]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/lli/lli.cpp
Merge in changes from ^/vendor/NetBSD/tests/dist@r313245
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / lli / lli.cpp
1 //===- lli.cpp - LLVM Interpreter / Dynamic compiler ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This utility provides a simple wrapper around the LLVM Execution Engines,
11 // which allow the direct execution of LLVM programs through a Just-In-Time
12 // compiler, or through an interpreter if no JIT is available for this platform.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "OrcLazyJIT.h"
17 #include "RemoteJITUtils.h"
18 #include "llvm/IR/LLVMContext.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Bitcode/ReaderWriter.h"
22 #include "llvm/CodeGen/LinkAllCodegenComponents.h"
23 #include "llvm/ExecutionEngine/GenericValue.h"
24 #include "llvm/ExecutionEngine/Interpreter.h"
25 #include "llvm/ExecutionEngine/JITEventListener.h"
26 #include "llvm/ExecutionEngine/MCJIT.h"
27 #include "llvm/ExecutionEngine/ObjectCache.h"
28 #include "llvm/ExecutionEngine/OrcMCJITReplacement.h"
29 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
30 #include "llvm/ExecutionEngine/Orc/OrcRemoteTargetClient.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/TypeBuilder.h"
35 #include "llvm/IRReader/IRReader.h"
36 #include "llvm/Object/Archive.h"
37 #include "llvm/Object/ObjectFile.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/DynamicLibrary.h"
41 #include "llvm/Support/Format.h"
42 #include "llvm/Support/ManagedStatic.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/Memory.h"
45 #include "llvm/Support/MemoryBuffer.h"
46 #include "llvm/Support/Path.h"
47 #include "llvm/Support/PluginLoader.h"
48 #include "llvm/Support/PrettyStackTrace.h"
49 #include "llvm/Support/Process.h"
50 #include "llvm/Support/Program.h"
51 #include "llvm/Support/Signals.h"
52 #include "llvm/Support/SourceMgr.h"
53 #include "llvm/Support/TargetSelect.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Instrumentation.h"
56 #include <cerrno>
57
58 #ifdef __CYGWIN__
59 #include <cygwin/version.h>
60 #if defined(CYGWIN_VERSION_DLL_MAJOR) && CYGWIN_VERSION_DLL_MAJOR<1007
61 #define DO_NOTHING_ATEXIT 1
62 #endif
63 #endif
64
65 using namespace llvm;
66
67 #define DEBUG_TYPE "lli"
68
69 namespace {
70
71   enum class JITKind { MCJIT, OrcMCJITReplacement, OrcLazy };
72
73   cl::opt<std::string>
74   InputFile(cl::desc("<input bitcode>"), cl::Positional, cl::init("-"));
75
76   cl::list<std::string>
77   InputArgv(cl::ConsumeAfter, cl::desc("<program arguments>..."));
78
79   cl::opt<bool> ForceInterpreter("force-interpreter",
80                                  cl::desc("Force interpretation: disable JIT"),
81                                  cl::init(false));
82
83   cl::opt<JITKind> UseJITKind("jit-kind",
84                               cl::desc("Choose underlying JIT kind."),
85                               cl::init(JITKind::MCJIT),
86                               cl::values(
87                                 clEnumValN(JITKind::MCJIT, "mcjit",
88                                            "MCJIT"),
89                                 clEnumValN(JITKind::OrcMCJITReplacement,
90                                            "orc-mcjit",
91                                            "Orc-based MCJIT replacement"),
92                                 clEnumValN(JITKind::OrcLazy,
93                                            "orc-lazy",
94                                            "Orc-based lazy JIT."),
95                                 clEnumValEnd));
96
97   // The MCJIT supports building for a target address space separate from
98   // the JIT compilation process. Use a forked process and a copying
99   // memory manager with IPC to execute using this functionality.
100   cl::opt<bool> RemoteMCJIT("remote-mcjit",
101     cl::desc("Execute MCJIT'ed code in a separate process."),
102     cl::init(false));
103
104   // Manually specify the child process for remote execution. This overrides
105   // the simulated remote execution that allocates address space for child
106   // execution. The child process will be executed and will communicate with
107   // lli via stdin/stdout pipes.
108   cl::opt<std::string>
109   ChildExecPath("mcjit-remote-process",
110                 cl::desc("Specify the filename of the process to launch "
111                          "for remote MCJIT execution.  If none is specified,"
112                          "\n\tremote execution will be simulated in-process."),
113                 cl::value_desc("filename"), cl::init(""));
114
115   // Determine optimization level.
