]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/utils/TableGen/AsmMatcherEmitter.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / utils / TableGen / AsmMatcherEmitter.cpp
1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits a target specifier matcher for converting parsed
11 // assembly operands in the MCInst structures. It also emits a matcher for
12 // custom operand parsing.
13 //
14 // Converting assembly operands into MCInst structures
15 // ---------------------------------------------------
16 //
17 // The input to the target specific matcher is a list of literal tokens and
18 // operands. The target specific parser should generally eliminate any syntax
19 // which is not relevant for matching; for example, comma tokens should have
20 // already been consumed and eliminated by the parser. Most instructions will
21 // end up with a single literal token (the instruction name) and some number of
22 // operands.
23 //
24 // Some example inputs, for X86:
25 //   'addl' (immediate ...) (register ...)
26 //   'add' (immediate ...) (memory ...)
27 //   'call' '*' %epc
28 //
29 // The assembly matcher is responsible for converting this input into a precise
30 // machine instruction (i.e., an instruction with a well defined encoding). This
31 // mapping has several properties which complicate matching:
32 //
33 //  - It may be ambiguous; many architectures can legally encode particular
34 //    variants of an instruction in different ways (for example, using a smaller
35 //    encoding for small immediates). Such ambiguities should never be
36 //    arbitrarily resolved by the assembler, the assembler is always responsible
37 //    for choosing the "best" available instruction.
38 //
39 //  - It may depend on the subtarget or the assembler context. Instructions
40 //    which are invalid for the current mode, but otherwise unambiguous (e.g.,
41 //    an SSE instruction in a file being assembled for i486) should be accepted
42 //    and rejected by the assembler front end. However, if the proper encoding
43 //    for an instruction is dependent on the assembler context then the matcher
44 //    is responsible for selecting the correct machine instruction for the
45 //    current mode.
46 //
47 // The core matching algorithm attempts to exploit the regularity in most
48 // instruction sets to quickly determine the set of possibly matching
49 // instructions, and the simplify the generated code. Additionally, this helps
50 // to ensure that the ambiguities are intentionally resolved by the user.
51 //
52 // The matching is divided into two distinct phases:
53 //
54 //   1. Classification: Each operand is mapped to the unique set which (a)
55 //      contains it, and (b) is the largest such subset for which a single
56 //      instruction could match all members.
57 //
58 //      For register classes, we can generate these subgroups automatically. For
59 //      arbitrary operands, we expect the user to define the classes and their
60 //      relations to one another (for example, 8-bit signed immediates as a
61 //      subset of 32-bit immediates).
62 //
63 //      By partitioning the operands in this way, we guarantee that for any
64 //      tuple of classes, any single instruction must match either all or none
65 //      of the sets of operands which could classify to that tuple.
66 //
67 //      In addition, the subset relation amongst classes induces a partial order
68 //      on such tuples, which we use to resolve ambiguities.
69 //
70 //   2. The input can now be treated as a tuple of classes (static tokens are
71 //      simple singleton sets). Each such tuple should generally map to a single
72 //      instruction (we currently ignore cases where this isn't true, whee!!!),
73 //      which we can emit a simple matcher for.
74 //
75 // Custom Operand Parsing
76 // ----------------------
77 //
78 //  Some targets need a custom way to parse operands, some specific instructions
79 //  can contain arguments that can represent processor flags and other kinds of
80 //  identifiers that need to be mapped to specific values in the final encoded
81 //  instructions. The target specific custom operand parsing works in the
82 //  following way:
83 //
84 //   1. A operand match table is built, each entry contains a mnemonic, an
85 //      operand class, a mask for all operand positions for that same
86 //      class/mnemonic and target features to be checked while trying to match.
87 //
88 //   2. The operand matcher will try every possible entry with the same
89 //      mnemonic and will check if the target feature for this mnemonic also
90 //      matches. After that, if the operand to be matched has its index
91 //      present in the mask, a successful match occurs. Otherwise, fallback
92 //      to the regular operand parsing.
93 //
94 //   3. For a match success, each operand class that has a 'ParserMethod'
95 //      becomes part of a switch from where the custom method is called.
96 //
97 //===----------------------------------------------------------------------===//
98
99 #include "CodeGenTarget.h"
100 #include "SubtargetFeatureInfo.h"
101 #include "Types.h"
102 #include "llvm/ADT/CachedHashString.h"
103 #include "llvm/ADT/PointerUnion.h"
104 #include "llvm/ADT/STLExtras.h"
105 #include "llvm/ADT/SmallPtrSet.h"
106 #include "llvm/ADT/SmallVector.h"
107 #include "llvm/ADT/StringExtras.h"
108 #include "llvm/Config/llvm-config.h"
109 #include "llvm/Support/CommandLine.h"
110 #include "llvm/Support/Debug.h"
111 #include "llvm/Support/ErrorHandling.h"
112 #include "llvm/TableGen/Error.h"
113 #include "llvm/TableGen/Record.h"
114 #include "llvm/TableGen/StringMatcher.h"
115 #include "llvm/TableGen/StringToOffsetTable.h"
116 #include "llvm/TableGen/TableGenBackend.h"
117 #include <cassert>
118 #include <cctype>
119 #include <forward_list>
120 #include <map>
121 #include <set>
122
123 using namespace llvm;
124
125 #define DEBUG_TYPE "asm-matcher-emitter"
126
127 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher");
128
129 static cl::opt<std::string>
130     MatchPrefix("match-prefix", cl::init(""),
131                 cl::desc("Only match instructions with the given prefix"),
132                 cl::cat(AsmMatcherEmitterCat));
133
134 namespace {
135 class AsmMatcherInfo;
136
137 // Register sets are used as keys in some second-order sets TableGen creates
138 // when generating its data structures. This means that the order of two
139 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
140 // can even affect compiler output (at least seen in diagnostics produced when
141 // all matches fail). So we use a type that sorts them consistently.
142 typedef std::set<Record*, LessRecordByID> RegisterSet;
143
144 class AsmMatcherEmitter {
145   RecordKeeper &Records;
146 public:
147   AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
148
149   void run(raw_ostream &o);
150 };
151
152 /// ClassInfo - Helper class for storing the information about a particular
153 /// class of operands which can be matched.
154 struct ClassInfo {
155   enum ClassInfoKind {
156     /// Invalid kind, for use as a sentinel value.
157     Invalid = 0,
158
159     /// The class for a particular token.
160     Token,
161
162     /// The (first) register class, subsequent register classes are
163     /// RegisterClass0+1, and so on.
164     RegisterClass0,
165
166     /// The (first) user defined class, subsequent user defined classes are
167     /// UserClass0+1, and so on.
168     UserClass0 = 1<<16
169   };
170
171   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
172   /// N) for the Nth user defined class.
173   unsigned Kind;
174
175   /// SuperClasses - The super classes of this class. Note that for simplicities
176   /// sake user operands only record their immediate super class, while register
177   /// operands include all superclasses.
178   std::vector<ClassInfo*> SuperClasses;
179
180   /// Name - The full class name, suitable for use in an enum.
181   std::string Name;
182
183   /// ClassName - The unadorned generic name for this class (e.g., Token).
184   std::string ClassName;
185
186   /// ValueName - The name of the value this class represents; for a token this
187   /// is the literal token string, for an operand it is the TableGen class (or
188   /// empty if this is a derived class).
189   std::string ValueName;
190
191   /// PredicateMethod - The name of the operand method to test whether the
192   /// operand matches this class; this is not valid for Token or register kinds.
193   std::string PredicateMethod;
194
195   /// RenderMethod - The name of the operand method to add this operand to an
196   /// MCInst; this is not valid for Token or register kinds.
197   std::string RenderMethod;
198
199   /// ParserMethod - The name of the operand method to do a target specific
200   /// parsing on the operand.
201   std::string ParserMethod;
202
203   /// For register classes: the records for all the registers in this class.
204   RegisterSet Registers;
205
206   /// For custom match classes: the diagnostic kind for when the predicate fails.
207   std::string DiagnosticType;
208
209   /// For custom match classes: the diagnostic string for when the predicate fails.
210   std::string DiagnosticString;
211
212   /// Is this operand optional and not always required.
213   bool IsOptional;
214
215   /// DefaultMethod - The name of the method that returns the default operand
216   /// for optional operand
217   std::string DefaultMethod;
218
219 public:
220   /// isRegisterClass() - Check if this is a register class.
221   bool isRegisterClass() const {
222     return Kind >= RegisterClass0 && Kind < UserClass0;
223   }
224
225   /// isUserClass() - Check if this is a user defined class.
226   bool isUserClass() const {
227     return Kind >= UserClass0;
228   }
229
230   /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
231   /// are related if they are in the same class hierarchy.
232   bool isRelatedTo(const ClassInfo &RHS) const {
233     // Tokens are only related to tokens.
234     if (Kind == Token || RHS.Kind == Token)
235       return Kind == Token && RHS.Kind == Token;
236
237     // Registers classes are only related to registers classes, and only if
238     // their intersection is non-empty.
239     if (isRegisterClass() || RHS.isRegisterClass()) {
240       if (!isRegisterClass() || !RHS.isRegisterClass())
241         return false;
242
243       RegisterSet Tmp;
244       std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
245       std::set_intersection(Registers.begin(), Registers.end(),
246                             RHS.Registers.begin(), RHS.Registers.end(),
247                             II, LessRecordByID());
248
249       return !Tmp.empty();
250     }
251
252     // Otherwise we have two users operands; they are related if they are in the
253     // same class hierarchy.
254     //
255     // FIXME: This is an oversimplification, they should only be related if they
256     // intersect, however we don't have that information.
257     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
258     const ClassInfo *Root = this;
259     while (!Root->SuperClasses.empty())
260       Root = Root->SuperClasses.front();
261
262     const ClassInfo *RHSRoot = &RHS;
263     while (!RHSRoot->SuperClasses.empty())
264       RHSRoot = RHSRoot->SuperClasses.front();
265
266     return Root == RHSRoot;
267   }
268
269   /// isSubsetOf - Test whether this class is a subset of \p RHS.
270   bool isSubsetOf(const ClassInfo &RHS) const {
271     // This is a subset of RHS if it is the same class...
272     if (this == &RHS)
273       return true;
274
275     // ... or if any of its super classes are a subset of RHS.
276     SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(),
277                                                 SuperClasses.end());
278     SmallPtrSet<const ClassInfo *, 16> Visited;
279     while (!Worklist.empty()) {
280       auto *CI = Worklist.pop_back_val();
281       if (CI == &RHS)
282         return true;
283       for (auto *Super : CI->SuperClasses)
284         if (Visited.insert(Super).second)
285           Worklist.push_back(Super);
286     }
287
288     return false;
289   }
290
291   int getTreeDepth() const {
292     int Depth = 0;
293     const ClassInfo *Root = this;
294     while (!Root->SuperClasses.empty()) {
295       Depth++;
296       Root = Root->SuperClasses.front();
297     }
298     return Depth;
299   }
300
301   const ClassInfo *findRoot() const {
302     const ClassInfo *Root = this;
303     while (!Root->SuperClasses.empty())
304       Root = Root->SuperClasses.front();
305     return Root;
306   }
307
308   /// Compare two classes. This does not produce a total ordering, but does
309   /// guarantee that subclasses are sorted before their parents, and that the
310   /// ordering is transitive.
311   bool operator<(const ClassInfo &RHS) const {
312     if (this == &RHS)
313       return false;
314
315     // First, enforce the ordering between the three different types of class.
316     // Tokens sort before registers, which sort before user classes.
317     if (Kind == Token) {
318       if (RHS.Kind != Token)
319         return true;
320       assert(RHS.Kind == Token);
321     } else if (isRegisterClass()) {
322       if (RHS.Kind == Token)
323         return false;
324       else if (RHS.isUserClass())
325         return true;
326       assert(RHS.isRegisterClass());
327     } else if (isUserClass()) {
328       if (!RHS.isUserClass())
329         return false;
330       assert(RHS.isUserClass());
331     } else {
332       llvm_unreachable("Unknown ClassInfoKind");
333     }
334
335     if (Kind == Token || isUserClass()) {
336       // Related tokens and user classes get sorted by depth in the inheritence
337       // tree (so that subclasses are before their parents).
338       if (isRelatedTo(RHS)) {
339         if (getTreeDepth() > RHS.getTreeDepth())
340           return true;
341         if (getTreeDepth() < RHS.getTreeDepth())
342           return false;
343       } else {
344         // Unrelated tokens and user classes are ordered by the name of their
345         // root nodes, so that there is a consistent ordering between
346         // unconnected trees.
347         return findRoot()->ValueName < RHS.findRoot()->ValueName;
348       }
349     } else if (isRegisterClass()) {
350       // For register sets, sort by number of registers. This guarantees that
351       // a set will always sort before all of it's strict supersets.
352       if (Registers.size() != RHS.Registers.size())
353         return Registers.size() < RHS.Registers.size();
354     } else {
355       llvm_unreachable("Unknown ClassInfoKind");
356     }
357
358     // FIXME: We should be able to just return false here, as we only need a
359     // partial order (we use stable sorts, so this is deterministic) and the
360     // name of a class shouldn't be significant. However, some of the backends
361     // accidentally rely on this behaviour, so it will have to stay like this
362     // until they are fixed.
363     return ValueName < RHS.ValueName;
364   }
365 };
366
367 class AsmVariantInfo {
368 public:
369   StringRef RegisterPrefix;
370   StringRef TokenizingCharacters;
371   StringRef SeparatorCharacters;
372   StringRef BreakCharacters;
373   StringRef Name;
374   int AsmVariantNo;
375 };
376
377 /// MatchableInfo - Helper class for storing the necessary information for an
378 /// instruction or alias which is capable of being matched.
379 struct MatchableInfo {
380   struct AsmOperand {
381     /// Token - This is the token that the operand came from.
382     StringRef Token;
383
384     /// The unique class instance this operand should match.
385     ClassInfo *Class;
386
387     /// The operand name this is, if anything.
388     StringRef SrcOpName;
389
390     /// The operand name this is, before renaming for tied operands.
391     StringRef OrigSrcOpName;
392
393     /// The suboperand index within SrcOpName, or -1 for the entire operand.
394     int SubOpIdx;
395
396     /// Whether the token is "isolated", i.e., it is preceded and followed
397     /// by separators.
398     bool IsIsolatedToken;
399
400     /// Register record if this token is singleton register.
401     Record *SingletonReg;
402
403     explicit AsmOperand(bool IsIsolatedToken, StringRef T)
404         : Token(T), Class(nullptr), SubOpIdx(-1),
405           IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
406   };
407
408   /// ResOperand - This represents a single operand in the result instruction
409   /// generated by the match.  In cases (like addressing modes) where a single
410   /// assembler operand expands to multiple MCOperands, this represents the
411   /// single assembler operand, not the MCOperand.
412   struct ResOperand {
413     enum {
414       /// RenderAsmOperand - This represents an operand result that is
415       /// generated by calling the render method on the assembly operand.  The
416       /// corresponding AsmOperand is specified by AsmOperandNum.
417       RenderAsmOperand,
418
419       /// TiedOperand - This represents a result operand that is a duplicate of
420       /// a previous result operand.
421       TiedOperand,
422
423       /// ImmOperand - This represents an immediate value that is dumped into
424       /// the operand.
425       ImmOperand,
426
427       /// RegOperand - This represents a fixed register that is dumped in.
428       RegOperand
429     } Kind;
430
431     /// Tuple containing the index of the (earlier) result operand that should
432     /// be copied from, as well as the indices of the corresponding (parsed)
433     /// operands in the asm string.
434     struct TiedOperandsTuple {
435       unsigned ResOpnd;
436       unsigned SrcOpnd1Idx;
437       unsigned SrcOpnd2Idx;
438     };
439
440     union {
441       /// This is the operand # in the AsmOperands list that this should be
442       /// copied from.
443       unsigned AsmOperandNum;
444
445       /// Description of tied operands.
446       TiedOperandsTuple TiedOperands;
447
448       /// ImmVal - This is the immediate value added to the instruction.
