]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/lldb/source/Symbol/DWARFCallFrameInfo.cpp
Merge in changes from ^/vendor/NetBSD/tests/dist@r313245
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / lldb / source / Symbol / DWARFCallFrameInfo.cpp
1 //===-- DWARFCallFrameInfo.cpp ----------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10
11 // C Includes
12 // C++ Includes
13 #include <list>
14
15 #include "lldb/Core/Log.h"
16 #include "lldb/Core/Section.h"
17 #include "lldb/Core/ArchSpec.h"
18 #include "lldb/Core/Module.h"
19 #include "lldb/Core/Section.h"
20 #include "lldb/Core/Timer.h"
21 #include "lldb/Host/Host.h"
22 #include "lldb/Symbol/DWARFCallFrameInfo.h"
23 #include "lldb/Symbol/ObjectFile.h"
24 #include "lldb/Symbol/UnwindPlan.h"
25 #include "lldb/Target/RegisterContext.h"
26 #include "lldb/Target/Thread.h"
27
28 using namespace lldb;
29 using namespace lldb_private;
30
31 DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile& objfile, SectionSP& section_sp, lldb::RegisterKind reg_kind, bool is_eh_frame) :
32     m_objfile (objfile),
33     m_section_sp (section_sp),
34     m_reg_kind (reg_kind),  // The flavor of registers that the CFI data uses (enum RegisterKind)
35     m_flags (),
36     m_cie_map (),
37     m_cfi_data (),
38     m_cfi_data_initialized (false),
39     m_fde_index (),
40     m_fde_index_initialized (false),
41     m_is_eh_frame (is_eh_frame)
42 {
43 }
44
45 DWARFCallFrameInfo::~DWARFCallFrameInfo()
46 {
47 }
48
49
50 bool
51 DWARFCallFrameInfo::GetUnwindPlan (Address addr, UnwindPlan& unwind_plan)
52 {
53     FDEEntryMap::Entry fde_entry;
54
55     // Make sure that the Address we're searching for is the same object file
56     // as this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
57     ModuleSP module_sp = addr.GetModule();
58     if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr || module_sp->GetObjectFile() != &m_objfile)
59         return false;
60
61     if (GetFDEEntryByFileAddress (addr.GetFileAddress(), fde_entry) == false)
62         return false;
63     return FDEToUnwindPlan (fde_entry.data, addr, unwind_plan);
64 }
65
66 bool
67 DWARFCallFrameInfo::GetAddressRange (Address addr, AddressRange &range)
68 {
69
70     // Make sure that the Address we're searching for is the same object file
71     // as this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
72     ModuleSP module_sp = addr.GetModule();
73     if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr || module_sp->GetObjectFile() != &m_objfile)
74         return false;
75
76     if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
77         return false;
78     GetFDEIndex();
79     FDEEntryMap::Entry *fde_entry = m_fde_index.FindEntryThatContains (addr.GetFileAddress());
80     if (!fde_entry)
81         return false;
82
83     range = AddressRange(fde_entry->base, fde_entry->size, m_objfile.GetSectionList());
84     return true;
85 }
86
87 bool
88 DWARFCallFrameInfo::GetFDEEntryByFileAddress (addr_t file_addr, FDEEntryMap::Entry &fde_entry)
89 {
90     if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
91         return false;
92
93     GetFDEIndex();
94
95     if (m_fde_index.IsEmpty())
96         return false;
97
98     FDEEntryMap::Entry *fde = m_fde_index.FindEntryThatContains (file_addr);
99
100     if (fde == nullptr)
101         return false;
102
103     fde_entry = *fde;
104     return true;
105 }
106
107 void
108 DWARFCallFrameInfo::GetFunctionAddressAndSizeVector (FunctionAddressAndSizeVector &function_info)
109 {
110     GetFDEIndex();
111     const size_t count = m_fde_index.GetSize();
112     function_info.Clear();
113     if (count > 0)
114         function_info.Reserve(count);
115     for (size_t i = 0; i < count; ++i)
116     {
117         const FDEEntryMap::Entry *func_offset_data_entry = m_fde_index.GetEntryAtIndex (i);
118         if (func_offset_data_entry)
119         {
120             FunctionAddressAndSizeVector::Entry function_offset_entry (func_offset_data_entry->base, func_offset_data_entry->size);
121             function_info.Append (function_offset_entry);
122         }
123     }
124 }
125
126 const DWARFCallFrameInfo::CIE*
127 DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset)
128 {
129     cie_map_t::iterator pos = m_cie_map.find(cie_offset);
130
131     if (pos != m_cie_map.end())
132     {
133         // Parse and cache the CIE
134         if (pos->second.get() == nullptr)
135             pos->second = ParseCIE (cie_offset);
136
137         return pos->second.get();
138     }
139     return nullptr;
140 }
141
142 DWARFCallFrameInfo::CIESP
143 DWARFCallFrameInfo::ParseCIE (const dw_offset_t cie_offset)
144 {
145     CIESP cie_sp(new CIE(cie_offset));
146     lldb::offset_t offset = cie_offset;
147     if (m_cfi_data_initialized == false)
148         GetCFIData();
149     uint32_t length = m_cfi_data.GetU32(&offset);
150     dw_offset_t cie_id, end_offset;
151     bool is_64bit = (length == UINT32_MAX);
152     if (is_64bit) {
153         length = m_cfi_data.GetU64(&offset);
154         cie_id = m_cfi_data.GetU64(&offset);
155         end_offset = cie_offset + length + 12;
156     } else {
157         cie_id = m_cfi_data.GetU32(&offset);
158         end_offset = cie_offset + length + 4;
159     }