116   cl::opt<char>
117   OptLevel("O",
118            cl::desc("Optimization level. [-O0, -O1, -O2, or -O3] "
119                     "(default = '-O2')"),
120            cl::Prefix,
121            cl::ZeroOrMore,
122            cl::init(' '));
123
124   cl::opt<std::string>
125   TargetTriple("mtriple", cl::desc("Override target triple for module"));
126
127   cl::opt<std::string>
128   MArch("march",
129         cl::desc("Architecture to generate assembly for (see --version)"));
130
131   cl::opt<std::string>
132   MCPU("mcpu",
133        cl::desc("Target a specific cpu type (-mcpu=help for details)"),
134        cl::value_desc("cpu-name"),
135        cl::init(""));
136
137   cl::list<std::string>
138   MAttrs("mattr",
139          cl::CommaSeparated,
140          cl::desc("Target specific attributes (-mattr=help for details)"),
141          cl::value_desc("a1,+a2,-a3,..."));
142
143   cl::opt<std::string>
144   EntryFunc("entry-function",
145             cl::desc("Specify the entry function (default = 'main') "
146                      "of the executable"),
147             cl::value_desc("function"),
148             cl::init("main"));
149
150   cl::list<std::string>
151   ExtraModules("extra-module",
152          cl::desc("Extra modules to be loaded"),
153          cl::value_desc("input bitcode"));
154
155   cl::list<std::string>
156   ExtraObjects("extra-object",
157          cl::desc("Extra object files to be loaded"),
158          cl::value_desc("input object"));
159
160   cl::list<std::string>
161   ExtraArchives("extra-archive",
162          cl::desc("Extra archive files to be loaded"),
163          cl::value_desc("input archive"));
164
165   cl::opt<bool>
166   EnableCacheManager("enable-cache-manager",
167         cl::desc("Use cache manager to save/load mdoules"),
168         cl::init(false));
169
170   cl::opt<std::string>
171   ObjectCacheDir("object-cache-dir",
172                   cl::desc("Directory to store cached object files "
173                            "(must be user writable)"),
174                   cl::init(""));
175
176   cl::opt<std::string>
177   FakeArgv0("fake-argv0",
178             cl::desc("Override the 'argv[0]' value passed into the executing"
179                      " program"), cl::value_desc("executable"));
180
181   cl::opt<bool>
182   DisableCoreFiles("disable-core-files", cl::Hidden,
183                    cl::desc("Disable emission of core files if possible"));
184
185   cl::opt<bool>
186   NoLazyCompilation("disable-lazy-compilation",
187                   cl::desc("Disable JIT lazy compilation"),
188                   cl::init(false));
189
190   cl::opt<Reloc::Model> RelocModel(
191       "relocation-model", cl::desc("Choose relocation model"),
192       cl::values(
193           clEnumValN(Reloc::Static, "static", "Non-relocatable code"),
194           clEnumValN(Reloc::PIC_, "pic",
195                      "Fully relocatable, position independent code"),
196           clEnumValN(Reloc::DynamicNoPIC, "dynamic-no-pic",
197                      "Relocatable external references, non-relocatable code"),
198           clEnumValEnd));
199
200   cl::opt<llvm::CodeModel::Model>
201   CMModel("code-model",
202           cl::desc("Choose code model"),
203           cl::init(CodeModel::JITDefault),
204           cl::values(clEnumValN(CodeModel::JITDefault, "default",
205                                 "Target default JIT code model"),
206                      clEnumValN(CodeModel::Small, "small",
207                                 "Small code model"),
208                      clEnumValN(CodeModel::Kernel, "kernel",
209                                 "Kernel code model"),
210                      clEnumValN(CodeModel::Medium, "medium",
211                                 "Medium code model"),
212                      clEnumValN(CodeModel::Large, "large",
213                                 "Large code model"),
214                      clEnumValEnd));
215
216   cl::opt<bool>
217   GenerateSoftFloatCalls("soft-float",
218     cl::desc("Generate software floating point library calls"),
219     cl::init(false));
220
221   cl::opt<llvm::FloatABI::ABIType>
222   FloatABIForCalls("float-abi",
223                    cl::desc("Choose float ABI type"),
224                    cl::init(FloatABI::Default),
225                    cl::values(
226                      clEnumValN(FloatABI::Default, "default",
227                                 "Target default float ABI type"),
228                      clEnumValN(FloatABI::Soft, "soft",
229                                 "Soft float ABI (implied by -soft-float)"),
230                      clEnumValN(FloatABI::Hard, "hard",
231                                 "Hard float ABI (uses FP registers)"),
232                      clEnumValEnd));
233
234   ExitOnError ExitOnErr;
235 }
236
237 //===----------------------------------------------------------------------===//
238 // Object cache
239 //
240 // This object cache implementation writes cached objects to disk to the
241 // directory specified by CacheDir, using a filename provided in the module
242 // descriptor. The cache tries to load a saved object using that path if the
243 // file exists. CacheDir defaults to "", in which case objects are cached
244 // alongside their originating bitcodes.