449       int64_t ImmVal;
450
451       /// Register - This is the register record.
452       Record *Register;
453     };
454
455     /// MINumOperands - The number of MCInst operands populated by this
456     /// operand.
457     unsigned MINumOperands;
458
459     static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
460       ResOperand X;
461       X.Kind = RenderAsmOperand;
462       X.AsmOperandNum = AsmOpNum;
463       X.MINumOperands = NumOperands;
464       return X;
465     }
466
467     static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1,
468                                 unsigned SrcOperand2) {
469       ResOperand X;
470       X.Kind = TiedOperand;
471       X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 };
472       X.MINumOperands = 1;
473       return X;
474     }
475
476     static ResOperand getImmOp(int64_t Val) {
477       ResOperand X;
478       X.Kind = ImmOperand;
479       X.ImmVal = Val;
480       X.MINumOperands = 1;
481       return X;
482     }
483
484     static ResOperand getRegOp(Record *Reg) {
485       ResOperand X;
486       X.Kind = RegOperand;
487       X.Register = Reg;
488       X.MINumOperands = 1;
489       return X;
490     }
491   };
492
493   /// AsmVariantID - Target's assembly syntax variant no.
494   int AsmVariantID;
495
496   /// AsmString - The assembly string for this instruction (with variants
497   /// removed), e.g. "movsx $src, $dst".
498   std::string AsmString;
499
500   /// TheDef - This is the definition of the instruction or InstAlias that this
501   /// matchable came from.
502   Record *const TheDef;
503
504   /// DefRec - This is the definition that it came from.
505   PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
506
507   const CodeGenInstruction *getResultInst() const {
508     if (DefRec.is<const CodeGenInstruction*>())
509       return DefRec.get<const CodeGenInstruction*>();
510     return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
511   }
512
513   /// ResOperands - This is the operand list that should be built for the result
514   /// MCInst.
515   SmallVector<ResOperand, 8> ResOperands;
516
517   /// Mnemonic - This is the first token of the matched instruction, its
518   /// mnemonic.
519   StringRef Mnemonic;
520
521   /// AsmOperands - The textual operands that this instruction matches,
522   /// annotated with a class and where in the OperandList they were defined.
523   /// This directly corresponds to the tokenized AsmString after the mnemonic is
524   /// removed.
525   SmallVector<AsmOperand, 8> AsmOperands;
526
527   /// Predicates - The required subtarget features to match this instruction.
528   SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
529
530   /// ConversionFnKind - The enum value which is passed to the generated
531   /// convertToMCInst to convert parsed operands into an MCInst for this
532   /// function.
533   std::string ConversionFnKind;
534
535   /// If this instruction is deprecated in some form.
536   bool HasDeprecation;
537
538   /// If this is an alias, this is use to determine whether or not to using
539   /// the conversion function defined by the instruction's AsmMatchConverter
540   /// or to use the function generated by the alias.
541   bool UseInstAsmMatchConverter;
542
543   MatchableInfo(const CodeGenInstruction &CGI)
544     : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
545       UseInstAsmMatchConverter(true) {
546   }
547
548   MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
549     : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
550       DefRec(Alias.release()),
551       UseInstAsmMatchConverter(
552         TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
553   }
554
555   // Could remove this and the dtor if PointerUnion supported unique_ptr
556   // elements with a dynamic failure/assertion (like the one below) in the case
557   // where it was copied while being in an owning state.
558   MatchableInfo(const MatchableInfo &RHS)
559       : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
560         TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
561         Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
562         RequiredFeatures(RHS.RequiredFeatures),
563         ConversionFnKind(RHS.ConversionFnKind),
564         HasDeprecation(RHS.HasDeprecation),
565         UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
566     assert(!DefRec.is<const CodeGenInstAlias *>());
567   }
568
569   ~MatchableInfo() {
570     delete DefRec.dyn_cast<const CodeGenInstAlias*>();
571   }
572
573   // Two-operand aliases clone from the main matchable, but mark the second
574   // operand as a tied operand of the first for purposes of the assembler.
575   void formTwoOperandAlias(StringRef Constraint);
576
577   void initialize(const AsmMatcherInfo &Info,
578                   SmallPtrSetImpl<Record*> &SingletonRegisters,
579                   AsmVariantInfo const &Variant,
580                   bool HasMnemonicFirst);
581
582   /// validate - Return true if this matchable is a valid thing to match against
583   /// and perform a bunch of validity checking.
584   bool validate(StringRef CommentDelimiter, bool IsAlias) const;
585
586   /// findAsmOperand - Find the AsmOperand with the specified name and
587   /// suboperand index.
588   int findAsmOperand(StringRef N, int SubOpIdx) const {
589     auto I = find_if(AsmOperands, [&](const AsmOperand &Op) {
590       return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
591     });
592     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
593   }
594
595   /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
596   /// This does not check the suboperand index.
597   int findAsmOperandNamed(StringRef N, int LastIdx = -1) const {
598     auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(),
599                      [&](const AsmOperand &Op) { return Op.SrcOpName == N; });
600     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
601   }
602
603   int findAsmOperandOriginallyNamed(StringRef N) const {
604     auto I =
605         find_if(AsmOperands,
606                 [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; });
607     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
608   }
609
610   void buildInstructionResultOperands();
611   void buildAliasResultOperands(bool AliasConstraintsAreChecked);
612
613   /// operator< - Compare two matchables.
614   bool operator<(const MatchableInfo &RHS) const {
615     // The primary comparator is the instruction mnemonic.
616     if (int Cmp = Mnemonic.compare(RHS.Mnemonic))
617       return Cmp == -1;
618
619     if (AsmOperands.size() != RHS.AsmOperands.size())
620       return AsmOperands.size() < RHS.AsmOperands.size();
621
622     // Compare lexicographically by operand. The matcher validates that other
623     // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
624     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
625       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
626         return true;
627       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
628         return false;
629     }
630
631     // Give matches that require more features higher precedence. This is useful
632     // because we cannot define AssemblerPredicates with the negation of
633     // processor features. For example, ARM v6 "nop" may be either a HINT or
634     // MOV. With v6, we want to match HINT. The assembler has no way to
635     // predicate MOV under "NoV6", but HINT will always match first because it
636     // requires V6 while MOV does not.
637     if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
638       return RequiredFeatures.size() > RHS.RequiredFeatures.size();
639
640     return false;
641   }
642
643   /// couldMatchAmbiguouslyWith - Check whether this matchable could
644   /// ambiguously match the same set of operands as \p RHS (without being a
645   /// strictly superior match).
646   bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
647     // The primary comparator is the instruction mnemonic.
648     if (Mnemonic != RHS.Mnemonic)
649       return false;
650
651     // Different variants can't conflict.
652     if (AsmVariantID != RHS.AsmVariantID)
653       return false;
654
655     // The number of operands is unambiguous.
656     if (AsmOperands.size() != RHS.AsmOperands.size())
657       return false;
658
659     // Otherwise, make sure the ordering of the two instructions is unambiguous
660     // by checking that either (a) a token or operand kind discriminates them,
661     // or (b) the ordering among equivalent kinds is consistent.
662
663     // Tokens and operand kinds are unambiguous (assuming a correct target
664     // specific parser).
665     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
666       if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
667           AsmOperands[i].Class->Kind == ClassInfo::Token)
668         if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
669             *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
670           return false;
671
672     // Otherwise, this operand could commute if all operands are equivalent, or
673     // there is a pair of operands that compare less than and a pair that
674     // compare greater than.
675     bool HasLT = false, HasGT = false;
676     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
677       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
678         HasLT = true;
679       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
680         HasGT = true;
681     }
682
683     return HasLT == HasGT;
684   }
685
686   void dump() const;
687
688 private:
689   void tokenizeAsmString(AsmMatcherInfo const &Info,
690                          AsmVariantInfo const &Variant);
691   void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
692 };
693
694 struct OperandMatchEntry {
695   unsigned OperandMask;
696   const MatchableInfo* MI;
697   ClassInfo *CI;
698
699   static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
700                                   unsigned opMask) {
701     OperandMatchEntry X;
702     X.OperandMask = opMask;
703     X.CI = ci;
704     X.MI = mi;
705     return X;
706   }
707 };
708
709 class AsmMatcherInfo {
710 public:
711   /// Tracked Records
712   RecordKeeper &Records;
713
714   /// The tablegen AsmParser record.
715   Record *AsmParser;
716
717   /// Target - The target information.
718   CodeGenTarget &Target;
719
720   /// The classes which are needed for matching.
721   std::forward_list<ClassInfo> Classes;
722
723   /// The information on the matchables to match.
724   std::vector<std::unique_ptr<MatchableInfo>> Matchables;
725
726   /// Info for custom matching operands by user defined methods.
727   std::vector<OperandMatchEntry> OperandMatchInfo;
728
729   /// Map of Register records to their class information.
730   typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
731   RegisterClassesTy RegisterClasses;
732
733   /// Map of Predicate records to their subtarget information.
734   std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
735
736   /// Map of AsmOperandClass records to their class information.
737   std::map<Record*, ClassInfo*> AsmOperandClasses;
738
739   /// Map of RegisterClass records to their class information.
740   std::map<Record*, ClassInfo*> RegisterClassClasses;
741
742 private:
743   /// Map of token to class information which has already been constructed.
744   std::map<std::string, ClassInfo*> TokenClasses;
745
746 private:
747   /// getTokenClass - Lookup or create the class for the given token.
748   ClassInfo *getTokenClass(StringRef Token);
749
750   /// getOperandClass - Lookup or create the class for the given operand.
751   ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
752                              int SubOpIdx);
753   ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
754
755   /// buildRegisterClasses - Build the ClassInfo* instances for register
756   /// classes.
757   void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
758
759   /// buildOperandClasses - Build the ClassInfo* instances for user defined
760   /// operand classes.
761   void buildOperandClasses();
762
763   void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
764                                         unsigned AsmOpIdx);
765   void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
766                                   MatchableInfo::AsmOperand &Op);
767
768 public:
769   AsmMatcherInfo(Record *AsmParser,
770                  CodeGenTarget &Target,
771                  RecordKeeper &Records);
772
773   /// Construct the various tables used during matching.
774   void buildInfo();
775
776   /// buildOperandMatchInfo - Build the necessary information to handle user
777   /// defined operand parsing methods.
778   void buildOperandMatchInfo();
779
780   /// getSubtargetFeature - Lookup or create the subtarget feature info for the
781   /// given operand.
782   const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
783     assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
784     const auto &I = SubtargetFeatures.find(Def);
785     return I == SubtargetFeatures.end() ? nullptr : &I->second;
786   }
787
788   RecordKeeper &getRecords() const {
789     return Records;
790   }
791
792   bool hasOptionalOperands() const {
793     return find_if(Classes, [](const ClassInfo &Class) {
794              return Class.IsOptional;
795            }) != Classes.end();
796   }
797 };
798
799 } // end anonymous namespace
800
801 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
802 LLVM_DUMP_METHOD void MatchableInfo::dump() const {
803   errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
804
805   errs() << "  variant: " << AsmVariantID << "\n";
806
807   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
808     const AsmOperand &Op = AsmOperands[i];
809     errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
810     errs() << '\"' << Op.Token << "\"\n";
811   }
812 }
813 #endif
814
815 static std::pair<StringRef, StringRef>
816 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
817   // Split via the '='.
818   std::pair<StringRef, StringRef> Ops = S.split('=');
819   if (Ops.second == "")
820     PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
821   // Trim whitespace and the leading '$' on the operand names.
822   size_t start = Ops.first.find_first_of('$');
823   if (start == std::string::npos)
824     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
825   Ops.first = Ops.first.slice(start + 1, std::string::npos);
826   size_t end = Ops.first.find_last_of(" \t");
827   Ops.first = Ops.first.slice(0, end);
828   // Now the second operand.
829   start = Ops.second.find_first_of('$');
830   if (start == std::string::npos)
831     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
832   Ops.second = Ops.second.slice(start + 1, std::string::npos);
833   end = Ops.second.find_last_of(" \t");
834   Ops.first = Ops.first.slice(0, end);
835   return Ops;
836 }
837
838 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
839   // Figure out which operands are aliased and mark them as tied.
840   std::pair<StringRef, StringRef> Ops =
841     parseTwoOperandConstraint(Constraint, TheDef->getLoc());
842
843   // Find the AsmOperands that refer to the operands we're aliasing.
844   int SrcAsmOperand = findAsmOperandNamed(Ops.first);
845   int DstAsmOperand = findAsmOperandNamed(Ops.second);
846   if (SrcAsmOperand == -1)
847     PrintFatalError(TheDef->getLoc(),
848                     "unknown source two-operand alias operand '" + Ops.first +
849                     "'.");
850   if (DstAsmOperand == -1)
851     PrintFatalError(TheDef->getLoc(),
852                     "unknown destination two-operand alias operand '" +
853                     Ops.second + "'.");
854
855   // Find the ResOperand that refers to the operand we're aliasing away
856   // and update it to refer to the combined operand instead.
857   for (ResOperand &Op : ResOperands) {
858     if (Op.Kind == ResOperand::RenderAsmOperand &&
859         Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
860       Op.AsmOperandNum = DstAsmOperand;
861       break;
862     }
863   }
864   // Remove the AsmOperand for the alias operand.
865   AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
866   // Adjust the ResOperand references to any AsmOperands that followed
867   // the one we just deleted.
868   for (ResOperand &Op : ResOperands) {
869     switch(Op.Kind) {
870     default:
871       // Nothing to do for operands that don't reference AsmOperands.
872       break;
873     case ResOperand::RenderAsmOperand:
874       if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
875         --Op.AsmOperandNum;
876       break;
877     }
878   }
879 }
880
881 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
882 /// if present, from specified token.
883 static void
884 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
885                                       const AsmMatcherInfo &Info,
886                                       StringRef RegisterPrefix) {
887   StringRef Tok = Op.Token;
888
889   // If this token is not an isolated token, i.e., it isn't separated from
890   // other tokens (e.g. with whitespace), don't interpret it as a register name.
891   if (!Op.IsIsolatedToken)
892     return;
893
894   if (RegisterPrefix.empty()) {
895     std::string LoweredTok = Tok.lower();
896     if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
897       Op.SingletonReg = Reg->TheDef;
898     return;
899   }
900
901   if (!Tok.startswith(RegisterPrefix))
902     return;
903
904   StringRef RegName = Tok.substr(RegisterPrefix.size());
905   if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
906     Op.SingletonReg = Reg->TheDef;
907
908   // If there is no register prefix (i.e. "%" in "%eax"), then this may
909   // be some random non-register token, just ignore it.
910 }
911
912 void MatchableInfo::initialize(const AsmMatcherInfo &Info,
913                                SmallPtrSetImpl<Record*> &SingletonRegisters,
914                                AsmVariantInfo const &Variant,
915                                bool HasMnemonicFirst) {
916   AsmVariantID = Variant.AsmVariantNo;
917   AsmString =
918     CodeGenInstruction::FlattenAsmStringVariants(AsmString,
919                                                  Variant.AsmVariantNo);
920
921   tokenizeAsmString(Info, Variant);
922
923   // The first token of the instruction is the mnemonic, which must be a
924   // simple string, not a $foo variable or a singleton register.
925   if (AsmOperands.empty())
926     PrintFatalError(TheDef->getLoc(),
927                   "Instruction '" + TheDef->getName() + "' has no tokens");
928
929   assert(!AsmOperands[0].Token.empty());
930   if (HasMnemonicFirst) {
931     Mnemonic = AsmOperands[0].Token;
932     if (Mnemonic[0] == '$')
933       PrintFatalError(TheDef->getLoc(),
934                       "Invalid instruction mnemonic '" + Mnemonic + "'!");
935
936     // Remove the first operand, it is tracked in the mnemonic field.
937     AsmOperands.erase(AsmOperands.begin());
938   } else if (AsmOperands[0].Token[0] != '$')
939     Mnemonic = AsmOperands[0].Token;
940
941   // Compute the require features.
942   for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
943     if (const SubtargetFeatureInfo *Feature =
944             Info.getSubtargetFeature(Predicate))
945       RequiredFeatures.push_back(Feature);
946
947   // Collect singleton registers, if used.