160     if (length > 0 && ((!m_is_eh_frame && cie_id == UINT32_MAX) || (m_is_eh_frame && cie_id == 0ul)))
161     {
162         size_t i;
163         //    cie.offset = cie_offset;
164         //    cie.length = length;
165         //    cie.cieID = cieID;
166         cie_sp->ptr_encoding = DW_EH_PE_absptr; // default
167         cie_sp->version = m_cfi_data.GetU8(&offset);
168
169         for (i=0; i<CFI_AUG_MAX_SIZE; ++i)
170         {
171             cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
172             if (cie_sp->augmentation[i] == '\0')
173             {
174                 // Zero out remaining bytes in augmentation string
175                 for (size_t j = i+1; j<CFI_AUG_MAX_SIZE; ++j)
176                     cie_sp->augmentation[j] = '\0';
177
178                 break;
179             }
180         }
181
182         if (i == CFI_AUG_MAX_SIZE && cie_sp->augmentation[CFI_AUG_MAX_SIZE-1] != '\0')
183         {
184             Host::SystemLog (Host::eSystemLogError, "CIE parse error: CIE augmentation string was too large for the fixed sized buffer of %d bytes.\n", CFI_AUG_MAX_SIZE);
185             return cie_sp;
186         }
187         cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
188         cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
189         cie_sp->return_addr_reg_num = m_cfi_data.GetU8(&offset);
190
191         if (cie_sp->augmentation[0])
192         {
193             // Get the length of the eh_frame augmentation data
194             // which starts with a ULEB128 length in bytes
195             const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
196             const size_t aug_data_end = offset + aug_data_len;
197             const size_t aug_str_len = strlen(cie_sp->augmentation);
198             // A 'z' may be present as the first character of the string.
199             // If present, the Augmentation Data field shall be present.
200             // The contents of the Augmentation Data shall be interpreted
201             // according to other characters in the Augmentation String.
202             if (cie_sp->augmentation[0] == 'z')
203             {
204                 // Extract the Augmentation Data
205                 size_t aug_str_idx = 0;
206                 for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++)
207                 {
208                     char aug = cie_sp->augmentation[aug_str_idx];
209                     switch (aug)
210                     {
211                         case 'L':
212                             // Indicates the presence of one argument in the
213                             // Augmentation Data of the CIE, and a corresponding
214                             // argument in the Augmentation Data of the FDE. The
215                             // argument in the Augmentation Data of the CIE is
216                             // 1-byte and represents the pointer encoding used
217                             // for the argument in the Augmentation Data of the
218                             // FDE, which is the address of a language-specific
219                             // data area (LSDA). The size of the LSDA pointer is
220                             // specified by the pointer encoding used.
221                             cie_sp->lsda_addr_encoding = m_cfi_data.GetU8(&offset);
222                             break;
223
224                         case 'P':
225                             // Indicates the presence of two arguments in the
226                             // Augmentation Data of the CIE. The first argument
227                             // is 1-byte and represents the pointer encoding
228                             // used for the second argument, which is the
229                             // address of a personality routine handler. The
230                             // size of the personality routine pointer is
231                             // specified by the pointer encoding used.
232                             //
233                             // The address of the personality function will
234                             // be stored at this location.  Pre-execution, it
235                             // will be all zero's so don't read it until we're
236                             // trying to do an unwind & the reloc has been
237                             // resolved.
238                         {
239                             uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
240                             const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
241                             cie_sp->personality_loc = m_cfi_data.GetGNUEHPointer(&offset, arg_ptr_encoding, pc_rel_addr, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
242                         }
243                             break;
244
245                         case 'R':
246                             // A 'R' may be present at any position after the
247                             // first character of the string. The Augmentation
248                             // Data shall include a 1 byte argument that
249                             // represents the pointer encoding for the address
250                             // pointers used in the FDE.