245 //
246 class LLIObjectCache : public ObjectCache {
247 public:
248   LLIObjectCache(const std::string& CacheDir) : CacheDir(CacheDir) {
249     // Add trailing '/' to cache dir if necessary.
250     if (!this->CacheDir.empty() &&
251         this->CacheDir[this->CacheDir.size() - 1] != '/')
252       this->CacheDir += '/';
253   }
254   ~LLIObjectCache() override {}
255
256   void notifyObjectCompiled(const Module *M, MemoryBufferRef Obj) override {
257     const std::string &ModuleID = M->getModuleIdentifier();
258     std::string CacheName;
259     if (!getCacheFilename(ModuleID, CacheName))
260       return;
261     if (!CacheDir.empty()) { // Create user-defined cache dir.
262       SmallString<128> dir(sys::path::parent_path(CacheName));
263       sys::fs::create_directories(Twine(dir));
264     }
265     std::error_code EC;
266     raw_fd_ostream outfile(CacheName, EC, sys::fs::F_None);
267     outfile.write(Obj.getBufferStart(), Obj.getBufferSize());
268     outfile.close();
269   }
270
271   std::unique_ptr<MemoryBuffer> getObject(const Module* M) override {
272     const std::string &ModuleID = M->getModuleIdentifier();
273     std::string CacheName;
274     if (!getCacheFilename(ModuleID, CacheName))
275       return nullptr;
276     // Load the object from the cache filename
277     ErrorOr<std::unique_ptr<MemoryBuffer>> IRObjectBuffer =
278         MemoryBuffer::getFile(CacheName.c_str(), -1, false);
279     // If the file isn't there, that's OK.
280     if (!IRObjectBuffer)
281       return nullptr;
282     // MCJIT will want to write into this buffer, and we don't want that
283     // because the file has probably just been mmapped.  Instead we make
284     // a copy.  The filed-based buffer will be released when it goes
285     // out of scope.
286     return MemoryBuffer::getMemBufferCopy(IRObjectBuffer.get()->getBuffer());
287   }
288
289 private:
290   std::string CacheDir;
291
292   bool getCacheFilename(const std::string &ModID, std::string &CacheName) {
293     std::string Prefix("file:");
294     size_t PrefixLength = Prefix.length();
295     if (ModID.substr(0, PrefixLength) != Prefix)
296       return false;
297         std::string CacheSubdir = ModID.substr(PrefixLength);
298 #if defined(_WIN32)
299         // Transform "X:\foo" => "/X\foo" for convenience.
300         if (isalpha(CacheSubdir[0]) && CacheSubdir[1] == ':') {
301           CacheSubdir[1] = CacheSubdir[0];
302           CacheSubdir[0] = '/';
303         }
304 #endif
305     CacheName = CacheDir + CacheSubdir;
306     size_t pos = CacheName.rfind('.');
307     CacheName.replace(pos, CacheName.length() - pos, ".o");
308     return true;
309   }
310 };
311
312 // On Mingw and Cygwin, an external symbol named '__main' is called from the
313 // generated 'main' function to allow static intialization.  To avoid linking
314 // problems with remote targets (because lli's remote target support does not
315 // currently handle external linking) we add a secondary module which defines
316 // an empty '__main' function.
317 static void addCygMingExtraModule(ExecutionEngine &EE, LLVMContext &Context,
318                                   StringRef TargetTripleStr) {
319   IRBuilder<> Builder(Context);
320   Triple TargetTriple(TargetTripleStr);
321
322   // Create a new module.
323   std::unique_ptr<Module> M = make_unique<Module>("CygMingHelper", Context);
324   M->setTargetTriple(TargetTripleStr);
325
326   // Create an empty function named "__main".