948   for (MatchableInfo::AsmOperand &Op : AsmOperands) {
949     extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
950     if (Record *Reg = Op.SingletonReg)
951       SingletonRegisters.insert(Reg);
952   }
953
954   const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
955   if (!DepMask)
956     DepMask = TheDef->getValue("ComplexDeprecationPredicate");
957
958   HasDeprecation =
959       DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
960 }
961
962 /// Append an AsmOperand for the given substring of AsmString.
963 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
964   AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
965 }
966
967 /// tokenizeAsmString - Tokenize a simplified assembly string.
968 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
969                                       AsmVariantInfo const &Variant) {
970   StringRef String = AsmString;
971   size_t Prev = 0;
972   bool InTok = false;
973   bool IsIsolatedToken = true;
974   for (size_t i = 0, e = String.size(); i != e; ++i) {
975     char Char = String[i];
976     if (Variant.BreakCharacters.find(Char) != std::string::npos) {
977       if (InTok) {
978         addAsmOperand(String.slice(Prev, i), false);
979         Prev = i;
980         IsIsolatedToken = false;
981       }
982       InTok = true;
983       continue;
984     }
985     if (Variant.TokenizingCharacters.find(Char) != std::string::npos) {
986       if (InTok) {
987         addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
988         InTok = false;
989         IsIsolatedToken = false;
990       }
991       addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
992       Prev = i + 1;
993       IsIsolatedToken = true;
994       continue;
995     }
996     if (Variant.SeparatorCharacters.find(Char) != std::string::npos) {
997       if (InTok) {
998         addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
999         InTok = false;
1000       }
1001       Prev = i + 1;
1002       IsIsolatedToken = true;
1003       continue;
1004     }
1005
1006     switch (Char) {
1007     case '\\':
1008       if (InTok) {
1009         addAsmOperand(String.slice(Prev, i), false);
1010         InTok = false;
1011         IsIsolatedToken = false;
1012       }
1013       ++i;
1014       assert(i != String.size() && "Invalid quoted character");
1015       addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
1016       Prev = i + 1;
1017       IsIsolatedToken = false;
1018       break;
1019
1020     case '$': {
1021       if (InTok) {
1022         addAsmOperand(String.slice(Prev, i), false);
1023         InTok = false;
1024         IsIsolatedToken = false;
1025       }
1026
1027       // If this isn't "${", start new identifier looking like "$xxx"
1028       if (i + 1 == String.size() || String[i + 1] != '{') {
1029         Prev = i;
1030         break;
1031       }
1032
1033       size_t EndPos = String.find('}', i);
1034       assert(EndPos != StringRef::npos &&
1035              "Missing brace in operand reference!");
1036       addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken);
1037       Prev = EndPos + 1;
1038       i = EndPos;
1039       IsIsolatedToken = false;
1040       break;
1041     }
1042
1043     default:
1044       InTok = true;
1045       break;
1046     }
1047   }
1048   if (InTok && Prev != String.size())
1049     addAsmOperand(String.substr(Prev), IsIsolatedToken);
1050 }
1051
1052 bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const {
1053   // Reject matchables with no .s string.
1054   if (AsmString.empty())
1055     PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
1056
1057   // Reject any matchables with a newline in them, they should be marked
1058   // isCodeGenOnly if they are pseudo instructions.
1059   if (AsmString.find('\n') != std::string::npos)
1060     PrintFatalError(TheDef->getLoc(),
1061                   "multiline instruction is not valid for the asmparser, "
1062                   "mark it isCodeGenOnly");
1063
1064   // Remove comments from the asm string.  We know that the asmstring only
1065   // has one line.
1066   if (!CommentDelimiter.empty() &&
1067       StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
1068     PrintFatalError(TheDef->getLoc(),
1069                   "asmstring for instruction has comment character in it, "
1070                   "mark it isCodeGenOnly");
1071
1072   // Reject matchables with operand modifiers, these aren't something we can
1073   // handle, the target should be refactored to use operands instead of
1074   // modifiers.
1075   //
1076   // Also, check for instructions which reference the operand multiple times;
1077   // this implies a constraint we would not honor.
1078   std::set<std::string> OperandNames;
1079   for (const AsmOperand &Op : AsmOperands) {
1080     StringRef Tok = Op.Token;
1081     if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
1082       PrintFatalError(TheDef->getLoc(),
1083                       "matchable with operand modifier '" + Tok +
1084                       "' not supported by asm matcher.  Mark isCodeGenOnly!");
1085     // Verify that any operand is only mentioned once.
1086     // We reject aliases and ignore instructions for now.
1087     if (!IsAlias && Tok[0] == '$' && !OperandNames.insert(Tok).second) {
1088       LLVM_DEBUG({
1089         errs() << "warning: '" << TheDef->getName() << "': "
1090                << "ignoring instruction with tied operand '"
1091                << Tok << "'\n";
1092       });
1093       return false;
1094     }
1095   }
1096
1097   return true;
1098 }
1099
1100 static std::string getEnumNameForToken(StringRef Str) {
1101   std::string Res;
1102
1103   for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
1104     switch (*it) {
1105     case '*': Res += "_STAR_"; break;
1106     case '%': Res += "_PCT_"; break;
1107     case ':': Res += "_COLON_"; break;
1108     case '!': Res += "_EXCLAIM_"; break;
1109     case '.': Res += "_DOT_"; break;
1110     case '<': Res += "_LT_"; break;
1111     case '>': Res += "_GT_"; break;
1112     case '-': Res += "_MINUS_"; break;
1113     default:
1114       if ((*it >= 'A' && *it <= 'Z') ||
1115           (*it >= 'a' && *it <= 'z') ||
1116           (*it >= '0' && *it <= '9'))
1117         Res += *it;
1118       else
1119         Res += "_" + utostr((unsigned) *it) + "_";
1120     }
1121   }
1122
1123   return Res;
1124 }
1125
1126 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
1127   ClassInfo *&Entry = TokenClasses[Token];
1128
1129   if (!Entry) {
1130     Classes.emplace_front();
1131     Entry = &Classes.front();
1132     Entry->Kind = ClassInfo::Token;
1133     Entry->ClassName = "Token";
1134     Entry->Name = "MCK_" + getEnumNameForToken(Token);
1135     Entry->ValueName = Token;
1136     Entry->PredicateMethod = "<invalid>";
1137     Entry->RenderMethod = "<invalid>";
1138     Entry->ParserMethod = "";
1139     Entry->DiagnosticType = "";
1140     Entry->IsOptional = false;
1141     Entry->DefaultMethod = "<invalid>";
1142   }
1143
1144   return Entry;
1145 }
1146
1147 ClassInfo *
1148 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1149                                 int SubOpIdx) {
1150   Record *Rec = OI.Rec;
1151   if (SubOpIdx != -1)
1152     Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1153   return getOperandClass(Rec, SubOpIdx);
1154 }
1155
1156 ClassInfo *
1157 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1158   if (Rec->isSubClassOf("RegisterOperand")) {
1159     // RegisterOperand may have an associated ParserMatchClass. If it does,
1160     // use it, else just fall back to the underlying register class.
1161     const RecordVal *R = Rec->getValue("ParserMatchClass");
1162     if (!R || !R->getValue())
1163       PrintFatalError("Record `" + Rec->getName() +
1164         "' does not have a ParserMatchClass!\n");
1165
1166     if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
1167       Record *MatchClass = DI->getDef();
1168       if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1169         return CI;
1170     }
1171
1172     // No custom match class. Just use the register class.
1173     Record *ClassRec = Rec->getValueAsDef("RegClass");
1174     if (!ClassRec)
1175       PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1176                     "' has no associated register class!\n");
1177     if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1178       return CI;
1179     PrintFatalError(Rec->getLoc(), "register class has no class info!");
1180   }
1181
1182   if (Rec->isSubClassOf("RegisterClass")) {
1183     if (ClassInfo *CI = RegisterClassClasses[Rec])
1184       return CI;
1185     PrintFatalError(Rec->getLoc(), "register class has no class info!");
1186   }
1187
1188   if (!Rec->isSubClassOf("Operand"))
1189     PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
1190                   "' does not derive from class Operand!\n");
1191   Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1192   if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1193     return CI;
1194
1195   PrintFatalError(Rec->getLoc(), "operand has no match class!");
1196 }
1197
1198 struct LessRegisterSet {
1199   bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
1200     // std::set<T> defines its own compariso "operator<", but it
1201     // performs a lexicographical comparison by T's innate comparison
1202     // for some reason. We don't want non-deterministic pointer
1203     // comparisons so use this instead.
1204     return std::lexicographical_compare(LHS.begin(), LHS.end(),
1205                                         RHS.begin(), RHS.end(),
1206                                         LessRecordByID());
1207   }
1208 };
1209
1210 void AsmMatcherInfo::
1211 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
1212   const auto &Registers = Target.getRegBank().getRegisters();
1213   auto &RegClassList = Target.getRegBank().getRegClasses();
1214
1215   typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1216
1217   // The register sets used for matching.
1218   RegisterSetSet RegisterSets;
1219
1220   // Gather the defined sets.
1221   for (const CodeGenRegisterClass &RC : RegClassList)
1222     RegisterSets.insert(
1223         RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
1224
1225   // Add any required singleton sets.
1226   for (Record *Rec : SingletonRegisters) {
1227     RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
1228   }
1229
1230   // Introduce derived sets where necessary (when a register does not determine
1231   // a unique register set class), and build the mapping of registers to the set
1232   // they should classify to.
1233   std::map<Record*, RegisterSet> RegisterMap;
1234   for (const CodeGenRegister &CGR : Registers) {
1235     // Compute the intersection of all sets containing this register.
1236     RegisterSet ContainingSet;
1237
1238     for (const RegisterSet &RS : RegisterSets) {
1239       if (!RS.count(CGR.TheDef))
1240         continue;
1241
1242       if (ContainingSet.empty()) {
1243         ContainingSet = RS;
1244         continue;
1245       }
1246
1247       RegisterSet Tmp;
1248       std::swap(Tmp, ContainingSet);
1249       std::insert_iterator<RegisterSet> II(ContainingSet,
1250                                            ContainingSet.begin());
1251       std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
1252                             LessRecordByID());
1253     }
1254
1255     if (!ContainingSet.empty()) {
1256       RegisterSets.insert(ContainingSet);
1257       RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1258     }
1259   }
1260
1261   // Construct the register classes.
1262   std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
1263   unsigned Index = 0;
1264   for (const RegisterSet &RS : RegisterSets) {
1265     Classes.emplace_front();
1266     ClassInfo *CI = &Classes.front();
1267     CI->Kind = ClassInfo::RegisterClass0 + Index;
1268     CI->ClassName = "Reg" + utostr(Index);
1269     CI->Name = "MCK_Reg" + utostr(Index);
1270     CI->ValueName = "";
1271     CI->PredicateMethod = ""; // unused
1272     CI->RenderMethod = "addRegOperands";
1273     CI->Registers = RS;
1274     // FIXME: diagnostic type.
1275     CI->DiagnosticType = "";
1276     CI->IsOptional = false;
1277     CI->DefaultMethod = ""; // unused
1278     RegisterSetClasses.insert(std::make_pair(RS, CI));
1279     ++Index;
1280   }
1281
1282   // Find the superclasses; we could compute only the subgroup lattice edges,
1283   // but there isn't really a point.
1284   for (const RegisterSet &RS : RegisterSets) {
1285     ClassInfo *CI = RegisterSetClasses[RS];
1286     for (const RegisterSet &RS2 : RegisterSets)
1287       if (RS != RS2 &&
1288           std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
1289                         LessRecordByID()))
1290         CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
1291   }
1292
1293   // Name the register classes which correspond to a user defined RegisterClass.
1294   for (const CodeGenRegisterClass &RC : RegClassList) {
1295     // Def will be NULL for non-user defined register classes.
1296     Record *Def = RC.getDef();
1297     if (!Def)
1298       continue;
1299     ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1300                                                    RC.getOrder().end())];
1301     if (CI->ValueName.empty()) {
1302       CI->ClassName = RC.getName();
1303       CI->Name = "MCK_" + RC.getName();
1304       CI->ValueName = RC.getName();
1305     } else
1306       CI->ValueName = CI->ValueName + "," + RC.getName();
1307
1308     Init *DiagnosticType = Def->getValueInit("DiagnosticType");
1309     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1310       CI->DiagnosticType = SI->getValue();
1311
1312     Init *DiagnosticString = Def->getValueInit("DiagnosticString");
1313     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1314       CI->DiagnosticString = SI->getValue();
1315
1316     // If we have a diagnostic string but the diagnostic type is not specified
1317     // explicitly, create an anonymous diagnostic type.
1318     if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1319       CI->DiagnosticType = RC.getName();
1320
1321     RegisterClassClasses.insert(std::make_pair(Def, CI));
1322   }
1323
1324   // Populate the map for individual registers.
1325   for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
1326          ie = RegisterMap.end(); it != ie; ++it)
1327     RegisterClasses[it->first] = RegisterSetClasses[it->second];
1328
1329   // Name the register classes which correspond to singleton registers.
1330   for (Record *Rec : SingletonRegisters) {
1331     ClassInfo *CI = RegisterClasses[Rec];
1332     assert(CI && "Missing singleton register class info!");
1333
1334     if (CI->ValueName.empty()) {
1335       CI->ClassName = Rec->getName();
1336       CI->Name = "MCK_" + Rec->getName().str();
1337       CI->ValueName = Rec->getName();
1338     } else
1339       CI->ValueName = CI->ValueName + "," + Rec->getName().str();
1340   }
1341 }
1342
1343 void AsmMatcherInfo::buildOperandClasses() {
1344   std::vector<Record*> AsmOperands =
1345     Records.getAllDerivedDefinitions("AsmOperandClass");
1346
1347   // Pre-populate AsmOperandClasses map.
1348   for (Record *Rec : AsmOperands) {
1349     Classes.emplace_front();
1350     AsmOperandClasses[Rec] = &Classes.front();
1351   }
1352
1353   unsigned Index = 0;
1354   for (Record *Rec : AsmOperands) {
1355     ClassInfo *CI = AsmOperandClasses[Rec];
1356     CI->Kind = ClassInfo::UserClass0 + Index;
1357
1358     ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
1359     for (Init *I : Supers->getValues()) {
1360       DefInit *DI = dyn_cast<DefInit>(I);
1361       if (!DI) {
1362         PrintError(Rec->getLoc(), "Invalid super class reference!");
1363         continue;
1364       }
1365
1366       ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1367       if (!SC)
1368         PrintError(Rec->getLoc(), "Invalid super class reference!");
1369       else
1370         CI->SuperClasses.push_back(SC);
1371     }
1372     CI->ClassName = Rec->getValueAsString("Name");
1373     CI->Name = "MCK_" + CI->ClassName;
1374     CI->ValueName = Rec->getName();
1375
1376     // Get or construct the predicate method name.
1377     Init *PMName = Rec->getValueInit("PredicateMethod");
1378     if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
1379       CI->PredicateMethod = SI->getValue();
1380     } else {
1381       assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1382       CI->PredicateMethod = "is" + CI->ClassName;
1383     }
1384
1385     // Get or construct the render method name.
1386     Init *RMName = Rec->getValueInit("RenderMethod");
1387     if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
1388       CI->RenderMethod = SI->getValue();
1389     } else {
1390       assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1391       CI->RenderMethod = "add" + CI->ClassName + "Operands";
1392     }
1393
1394     // Get the parse method name or leave it as empty.
1395     Init *PRMName = Rec->getValueInit("ParserMethod");
1396     if (StringInit *SI = dyn_cast<StringInit>(PRMName))
1397       CI->ParserMethod = SI->getValue();
1398
1399     // Get the diagnostic type and string or leave them as empty.
1400     Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
1401     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1402       CI->DiagnosticType = SI->getValue();
1403     Init *DiagnosticString = Rec->getValueInit("DiagnosticString");
1404     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1405       CI->DiagnosticString = SI->getValue();
1406     // If we have a DiagnosticString, we need a DiagnosticType for use within
1407     // the matcher.