251                             // Example: 0x1B == DW_EH_PE_pcrel | DW_EH_PE_sdata4 
252                             cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
253                             break;
254                     }
255                 }
256             }
257             else if (strcmp(cie_sp->augmentation, "eh") == 0)
258             {
259                 // If the Augmentation string has the value "eh", then
260                 // the EH Data field shall be present
261             }
262
263             // Set the offset to be the end of the augmentation data just in case
264             // we didn't understand any of the data.
265             offset = (uint32_t)aug_data_end;
266         }
267
268         if (end_offset > offset)
269         {
270             cie_sp->inst_offset = offset;
271             cie_sp->inst_length = end_offset - offset;
272         }
273         while (offset < end_offset)
274         {
275             uint8_t inst = m_cfi_data.GetU8(&offset);
276             uint8_t primary_opcode  = inst & 0xC0;
277             uint8_t extended_opcode = inst & 0x3F;
278
279             if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, cie_sp->data_align, offset, cie_sp->initial_row))
280                 break; // Stop if we hit an unrecognized opcode
281         }
282     }
283
284     return cie_sp;
285 }
286
287 void
288 DWARFCallFrameInfo::GetCFIData()
289 {
290     if (m_cfi_data_initialized == false)
291     {
292         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
293         if (log)
294             m_objfile.GetModule()->LogMessage(log, "Reading EH frame info");
295         m_objfile.ReadSectionData (m_section_sp.get(), m_cfi_data);
296         m_cfi_data_initialized = true;
297     }
298 }
299 // Scan through the eh_frame or debug_frame section looking for FDEs and noting the start/end addresses
300 // of the functions and a pointer back to the function's FDE for later expansion.
301 // Internalize CIEs as we come across them.
302
303 void
304 DWARFCallFrameInfo::GetFDEIndex ()
305 {
306     if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
307         return;
308     
309     if (m_fde_index_initialized)
310         return;
311
312     std::lock_guard<std::mutex> guard(m_fde_index_mutex);
313
314     if (m_fde_index_initialized) // if two threads hit the locker
315         return;
316
317     Timer scoped_timer (__PRETTY_FUNCTION__, "%s - %s", __PRETTY_FUNCTION__, m_objfile.GetFileSpec().GetFilename().AsCString(""));
318
319     bool clear_address_zeroth_bit = false;
320     ArchSpec arch;
321     if (m_objfile.GetArchitecture (arch))
322     {
323         if (arch.GetTriple().getArch() == llvm::Triple::arm || arch.GetTriple().getArch() == llvm::Triple::thumb)
324             clear_address_zeroth_bit = true;
325     }
326
327     lldb::offset_t offset = 0;
328     if (m_cfi_data_initialized == false)
329         GetCFIData();
330     while (m_cfi_data.ValidOffsetForDataOfSize (offset, 8))
331     {
332         const dw_offset_t current_entry = offset;
333         dw_offset_t cie_id, next_entry, cie_offset;
334         uint32_t len = m_cfi_data.GetU32 (&offset);
335         bool is_64bit = (len == UINT32_MAX);
336         if (is_64bit) {
337             len = m_cfi_data.GetU64 (&offset);
338             cie_id = m_cfi_data.GetU64 (&offset);
339             next_entry = current_entry + len + 12;
340             cie_offset = current_entry + 12 - cie_id;
341         } else {
342             cie_id = m_cfi_data.GetU32 (&offset);
343             next_entry = current_entry + len + 4;
344             cie_offset = current_entry + 4 - cie_id;
345         }
346
347         if (next_entry > m_cfi_data.GetByteSize() + 1)
348         {
349             Host::SystemLog (Host::eSystemLogError,
350                     "error: Invalid fde/cie next entry offset of 0x%x found in cie/fde at 0x%x\n",
351                     next_entry,
352                     current_entry);
353             // Don't trust anything in this eh_frame section if we find blatantly
354             // invalid data.
355             m_fde_index.Clear();
356             m_fde_index_initialized = true;
357             return;
358         }
359         if (cie_offset > m_cfi_data.GetByteSize())
360         {
361             Host::SystemLog (Host::eSystemLogError,
362                     "error: Invalid cie offset of 0x%x found in cie/fde at 0x%x\n",
363                     cie_offset,
364                     current_entry);
365             // Don't trust anything in this eh_frame section if we find blatantly
366             // invalid data.