327   Function *Result;
328   if (TargetTriple.isArch64Bit()) {
329     Result = Function::Create(
330       TypeBuilder<int64_t(void), false>::get(Context),
331       GlobalValue::ExternalLinkage, "__main", M.get());
332   } else {
333     Result = Function::Create(
334       TypeBuilder<int32_t(void), false>::get(Context),
335       GlobalValue::ExternalLinkage, "__main", M.get());
336   }
337   BasicBlock *BB = BasicBlock::Create(Context, "__main", Result);
338   Builder.SetInsertPoint(BB);
339   Value *ReturnVal;
340   if (TargetTriple.isArch64Bit())
341     ReturnVal = ConstantInt::get(Context, APInt(64, 0));
342   else
343     ReturnVal = ConstantInt::get(Context, APInt(32, 0));
344   Builder.CreateRet(ReturnVal);
345
346   // Add this new module to the ExecutionEngine.
347   EE.addModule(std::move(M));
348 }
349
350 CodeGenOpt::Level getOptLevel() {
351   switch (OptLevel) {
352   default:
353     errs() << "lli: Invalid optimization level.\n";
354     exit(1);
355   case '0': return CodeGenOpt::None;
356   case '1': return CodeGenOpt::Less;
357   case ' ':
358   case '2': return CodeGenOpt::Default;
359   case '3': return CodeGenOpt::Aggressive;
360   }
361   llvm_unreachable("Unrecognized opt level.");
362 }
363
364 //===----------------------------------------------------------------------===//
365 // main Driver function
366 //
367 int main(int argc, char **argv, char * const *envp) {
368   sys::PrintStackTraceOnErrorSignal(argv[0]);
369   PrettyStackTraceProgram X(argc, argv);
370
371   atexit(llvm_shutdown); // Call llvm_shutdown() on exit.
372
373   if (argc > 1)
374     ExitOnErr.setBanner(std::string(argv[0]) + ": ");
375
376   // If we have a native target, initialize it to ensure it is linked in and
377   // usable by the JIT.
378   InitializeNativeTarget();
379   InitializeNativeTargetAsmPrinter();
380   InitializeNativeTargetAsmParser();
381
382   cl::ParseCommandLineOptions(argc, argv,
383                               "llvm interpreter & dynamic compiler\n");
384
385   // If the user doesn't want core files, disable them.
386   if (DisableCoreFiles)
387     sys::Process::PreventCoreFiles();
388
389   LLVMContext Context;
390
391   // Load the bitcode...
392   SMDiagnostic Err;
393   std::unique_ptr<Module> Owner = parseIRFile(InputFile, Err, Context);
394   Module *Mod = Owner.get();
395   if (!Mod) {
396     Err.print(argv[0], errs());
397     return 1;
398   }
399
400   if (UseJITKind == JITKind::OrcLazy)
401     return runOrcLazyJIT(std::move(Owner), argc, argv);
402
403   if (EnableCacheManager) {
404     std::string CacheName("file:");
405     CacheName.append(InputFile);
406     Mod->setModuleIdentifier(CacheName);
407   }
408
409   // If not jitting lazily, load the whole bitcode file eagerly too.
410   if (NoLazyCompilation) {
411     if (std::error_code EC = Mod->materializeAll()) {
412       errs() << argv[0] << ": bitcode didn't read correctly.\n";
413       errs() << "Reason: " << EC.message() << "\n";
414       exit(1);
415     }
416   }
417
418   std::string ErrorMsg;
419   EngineBuilder builder(std::move(Owner));
420   builder.setMArch(MArch);
421   builder.setMCPU(MCPU);
422   builder.setMAttrs(MAttrs);
423   if (RelocModel.getNumOccurrences())
424     builder.setRelocationModel(RelocModel);
425   builder.setCodeModel(CMModel);
426   builder.setErrorStr(&ErrorMsg);
427   builder.setEngineKind(ForceInterpreter
428                         ? EngineKind::Interpreter
429                         : EngineKind::JIT);
430   builder.setUseOrcMCJITReplacement(UseJITKind == JITKind::OrcMCJITReplacement);
431
432   // If we are supposed to override the target triple, do so now.
433   if (!TargetTriple.empty())
434     Mod->setTargetTriple(Triple::normalize(TargetTriple));
435
436   // Enable MCJIT if desired.