1408     if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1409       CI->DiagnosticType = CI->ClassName;
1410
1411     Init *IsOptional = Rec->getValueInit("IsOptional");
1412     if (BitInit *BI = dyn_cast<BitInit>(IsOptional))
1413       CI->IsOptional = BI->getValue();
1414
1415     // Get or construct the default method name.
1416     Init *DMName = Rec->getValueInit("DefaultMethod");
1417     if (StringInit *SI = dyn_cast<StringInit>(DMName)) {
1418       CI->DefaultMethod = SI->getValue();
1419     } else {
1420       assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
1421       CI->DefaultMethod = "default" + CI->ClassName + "Operands";
1422     }
1423
1424     ++Index;
1425   }
1426 }
1427
1428 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1429                                CodeGenTarget &target,
1430                                RecordKeeper &records)
1431   : Records(records), AsmParser(asmParser), Target(target) {
1432 }
1433
1434 /// buildOperandMatchInfo - Build the necessary information to handle user
1435 /// defined operand parsing methods.
1436 void AsmMatcherInfo::buildOperandMatchInfo() {
1437
1438   /// Map containing a mask with all operands indices that can be found for
1439   /// that class inside a instruction.
1440   typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy;
1441   OpClassMaskTy OpClassMask;
1442
1443   for (const auto &MI : Matchables) {
1444     OpClassMask.clear();
1445
1446     // Keep track of all operands of this instructions which belong to the
1447     // same class.
1448     for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
1449       const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
1450       if (Op.Class->ParserMethod.empty())
1451         continue;
1452       unsigned &OperandMask = OpClassMask[Op.Class];
1453       OperandMask |= (1 << i);
1454     }
1455
1456     // Generate operand match info for each mnemonic/operand class pair.
1457     for (const auto &OCM : OpClassMask) {
1458       unsigned OpMask = OCM.second;
1459       ClassInfo *CI = OCM.first;
1460       OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
1461                                                            OpMask));
1462     }
1463   }
1464 }
1465
1466 void AsmMatcherInfo::buildInfo() {
1467   // Build information about all of the AssemblerPredicates.
1468   const std::vector<std::pair<Record *, SubtargetFeatureInfo>>
1469       &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records);
1470   SubtargetFeatures.insert(SubtargetFeaturePairs.begin(),
1471                            SubtargetFeaturePairs.end());
1472 #ifndef NDEBUG
1473   for (const auto &Pair : SubtargetFeatures)
1474     LLVM_DEBUG(Pair.second.dump());
1475 #endif // NDEBUG
1476   assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!");
1477
1478   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
1479   bool ReportMultipleNearMisses =
1480       AsmParser->getValueAsBit("ReportMultipleNearMisses");
1481
1482   // Parse the instructions; we need to do this first so that we can gather the
1483   // singleton register classes.
1484   SmallPtrSet<Record*, 16> SingletonRegisters;
1485   unsigned VariantCount = Target.getAsmParserVariantCount();
1486   for (unsigned VC = 0; VC != VariantCount; ++VC) {
1487     Record *AsmVariant = Target.getAsmParserVariant(VC);
1488     StringRef CommentDelimiter =
1489         AsmVariant->getValueAsString("CommentDelimiter");
1490     AsmVariantInfo Variant;
1491     Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1492     Variant.TokenizingCharacters =
1493         AsmVariant->getValueAsString("TokenizingCharacters");
1494     Variant.SeparatorCharacters =
1495         AsmVariant->getValueAsString("SeparatorCharacters");
1496     Variant.BreakCharacters =
1497         AsmVariant->getValueAsString("BreakCharacters");
1498     Variant.Name = AsmVariant->getValueAsString("Name");
1499     Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1500
1501     for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
1502
1503       // If the tblgen -match-prefix option is specified (for tblgen hackers),
1504       // filter the set of instructions we consider.
1505       if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
1506         continue;
1507
1508       // Ignore "codegen only" instructions.
1509       if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
1510         continue;
1511
1512       // Ignore instructions for different instructions
1513       StringRef V = CGI->TheDef->getValueAsString("AsmVariantName");
1514       if (!V.empty() && V != Variant.Name)
1515         continue;
1516
1517       auto II = llvm::make_unique<MatchableInfo>(*CGI);
1518
1519       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1520
1521       // Ignore instructions which shouldn't be matched and diagnose invalid
1522       // instruction definitions with an error.
1523       if (!II->validate(CommentDelimiter, false))
1524         continue;
1525
1526       Matchables.push_back(std::move(II));
1527     }
1528
1529     // Parse all of the InstAlias definitions and stick them in the list of
1530     // matchables.
1531     std::vector<Record*> AllInstAliases =
1532       Records.getAllDerivedDefinitions("InstAlias");
1533     for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1534       auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i],
1535                                                        Target);
1536
1537       // If the tblgen -match-prefix option is specified (for tblgen hackers),
1538       // filter the set of instruction aliases we consider, based on the target
1539       // instruction.
1540       if (!StringRef(Alias->ResultInst->TheDef->getName())
1541             .startswith( MatchPrefix))
1542         continue;
1543
1544       StringRef V = Alias->TheDef->getValueAsString("AsmVariantName");
1545       if (!V.empty() && V != Variant.Name)
1546         continue;
1547
1548       auto II = llvm::make_unique<MatchableInfo>(std::move(Alias));
1549
1550       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1551
1552       // Validate the alias definitions.
1553       II->validate(CommentDelimiter, true);
1554
1555       Matchables.push_back(std::move(II));
1556     }
1557   }
1558
1559   // Build info for the register classes.
1560   buildRegisterClasses(SingletonRegisters);
1561
1562   // Build info for the user defined assembly operand classes.
1563   buildOperandClasses();
1564
1565   // Build the information about matchables, now that we have fully formed
1566   // classes.
1567   std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1568   for (auto &II : Matchables) {
1569     // Parse the tokens after the mnemonic.
1570     // Note: buildInstructionOperandReference may insert new AsmOperands, so
1571     // don't precompute the loop bound.
1572     for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1573       MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1574       StringRef Token = Op.Token;
1575
1576       // Check for singleton registers.
1577       if (Record *RegRecord = Op.SingletonReg) {
1578         Op.Class = RegisterClasses[RegRecord];
1579         assert(Op.Class && Op.Class->Registers.size() == 1 &&
1580                "Unexpected class for singleton register");
1581         continue;
1582       }
1583
1584       // Check for simple tokens.
1585       if (Token[0] != '$') {
1586         Op.Class = getTokenClass(Token);
1587         continue;
1588       }
1589
1590       if (Token.size() > 1 && isdigit(Token[1])) {
1591         Op.Class = getTokenClass(Token);
1592         continue;
1593       }
1594
1595       // Otherwise this is an operand reference.
1596       StringRef OperandName;
1597       if (Token[1] == '{')
1598         OperandName = Token.substr(2, Token.size() - 3);
1599       else
1600         OperandName = Token.substr(1);
1601
1602       if (II->DefRec.is<const CodeGenInstruction*>())
1603         buildInstructionOperandReference(II.get(), OperandName, i);
1604       else
1605         buildAliasOperandReference(II.get(), OperandName, Op);
1606     }
1607
1608     if (II->DefRec.is<const CodeGenInstruction*>()) {
1609       II->buildInstructionResultOperands();
1610       // If the instruction has a two-operand alias, build up the
1611       // matchable here. We'll add them in bulk at the end to avoid
1612       // confusing this loop.
1613       StringRef Constraint =
1614           II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1615       if (Constraint != "") {
1616         // Start by making a copy of the original matchable.
1617         auto AliasII = llvm::make_unique<MatchableInfo>(*II);
1618
1619         // Adjust it to be a two-operand alias.
1620         AliasII->formTwoOperandAlias(Constraint);
1621
1622         // Add the alias to the matchables list.
1623         NewMatchables.push_back(std::move(AliasII));
1624       }
1625     } else
1626       // FIXME: The tied operands checking is not yet integrated with the
1627       // framework for reporting multiple near misses. To prevent invalid
1628       // formats from being matched with an alias if a tied-operands check
1629       // would otherwise have disallowed it, we just disallow such constructs
1630       // in TableGen completely.
1631       II->buildAliasResultOperands(!ReportMultipleNearMisses);
1632   }
1633   if (!NewMatchables.empty())
1634     Matchables.insert(Matchables.end(),
1635                       std::make_move_iterator(NewMatchables.begin()),
1636                       std::make_move_iterator(NewMatchables.end()));
1637
1638   // Process token alias definitions and set up the associated superclass
1639   // information.
1640   std::vector<Record*> AllTokenAliases =
1641     Records.getAllDerivedDefinitions("TokenAlias");
1642   for (Record *Rec : AllTokenAliases) {
1643     ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1644     ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1645     if (FromClass == ToClass)
1646       PrintFatalError(Rec->getLoc(),
1647                     "error: Destination value identical to source value.");
1648     FromClass->SuperClasses.push_back(ToClass);
1649   }
1650
1651   // Reorder classes so that classes precede super classes.
1652   Classes.sort();
1653
1654 #ifdef EXPENSIVE_CHECKS
1655   // Verify that the table is sorted and operator < works transitively.
1656   for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
1657     for (auto J = I; J != E; ++J) {
1658       assert(!(*J < *I));
1659       assert(I == J || !J->isSubsetOf(*I));
1660     }
1661   }
1662 #endif
1663 }
1664
1665 /// buildInstructionOperandReference - The specified operand is a reference to a
1666 /// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1667 void AsmMatcherInfo::
1668 buildInstructionOperandReference(MatchableInfo *II,
1669                                  StringRef OperandName,
1670                                  unsigned AsmOpIdx) {
1671   const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1672   const CGIOperandList &Operands = CGI.Operands;
1673   MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1674
1675   // Map this token to an operand.
1676   unsigned Idx;
1677   if (!Operands.hasOperandNamed(OperandName, Idx))
1678     PrintFatalError(II->TheDef->getLoc(),
1679                     "error: unable to find operand: '" + OperandName + "'");
1680
1681   // If the instruction operand has multiple suboperands, but the parser
1682   // match class for the asm operand is still the default "ImmAsmOperand",
1683   // then handle each suboperand separately.
1684   if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1685     Record *Rec = Operands[Idx].Rec;
1686     assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1687     Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1688     if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1689       // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1690       StringRef Token = Op->Token; // save this in case Op gets moved
1691       for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1692         MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
1693         NewAsmOp.SubOpIdx = SI;
1694         II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1695       }
1696       // Replace Op with first suboperand.
1697       Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1698       Op->SubOpIdx = 0;
1699     }
1700   }
1701
1702   // Set up the operand class.
1703   Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1704   Op->OrigSrcOpName = OperandName;
1705
1706   // If the named operand is tied, canonicalize it to the untied operand.
1707   // For example, something like:
1708   //   (outs GPR:$dst), (ins GPR:$src)
1709   // with an asmstring of
1710   //   "inc $src"
1711   // we want to canonicalize to:
1712   //   "inc $dst"
1713   // so that we know how to provide the $dst operand when filling in the result.
1714   int OITied = -1;
1715   if (Operands[Idx].MINumOperands == 1)
1716     OITied = Operands[Idx].getTiedRegister();
1717   if (OITied != -1) {
1718     // The tied operand index is an MIOperand index, find the operand that
1719     // contains it.
1720     std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1721     OperandName = Operands[Idx.first].Name;
1722     Op->SubOpIdx = Idx.second;
1723   }
1724
1725   Op->SrcOpName = OperandName;
1726 }
1727
1728 /// buildAliasOperandReference - When parsing an operand reference out of the
1729 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1730 /// operand reference is by looking it up in the result pattern definition.
1731 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1732                                                 StringRef OperandName,
1733                                                 MatchableInfo::AsmOperand &Op) {
1734   const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1735
1736   // Set up the operand class.
1737   for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1738     if (CGA.ResultOperands[i].isRecord() &&
1739         CGA.ResultOperands[i].getName() == OperandName) {
1740       // It's safe to go with the first one we find, because CodeGenInstAlias
1741       // validates that all operands with the same name have the same record.
1742       Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1743       // Use the match class from the Alias definition, not the
1744       // destination instruction, as we may have an immediate that's
1745       // being munged by the match class.
1746       Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1747                                  Op.SubOpIdx);
1748       Op.SrcOpName = OperandName;
1749       Op.OrigSrcOpName = OperandName;
1750       return;
1751     }
1752
1753   PrintFatalError(II->TheDef->getLoc(),
1754                   "error: unable to find operand: '" + OperandName + "'");
1755 }
1756
1757 void MatchableInfo::buildInstructionResultOperands() {
1758   const CodeGenInstruction *ResultInst = getResultInst();
1759
1760   // Loop over all operands of the result instruction, determining how to
1761   // populate them.
1762   for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
1763     // If this is a tied operand, just copy from the previously handled operand.
1764     int TiedOp = -1;
1765     if (OpInfo.MINumOperands == 1)
1766       TiedOp = OpInfo.getTiedRegister();
1767     if (TiedOp != -1) {
1768       int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name);
1769       if (TiedSrcOperand != -1 &&
1770           ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand)
1771         ResOperands.push_back(ResOperand::getTiedOp(
1772             TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand));
1773       else
1774         ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0));
1775       continue;
1776     }
1777
1778     int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1779     if (OpInfo.Name.empty() || SrcOperand == -1) {
1780       // This may happen for operands that are tied to a suboperand of a
1781       // complex operand.  Simply use a dummy value here; nobody should
1782       // use this operand slot.
1783       // FIXME: The long term goal is for the MCOperand list to not contain
1784       // tied operands at all.
1785       ResOperands.push_back(ResOperand::getImmOp(0));
1786       continue;
1787     }
1788
1789     // Check if the one AsmOperand populates the entire operand.
1790     unsigned NumOperands = OpInfo.MINumOperands;
1791     if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1792       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1793       continue;
1794     }
1795
1796     // Add a separate ResOperand for each suboperand.
1797     for (unsigned AI = 0; AI < NumOperands; ++AI) {
1798       assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1799              AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1800              "unexpected AsmOperands for suboperands");
1801       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1802     }
1803   }
1804 }
1805
1806 void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) {
1807   const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1808   const CodeGenInstruction *ResultInst = getResultInst();
1809
1810   // Map of:  $reg -> #lastref
1811   //   where $reg is the name of the operand in the asm string
1812   //   where #lastref is the last processed index where $reg was referenced in
1813   //   the asm string.
1814   SmallDenseMap<StringRef, int> OperandRefs;
1815
1816   // Loop over all operands of the result instruction, determining how to
1817   // populate them.
1818   unsigned AliasOpNo = 0;
1819   unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1820   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1821     const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1822
1823     // If this is a tied operand, just copy from the previously handled operand.
1824     int TiedOp = -1;
1825     if (OpInfo->MINumOperands == 1)
1826       TiedOp = OpInfo->getTiedRegister();
1827     if (TiedOp != -1) {
1828       unsigned SrcOp1 = 0;
1829       unsigned SrcOp2 = 0;
1830
1831       // If an operand has been specified twice in the asm string,
1832       // add the two source operand's indices to the TiedOp so that
1833       // at runtime the 'tied' constraint is checked.
1834       if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) {
1835         SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1836
1837         // Find the next operand (similarly named operand) in the string.
1838         StringRef Name = AsmOperands[SrcOp1].SrcOpName;
1839         auto Insert = OperandRefs.try_emplace(Name, SrcOp1);
1840         SrcOp2 = findAsmOperandNamed(Name, Insert.first->second);
1841
1842         // Not updating the record in OperandRefs will cause TableGen
1843         // to fail with an error at the end of this function.
1844         if (AliasConstraintsAreChecked)
1845           Insert.first->second = SrcOp2;
1846
1847         // In case it only has one reference in the asm string,
1848         // it doesn't need to be checked for tied constraints.
1849         SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2;
1850       }
1851
1852       // If the alias operand is of a different operand class, we only want
1853       // to benefit from the tied-operands check and just match the operand
1854       // as a normal, but not copy the original (TiedOp) to the result
1855       // instruction. We do this by passing -1 as the tied operand to copy.
