIND_X86_64_REG_R13:
746                     case UNWIND_X86_64_REG_R14:
747                     case UNWIND_X86_64_REG_R15:
748                         row->SetRegisterLocationToAtCFAPlusOffset (translate_to_eh_frame_regnum_x86_64 (regnum), wordsize * -saved_registers_offset, true);
749                         break;
750                 }
751                 saved_registers_offset--;
752                 saved_registers_locations >>= 3;
753             }
754             unwind_plan.AppendRow (row);
755             return true;
756         }
757         break;
758
759         case UNWIND_X86_64_MODE_STACK_IND:
760         {
761             // The clang in Xcode 6 is emitting incorrect compact unwind encodings for this
762             // style of unwind.  It was fixed in llvm r217020.
763             return false;
764         }
765         break;
766
767         case UNWIND_X86_64_MODE_STACK_IMMD:
768         {
769             uint32_t stack_size = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_SIZE);
770             uint32_t register_count = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT);
771             uint32_t permutation = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION);
772
773             if (mode == UNWIND_X86_64_MODE_STACK_IND && function_info.valid_range_offset_start != 0)
774             {
775                 uint32_t stack_adjust = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_ADJUST);
776
777                 // offset into the function instructions; 0 == beginning of first instruction
778                 uint32_t offset_to_subl_insn = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_SIZE);
779
780                 SectionList *sl = m_objfile.GetSectionList ();
781                 if (sl)
782                 {
783                     ProcessSP process_sp = target.GetProcessSP();
784                     if (process_sp)
785                     {
786                         Address subl_payload_addr (function_info.valid_range_offset_start, sl);
787                         subl_payload_addr.Slide (offset_to_subl_insn);
788                         Error error;
789                         uint64_t large_stack_size = process_sp->ReadUnsignedIntegerFromMemory (subl_payload_addr.GetLoadAddress (&target),
790                                 4, 0, error);
791                         if (large_stack_size != 0 && error.Success ())
792                         {
793                             // Got the large stack frame size correctly - use it
794                             stack_size = large_stack_size + (stack_adjust * wordsize);
795                         }
796                         else
797                         {
798                             return false;
799                         }
800                     }
801                     else
802                     {
803                         return false;
804                     }
805                 }
806                 else
807                 {
808                     return false;
809                 }
810             }
811
812             row->SetCFARegister (x86_64_eh_regnum::rsp);
813             row->SetCFAOffset (stack_size * wordsize);
814             row->SetOffset (0);
815             row->SetRegisterLocationToAtCFAPlusOffset (x86_64_eh_regnum::rip, wordsize * -1, true);
816             row->SetRegisterLocationToIsCFAPlusOffset (x86_64_eh_regnum::rsp, 0, true);
817
818             if (register_count > 0)
819             {
820
821                 // We need to include (up to) 6 registers in 10 bits.
822                 // That would be 18 bits if we just used 3 bits per reg to indicate
823                 // the order they're saved on the stack. 
824                 //
825                 // This is done with Lehmer code permutation, e.g. see
826                 // http://stackoverflow.com/questions/1506078/fast-permutation-number-permutation-mapping-algorithms
827                 int permunreg[6];
828
829                 // This decodes the variable-base number in the 10 bits
830                 // and gives us the Lehmer code sequence which can then
831                 // be decoded.
832
833                 switch (register_count) 
834                 {
835                     case 6:
836                         permunreg[0] = permutation/120;    // 120 == 5!
837                         permutation -= (permunreg[0]*120);
838                         permunreg[1] = permutation/24;     // 24 == 4!
839                         permutation -= (permunreg[1]*24);
840                         permunreg[2] = permutation/6;      // 6 == 3!
841                         permutation -= (permunreg[2]*6);
842                         permunreg[3] = permutation/2;      // 2 == 2!
843                         permutation -= (permunreg[3]*2);
844                         permunreg[4] = permutation;        // 1 == 1!