367             m_fde_index.Clear();
368             m_fde_index_initialized = true;
369             return;
370         }
371
372         if (cie_id == 0 || cie_id == UINT32_MAX || len == 0)
373         {
374             m_cie_map[current_entry] = ParseCIE (current_entry);
375             offset = next_entry;
376             continue;
377         }
378
379         const CIE *cie = GetCIE (cie_offset);
380         if (cie)
381         {
382             const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
383             const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
384             const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
385
386             lldb::addr_t addr = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
387             if (clear_address_zeroth_bit)
388                 addr &= ~1ull;
389
390             lldb::addr_t length = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
391             FDEEntryMap::Entry fde (addr, length, current_entry);
392             m_fde_index.Append(fde);
393         }
394         else
395         {
396             Host::SystemLog (Host::eSystemLogError, 
397                              "error: unable to find CIE at 0x%8.8x for cie_id = 0x%8.8x for entry at 0x%8.8x.\n", 
398                              cie_offset,
399                              cie_id,
400                              current_entry);
401         }
402         offset = next_entry;
403     }
404     m_fde_index.Sort();
405     m_fde_index_initialized = true;
406 }
407
408 bool
409 DWARFCallFrameInfo::FDEToUnwindPlan (dw_offset_t dwarf_offset, Address startaddr, UnwindPlan& unwind_plan)
410 {
411     Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND);
412     lldb::offset_t offset = dwarf_offset;
413     lldb::offset_t current_entry = offset;
414
415     if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
416         return false;
417
418     if (m_cfi_data_initialized == false)
419         GetCFIData();
420
421     uint32_t length = m_cfi_data.GetU32 (&offset);
422     dw_offset_t cie_offset;
423     bool is_64bit = (length == UINT32_MAX);
424     if (is_64bit) {
425         length = m_cfi_data.GetU64 (&offset);
426         cie_offset = m_cfi_data.GetU64 (&offset);
427     } else {
428         cie_offset = m_cfi_data.GetU32 (&offset);
429     }
430
431     assert (cie_offset != 0 && cie_offset != UINT32_MAX);
432
433     // Translate the CIE_id from the eh_frame format, which
434     // is relative to the FDE offset, into a __eh_frame section
435     // offset
436     if (m_is_eh_frame)
437     {
438         unwind_plan.SetSourceName ("eh_frame CFI");
439         cie_offset = current_entry + (is_64bit ? 12 : 4) - cie_offset;
440         unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
441     }
442     else
443     {
444         unwind_plan.SetSourceName ("DWARF CFI");
445         // In theory the debug_frame info should be valid at all call sites
446         // ("asynchronous unwind info" as it is sometimes called) but in practice
447         // gcc et al all emit call frame info for the prologue and call sites, but
448         // not for the epilogue or all the other locations during the function reliably.
449         unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
450     }
451     unwind_plan.SetSourcedFromCompiler (eLazyBoolYes);
452
453     const CIE *cie = GetCIE (cie_offset);
454     assert (cie != nullptr);
455
456     const dw_offset_t end_offset = current_entry + length + (is_64bit ? 12 : 4);
457
458     const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
459     const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
460     const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
461     lldb::addr_t range_base = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
462     lldb::addr_t range_len = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
463     AddressRange range (range_base, m_objfile.GetAddressByteSize(), m_objfile.GetSectionList());
464     range.SetByteSize (range_len);
465
466     addr_t lsda_data_file_address = LLDB_INVALID_ADDRESS;
467
468     if (cie->augmentation[0] == 'z')
469     {
470         uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
471         if (aug_data_len != 0 && cie->lsda_addr_encoding != DW_EH_PE_omit)
472         {
473             offset_t saved_offset = offset;
474             lsda_data_file_address = m_cfi_data.GetGNUEHPointer(&offset, cie->lsda_addr_encoding, pc_rel_addr, text_addr, data_addr);
475             if (offset - saved_offset != aug_data_len)
476             {
477                 // There is more in the augmentation region than we know how to process;
478                 // don't read anything.