1856       if (ResultInst->Operands[i].Rec->getName() !=
1857           ResultInst->Operands[TiedOp].Rec->getName()) {
1858         SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1859         int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1860         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1861         SrcOp2 = findAsmOperand(Name, SubIdx);
1862         ResOperands.push_back(
1863             ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2));
1864       } else {
1865         ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2));
1866         continue;
1867       }
1868     }
1869
1870     // Handle all the suboperands for this operand.
1871     const std::string &OpName = OpInfo->Name;
1872     for ( ; AliasOpNo <  LastOpNo &&
1873             CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1874       int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1875
1876       // Find out what operand from the asmparser that this MCInst operand
1877       // comes from.
1878       switch (CGA.ResultOperands[AliasOpNo].Kind) {
1879       case CodeGenInstAlias::ResultOperand::K_Record: {
1880         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1881         int SrcOperand = findAsmOperand(Name, SubIdx);
1882         if (SrcOperand == -1)
1883           PrintFatalError(TheDef->getLoc(), "Instruction '" +
1884                         TheDef->getName() + "' has operand '" + OpName +
1885                         "' that doesn't appear in asm string!");
1886
1887         // Add it to the operand references. If it is added a second time, the
1888         // record won't be updated and it will fail later on.
1889         OperandRefs.try_emplace(Name, SrcOperand);
1890
1891         unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1892         ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1893                                                         NumOperands));
1894         break;
1895       }
1896       case CodeGenInstAlias::ResultOperand::K_Imm: {
1897         int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1898         ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1899         break;
1900       }
1901       case CodeGenInstAlias::ResultOperand::K_Reg: {
1902         Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1903         ResOperands.push_back(ResOperand::getRegOp(Reg));
1904         break;
1905       }
1906       }
1907     }
1908   }
1909
1910   // Check that operands are not repeated more times than is supported.
1911   for (auto &T : OperandRefs) {
1912     if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1)
1913       PrintFatalError(TheDef->getLoc(),
1914                       "Operand '" + T.first + "' can never be matched");
1915   }
1916 }
1917
1918 static unsigned
1919 getConverterOperandID(const std::string &Name,
1920                       SmallSetVector<CachedHashString, 16> &Table,
1921                       bool &IsNew) {
1922   IsNew = Table.insert(CachedHashString(Name));
1923
1924   unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin();
1925
1926   assert(ID < Table.size());
1927
1928   return ID;
1929 }
1930
1931 static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1932                              std::vector<std::unique_ptr<MatchableInfo>> &Infos,
1933                              bool HasMnemonicFirst, bool HasOptionalOperands,
1934                              raw_ostream &OS) {
1935   SmallSetVector<CachedHashString, 16> OperandConversionKinds;
1936   SmallSetVector<CachedHashString, 16> InstructionConversionKinds;
1937   std::vector<std::vector<uint8_t> > ConversionTable;
1938   size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1939
1940   // TargetOperandClass - This is the target's operand class, like X86Operand.
1941   std::string TargetOperandClass = Target.getName().str() + "Operand";
1942
1943   // Write the convert function to a separate stream, so we can drop it after
1944   // the enum. We'll build up the conversion handlers for the individual
1945   // operand types opportunistically as we encounter them.
1946   std::string ConvertFnBody;
1947   raw_string_ostream CvtOS(ConvertFnBody);
1948   // Start the unified conversion function.
1949   if (HasOptionalOperands) {
1950     CvtOS << "void " << Target.getName() << ClassName << "::\n"
1951           << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1952           << "unsigned Opcode,\n"
1953           << "                const OperandVector &Operands,\n"
1954           << "                const SmallBitVector &OptionalOperandsMask) {\n";
1955   } else {
1956     CvtOS << "void " << Target.getName() << ClassName << "::\n"
1957           << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1958           << "unsigned Opcode,\n"
1959           << "                const OperandVector &Operands) {\n";
1960   }
1961   CvtOS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
1962   CvtOS << "  const uint8_t *Converter = ConversionTable[Kind];\n";
1963   if (HasOptionalOperands) {
1964     size_t MaxNumOperands = 0;
1965     for (const auto &MI : Infos) {
1966       MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
1967     }
1968     CvtOS << "  unsigned DefaultsOffset[" << (MaxNumOperands + 1)
1969           << "] = { 0 };\n";
1970     CvtOS << "  assert(OptionalOperandsMask.size() == " << (MaxNumOperands)
1971           << ");\n";
1972     CvtOS << "  for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands)
1973           << "; ++i) {\n";
1974     CvtOS << "    DefaultsOffset[i + 1] = NumDefaults;\n";
1975     CvtOS << "    NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n";
1976     CvtOS << "  }\n";
1977   }
1978   CvtOS << "  unsigned OpIdx;\n";
1979   CvtOS << "  Inst.setOpcode(Opcode);\n";
1980   CvtOS << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n";
1981   if (HasOptionalOperands) {
1982     CvtOS << "    OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n";
1983   } else {
1984     CvtOS << "    OpIdx = *(p + 1);\n";
1985   }
1986   CvtOS << "    switch (*p) {\n";
1987   CvtOS << "    default: llvm_unreachable(\"invalid conversion entry!\");\n";
1988   CvtOS << "    case CVT_Reg:\n";
1989   CvtOS << "      static_cast<" << TargetOperandClass
1990         << "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
1991   CvtOS << "      break;\n";
1992   CvtOS << "    case CVT_Tied: {\n";
1993   CvtOS << "      assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
1994   CvtOS << "                          std::begin(TiedAsmOperandTable)) &&\n";
1995   CvtOS << "             \"Tied operand not found\");\n";
1996   CvtOS << "      unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n";
1997   CvtOS << "      if (TiedResOpnd != (uint8_t) -1)\n";
1998   CvtOS << "        Inst.addOperand(Inst.getOperand(TiedResOpnd));\n";
1999   CvtOS << "      break;\n";
2000   CvtOS << "    }\n";
2001
2002   std::string OperandFnBody;
2003   raw_string_ostream OpOS(OperandFnBody);
2004   // Start the operand number lookup function.
2005   OpOS << "void " << Target.getName() << ClassName << "::\n"
2006        << "convertToMapAndConstraints(unsigned Kind,\n";
2007   OpOS.indent(27);
2008   OpOS << "const OperandVector &Operands) {\n"
2009        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
2010        << "  unsigned NumMCOperands = 0;\n"
2011        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
2012        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
2013        << "    switch (*p) {\n"
2014        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
2015        << "    case CVT_Reg:\n"
2016        << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2017        << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
2018        << "      ++NumMCOperands;\n"
2019        << "      break;\n"
2020        << "    case CVT_Tied:\n"
2021        << "      ++NumMCOperands;\n"
2022        << "      break;\n";
2023
2024   // Pre-populate the operand conversion kinds with the standard always
2025   // available entries.
2026   OperandConversionKinds.insert(CachedHashString("CVT_Done"));
2027   OperandConversionKinds.insert(CachedHashString("CVT_Reg"));
2028   OperandConversionKinds.insert(CachedHashString("CVT_Tied"));
2029   enum { CVT_Done, CVT_Reg, CVT_Tied };
2030
2031   // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label.
2032   std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string>
2033   TiedOperandsEnumMap;
2034
2035   for (auto &II : Infos) {
2036     // Check if we have a custom match function.
2037     StringRef AsmMatchConverter =
2038         II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
2039     if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
2040       std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str();
2041       II->ConversionFnKind = Signature;
2042
2043       // Check if we have already generated this signature.
2044       if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2045         continue;
2046
2047       // Remember this converter for the kind enum.
2048       unsigned KindID = OperandConversionKinds.size();
2049       OperandConversionKinds.insert(
2050           CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter)));
2051
2052       // Add the converter row for this instruction.
2053       ConversionTable.emplace_back();
2054       ConversionTable.back().push_back(KindID);
2055       ConversionTable.back().push_back(CVT_Done);
2056
2057       // Add the handler to the conversion driver function.
2058       CvtOS << "    case CVT_"
2059             << getEnumNameForToken(AsmMatchConverter) << ":\n"
2060             << "      " << AsmMatchConverter << "(Inst, Operands);\n"
2061             << "      break;\n";
2062
2063       // FIXME: Handle the operand number lookup for custom match functions.
2064       continue;
2065     }
2066
2067     // Build the conversion function signature.
2068     std::string Signature = "Convert";
2069
2070     std::vector<uint8_t> ConversionRow;
2071
2072     // Compute the convert enum and the case body.
2073     MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
2074
2075     for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
2076       const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
2077
2078       // Generate code to populate each result operand.
2079       switch (OpInfo.Kind) {
2080       case MatchableInfo::ResOperand::RenderAsmOperand: {
2081         // This comes from something we parsed.
2082         const MatchableInfo::AsmOperand &Op =
2083           II->AsmOperands[OpInfo.AsmOperandNum];
2084
2085         // Registers are always converted the same, don't duplicate the
2086         // conversion function based on them.
2087         Signature += "__";
2088         std::string Class;
2089         Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
2090         Signature += Class;
2091         Signature += utostr(OpInfo.MINumOperands);
2092         Signature += "_" + itostr(OpInfo.AsmOperandNum);
2093
2094         // Add the conversion kind, if necessary, and get the associated ID
2095         // the index of its entry in the vector).
2096         std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
2097                                      Op.Class->RenderMethod);
2098         if (Op.Class->IsOptional) {
2099           // For optional operands we must also care about DefaultMethod
2100           assert(HasOptionalOperands);
2101           Name += "_" + Op.Class->DefaultMethod;
2102         }
2103         Name = getEnumNameForToken(Name);
2104
2105         bool IsNewConverter = false;
2106         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2107                                             IsNewConverter);
2108
2109         // Add the operand entry to the instruction kind conversion row.
2110         ConversionRow.push_back(ID);
2111         ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);
2112
2113         if (!IsNewConverter)
2114           break;
2115
2116         // This is a new operand kind. Add a handler for it to the
2117         // converter driver.
2118         CvtOS << "    case " << Name << ":\n";
2119         if (Op.Class->IsOptional) {
2120           // If optional operand is not present in actual instruction then we
2121           // should call its DefaultMethod before RenderMethod
2122           assert(HasOptionalOperands);
2123           CvtOS << "      if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
2124                 << "        " << Op.Class->DefaultMethod << "()"
2125                 << "->" << Op.Class->RenderMethod << "(Inst, "
2126                 << OpInfo.MINumOperands << ");\n"
2127                 << "      } else {\n"
2128                 << "        static_cast<" << TargetOperandClass
2129                 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
2130                 << "(Inst, " << OpInfo.MINumOperands << ");\n"
2131                 << "      }\n";
2132         } else {
2133           CvtOS << "      static_cast<" << TargetOperandClass
2134                 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
2135                 << "(Inst, " << OpInfo.MINumOperands << ");\n";
2136         }
2137         CvtOS << "      break;\n";
2138
2139         // Add a handler for the operand number lookup.
2140         OpOS << "    case " << Name << ":\n"
2141              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
2142
2143         if (Op.Class->isRegisterClass())
2144           OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
2145         else
2146           OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
2147         OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
2148              << "      break;\n";
2149         break;
2150       }
2151       case MatchableInfo::ResOperand::TiedOperand: {
2152         // If this operand is tied to a previous one, just copy the MCInst
2153         // operand from the earlier one.We can only tie single MCOperand values.
2154         assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
2155         uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd;
2156         uint8_t SrcOp1 =
2157             OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst;
2158         uint8_t SrcOp2 =
2159             OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst;
2160         assert((i > TiedOp || TiedOp == (uint8_t)-1) &&
2161                "Tied operand precedes its target!");
2162         auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' +
2163                              utostr(SrcOp1) + '_' + utostr(SrcOp2);
2164         Signature += "__" + TiedTupleName;
2165         ConversionRow.push_back(CVT_Tied);
2166         ConversionRow.push_back(TiedOp);
2167         ConversionRow.push_back(SrcOp1);
2168         ConversionRow.push_back(SrcOp2);
2169
2170         // Also create an 'enum' for this combination of tied operands.
2171         auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2);
2172         TiedOperandsEnumMap.emplace(Key, TiedTupleName);
2173         break;
2174       }
2175       case MatchableInfo::ResOperand::ImmOperand: {
2176         int64_t Val = OpInfo.ImmVal;
2177         std::string Ty = "imm_" + itostr(Val);
2178         Ty = getEnumNameForToken(Ty);
2179         Signature += "__" + Ty;
2180
2181         std::string Name = "CVT_" + Ty;
2182         bool IsNewConverter = false;
2183         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2184                                             IsNewConverter);
2185         // Add the operand entry to the instruction kind conversion row.
2186         ConversionRow.push_back(ID);
2187         ConversionRow.push_back(0);
2188
2189         if (!IsNewConverter)
2190           break;
2191
2192         CvtOS << "    case " << Name << ":\n"
2193               << "      Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
2194               << "      break;\n";
2195
2196         OpOS << "    case " << Name << ":\n"
2197              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2198              << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
2199              << "      ++NumMCOperands;\n"
2200              << "      break;\n";
2201         break;
2202       }
2203       case MatchableInfo::ResOperand::RegOperand: {
2204         std::string Reg, Name;
2205         if (!OpInfo.Register) {
2206           Name = "reg0";
2207           Reg = "0";
2208         } else {
2209           Reg = getQualifiedName(OpInfo.Register);
2210           Name = "reg" + OpInfo.Register->getName().str();
2211         }
2212         Signature += "__" + Name;
2213         Name = "CVT_" + Name;
2214         bool IsNewConverter = false;
2215         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2216                                             IsNewConverter);
2217         // Add the operand entry to the instruction kind conversion row.
2218         ConversionRow.push_back(ID);
2219         ConversionRow.push_back(0);
2220
2221         if (!IsNewConverter)
2222           break;
2223         CvtOS << "    case " << Name << ":\n"
2224               << "      Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
2225               << "      break;\n";
2226
2227         OpOS << "    case " << Name << ":\n"
2228              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2229              << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
2230              << "      ++NumMCOperands;\n"
2231              << "      break;\n";
2232       }
2233       }
2234     }
2235
2236     // If there were no operands, add to the signature to that effect
2237     if (Signature == "Convert")
2238       Signature += "_NoOperands";
2239
2240     II->ConversionFnKind = Signature;
2241
2242     // Save the signature. If we already have it, don't add a new row
2243     // to the table.
2244     if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2245       continue;
2246
2247     // Add the row to the table.
2248     ConversionTable.push_back(std::move(ConversionRow));
2249   }
2250
2251   // Finish up the converter driver function.
2252   CvtOS << "    }\n  }\n}\n\n";
2253
2254   // Finish up the operand number lookup function.
2255   OpOS << "    }\n  }\n}\n\n";
2256
2257   // Output a static table for tied operands.
2258   if (TiedOperandsEnumMap.size()) {
2259     // The number of tied operand combinations will be small in practice,
2260     // but just add the assert to be sure.
2261     assert(TiedOperandsEnumMap.size() <= 254 &&
2262            "Too many tied-operand combinations to reference with "
2263            "an 8bit offset from the conversion table, where index "
2264            "'255' is reserved as operand not to be copied.");
2265
2266     OS << "enum {\n";
2267     for (auto &KV : TiedOperandsEnumMap) {
2268       OS << "  " << KV.second << ",\n";
2269     }
2270     OS << "};\n\n";
2271
2272     OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n";
2273     for (auto &KV : TiedOperandsEnumMap) {
2274       OS << "  /* " << KV.second << " */ { "
2275          << utostr(std::get<0>(KV.first)) << ", "
2276          << utostr(std::get<1>(KV.first)) << ", "
2277          << utostr(std::get<2>(KV.first)) << " },\n";
2278     }
2279     OS << "};\n\n";
2280   } else
2281     OS << "static const uint8_t TiedAsmOperandTable[][3] = "
2282           "{ /* empty  */ {0, 0, 0} };\n\n";
2283
2284   OS << "namespace {\n";
2285
2286   // Output the operand conversion kind enum.