845                         permunreg[5] = 0;
846                         break;
847                     case 5:
848                         permunreg[0] = permutation/120;
849                         permutation -= (permunreg[0]*120);
850                         permunreg[1] = permutation/24;
851                         permutation -= (permunreg[1]*24);
852                         permunreg[2] = permutation/6;
853                         permutation -= (permunreg[2]*6);
854                         permunreg[3] = permutation/2;
855                         permutation -= (permunreg[3]*2);
856                         permunreg[4] = permutation;
857                         break;
858                     case 4:
859                         permunreg[0] = permutation/60;
860                         permutation -= (permunreg[0]*60);
861                         permunreg[1] = permutation/12;
862                         permutation -= (permunreg[1]*12);
863                         permunreg[2] = permutation/3;
864                         permutation -= (permunreg[2]*3);
865                         permunreg[3] = permutation;
866                         break;
867                     case 3:
868                         permunreg[0] = permutation/20;
869                         permutation -= (permunreg[0]*20);
870                         permunreg[1] = permutation/4;
871                         permutation -= (permunreg[1]*4);
872                         permunreg[2] = permutation;
873                         break;
874                     case 2:
875                         permunreg[0] = permutation/5;
876                         permutation -= (permunreg[0]*5);
877                         permunreg[1] = permutation;
878                         break;
879                     case 1:
880                         permunreg[0] = permutation;
881                         break;
882                 }
883                 
884                 // Decode the Lehmer code for this permutation of
885                 // the registers v. http://en.wikipedia.org/wiki/Lehmer_code
886
887                 int registers[6];
888                 bool used[7] = { false, false, false, false, false, false, false };
889                 for (uint32_t i = 0; i < register_count; i++)
890                 {
891                     int renum = 0;
892                     for (int j = 1; j < 7; j++)
893                     {
894                         if (used[j] == false)
895                         {
896                             if (renum == permunreg[i])
897                             {
898                                 registers[i] = j;
899                                 used[j] = true;
900                                 break;
901                             }
902                             renum++;
903                         }
904                     }
905                 }
906
907                 uint32_t saved_registers_offset = 1;
908                 saved_registers_offset++;
909
910                 for (int i = (sizeof (registers) / sizeof (int)) - 1; i >= 0; i--)
911                 {
912                     switch (registers[i])
913                     {
914                         case UNWIND_X86_64_REG_NONE:
915                             break;
916                         case UNWIND_X86_64_REG_RBX:
917                         case UNWIND_X86_64_REG_R12:
918                         case UNWIND_X86_64_REG_R13:
919                         case UNWIND_X86_64_REG_R14:
920                         case UNWIND_X86_64_REG_R15:
921                         case UNWIND_X86_64_REG_RBP:
922                              row->SetRegisterLocationToAtCFAPlusOffset (translate_to_eh_frame_regnum_x86_64 (registers[i]), wordsize * -saved_registers_offset, true);
923                         break;
924                     }
925                     saved_registers_offset++;
926                 }
927             }
928             unwind_plan.AppendRow (row);
929             return true;
930         }
931         break;
932
933         case UNWIND_X86_64_MODE_DWARF:
934         {
935             return false;
936         }
937         break;
938
939         case 0:
940         {
941             return false;
942         }
943         break;
944     }
945     return false;
946 }
947
948 enum i386_eh_regnum {
949     eax = 0,
950     ecx = 1,
951     edx = 2,
952     ebx = 3,
953     ebp = 4,
954     esp = 5,
955     esi = 6,
956     edi = 7,
957     eip = 8    // this is officially the Return Address register number, but close enough
958 };
959
960 // Convert the compact_unwind_info.h register numbering scheme
961 // to eRegisterKindGCC (eh_frame) register numbering scheme.
962 uint32_t
963 translate_to_eh_frame_regnum_i386 (uint32_t unwind_regno)
964 {
965     switch (unwind_regno)
966     {
967         case UNWIND_X86_REG_EBX:
968             return i386_eh_regnum::ebx;
969         case UNWIND_X86_REG_ECX:
970             return i386_eh_regnum::ecx;
971         case UNWIND_X86_REG_EDX:
972             return i386_eh_regnum::edx;
973         case UNWIND_X86_REG_EDI:
974             return i386_eh_regnum::edi;
975         case UNWIND_X86_REG_ESI:
976             return i386_eh_regnum::esi;
977         case UNWIND_X86_REG_EBP:
978             return i386_eh_regnum::ebp;
979         default:
980             return LLDB_INVALID_REGNUM;
981     }
982 }
983
984
985 bool