479                 lsda_data_file_address = LLDB_INVALID_ADDRESS;
480             }
481             offset = saved_offset;
482         }
483         offset += aug_data_len;
484     }
485     Address lsda_data;
486     Address personality_function_ptr;
487
488     if (lsda_data_file_address != LLDB_INVALID_ADDRESS && cie->personality_loc != LLDB_INVALID_ADDRESS)
489     {
490         m_objfile.GetModule()->ResolveFileAddress (lsda_data_file_address, lsda_data);
491         m_objfile.GetModule()->ResolveFileAddress (cie->personality_loc, personality_function_ptr);
492     }
493
494     if (lsda_data.IsValid() && personality_function_ptr.IsValid())
495     {
496         unwind_plan.SetLSDAAddress (lsda_data);
497         unwind_plan.SetPersonalityFunctionPtr (personality_function_ptr);
498     }
499
500     uint32_t code_align = cie->code_align;
501     int32_t data_align = cie->data_align;
502
503     unwind_plan.SetPlanValidAddressRange (range);
504     UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
505     *cie_initial_row = cie->initial_row;
506     UnwindPlan::RowSP row(cie_initial_row);
507
508     unwind_plan.SetRegisterKind (m_reg_kind);
509     unwind_plan.SetReturnAddressRegister (cie->return_addr_reg_num);
510
511     std::vector<UnwindPlan::RowSP> stack;
512
513     UnwindPlan::Row::RegisterLocation reg_location;
514     while (m_cfi_data.ValidOffset(offset) && offset < end_offset)
515     {
516         uint8_t inst = m_cfi_data.GetU8(&offset);
517         uint8_t primary_opcode  = inst & 0xC0;
518         uint8_t extended_opcode = inst & 0x3F;
519
520         if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, data_align, offset, *row))
521         {
522             if (primary_opcode)
523             {
524                 switch (primary_opcode)
525                 {
526                     case DW_CFA_advance_loc :   // (Row Creation Instruction)
527                     {   // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
528                         // takes a single argument that represents a constant delta. The
529                         // required action is to create a new table row with a location
530                         // value that is computed by taking the current entry's location
531                         // value and adding (delta * code_align). All other
532                         // values in the new row are initially identical to the current row.
533                         unwind_plan.AppendRow(row);
534                         UnwindPlan::Row *newrow = new UnwindPlan::Row;
535                         *newrow = *row.get();
536                         row.reset (newrow);
537                         row->SlideOffset(extended_opcode * code_align);
538                         break;
539                     }
540
541                     case DW_CFA_restore     :
542                     {   // 0xC0 - high 2 bits are 0x3, lower 6 bits are register
543                         // takes a single argument that represents a register number. The
544                         // required action is to change the rule for the indicated register
545                         // to the rule assigned it by the initial_instructions in the CIE.
546                         uint32_t reg_num = extended_opcode;
547                         // We only keep enough register locations around to
548                         // unwind what is in our thread, and these are organized
549                         // by the register index in that state, so we need to convert our
550                         // eh_frame register number from the EH frame info, to a register index
551
552                         if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
553                             row->SetRegisterInfo (reg_num, reg_location);
554                         break;
555                     }
556                 }
557             }
558             else
559             {
560                 switch (extended_opcode)
561                 {
562                     case DW_CFA_set_loc             : // 0x1 (Row Creation Instruction)
563                     {
564                         // DW_CFA_set_loc takes a single argument that represents an address.
565                         // The required action is to create a new table row using the
566                         // specified address as the location. All other values in the new row
567                         // are initially identical to the current row. The new location value
568                         // should always be greater than the current one.
569                         unwind_plan.AppendRow(row);
570                         UnwindPlan::Row *newrow = new UnwindPlan::Row;
571                         *newrow = *row.get();
572                         row.reset (newrow);
573                         row->SetOffset(m_cfi_data.GetPointer(&offset) - startaddr.GetFileAddress());
574                         break;
575                     }
576
577                     case DW_CFA_advance_loc1        : // 0x2 (Row Creation Instruction)
578                     {
579                         // takes a single uword argument that represents a constant delta.
580                         // This instruction is identical to DW_CFA_advance_loc except for the
581                         // encoding and size of the delta argument.
582                         unwind_plan.AppendRow(row);
583                         UnwindPlan::Row *newrow = new UnwindPlan::Row;
584                         *newrow = *row.get();
585                         row.reset (newrow);
586                         row->SlideOffset (m_cfi_data.GetU8(&offset) * code_align);
587                         break;
588                     }
589
590                     case DW_CFA_advance_loc2        : // 0x3 (Row Creation Instruction)
591                     {
592                         // takes a single uword argument that represents a constant delta.
593                         // This instruction is identical to DW_CFA_advance_loc except for the
594                         // encoding and size of the delta argument.
595                         unwind_plan.AppendRow(row);
596                         UnwindPlan::Row *newrow = new UnwindPlan::Row;
597                         *newrow = *row.get();
598                         row.reset (newrow);
599                         row->SlideOffset (m_cfi_data.GetU16(&offset) * code_align);
600                         break;
601                     }
602
603                     case DW_CFA_advance_loc4        : // 0x4 (Row Creation Instruction)
604                     {
605                         // takes a single uword argument that represents a constant delta.
606                         // This instruction is identical to DW_CFA_advance_loc except for the
607                         // encoding and size of the delta argument.