2287   OS << "enum OperatorConversionKind {\n";
2288   for (const auto &Converter : OperandConversionKinds)
2289     OS << "  " << Converter << ",\n";
2290   OS << "  CVT_NUM_CONVERTERS\n";
2291   OS << "};\n\n";
2292
2293   // Output the instruction conversion kind enum.
2294   OS << "enum InstructionConversionKind {\n";
2295   for (const auto &Signature : InstructionConversionKinds)
2296     OS << "  " << Signature << ",\n";
2297   OS << "  CVT_NUM_SIGNATURES\n";
2298   OS << "};\n\n";
2299
2300   OS << "} // end anonymous namespace\n\n";
2301
2302   // Output the conversion table.
2303   OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
2304      << MaxRowLength << "] = {\n";
2305
2306   for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
2307     assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
2308     OS << "  // " << InstructionConversionKinds[Row] << "\n";
2309     OS << "  { ";
2310     for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) {
2311       OS << OperandConversionKinds[ConversionTable[Row][i]] << ", ";
2312       if (OperandConversionKinds[ConversionTable[Row][i]] !=
2313           CachedHashString("CVT_Tied")) {
2314         OS << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
2315         continue;
2316       }
2317
2318       // For a tied operand, emit a reference to the TiedAsmOperandTable
2319       // that contains the operand to copy, and the parsed operands to
2320       // check for their tied constraints.
2321       auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1],
2322                                  (uint8_t)ConversionTable[Row][i + 2],
2323                                  (uint8_t)ConversionTable[Row][i + 3]);
2324       auto TiedOpndEnum = TiedOperandsEnumMap.find(Key);
2325       assert(TiedOpndEnum != TiedOperandsEnumMap.end() &&
2326              "No record for tied operand pair");
2327       OS << TiedOpndEnum->second << ", ";
2328       i += 2;
2329     }
2330     OS << "CVT_Done },\n";
2331   }
2332
2333   OS << "};\n\n";
2334
2335   // Spit out the conversion driver function.
2336   OS << CvtOS.str();
2337
2338   // Spit out the operand number lookup function.
2339   OS << OpOS.str();
2340 }
2341
2342 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
2343 static void emitMatchClassEnumeration(CodeGenTarget &Target,
2344                                       std::forward_list<ClassInfo> &Infos,
2345                                       raw_ostream &OS) {
2346   OS << "namespace {\n\n";
2347
2348   OS << "/// MatchClassKind - The kinds of classes which participate in\n"
2349      << "/// instruction matching.\n";
2350   OS << "enum MatchClassKind {\n";
2351   OS << "  InvalidMatchClass = 0,\n";
2352   OS << "  OptionalMatchClass = 1,\n";
2353   ClassInfo::ClassInfoKind LastKind = ClassInfo::Token;
2354   StringRef LastName = "OptionalMatchClass";
2355   for (const auto &CI : Infos) {
2356     if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) {
2357       OS << "  MCK_LAST_TOKEN = " << LastName << ",\n";
2358     } else if (LastKind < ClassInfo::UserClass0 &&
2359                CI.Kind >= ClassInfo::UserClass0) {
2360       OS << "  MCK_LAST_REGISTER = " << LastName << ",\n";
2361     }
2362     LastKind = (ClassInfo::ClassInfoKind)CI.Kind;
2363     LastName = CI.Name;
2364
2365     OS << "  " << CI.Name << ", // ";
2366     if (CI.Kind == ClassInfo::Token) {
2367       OS << "'" << CI.ValueName << "'\n";
2368     } else if (CI.isRegisterClass()) {
2369       if (!CI.ValueName.empty())
2370         OS << "register class '" << CI.ValueName << "'\n";
2371       else
2372         OS << "derived register class\n";
2373     } else {
2374       OS << "user defined class '" << CI.ValueName << "'\n";
2375     }
2376   }
2377   OS << "  NumMatchClassKinds\n";
2378   OS << "};\n\n";
2379
2380   OS << "}\n\n";
2381 }
2382
2383 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be
2384 /// used when an assembly operand does not match the expected operand class.
2385 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) {
2386   // If the target does not use DiagnosticString for any operands, don't emit
2387   // an unused function.
2388   if (std::all_of(
2389           Info.Classes.begin(), Info.Classes.end(),
2390           [](const ClassInfo &CI) { return CI.DiagnosticString.empty(); }))
2391     return;
2392
2393   OS << "static const char *getMatchKindDiag(" << Info.Target.getName()
2394      << "AsmParser::" << Info.Target.getName()
2395      << "MatchResultTy MatchResult) {\n";
2396   OS << "  switch (MatchResult) {\n";
2397
2398   for (const auto &CI: Info.Classes) {
2399     if (!CI.DiagnosticString.empty()) {
2400       assert(!CI.DiagnosticType.empty() &&
2401              "DiagnosticString set without DiagnosticType");
2402       OS << "  case " << Info.Target.getName()
2403          << "AsmParser::Match_" << CI.DiagnosticType << ":\n";
2404       OS << "    return \"" << CI.DiagnosticString << "\";\n";
2405     }
2406   }
2407
2408   OS << "  default:\n";
2409   OS << "    return nullptr;\n";
2410
2411   OS << "  }\n";
2412   OS << "}\n\n";
2413 }
2414
2415 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) {
2416   OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind "
2417         "RegisterClass) {\n";
2418   if (none_of(Info.Classes, [](const ClassInfo &CI) {
2419         return CI.isRegisterClass() && !CI.DiagnosticType.empty();
2420       })) {
2421     OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2422   } else {
2423     OS << "  switch (RegisterClass) {\n";
2424     for (const auto &CI: Info.Classes) {
2425       if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) {
2426         OS << "  case " << CI.Name << ":\n";
2427         OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
2428            << CI.DiagnosticType << ";\n";
2429       }
2430     }
2431
2432     OS << "  default:\n";
2433     OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n";
2434
2435     OS << "  }\n";
2436   }
2437   OS << "}\n\n";
2438 }
2439
2440 /// emitValidateOperandClass - Emit the function to validate an operand class.
2441 static void emitValidateOperandClass(AsmMatcherInfo &Info,
2442                                      raw_ostream &OS) {
2443   OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
2444      << "MatchClassKind Kind) {\n";
2445   OS << "  " << Info.Target.getName() << "Operand &Operand = ("
2446      << Info.Target.getName() << "Operand&)GOp;\n";
2447
2448   // The InvalidMatchClass is not to match any operand.
2449   OS << "  if (Kind == InvalidMatchClass)\n";
2450   OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2451
2452   // Check for Token operands first.
2453   // FIXME: Use a more specific diagnostic type.
2454   OS << "  if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n";
2455   OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2456      << "             MCTargetAsmParser::Match_Success :\n"
2457      << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
2458
2459   // Check the user classes. We don't care what order since we're only
2460   // actually matching against one of them.
2461   OS << "  switch (Kind) {\n"
2462         "  default: break;\n";
2463   for (const auto &CI : Info.Classes) {
2464     if (!CI.isUserClass())
2465       continue;
2466
2467     OS << "  // '" << CI.ClassName << "' class\n";
2468     OS << "  case " << CI.Name << ": {\n";
2469     OS << "    DiagnosticPredicate DP(Operand." << CI.PredicateMethod
2470        << "());\n";
2471     OS << "    if (DP.isMatch())\n";
2472     OS << "      return MCTargetAsmParser::Match_Success;\n";
2473     if (!CI.DiagnosticType.empty()) {
2474       OS << "    if (DP.isNearMatch())\n";
2475       OS << "      return " << Info.Target.getName() << "AsmParser::Match_"
2476          << CI.DiagnosticType << ";\n";
2477       OS << "    break;\n";
2478     }
2479     else
2480       OS << "    break;\n";
2481     OS << "    }\n";
2482   }
2483   OS << "  } // end switch (Kind)\n\n";
2484
2485   // Check for register operands, including sub-classes.
2486   OS << "  if (Operand.isReg()) {\n";
2487   OS << "    MatchClassKind OpKind;\n";
2488   OS << "    switch (Operand.getReg()) {\n";
2489   OS << "    default: OpKind = InvalidMatchClass; break;\n";
2490   for (const auto &RC : Info.RegisterClasses)
2491     OS << "    case " << RC.first->getValueAsString("Namespace") << "::"
2492        << RC.first->getName() << ": OpKind = " << RC.second->Name
2493        << "; break;\n";
2494   OS << "    }\n";
2495   OS << "    return isSubclass(OpKind, Kind) ? "
2496      << "(unsigned)MCTargetAsmParser::Match_Success :\n                     "
2497      << "                 getDiagKindFromRegisterClass(Kind);\n  }\n\n";
2498
2499   // Expected operand is a register, but actual is not.
2500   OS << "  if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n";
2501   OS << "    return getDiagKindFromRegisterClass(Kind);\n\n";
2502
2503   // Generic fallthrough match failure case for operands that don't have
2504   // specialized diagnostic types.
2505   OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2506   OS << "}\n\n";
2507 }
2508
2509 /// emitIsSubclass - Emit the subclass predicate function.
2510 static void emitIsSubclass(CodeGenTarget &Target,
2511                            std::forward_list<ClassInfo> &Infos,
2512                            raw_ostream &OS) {
2513   OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2514   OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2515   OS << "  if (A == B)\n";
2516   OS << "    return true;\n\n";
2517
2518   bool EmittedSwitch = false;
2519   for (const auto &A : Infos) {
2520     std::vector<StringRef> SuperClasses;
2521     if (A.IsOptional)
2522       SuperClasses.push_back("OptionalMatchClass");
2523     for (const auto &B : Infos) {
2524       if (&A != &B && A.isSubsetOf(B))
2525         SuperClasses.push_back(B.Name);
2526     }
2527
2528     if (SuperClasses.empty())
2529       continue;
2530
2531     // If this is the first SuperClass, emit the switch header.
2532     if (!EmittedSwitch) {
2533       OS << "  switch (A) {\n";
2534       OS << "  default:\n";
2535       OS << "    return false;\n";
2536       EmittedSwitch = true;
2537     }
2538
2539     OS << "\n  case " << A.Name << ":\n";
2540
2541     if (SuperClasses.size() == 1) {
2542       OS << "    return B == " << SuperClasses.back() << ";\n";
2543       continue;
2544     }
2545
2546     if (!SuperClasses.empty()) {
2547       OS << "    switch (B) {\n";
2548       OS << "    default: return false;\n";
2549       for (StringRef SC : SuperClasses)
2550         OS << "    case " << SC << ": return true;\n";
2551       OS << "    }\n";
2552     } else {
2553       // No case statement to emit
2554       OS << "    return false;\n";
2555     }
2556   }
2557
2558   // If there were case statements emitted into the string stream write the
2559   // default.
2560   if (EmittedSwitch)
2561     OS << "  }\n";
2562   else
2563     OS << "  return false;\n";
2564
2565   OS << "}\n\n";
2566 }
2567
2568 /// emitMatchTokenString - Emit the function to match a token string to the
2569 /// appropriate match class value.
2570 static void emitMatchTokenString(CodeGenTarget &Target,
2571                                  std::forward_list<ClassInfo> &Infos,
2572                                  raw_ostream &OS) {
2573   // Construct the match list.
2574   std::vector<StringMatcher::StringPair> Matches;
2575   for (const auto &CI : Infos) {
2576     if (CI.Kind == ClassInfo::Token)
2577       Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
2578   }
2579
2580   OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2581
2582   StringMatcher("Name", Matches, OS).Emit();
2583
2584   OS << "  return InvalidMatchClass;\n";
2585   OS << "}\n\n";
2586 }
2587
2588 /// emitMatchRegisterName - Emit the function to match a string to the target
2589 /// specific register enum.
2590 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2591                                   raw_ostream &OS) {
2592   // Construct the match list.
2593   std::vector<StringMatcher::StringPair> Matches;
2594   const auto &Regs = Target.getRegBank().getRegisters();
2595   for (const CodeGenRegister &Reg : Regs) {
2596     if (Reg.TheDef->getValueAsString("AsmName").empty())
2597       continue;
2598
2599     Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"),
2600                          "return " + utostr(Reg.EnumValue) + ";");
2601   }
2602
2603   OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2604
2605   bool IgnoreDuplicates =
2606       AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2607   StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2608
2609   OS << "  return 0;\n";
2610   OS << "}\n\n";
2611 }
2612
2613 /// Emit the function to match a string to the target
2614 /// specific register enum.
2615 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
2616                                      raw_ostream &OS) {
2617   // Construct the match list.
2618   std::vector<StringMatcher::StringPair> Matches;
2619   const auto &Regs = Target.getRegBank().getRegisters();
2620   for (const CodeGenRegister &Reg : Regs) {
2621
2622     auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");
2623
2624     for (auto AltName : AltNames) {
2625       AltName = StringRef(AltName).trim();
2626
2627       // don't handle empty alternative names
2628       if (AltName.empty())
2629         continue;
2630
2631       Matches.emplace_back(AltName,
2632                            "return " + utostr(Reg.EnumValue) + ";");
2633     }
2634   }
2635
2636   OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n";
2637
2638   bool IgnoreDuplicates =
2639       AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2640   StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2641
2642   OS << "  return 0;\n";
2643   OS << "}\n\n";
2644 }
2645
2646 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2647 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2648   // Get the set of diagnostic types from all of the operand classes.
2649   std::set<StringRef> Types;
2650   for (const auto &OpClassEntry : Info.AsmOperandClasses) {
2651     if (!OpClassEntry.second->DiagnosticType.empty())
2652       Types.insert(OpClassEntry.second->DiagnosticType);
2653   }
2654   for (const auto &OpClassEntry : Info.RegisterClassClasses) {
2655     if (!OpClassEntry.second->DiagnosticType.empty())
2656       Types.insert(OpClassEntry.second->DiagnosticType);
2657   }
2658
2659   if (Types.empty()) return;
2660
2661   // Now emit the enum entries.
2662   for (StringRef Type : Types)
2663     OS << "  Match_" << Type << ",\n";
2664   OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
2665 }
2666
2667 /// emitGetSubtargetFeatureName - Emit the helper function to get the
2668 /// user-level name for a subtarget feature.
2669 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2670   OS << "// User-level names for subtarget features that participate in\n"
2671      << "// instruction matching.\n"
2672      << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2673   if (!Info.SubtargetFeatures.empty()) {
2674     OS << "  switch(Val) {\n";
2675     for (const auto &SF : Info.SubtargetFeatures) {
2676       const SubtargetFeatureInfo &SFI = SF.second;
2677       // FIXME: Totally just a placeholder name to get the algorithm working.
2678       OS << "  case " << SFI.getEnumName() << ": return \""
2679          << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2680     }
2681     OS << "  default: return \"(unknown)\";\n";
2682     OS << "  }\n";
2683   } else {
2684     // Nothing to emit, so skip the switch
2685     OS << "  return \"(unknown)\";\n";
2686   }
2687   OS << "}\n\n";
2688 }
2689
2690 static std::string GetAliasRequiredFeatures(Record *R,
2691                                             const AsmMatcherInfo &Info) {
2692   std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2693   std::string Result;
2694   unsigned NumFeatures = 0;
2695   for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2696     const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2697
2698     if (!F)
2699       PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2700                     "' is not marked as an AssemblerPredicate!");
2701
2702     if (NumFeatures)
2703       Result += '|';
2704
2705     Result += F->getEnumName();
2706     ++NumFeatures;
2707   }
2708
2709   if (NumFeatures > 1)
2710     Result = '(' + Result + ')';
2711   return Result;
2712 }
2713
2714 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
2715                                      std::vector<Record*> &Aliases,
2716                                      unsigned Indent = 0,
2717                                   StringRef AsmParserVariantName = StringRef()){
2718   // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
2719   // iteration order of the map is stable.
2720   std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2721
2722   for (Record *R : Aliases) {
2723     // FIXME: Allow AssemblerVariantName to be a comma separated list.