986 CompactUnwindInfo::CreateUnwindPlan_i386 (Target &target, FunctionInfo &function_info, UnwindPlan &unwind_plan, Address pc_or_function_start)
987 {
988     unwind_plan.SetSourceName ("compact unwind info");
989     unwind_plan.SetSourcedFromCompiler (eLazyBoolYes);
990     unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
991     unwind_plan.SetRegisterKind (eRegisterKindGCC);
992
993     unwind_plan.SetLSDAAddress (function_info.lsda_address);
994     unwind_plan.SetPersonalityFunctionPtr (function_info.personality_ptr_address);
995
996     UnwindPlan::RowSP row (new UnwindPlan::Row);
997
998     const int wordsize = 4;
999     int mode = function_info.encoding & UNWIND_X86_MODE_MASK;
1000     switch (mode)
1001     {
1002         case UNWIND_X86_MODE_EBP_FRAME:
1003         {
1004             row->SetCFARegister (translate_to_eh_frame_regnum_i386 (UNWIND_X86_REG_EBP));
1005             row->SetCFAOffset (2 * wordsize);
1006             row->SetOffset (0);
1007             row->SetRegisterLocationToAtCFAPlusOffset (i386_eh_regnum::ebp, wordsize * -2, true);
1008             row->SetRegisterLocationToAtCFAPlusOffset (i386_eh_regnum::eip, wordsize * -1, true);
1009             row->SetRegisterLocationToIsCFAPlusOffset (i386_eh_regnum::esp, 0, true);
1010             
1011             uint32_t saved_registers_offset = EXTRACT_BITS (function_info.encoding, UNWIND_X86_EBP_FRAME_OFFSET);
1012
1013             uint32_t saved_registers_locations = EXTRACT_BITS (function_info.encoding, UNWIND_X86_EBP_FRAME_REGISTERS);
1014
1015             saved_registers_offset += 2;
1016
1017             for (int i = 0; i < 5; i++)
1018             {
1019                 uint32_t regnum = saved_registers_locations & 0x7;
1020                 switch (regnum)
1021                 {
1022                     case UNWIND_X86_REG_NONE:
1023                         break;
1024                     case UNWIND_X86_REG_EBX:
1025                     case UNWIND_X86_REG_ECX:
1026                     case UNWIND_X86_REG_EDX:
1027                     case UNWIND_X86_REG_EDI:
1028                     case UNWIND_X86_REG_ESI:
1029                         row->SetRegisterLocationToAtCFAPlusOffset (translate_to_eh_frame_regnum_i386 (regnum), wordsize * -saved_registers_offset, true);
1030                         break;
1031                 }
1032                 saved_registers_offset--;
1033                 saved_registers_locations >>= 3;
1034             }
1035             unwind_plan.AppendRow (row);
1036             return true;
1037         }
1038         break;
1039
1040         case UNWIND_X86_MODE_STACK_IND:
1041         case UNWIND_X86_MODE_STACK_IMMD:
1042         {
1043             uint32_t stack_size = EXTRACT_BITS (function_info.encoding, UNWIND_X86_FRAMELESS_STACK_SIZE);
1044             uint32_t register_count = EXTRACT_BITS (function_info.encoding, UNWIND_X86_FRAMELESS_STACK_REG_COUNT);
1045             uint32_t permutation = EXTRACT_BITS (function_info.encoding, UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION);
1046
1047             if (mode == UNWIND_X86_MODE_STACK_IND && function_info.valid_range_offset_start != 0)
1048             {
1049                 uint32_t stack_adjust = EXTRACT_BITS (function_info.encoding, UNWIND_X86_FRAMELESS_STACK_ADJUST);
1050
1051                 // offset into the function instructions; 0 == beginning of first instruction
1052                 uint32_t offset_to_subl_insn = EXTRACT_BITS (function_info.encoding, UNWIND_X86_FRAMELESS_STACK_SIZE);
1053
1054                 SectionList *sl = m_objfile.GetSectionList ();
1055                 if (sl)
1056                 {
1057                     ProcessSP process_sp = target.GetProcessSP();
1058                     if (process_sp)
1059                     {
1060                         Address subl_payload_addr (function_info.valid_range_offset_start, sl);
1061                         subl_payload_addr.Slide (offset_to_subl_insn);
1062                         Error error;
1063                         uint64_t large_stack_size = process_sp->ReadUnsignedIntegerFromMemory (subl_payload_addr.GetLoadAddress (&target),
1064                                 4, 0, error);
1065                         if (large_stack_size != 0 && error.Success ())
1066                         {
1067                             // Got the large stack frame size correctly - use it
1068                             stack_size = large_stack_size + (stack_adjust * wordsize);
1069                         }
1070                         else
1071                         {
1072                             return false;
1073                         }
1074                     }
1075                     else
1076                     {
1077                         return false;
1078                     }
1079                 }
1080                 else
1081                 {
1082                     return false;
1083                 }
1084             }
1085
1086             row->SetCFARegister (i386_eh_regnum::esp);
1087             row->SetCFAOffset (stack_size * wordsize);
1088             row->SetOffset (0);
1089             row->SetRegisterLocationToAtCFAPlusOffset (i386_eh_regnum::eip, wordsize * -1, true);
1090             row->SetRegisterLocationToIsCFAPlusOffset (i386_eh_regnum::esp, 0, true);
1091             
1092             if (register_count > 0)
1093             {
1094
1095                 // We need to include (up to) 6 registers in 10 bits.