608                         unwind_plan.AppendRow(row);
609                         UnwindPlan::Row *newrow = new UnwindPlan::Row;
610                         *newrow = *row.get();
611                         row.reset (newrow);
612                         row->SlideOffset (m_cfi_data.GetU32(&offset) * code_align);
613                         break;
614                     }
615
616                     case DW_CFA_restore_extended    : // 0x6
617                     {
618                         // takes a single unsigned LEB128 argument that represents a register
619                         // number. This instruction is identical to DW_CFA_restore except for
620                         // the encoding and size of the register argument.
621                         uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
622                         if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
623                             row->SetRegisterInfo (reg_num, reg_location);
624                         break;
625                     }
626
627                     case DW_CFA_remember_state      : // 0xA
628                     {
629                         // These instructions define a stack of information. Encountering the
630                         // DW_CFA_remember_state instruction means to save the rules for every
631                         // register on the current row on the stack. Encountering the
632                         // DW_CFA_restore_state instruction means to pop the set of rules off
633                         // the stack and place them in the current row. (This operation is
634                         // useful for compilers that move epilogue code into the body of a
635                         // function.)
636                         stack.push_back (row);
637                         UnwindPlan::Row *newrow = new UnwindPlan::Row;
638                         *newrow = *row.get();
639                         row.reset (newrow);
640                         break;
641                     }
642
643                     case DW_CFA_restore_state       : // 0xB
644                     {
645                         // These instructions define a stack of information. Encountering the
646                         // DW_CFA_remember_state instruction means to save the rules for every
647                         // register on the current row on the stack. Encountering the
648                         // DW_CFA_restore_state instruction means to pop the set of rules off
649                         // the stack and place them in the current row. (This operation is
650                         // useful for compilers that move epilogue code into the body of a
651                         // function.)
652                         if (stack.empty())
653                         {
654                             if (log)
655                                 log->Printf(
656                                     "DWARFCallFrameInfo::%s(dwarf_offset: %" PRIx32 ", startaddr: %" PRIx64
657                                     " encountered DW_CFA_restore_state but state stack is empty. Corrupt unwind info?",
658                                     __FUNCTION__, dwarf_offset, startaddr.GetFileAddress());
659                             break;
660                         }
661                         lldb::addr_t offset = row->GetOffset ();
662                         row = stack.back ();
663                         stack.pop_back ();
664                         row->SetOffset (offset);
665                         break;
666                     }
667
668                     case DW_CFA_GNU_args_size: // 0x2e
669                     {
670                         // The DW_CFA_GNU_args_size instruction takes an unsigned LEB128 operand
671                         // representing an argument size. This instruction specifies the total of
672                         // the size of the arguments which have been pushed onto the stack.
673
674                         // TODO: Figure out how we should handle this.
675                         m_cfi_data.GetULEB128(&offset);
676                         break;
677                     }
678
679                     case DW_CFA_val_offset          :   // 0x14
680                     case DW_CFA_val_offset_sf       :   // 0x15
681                     default:
682                         break;
683                 }
684             }
685         }
686     }
687     unwind_plan.AppendRow(row);
688
689     return true;
690 }
691
692 bool
693 DWARFCallFrameInfo::HandleCommonDwarfOpcode(uint8_t primary_opcode,
694                                             uint8_t extended_opcode,
695                                             int32_t data_align,
696                                             lldb::offset_t& offset,
697                                             UnwindPlan::Row& row)
698 {   
699     UnwindPlan::Row::RegisterLocation reg_location;
700
701     if (primary_opcode)
702     {
703         switch (primary_opcode)
704         {
705             case DW_CFA_offset:
706             {   // 0x80 - high 2 bits are 0x2, lower 6 bits are register
707                 // takes two arguments: an unsigned LEB128 constant representing a
708                 // factored offset and a register number. The required action is to
709                 // change the rule for the register indicated by the register number
710                 // to be an offset(N) rule with a value of
711                 // (N = factored offset * data_align).
712                 uint8_t reg_num = extended_opcode;
713                 int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
714                 reg_location.SetAtCFAPlusOffset(op_offset);
715                 row.SetRegisterInfo(reg_num, reg_location);
716                 return true;
717             }
718         }
719     }
720     else
721     {
722         switch (extended_opcode)
723         {
724             case DW_CFA_nop                 : // 0x0
725                 return true;
726
727             case DW_CFA_offset_extended     : // 0x5
728             {
729                 // takes two unsigned LEB128 arguments representing a register number
730                 // and a factored offset. This instruction is identical to DW_CFA_offset
731                 // except for the encoding and size of the register argument.