2724     StringRef AsmVariantName = R->getValueAsString("AsmVariantName");
2725     if (AsmVariantName != AsmParserVariantName)
2726       continue;
2727     AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
2728   }
2729   if (AliasesFromMnemonic.empty())
2730     return;
2731
2732   // Process each alias a "from" mnemonic at a time, building the code executed
2733   // by the string remapper.
2734   std::vector<StringMatcher::StringPair> Cases;
2735   for (const auto &AliasEntry : AliasesFromMnemonic) {
2736     const std::vector<Record*> &ToVec = AliasEntry.second;
2737
2738     // Loop through each alias and emit code that handles each case.  If there
2739     // are two instructions without predicates, emit an error.  If there is one,
2740     // emit it last.
2741     std::string MatchCode;
2742     int AliasWithNoPredicate = -1;
2743
2744     for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2745       Record *R = ToVec[i];
2746       std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2747
2748       // If this unconditionally matches, remember it for later and diagnose
2749       // duplicates.
2750       if (FeatureMask.empty()) {
2751         if (AliasWithNoPredicate != -1) {
2752           // We can't have two aliases from the same mnemonic with no predicate.
2753           PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
2754                      "two MnemonicAliases with the same 'from' mnemonic!");
2755           PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2756         }
2757
2758         AliasWithNoPredicate = i;
2759         continue;
2760       }
2761       if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
2762         PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2763
2764       if (!MatchCode.empty())
2765         MatchCode += "else ";
2766       MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
2767       MatchCode += "  Mnemonic = \"";
2768       MatchCode += R->getValueAsString("ToMnemonic");
2769       MatchCode += "\";\n";
2770     }
2771
2772     if (AliasWithNoPredicate != -1) {
2773       Record *R = ToVec[AliasWithNoPredicate];
2774       if (!MatchCode.empty())
2775         MatchCode += "else\n  ";
2776       MatchCode += "Mnemonic = \"";
2777       MatchCode += R->getValueAsString("ToMnemonic");
2778       MatchCode += "\";\n";
2779     }
2780
2781     MatchCode += "return;";
2782
2783     Cases.push_back(std::make_pair(AliasEntry.first, MatchCode));
2784   }
2785   StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2786 }
2787
2788 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2789 /// emit a function for them and return true, otherwise return false.
2790 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2791                                 CodeGenTarget &Target) {
2792   // Ignore aliases when match-prefix is set.
2793   if (!MatchPrefix.empty())
2794     return false;
2795
2796   std::vector<Record*> Aliases =
2797     Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2798   if (Aliases.empty()) return false;
2799
2800   OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2801     "uint64_t Features, unsigned VariantID) {\n";
2802   OS << "  switch (VariantID) {\n";
2803   unsigned VariantCount = Target.getAsmParserVariantCount();
2804   for (unsigned VC = 0; VC != VariantCount; ++VC) {
2805     Record *AsmVariant = Target.getAsmParserVariant(VC);
2806     int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2807     StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name");
2808     OS << "    case " << AsmParserVariantNo << ":\n";
2809     emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2810                              AsmParserVariantName);
2811     OS << "    break;\n";
2812   }
2813   OS << "  }\n";
2814
2815   // Emit aliases that apply to all variants.
2816   emitMnemonicAliasVariant(OS, Info, Aliases);
2817
2818   OS << "}\n\n";
2819
2820   return true;
2821 }
2822
2823 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2824                               const AsmMatcherInfo &Info, StringRef ClassName,
2825                               StringToOffsetTable &StringTable,
2826                               unsigned MaxMnemonicIndex, bool HasMnemonicFirst) {
2827   unsigned MaxMask = 0;
2828   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2829     MaxMask |= OMI.OperandMask;
2830   }
2831
2832   // Emit the static custom operand parsing table;
2833   OS << "namespace {\n";
2834   OS << "  struct OperandMatchEntry {\n";
2835   OS << "    " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size())
2836                << " RequiredFeatures;\n";
2837   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2838                << " Mnemonic;\n";
2839   OS << "    " << getMinimalTypeForRange(std::distance(
2840                       Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
2841   OS << "    " << getMinimalTypeForRange(MaxMask)
2842                << " OperandMask;\n\n";
2843   OS << "    StringRef getMnemonic() const {\n";
2844   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2845   OS << "                       MnemonicTable[Mnemonic]);\n";
2846   OS << "    }\n";
2847   OS << "  };\n\n";
2848
2849   OS << "  // Predicate for searching for an opcode.\n";
2850   OS << "  struct LessOpcodeOperand {\n";
2851   OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2852   OS << "      return LHS.getMnemonic()  < RHS;\n";
2853   OS << "    }\n";
2854   OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2855   OS << "      return LHS < RHS.getMnemonic();\n";
2856   OS << "    }\n";
2857   OS << "    bool operator()(const OperandMatchEntry &LHS,";
2858   OS << " const OperandMatchEntry &RHS) {\n";
2859   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2860   OS << "    }\n";
2861   OS << "  };\n";
2862
2863   OS << "} // end anonymous namespace.\n\n";
2864
2865   OS << "static const OperandMatchEntry OperandMatchTable["
2866      << Info.OperandMatchInfo.size() << "] = {\n";
2867
2868   OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
2869   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2870     const MatchableInfo &II = *OMI.MI;
2871
2872     OS << "  { ";
2873
2874     // Write the required features mask.
2875     if (!II.RequiredFeatures.empty()) {
2876       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2877         if (i) OS << "|";
2878         OS << II.RequiredFeatures[i]->getEnumName();
2879       }
2880     } else
2881       OS << "0";
2882
2883     // Store a pascal-style length byte in the mnemonic.
2884     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2885     OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2886        << " /* " << II.Mnemonic << " */, ";
2887
2888     OS << OMI.CI->Name;
2889
2890     OS << ", " << OMI.OperandMask;
2891     OS << " /* ";
2892     bool printComma = false;
2893     for (int i = 0, e = 31; i !=e; ++i)
2894       if (OMI.OperandMask & (1 << i)) {
2895         if (printComma)
2896           OS << ", ";
2897         OS << i;
2898         printComma = true;
2899       }
2900     OS << " */";
2901
2902     OS << " },\n";
2903   }
2904   OS << "};\n\n";
2905
2906   // Emit the operand class switch to call the correct custom parser for
2907   // the found operand class.
2908   OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
2909      << "tryCustomParseOperand(OperandVector"
2910      << " &Operands,\n                      unsigned MCK) {\n\n"
2911      << "  switch(MCK) {\n";
2912
2913   for (const auto &CI : Info.Classes) {
2914     if (CI.ParserMethod.empty())
2915       continue;
2916     OS << "  case " << CI.Name << ":\n"
2917        << "    return " << CI.ParserMethod << "(Operands);\n";
2918   }
2919
2920   OS << "  default:\n";
2921   OS << "    return MatchOperand_NoMatch;\n";
2922   OS << "  }\n";
2923   OS << "  return MatchOperand_NoMatch;\n";
2924   OS << "}\n\n";
2925
2926   // Emit the static custom operand parser. This code is very similar with
2927   // the other matcher. Also use MatchResultTy here just in case we go for
2928   // a better error handling.
2929   OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
2930      << "MatchOperandParserImpl(OperandVector"
2931      << " &Operands,\n                       StringRef Mnemonic,\n"
2932      << "                       bool ParseForAllFeatures) {\n";
2933
2934   // Emit code to get the available features.
2935   OS << "  // Get the current feature set.\n";
2936   OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
2937
2938   OS << "  // Get the next operand index.\n";
2939   OS << "  unsigned NextOpNum = Operands.size()"
2940      << (HasMnemonicFirst ? " - 1" : "") << ";\n";
2941
2942   // Emit code to search the table.
2943   OS << "  // Search the table.\n";
2944   if (HasMnemonicFirst) {
2945     OS << "  auto MnemonicRange =\n";
2946     OS << "    std::equal_range(std::begin(OperandMatchTable), "
2947           "std::end(OperandMatchTable),\n";
2948     OS << "                     Mnemonic, LessOpcodeOperand());\n\n";
2949   } else {
2950     OS << "  auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable),"
2951           " std::end(OperandMatchTable));\n";
2952     OS << "  if (!Mnemonic.empty())\n";
2953     OS << "    MnemonicRange =\n";
2954     OS << "      std::equal_range(std::begin(OperandMatchTable), "
2955           "std::end(OperandMatchTable),\n";
2956     OS << "                       Mnemonic, LessOpcodeOperand());\n\n";
2957   }
2958
2959   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2960   OS << "    return MatchOperand_NoMatch;\n\n";
2961
2962   OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2963      << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
2964
2965   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2966   OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
2967
2968   // Emit check that the required features are available.
2969   OS << "    // check if the available features match\n";
2970   OS << "    if (!ParseForAllFeatures && (AvailableFeatures & "
2971         "it->RequiredFeatures) != it->RequiredFeatures)\n";
2972   OS << "        continue;\n\n";
2973
2974   // Emit check to ensure the operand number matches.
2975   OS << "    // check if the operand in question has a custom parser.\n";
2976   OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
2977   OS << "      continue;\n\n";
2978
2979   // Emit call to the custom parser method
2980   OS << "    // call custom parse method to handle the operand\n";
2981   OS << "    OperandMatchResultTy Result = ";
2982   OS << "tryCustomParseOperand(Operands, it->Class);\n";
2983   OS << "    if (Result != MatchOperand_NoMatch)\n";
2984   OS << "      return Result;\n";
2985   OS << "  }\n\n";
2986
2987   OS << "  // Okay, we had no match.\n";
2988   OS << "  return MatchOperand_NoMatch;\n";
2989   OS << "}\n\n";
2990 }
2991
2992 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target,
2993                                           AsmMatcherInfo &Info,
2994                                           raw_ostream &OS) {
2995   std::string AsmParserName =
2996       Info.AsmParser->getValueAsString("AsmParserClassName");
2997   OS << "static bool ";
2998   OS << "checkAsmTiedOperandConstraints(const " << Target.getName()
2999      << AsmParserName << "&AsmParser,\n";
3000   OS << "                               unsigned Kind,\n";
3001   OS << "                               const OperandVector &Operands,\n";
3002   OS << "                               uint64_t &ErrorInfo) {\n";
3003   OS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
3004   OS << "  const uint8_t *Converter = ConversionTable[Kind];\n";
3005   OS << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n";
3006   OS << "    switch (*p) {\n";
3007   OS << "    case CVT_Tied: {\n";
3008   OS << "      unsigned OpIdx = *(p+1);\n";
3009   OS << "      assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
3010   OS << "                              std::begin(TiedAsmOperandTable)) &&\n";
3011   OS << "             \"Tied operand not found\");\n";
3012   OS << "      unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n";
3013   OS << "      unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n";
3014   OS << "      if (OpndNum1 != OpndNum2) {\n";
3015   OS << "        auto &SrcOp1 = Operands[OpndNum1];\n";
3016   OS << "        auto &SrcOp2 = Operands[OpndNum2];\n";
3017   OS << "        if (SrcOp1->isReg() && SrcOp2->isReg()) {\n";
3018   OS << "          if (!AsmParser.regsEqual(*SrcOp1, *SrcOp2)) {\n";
3019   OS << "            ErrorInfo = OpndNum2;\n";
3020   OS << "            return false;\n";
3021   OS << "          }\n";
3022   OS << "        }\n";
3023   OS << "      }\n";
3024   OS << "      break;\n";
3025   OS << "    }\n";
3026   OS << "    default:\n";
3027   OS << "      break;\n";
3028   OS << "    }\n";
3029   OS << "  }\n";
3030   OS << "  return true;\n";
3031   OS << "}\n\n";
3032 }
3033
3034 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target,
3035                                      unsigned VariantCount) {
3036   OS << "static std::string " << Target.getName()
3037      << "MnemonicSpellCheck(StringRef S, uint64_t FBS, unsigned VariantID) {\n";
3038   if (!VariantCount)
3039     OS <<  "  return \"\";";
3040   else {
3041     OS << "  const unsigned MaxEditDist = 2;\n";
3042     OS << "  std::vector<StringRef> Candidates;\n";
3043     OS << "  StringRef Prev = \"\";\n\n";
3044
3045     OS << "  // Find the appropriate table for this asm variant.\n";
3046     OS << "  const MatchEntry *Start, *End;\n";
3047     OS << "  switch (VariantID) {\n";
3048     OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3049     for (unsigned VC = 0; VC != VariantCount; ++VC) {
3050       Record *AsmVariant = Target.getAsmParserVariant(VC);
3051       int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3052       OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3053          << "); End = std::end(MatchTable" << VC << "); break;\n";
3054     }
3055     OS << "  }\n\n";
3056     OS << "  for (auto I = Start; I < End; I++) {\n";
3057     OS << "    // Ignore unsupported instructions.\n";
3058     OS << "    if ((FBS & I->RequiredFeatures) != I->RequiredFeatures)\n";
3059     OS << "      continue;\n";
3060     OS << "\n";
3061     OS << "    StringRef T = I->getMnemonic();\n";
3062     OS << "    // Avoid recomputing the edit distance for the same string.\n";
3063     OS << "    if (T.equals(Prev))\n";
3064     OS << "      continue;\n";
3065     OS << "\n";
3066     OS << "    Prev = T;\n";
3067     OS << "    unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n";
3068     OS << "    if (Dist <= MaxEditDist)\n";
3069     OS << "      Candidates.push_back(T);\n";
3070     OS << "  }\n";
3071     OS << "\n";
3072     OS << "  if (Candidates.empty())\n";
3073     OS << "    return \"\";\n";
3074     OS << "\n";
3075     OS << "  std::string Res = \", did you mean: \";\n";
3076     OS << "  unsigned i = 0;\n";
3077     OS << "  for( ; i < Candidates.size() - 1; i++)\n";
3078     OS << "    Res += Candidates[i].str() + \", \";\n";
3079     OS << "  return Res + Candidates[i].str() + \"?\";\n";
3080   }
3081   OS << "}\n";
3082   OS << "\n";
3083 }
3084
3085
3086 // Emit a function mapping match classes to strings, for debugging.
3087 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos,
3088                                     raw_ostream &OS) {
3089   OS << "#ifndef NDEBUG\n";
3090   OS << "const char *getMatchClassName(MatchClassKind Kind) {\n";
3091   OS << "  switch (Kind) {\n";
3092
3093   OS << "  case InvalidMatchClass: return \"InvalidMatchClass\";\n";
3094   OS << "  case OptionalMatchClass: return \"OptionalMatchClass\";\n";
3095   for (const auto &CI : Infos) {
3096     OS << "  case " << CI.Name << ": return \"" << CI.Name << "\";\n";
3097   }
3098   OS << "  case NumMatchClassKinds: return \"NumMatchClassKinds\";\n";
3099
3100   OS << "  }\n";
3101   OS << "  llvm_unreachable(\"unhandled MatchClassKind!\");\n";
3102   OS << "}\n\n";
3103   OS << "#endif // NDEBUG\n";
3104 }
3105
3106 void AsmMatcherEmitter::run(raw_ostream &OS) {
3107   CodeGenTarget Target(Records);
3108   Record *AsmParser = Target.getAsmParser();
3109   StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName");
3110
3111   // Compute the information on the instructions to match.
3112   AsmMatcherInfo Info(AsmParser, Target, Records);
3113   Info.buildInfo();
3114
3115   // Sort the instruction table using the partial order on classes. We use
3116   // stable_sort to ensure that ambiguous instructions are still
3117   // deterministically ordered.
3118   std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
3119                    [](const std::unique_ptr<MatchableInfo> &a,
3120                       const std::unique_ptr<MatchableInfo> &b){
3121                      return *a < *b;});
3122
3123 #ifdef EXPENSIVE_CHECKS
3124   // Verify that the table is sorted and operator < works transitively.
3125   for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3126        ++I) {
3127     for (auto J = I; J != E; ++J) {
3128       assert(!(**J < **I));
3129     }
3130   }
3131 #endif
3132
3133   DEBUG_WITH_TYPE("instruction_info", {
3134       for (const auto &MI : Info.Matchables)
3135         MI->dump();
3136     });
3137
3138   // Check for ambiguous matchables.