1096                 // That would be 18 bits if we just used 3 bits per reg to indicate
1097                 // the order they're saved on the stack. 
1098                 //
1099                 // This is done with Lehmer code permutation, e.g. see
1100                 // http://stackoverflow.com/questions/1506078/fast-permutation-number-permutation-mapping-algorithms
1101                 int permunreg[6];
1102
1103                 // This decodes the variable-base number in the 10 bits
1104                 // and gives us the Lehmer code sequence which can then
1105                 // be decoded.
1106
1107                 switch (register_count) 
1108                 {
1109                     case 6:
1110                         permunreg[0] = permutation/120;    // 120 == 5!
1111                         permutation -= (permunreg[0]*120);
1112                         permunreg[1] = permutation/24;     // 24 == 4!
1113                         permutation -= (permunreg[1]*24);
1114                         permunreg[2] = permutation/6;      // 6 == 3!
1115                         permutation -= (permunreg[2]*6);
1116                         permunreg[3] = permutation/2;      // 2 == 2!
1117                         permutation -= (permunreg[3]*2);
1118                         permunreg[4] = permutation;        // 1 == 1!
1119                         permunreg[5] = 0;
1120                         break;
1121                     case 5:
1122                         permunreg[0] = permutation/120;
1123                         permutation -= (permunreg[0]*120);
1124                         permunreg[1] = permutation/24;
1125                         permutation -= (permunreg[1]*24);
1126                         permunreg[2] = permutation/6;
1127                         permutation -= (permunreg[2]*6);
1128                         permunreg[3] = permutation/2;
1129                         permutation -= (permunreg[3]*2);
1130                         permunreg[4] = permutation;
1131                         break;
1132                     case 4:
1133                         permunreg[0] = permutation/60;
1134                         permutation -= (permunreg[0]*60);
1135                         permunreg[1] = permutation/12;
1136                         permutation -= (permunreg[1]*12);
1137                         permunreg[2] = permutation/3;
1138                         permutation -= (permunreg[2]*3);
1139                         permunreg[3] = permutation;
1140                         break;
1141                     case 3:
1142                         permunreg[0] = permutation/20;
1143                         permutation -= (permunreg[0]*20);
1144                         permunreg[1] = permutation/4;
1145                         permutation -= (permunreg[1]*4);
1146                         permunreg[2] = permutation;
1147                         break;
1148                     case 2:
1149                         permunreg[0] = permutation/5;
1150                         permutation -= (permunreg[0]*5);
1151                         permunreg[1] = permutation;
1152                         break;
1153                     case 1:
1154                         permunreg[0] = permutation;
1155                         break;
1156                 }
1157                 
1158                 // Decode the Lehmer code for this permutation of
1159                 // the registers v. http://en.wikipedia.org/wiki/Lehmer_code
1160
1161                 int registers[6];
1162                 bool used[7] = { false, false, false, false, false, false, false };
1163                 for (uint32_t i = 0; i < register_count; i++)
1164                 {
1165                     int renum = 0;
1166                     for (int j = 1; j < 7; j++)
1167                     {
1168                         if (used[j] == false)
1169                         {
1170                             if (renum == permunreg[i])
1171                             {
1172                                 registers[i] = j;
1173                                 used[j] = true;
1174                                 break;
1175                             }
1176                             renum++;
1177                         }
1178                     }
1179                 }
1180
1181                 uint32_t saved_registers_offset = 1;
1182                 saved_registers_offset++;
1183
1184                 for (int i = (sizeof (registers) / sizeof (int)) - 1; i >= 0; i--)
1185                 {
1186                     switch (registers[i])
1187                     {
1188                         case UNWIND_X86_REG_NONE:
1189                             break;
1190                         case UNWIND_X86_REG_EBX:
1191                         case UNWIND_X86_REG_ECX:
1192                         case UNWIND_X86_REG_EDX:
1193                         case UNWIND_X86_REG_EDI:
1194                         case UNWIND_X86_REG_ESI:
1195                         case UNWIND_X86_REG_EBP:
1196                              row->SetRegisterLocationToAtCFAPlusOffset (translate_to_eh_frame_regnum_i386 (registers[i]), wordsize * -saved_registers_offset, true);
1197                         break;
1198                     }
1199                     saved_registers_offset++;
1200                 }
1201             }
1202
1203             unwind_plan.AppendRow (row);
1204             return true;
1205         }
1206         break;
1207
1208         case UNWIND_X86_MODE_DWARF:
1209         {
1210             return false;
1211         }
1212         break;
1213     }
1214     return false;
1215 }