732                 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
733                 int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
734                 UnwindPlan::Row::RegisterLocation reg_location;
735                 reg_location.SetAtCFAPlusOffset(op_offset);
736                 row.SetRegisterInfo(reg_num, reg_location);
737                 return true;
738             }
739
740             case DW_CFA_undefined           : // 0x7
741             {
742                 // takes a single unsigned LEB128 argument that represents a register
743                 // number. The required action is to set the rule for the specified
744                 // register to undefined.
745                 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
746                 UnwindPlan::Row::RegisterLocation reg_location;
747                 reg_location.SetUndefined();
748                 row.SetRegisterInfo(reg_num, reg_location);
749                 return true;
750             }
751
752             case DW_CFA_same_value          : // 0x8
753             {
754                 // takes a single unsigned LEB128 argument that represents a register
755                 // number. The required action is to set the rule for the specified
756                 // register to same value.
757                 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
758                 UnwindPlan::Row::RegisterLocation reg_location;
759                 reg_location.SetSame();
760                 row.SetRegisterInfo (reg_num, reg_location);
761                 return true;
762             }
763
764             case DW_CFA_register            : // 0x9
765             {
766                 // takes two unsigned LEB128 arguments representing register numbers.
767                 // The required action is to set the rule for the first register to be
768                 // the second register.
769                 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
770                 uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
771                 UnwindPlan::Row::RegisterLocation reg_location;
772                 reg_location.SetInRegister(other_reg_num);
773                 row.SetRegisterInfo (reg_num, reg_location);
774                 return true;
775             }
776
777             case DW_CFA_def_cfa             : // 0xC    (CFA Definition Instruction)
778             {
779                 // Takes two unsigned LEB128 operands representing a register
780                 // number and a (non-factored) offset. The required action
781                 // is to define the current CFA rule to use the provided
782                 // register and offset.
783                 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
784                 int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
785                 row.GetCFAValue().SetIsRegisterPlusOffset (reg_num, op_offset);
786                 return true;
787             }
788
789             case DW_CFA_def_cfa_register    : // 0xD    (CFA Definition Instruction)
790             {
791                 // takes a single unsigned LEB128 argument representing a register
792                 // number. The required action is to define the current CFA rule to
793                 // use the provided register (but to keep the old offset).
794                 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
795                 row.GetCFAValue().SetIsRegisterPlusOffset (reg_num, row.GetCFAValue().GetOffset());
796                 return true;
797             }
798
799             case DW_CFA_def_cfa_offset      : // 0xE    (CFA Definition Instruction)
800             {
801                 // Takes a single unsigned LEB128 operand representing a
802                 // (non-factored) offset. The required action is to define
803                 // the current CFA rule to use the provided offset (but
804                 // to keep the old register).
805                 int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
806                 row.GetCFAValue().SetIsRegisterPlusOffset(row.GetCFAValue().GetRegisterNumber(), op_offset);
807                 return true;
808             }
809
810             case DW_CFA_def_cfa_expression  : // 0xF    (CFA Definition Instruction)
811             {
812                 size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
813                 const uint8_t *block_data = static_cast<const uint8_t*>(m_cfi_data.GetData(&offset, block_len));
814                 row.GetCFAValue().SetIsDWARFExpression(block_data, block_len);
815                 return true;
816             }
817
818             case DW_CFA_expression          : // 0x10
819             {
820                 // Takes two operands: an unsigned LEB128 value representing
821                 // a register number, and a DW_FORM_block value representing a DWARF
822                 // expression. The required action is to change the rule for the
823                 // register indicated by the register number to be an expression(E)
824                 // rule where E is the DWARF expression. That is, the DWARF
825                 // expression computes the address. The value of the CFA is
826                 // pushed on the DWARF evaluation stack prior to execution of
827                 // the DWARF expression.
828                 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
829                 uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
830                 const uint8_t *block_data = static_cast<const uint8_t*>(m_cfi_data.GetData(&offset, block_len));
831                 UnwindPlan::Row::RegisterLocation reg_location;
832                 reg_location.SetAtDWARFExpression(block_data, block_len);
833                 row.SetRegisterInfo(reg_num, reg_location);
834                 return true;
835             }
836
837             case DW_CFA_offset_extended_sf  : // 0x11
838             {
839                 // takes two operands: an unsigned LEB128 value representing a
840                 // register number and a signed LEB128 factored offset. This
841                 // instruction is identical to DW_CFA_offset_extended except
842                 //that the second operand is signed and factored.
843                 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
844                 int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
845                 UnwindPlan::Row::RegisterLocation reg_location;
846                 reg_location.SetAtCFAPlusOffset(op_offset);
847                 row.SetRegisterInfo(reg_num, reg_location);
848                 return true;
849             }
850
851             case DW_CFA_def_cfa_sf          : // 0x12   (CFA Definition Instruction)
852             {
853                 // Takes two operands: an unsigned LEB128 value representing
854                 // a register number and a signed LEB128 factored offset.