437   RTDyldMemoryManager *RTDyldMM = nullptr;
438   if (!ForceInterpreter) {
439     if (RemoteMCJIT)
440       RTDyldMM = new ForwardingMemoryManager();
441     else
442       RTDyldMM = new SectionMemoryManager();
443
444     // Deliberately construct a temp std::unique_ptr to pass in. Do not null out
445     // RTDyldMM: We still use it below, even though we don't own it.
446     builder.setMCJITMemoryManager(
447       std::unique_ptr<RTDyldMemoryManager>(RTDyldMM));
448   } else if (RemoteMCJIT) {
449     errs() << "error: Remote process execution does not work with the "
450               "interpreter.\n";
451     exit(1);
452   }
453
454   builder.setOptLevel(getOptLevel());
455
456   TargetOptions Options;
457   if (FloatABIForCalls != FloatABI::Default)
458     Options.FloatABIType = FloatABIForCalls;
459
460   builder.setTargetOptions(Options);
461
462   std::unique_ptr<ExecutionEngine> EE(builder.create());
463   if (!EE) {
464     if (!ErrorMsg.empty())
465       errs() << argv[0] << ": error creating EE: " << ErrorMsg << "\n";
466     else
467       errs() << argv[0] << ": unknown error creating EE!\n";
468     exit(1);
469   }
470
471   std::unique_ptr<LLIObjectCache> CacheManager;
472   if (EnableCacheManager) {
473     CacheManager.reset(new LLIObjectCache(ObjectCacheDir));
474     EE->setObjectCache(CacheManager.get());
475   }
476
477   // Load any additional modules specified on the command line.
478   for (unsigned i = 0, e = ExtraModules.size(); i != e; ++i) {
479     std::unique_ptr<Module> XMod = parseIRFile(ExtraModules[i], Err, Context);
480     if (!XMod) {
481       Err.print(argv[0], errs());
482       return 1;
483     }
484     if (EnableCacheManager) {
485       std::string CacheName("file:");
486       CacheName.append(ExtraModules[i]);
487       XMod->setModuleIdentifier(CacheName);
488     }
489     EE->addModule(std::move(XMod));
490   }
491
492   for (unsigned i = 0, e = ExtraObjects.size(); i != e; ++i) {
493     Expected<object::OwningBinary<object::ObjectFile>> Obj =
494         object::ObjectFile::createObjectFile(ExtraObjects[i]);
495     if (!Obj) {
496       // TODO: Actually report errors helpfully.
497       consumeError(Obj.takeError());
498       Err.print(argv[0], errs());
499       return 1;
500     }
501     object::OwningBinary<object::ObjectFile> &O = Obj.get();
502     EE->addObjectFile(std::move(O));
503   }
504
505   for (unsigned i = 0, e = ExtraArchives.size(); i != e; ++i) {
506     ErrorOr<std::unique_ptr<MemoryBuffer>> ArBufOrErr =
507         MemoryBuffer::getFileOrSTDIN(ExtraArchives[i]);
508     if (!ArBufOrErr) {
509       Err.print(argv[0], errs());
510       return 1;
511     }
512     std::unique_ptr<MemoryBuffer> &ArBuf = ArBufOrErr.get();
513
514     Expected<std::unique_ptr<object::Archive>> ArOrErr =
515         object::Archive::create(ArBuf->getMemBufferRef());
516     if (!ArOrErr) {
517       std::string Buf;
518       raw_string_ostream OS(Buf);
519       logAllUnhandledErrors(ArOrErr.takeError(), OS, "");
520       OS.flush();
521       errs() << Buf;
522       return 1;
523     }
524     std::unique_ptr<object::Archive> &Ar = ArOrErr.get();
525
526     object::OwningBinary<object::Archive> OB(std::move(Ar), std::move(ArBuf));
527
528     EE->addArchive(std::move(OB));
529   }
530
531   // If the target is Cygwin/MingW and we are generating remote code, we
532   // need an extra module to help out with linking.
533   if (RemoteMCJIT && Triple(Mod->getTargetTriple()).isOSCygMing()) {
534     addCygMingExtraModule(*EE, Context, Mod->getTargetTriple());
535   }
536
537   // The following functions have no effect if their respective profiling
538   // support wasn't enabled in the build configuration.
539   EE->RegisterJITEventListener(
540                 JITEventListener::createOProfileJITEventListener());
541   EE->RegisterJITEventListener(
542                 JITEventListener::createIntelJITEventListener());
543
544   if (!NoLazyCompilation && RemoteMCJIT) {
545     errs() << "warning: remote mcjit does not support lazy compilation\n";
546     NoLazyCompilation = true;
547   }
548   EE->DisableLazyCompilation(NoLazyCompilation);
549
550   // If the user specifically requested an argv[0] to pass into the program,
551   // do it now.
552   if (!FakeArgv0.empty()) {
553     InputFile = static_cast<std::string>(FakeArgv0);
554   } else {
555     // Otherwise, if there is a .bc suffix on the executable strip it off, it
556     // might confuse the program.
557     if (StringRef(InputFile).endswith(".bc"))
558       InputFile.erase(InputFile.length() - 3);
559   }
560
561   // Add the module's name to the start of the vector of arguments to main().
562   InputArgv.insert(InputArgv.begin(), InputFile);
563
564   // Call the main function from M as if its signature were:
565   //   int main (int argc, char **argv, const char **envp)
566   // using the contents of Args to determine argc & argv, and the contents of
567   // EnvVars to determine envp.
568   //
569   Function *EntryFn = Mod->getFunction(EntryFunc);
570   if (!EntryFn) {
571     errs() << '\'' << EntryFunc << "\' function not found in module.\n";
572     return -1;
573   }
574
575   // Reset errno to zero on entry to main.
576   errno = 0;
577
578   int Result = -1;
579
580   // Sanity check use of remote-jit: LLI currently only supports use of the
581   // remote JIT on Unix platforms.
582   if (RemoteMCJIT) {
583 #ifndef LLVM_ON_UNIX
584     errs() << "Warning: host does not support external remote targets.\n"
585            << "  Defaulting to local execution\n";
586     return -1;
587 #else
588     if (ChildExecPath.empty()) {
589       errs() << "-remote-mcjit requires -mcjit-remote-process.\n";
590       exit(1);
591     } else if (!sys::fs::can_execute(ChildExecPath)) {
592       errs() << "Unable to find usable child executable: '" << ChildExecPath
593              << "'\n";
594       return -1;
595     }
596 #endif
597   }
598
599   if (!RemoteMCJIT) {
600     // If the program doesn't explicitly call exit, we will need the Exit
601     // function later on to make an explicit call, so get the function now.
602     Constant *Exit = Mod->getOrInsertFunction("exit", Type::getVoidTy(Context),
603                                                       Type::getInt32Ty(Context),
604                                                       nullptr);
605
606     // Run static constructors.
607     if (!ForceInterpreter) {
608       // Give MCJIT a chance to apply relocations and set page permissions.
609       EE->finalizeObject();
610     }
611     EE->runStaticConstructorsDestructors(false);
612
613     // Trigger compilation separately so code regions that need to be
614     // invalidated will be known.
615     (void)EE->getPointerToFunction(EntryFn);
616     // Clear instruction cache before code will be executed.
617     if (RTDyldMM)
618       static_cast<SectionMemoryManager*>(RTDyldMM)->invalidateInstructionCache();
619
620     // Run main.
621     Result = EE->runFunctionAsMain(EntryFn, InputArgv, envp);
622
623     // Run static destructors.
624     EE->runStaticConstructorsDestructors(true);
625
626     // If the program didn't call exit explicitly, we should call it now.
627     // This ensures that any atexit handlers get called correctly.
628     if (Function *ExitF = dyn_cast<Function>(Exit)) {
629       std::vector<GenericValue> Args;
630       GenericValue ResultGV;
631       ResultGV.IntVal = APInt(32, Result);
632       Args.push_back(ResultGV);
633       EE->runFunction(ExitF, Args);
634       errs() << "ERROR: exit(" << Result << ") returned!\n";
635       abort();
636     } else {
637       errs() << "ERROR: exit defined with wrong prototype!\n";
638       abort();
639     }
640   } else {
641     // else == "if (RemoteMCJIT)"
642
643     // Remote target MCJIT doesn't (yet) support static constructors. No reason
644     // it couldn't. This is a limitation of the LLI implemantation, not the
645     // MCJIT itself. FIXME.
646
647     // Lanch the remote process and get a channel to it.
648     std::unique_ptr<FDRPCChannel> C = launchRemote();
649     if (!C) {
650       errs() << "Failed to launch remote JIT.\n";
651       exit(1);
652     }
653
654     // Create a remote target client running over the channel.