855                 // This instruction is identical to DW_CFA_def_cfa except
856                 // that the second operand is signed and factored.
857                 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
858                 int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
859                 row.GetCFAValue().SetIsRegisterPlusOffset (reg_num, op_offset);
860                 return true;
861             }
862
863             case DW_CFA_def_cfa_offset_sf   : // 0x13   (CFA Definition Instruction)
864             {
865                 // takes a signed LEB128 operand representing a factored
866                 // offset. This instruction is identical to  DW_CFA_def_cfa_offset
867                 // except that the operand is signed and factored.
868                 int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
869                 uint32_t cfa_regnum = row.GetCFAValue().GetRegisterNumber();
870                 row.GetCFAValue().SetIsRegisterPlusOffset(cfa_regnum, op_offset);
871                 return true;
872             }
873
874             case DW_CFA_val_expression      :   // 0x16
875             {
876                 // takes two operands: an unsigned LEB128 value representing a register
877                 // number, and a DW_FORM_block value representing a DWARF expression.
878                 // The required action is to change the rule for the register indicated
879                 // by the register number to be a val_expression(E) rule where E is the
880                 // DWARF expression. That is, the DWARF expression computes the value of
881                 // the given register. The value of the CFA is pushed on the DWARF
882                 // evaluation stack prior to execution of the DWARF expression.
883                 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
884                 uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
885                 const uint8_t* block_data = (const uint8_t*)m_cfi_data.GetData(&offset, block_len);
886 //#if defined(__i386__) || defined(__x86_64__)
887 //              // The EH frame info for EIP and RIP contains code that looks for traps to
888 //              // be a specific type and increments the PC.
889 //              // For i386:
890 //              // DW_CFA_val_expression where:
891 //              // eip = DW_OP_breg6(+28), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x34),
892 //              //       DW_OP_deref, DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref,
893 //              //       DW_OP_dup, DW_OP_lit3, DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne,
894 //              //       DW_OP_and, DW_OP_plus
895 //              // This basically does a:
896 //              // eip = ucontenxt.mcontext32->gpr.eip;
897 //              // if (ucontenxt.mcontext32->exc.trapno != 3 && ucontenxt.mcontext32->exc.trapno != 4)
898 //              //   eip++;
899 //              //
900 //              // For x86_64:
901 //              // DW_CFA_val_expression where:
902 //              // rip =  DW_OP_breg3(+48), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x90), DW_OP_deref,
903 //              //          DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref_size(4), DW_OP_dup, DW_OP_lit3,
904 //              //          DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne, DW_OP_and, DW_OP_plus
905 //              // This basically does a:
906 //              // rip = ucontenxt.mcontext64->gpr.rip;
907 //              // if (ucontenxt.mcontext64->exc.trapno != 3 && ucontenxt.mcontext64->exc.trapno != 4)
908 //              //   rip++;
909 //              // The trap comparisons and increments are not needed as it hoses up the unwound PC which
910 //              // is expected to point at least past the instruction that causes the fault/trap. So we
911 //              // take it out by trimming the expression right at the first "DW_OP_swap" opcodes
912 //              if (block_data != NULL && thread->GetPCRegNum(Thread::GCC) == reg_num)
913 //              {
914 //                  if (thread->Is64Bit())
915 //                  {
916 //                      if (block_len > 9 && block_data[8] == DW_OP_swap && block_data[9] == DW_OP_plus_uconst)
917 //                          block_len = 8;
918 //                  }
919 //                  else
920 //                  {
921 //                      if (block_len > 8 && block_data[7] == DW_OP_swap && block_data[8] == DW_OP_plus_uconst)
922 //                          block_len = 7;
923 //                  }
924 //              }
925 //#endif
926                 reg_location.SetIsDWARFExpression(block_data, block_len);
927                 row.SetRegisterInfo (reg_num, reg_location);
928                 return true;
929             }
930         }
931     }
932     return false;
933 }
934
935 void
936 DWARFCallFrameInfo::ForEachFDEEntries(
937     const std::function<bool(lldb::addr_t, uint32_t, dw_offset_t)>& callback)
938 {
939     GetFDEIndex();
940
941     for (size_t i = 0, c = m_fde_index.GetSize(); i < c; ++i)
942     {
943         const FDEEntryMap::Entry& entry = m_fde_index.GetEntryRef(i);
944         if (!callback(entry.base, entry.size, entry.data))
945             break;
946     }
947 }