655     typedef orc::remote::OrcRemoteTargetClient<orc::remote::RPCChannel> MyRemote;
656     MyRemote R = ExitOnErr(MyRemote::Create(*C));
657
658     // Create a remote memory manager.
659     std::unique_ptr<MyRemote::RCMemoryManager> RemoteMM;
660     ExitOnErr(R.createRemoteMemoryManager(RemoteMM));
661
662     // Forward MCJIT's memory manager calls to the remote memory manager.
663     static_cast<ForwardingMemoryManager*>(RTDyldMM)->setMemMgr(
664       std::move(RemoteMM));
665
666     // Forward MCJIT's symbol resolution calls to the remote.
667     static_cast<ForwardingMemoryManager*>(RTDyldMM)->setResolver(
668       orc::createLambdaResolver(
669         [](const std::string &Name) { return nullptr; },
670         [&](const std::string &Name) {
671           if (auto Addr = ExitOnErr(R.getSymbolAddress(Name)))
672             return RuntimeDyld::SymbolInfo(Addr, JITSymbolFlags::Exported);
673           return RuntimeDyld::SymbolInfo(nullptr);
674         }
675       ));
676
677     // Grab the target address of the JIT'd main function on the remote and call
678     // it.
679     // FIXME: argv and envp handling.
680     orc::TargetAddress Entry = EE->getFunctionAddress(EntryFn->getName().str());
681     EE->finalizeObject();
682     DEBUG(dbgs() << "Executing '" << EntryFn->getName() << "' at 0x"
683                  << format("%llx", Entry) << "\n");
684     Result = ExitOnErr(R.callIntVoid(Entry));
685
686     // Like static constructors, the remote target MCJIT support doesn't handle
687     // this yet. It could. FIXME.
688
689     // Delete the EE - we need to tear it down *before* we terminate the session
690     // with the remote, otherwise it'll crash when it tries to release resources
691     // on a remote that has already been disconnected.
692     EE.reset();
693
694     // Signal the remote target that we're done JITing.
695     ExitOnErr(R.terminateSession());
696   }
697
698   return Result;
699 }
700
701 std::unique_ptr<FDRPCChannel> launchRemote() {
702 #ifndef LLVM_ON_UNIX
703   llvm_unreachable("launchRemote not supported on non-Unix platforms");
704 #else
705   int PipeFD[2][2];
706   pid_t ChildPID;
707
708   // Create two pipes.
709   if (pipe(PipeFD[0]) != 0 || pipe(PipeFD[1]) != 0)
710     perror("Error creating pipe: ");
711
712   ChildPID = fork();
713
714   if (ChildPID == 0) {
715     // In the child...
716
717     // Close the parent ends of the pipes
718     close(PipeFD[0][1]);
719     close(PipeFD[1][0]);
720
721
722     // Execute the child process.
723     std::unique_ptr<char[]> ChildPath, ChildIn, ChildOut;
724     {
725       ChildPath.reset(new char[ChildExecPath.size() + 1]);
726       std::copy(ChildExecPath.begin(), ChildExecPath.end(), &ChildPath[0]);
727       ChildPath[ChildExecPath.size()] = '\0';
728       std::string ChildInStr = utostr(PipeFD[0][0]);
729       ChildIn.reset(new char[ChildInStr.size() + 1]);
730       std::copy(ChildInStr.begin(), ChildInStr.end(), &ChildIn[0]);
731       ChildIn[ChildInStr.size()] = '\0';
732       std::string ChildOutStr = utostr(PipeFD[1][1]);
733       ChildOut.reset(new char[ChildOutStr.size() + 1]);
734       std::copy(ChildOutStr.begin(), ChildOutStr.end(), &ChildOut[0]);
735       ChildOut[ChildOutStr.size()] = '\0';
736     }
737
738     char * const args[] = { &ChildPath[0], &ChildIn[0], &ChildOut[0], nullptr };
739     int rc = execv(ChildExecPath.c_str(), args);
740     if (rc != 0)
741       perror("Error executing child process: ");
742     llvm_unreachable("Error executing child process");
743   }
744   // else we're the parent...
745
746   // Close the child ends of the pipes
747   close(PipeFD[0][0]);
748   close(PipeFD[1][1]);
749
750   // Return an RPC channel connected to our end of the pipes.
751   return llvm::make_unique<FDRPCChannel>(PipeFD[1][0], PipeFD[0][1]);
752 #endif
753 }