3139   DEBUG_WITH_TYPE("ambiguous_instrs", {
3140     unsigned NumAmbiguous = 0;
3141     for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3142          ++I) {
3143       for (auto J = std::next(I); J != E; ++J) {
3144         const MatchableInfo &A = **I;
3145         const MatchableInfo &B = **J;
3146
3147         if (A.couldMatchAmbiguouslyWith(B)) {
3148           errs() << "warning: ambiguous matchables:\n";
3149           A.dump();
3150           errs() << "\nis incomparable with:\n";
3151           B.dump();
3152           errs() << "\n\n";
3153           ++NumAmbiguous;
3154         }
3155       }
3156     }
3157     if (NumAmbiguous)
3158       errs() << "warning: " << NumAmbiguous
3159              << " ambiguous matchables!\n";
3160   });
3161
3162   // Compute the information on the custom operand parsing.
3163   Info.buildOperandMatchInfo();
3164
3165   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
3166   bool HasOptionalOperands = Info.hasOptionalOperands();
3167   bool ReportMultipleNearMisses =
3168       AsmParser->getValueAsBit("ReportMultipleNearMisses");
3169
3170   // Write the output.
3171
3172   // Information for the class declaration.
3173   OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
3174   OS << "#undef GET_ASSEMBLER_HEADER\n";
3175   OS << "  // This should be included into the middle of the declaration of\n";
3176   OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
3177   OS << "  uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n";
3178   if (HasOptionalOperands) {
3179     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
3180        << "unsigned Opcode,\n"
3181        << "                       const OperandVector &Operands,\n"
3182        << "                       const SmallBitVector &OptionalOperandsMask);\n";
3183   } else {
3184     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
3185        << "unsigned Opcode,\n"
3186        << "                       const OperandVector &Operands);\n";
3187   }
3188   OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
3189   OS << "           const OperandVector &Operands) override;\n";
3190   OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3191      << "                                MCInst &Inst,\n";
3192   if (ReportMultipleNearMisses)
3193     OS << "                                SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3194   else
3195     OS << "                                uint64_t &ErrorInfo,\n";
3196   OS << "                                bool matchingInlineAsm,\n"
3197      << "                                unsigned VariantID = 0);\n";
3198
3199   if (!Info.OperandMatchInfo.empty()) {
3200     OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
3201     OS << "    OperandVector &Operands,\n";
3202     OS << "    StringRef Mnemonic,\n";
3203     OS << "    bool ParseForAllFeatures = false);\n";
3204
3205     OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
3206     OS << "    OperandVector &Operands,\n";
3207     OS << "    unsigned MCK);\n\n";
3208   }
3209
3210   OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
3211
3212   // Emit the operand match diagnostic enum names.
3213   OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
3214   OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3215   emitOperandDiagnosticTypes(Info, OS);
3216   OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3217
3218   OS << "\n#ifdef GET_REGISTER_MATCHER\n";
3219   OS << "#undef GET_REGISTER_MATCHER\n\n";
3220
3221   // Emit the subtarget feature enumeration.
3222   SubtargetFeatureInfo::emitSubtargetFeatureFlagEnumeration(
3223       Info.SubtargetFeatures, OS);
3224
3225   // Emit the function to match a register name to number.
3226   // This should be omitted for Mips target
3227   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
3228     emitMatchRegisterName(Target, AsmParser, OS);
3229
3230   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
3231     emitMatchRegisterAltName(Target, AsmParser, OS);
3232
3233   OS << "#endif // GET_REGISTER_MATCHER\n\n";
3234
3235   OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
3236   OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
3237
3238   // Generate the helper function to get the names for subtarget features.
3239   emitGetSubtargetFeatureName(Info, OS);
3240
3241   OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
3242
3243   OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
3244   OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
3245
3246   // Generate the function that remaps for mnemonic aliases.
3247   bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
3248
3249   // Generate the convertToMCInst function to convert operands into an MCInst.
3250   // Also, generate the convertToMapAndConstraints function for MS-style inline
3251   // assembly.  The latter doesn't actually generate a MCInst.
3252   emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst,
3253                    HasOptionalOperands, OS);
3254
3255   // Emit the enumeration for classes which participate in matching.
3256   emitMatchClassEnumeration(Target, Info.Classes, OS);
3257
3258   // Emit a function to get the user-visible string to describe an operand
3259   // match failure in diagnostics.
3260   emitOperandMatchErrorDiagStrings(Info, OS);
3261
3262   // Emit a function to map register classes to operand match failure codes.
3263   emitRegisterMatchErrorFunc(Info, OS);
3264
3265   // Emit the routine to match token strings to their match class.
3266   emitMatchTokenString(Target, Info.Classes, OS);
3267
3268   // Emit the subclass predicate routine.
3269   emitIsSubclass(Target, Info.Classes, OS);
3270
3271   // Emit the routine to validate an operand against a match class.
3272   emitValidateOperandClass(Info, OS);
3273
3274   emitMatchClassKindNames(Info.Classes, OS);
3275
3276   // Emit the available features compute function.
3277   SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
3278       Info.Target.getName(), ClassName, "ComputeAvailableFeatures",
3279       Info.SubtargetFeatures, OS);
3280
3281   if (!ReportMultipleNearMisses)
3282     emitAsmTiedOperandConstraints(Target, Info, OS);
3283
3284   StringToOffsetTable StringTable;
3285
3286   size_t MaxNumOperands = 0;
3287   unsigned MaxMnemonicIndex = 0;
3288   bool HasDeprecation = false;
3289   for (const auto &MI : Info.Matchables) {
3290     MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
3291     HasDeprecation |= MI->HasDeprecation;
3292
3293     // Store a pascal-style length byte in the mnemonic.
3294     std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
3295     MaxMnemonicIndex = std::max(MaxMnemonicIndex,
3296                         StringTable.GetOrAddStringOffset(LenMnemonic, false));
3297   }
3298
3299   OS << "static const char *const MnemonicTable =\n";
3300   StringTable.EmitString(OS);
3301   OS << ";\n\n";
3302
3303   // Emit the static match table; unused classes get initialized to 0 which is
3304   // guaranteed to be InvalidMatchClass.
3305   //
3306   // FIXME: We can reduce the size of this table very easily. First, we change
3307   // it so that store the kinds in separate bit-fields for each index, which
3308   // only needs to be the max width used for classes at that index (we also need
3309   // to reject based on this during classification). If we then make sure to
3310   // order the match kinds appropriately (putting mnemonics last), then we
3311   // should only end up using a few bits for each class, especially the ones
3312   // following the mnemonic.
3313   OS << "namespace {\n";
3314   OS << "  struct MatchEntry {\n";
3315   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
3316                << " Mnemonic;\n";
3317   OS << "    uint16_t Opcode;\n";
3318   OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
3319                << " ConvertFn;\n";
3320   OS << "    " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size())
3321                << " RequiredFeatures;\n";
3322   OS << "    " << getMinimalTypeForRange(
3323                       std::distance(Info.Classes.begin(), Info.Classes.end()))
3324      << " Classes[" << MaxNumOperands << "];\n";
3325   OS << "    StringRef getMnemonic() const {\n";
3326   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
3327   OS << "                       MnemonicTable[Mnemonic]);\n";
3328   OS << "    }\n";
3329   OS << "  };\n\n";
3330
3331   OS << "  // Predicate for searching for an opcode.\n";
3332   OS << "  struct LessOpcode {\n";
3333   OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
3334   OS << "      return LHS.getMnemonic() < RHS;\n";
3335   OS << "    }\n";
3336   OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
3337   OS << "      return LHS < RHS.getMnemonic();\n";
3338   OS << "    }\n";
3339   OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
3340   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
3341   OS << "    }\n";
3342   OS << "  };\n";
3343
3344   OS << "} // end anonymous namespace.\n\n";
3345
3346   unsigned VariantCount = Target.getAsmParserVariantCount();
3347   for (unsigned VC = 0; VC != VariantCount; ++VC) {
3348     Record *AsmVariant = Target.getAsmParserVariant(VC);
3349     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3350
3351     OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
3352
3353     for (const auto &MI : Info.Matchables) {
3354       if (MI->AsmVariantID != AsmVariantNo)
3355         continue;
3356
3357       // Store a pascal-style length byte in the mnemonic.
3358       std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
3359       OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
3360          << " /* " << MI->Mnemonic << " */, "
3361          << Target.getInstNamespace() << "::"
3362          << MI->getResultInst()->TheDef->getName() << ", "
3363          << MI->ConversionFnKind << ", ";
3364
3365       // Write the required features mask.
3366       if (!MI->RequiredFeatures.empty()) {
3367         for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) {
3368           if (i) OS << "|";
3369           OS << MI->RequiredFeatures[i]->getEnumName();
3370         }
3371       } else
3372         OS << "0";
3373
3374       OS << ", { ";
3375       for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
3376         const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
3377
3378         if (i) OS << ", ";
3379         OS << Op.Class->Name;
3380       }
3381       OS << " }, },\n";
3382     }
3383
3384     OS << "};\n\n";
3385   }
3386
3387   OS << "#include \"llvm/Support/Debug.h\"\n";
3388   OS << "#include \"llvm/Support/Format.h\"\n\n";
3389
3390   // Finally, build the match function.
3391   OS << "unsigned " << Target.getName() << ClassName << "::\n"
3392      << "MatchInstructionImpl(const OperandVector &Operands,\n";
3393   OS << "                     MCInst &Inst,\n";
3394   if (ReportMultipleNearMisses)
3395     OS << "                     SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3396   else
3397     OS << "                     uint64_t &ErrorInfo,\n";
3398   OS << "                     bool matchingInlineAsm, unsigned VariantID) {\n";
3399
3400   if (!ReportMultipleNearMisses) {
3401     OS << "  // Eliminate obvious mismatches.\n";
3402     OS << "  if (Operands.size() > "
3403        << (MaxNumOperands + HasMnemonicFirst) << ") {\n";
3404     OS << "    ErrorInfo = "
3405        << (MaxNumOperands + HasMnemonicFirst) << ";\n";
3406     OS << "    return Match_InvalidOperand;\n";
3407     OS << "  }\n\n";
3408   }
3409
3410   // Emit code to get the available features.
3411   OS << "  // Get the current feature set.\n";
3412   OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
3413
3414   OS << "  // Get the instruction mnemonic, which is the first token.\n";
3415   if (HasMnemonicFirst) {
3416     OS << "  StringRef Mnemonic = ((" << Target.getName()
3417        << "Operand&)*Operands[0]).getToken();\n\n";
3418   } else {
3419     OS << "  StringRef Mnemonic;\n";
3420     OS << "  if (Operands[0]->isToken())\n";
3421     OS << "    Mnemonic = ((" << Target.getName()
3422        << "Operand&)*Operands[0]).getToken();\n\n";
3423   }
3424
3425   if (HasMnemonicAliases) {
3426     OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
3427     OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
3428   }
3429
3430   // Emit code to compute the class list for this operand vector.
3431   if (!ReportMultipleNearMisses) {
3432     OS << "  // Some state to try to produce better error messages.\n";
3433     OS << "  bool HadMatchOtherThanFeatures = false;\n";
3434     OS << "  bool HadMatchOtherThanPredicate = false;\n";
3435     OS << "  unsigned RetCode = Match_InvalidOperand;\n";
3436     OS << "  uint64_t MissingFeatures = ~0ULL;\n";
3437     OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
3438     OS << "  // wrong for all instances of the instruction.\n";
3439     OS << "  ErrorInfo = ~0ULL;\n";
3440   }
3441
3442   if (HasOptionalOperands) {
3443     OS << "  SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
3444   }
3445
3446   // Emit code to search the table.
3447   OS << "  // Find the appropriate table for this asm variant.\n";
3448   OS << "  const MatchEntry *Start, *End;\n";
3449   OS << "  switch (VariantID) {\n";
3450   OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3451   for (unsigned VC = 0; VC != VariantCount; ++VC) {
3452     Record *AsmVariant = Target.getAsmParserVariant(VC);
3453     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3454     OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3455        << "); End = std::end(MatchTable" << VC << "); break;\n";
3456   }
3457   OS << "  }\n";
3458
3459   OS << "  // Search the table.\n";
3460   if (HasMnemonicFirst) {
3461     OS << "  auto MnemonicRange = "
3462           "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3463   } else {
3464     OS << "  auto MnemonicRange = std::make_pair(Start, End);\n";
3465     OS << "  unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3466     OS << "  if (!Mnemonic.empty())\n";
3467     OS << "    MnemonicRange = "
3468           "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3469   }
3470
3471   OS << "  DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n"
3472      << "  std::distance(MnemonicRange.first, MnemonicRange.second) << \n"
3473      << "  \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n";
3474
3475   OS << "  // Return a more specific error code if no mnemonics match.\n";
3476   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
3477   OS << "    return Match_MnemonicFail;\n\n";
3478
3479   OS << "  for (const MatchEntry *it = MnemonicRange.first, "
3480      << "*ie = MnemonicRange.second;\n";
3481   OS << "       it != ie; ++it) {\n";
3482   OS << "    bool HasRequiredFeatures =\n";
3483   OS << "      (AvailableFeatures & it->RequiredFeatures) == "
3484         "it->RequiredFeatures;\n";
3485   OS << "    DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n";
3486   OS << "                                          << MII.getName(it->Opcode) << \"\\n\");\n";
3487
3488   if (ReportMultipleNearMisses) {
3489     OS << "    // Some state to record ways in which this instruction did not match.\n";
3490     OS << "    NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n";
3491     OS << "    NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n";
3492     OS << "    NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n";
3493     OS << "    NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n";
3494     OS << "    bool MultipleInvalidOperands = false;\n";
3495   }
3496
3497   if (HasMnemonicFirst) {
3498     OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
3499     OS << "    assert(Mnemonic == it->getMnemonic());\n";
3500   }
3501
3502   // Emit check that the subclasses match.
3503   if (!ReportMultipleNearMisses)
3504     OS << "    bool OperandsValid = true;\n";
3505   if (HasOptionalOperands) {
3506     OS << "    OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
3507   }
3508   OS << "    for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
3509      << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
3510      << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
3511   OS << "      auto Formal = "
3512      << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
3513   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3514   OS << "                      dbgs() << \"  Matching formal operand class \" << getMatchClassName(Formal)\n";
3515   OS << "                             << \" against actual operand at index \" << ActualIdx);\n";
3516   OS << "      if (ActualIdx < Operands.size())\n";
3517   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n";
3518   OS << "                        Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n";
3519   OS << "      else\n";
3520   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n";
3521   OS << "      if (ActualIdx >= Operands.size()) {\n";
3522   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n";
3523   if (ReportMultipleNearMisses) {
3524     OS << "        bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || "
3525                                    "isSubclass(Formal, OptionalMatchClass);\n";
3526     OS << "        if (!ThisOperandValid) {\n";
3527     OS << "          if (!OperandNearMiss) {\n";
3528     OS << "            // Record info about match failure for later use.\n";
3529     OS << "            DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n";
3530     OS << "            OperandNearMiss =\n";
3531     OS << "                NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n";
3532     OS << "          } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n";
3533     OS << "            // If more than one operand is invalid, give up on this match entry.\n";
3534     OS << "            DEBUG_WITH_TYPE(\n";
3535     OS << "                \"asm-matcher\",\n";
3536     OS << "                dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n";
3537     OS << "            MultipleInvalidOperands = true;\n";
3538     OS << "            break;\n";
3539     OS << "          }\n";
3540     OS << "        } else {\n";
3541     OS << "          DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n";
3542     OS << "          break;\n";
3543     OS << "        }\n";
3544     OS << "        continue;\n";
3545   } else {
3546     OS << "        OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n";
3547     OS << "        if (!OperandsValid) ErrorInfo = ActualIdx;\n";
3548     if (HasOptionalOperands) {
3549       OS << "        OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
3550          << ");\n";
3551     }
3552     OS << "        break;\n";
3553   }
3554   OS << "      }\n";
3555   OS << "      MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
3556   OS << "      unsigned Diag = validateOperandClass(Actual, Formal);\n";
3557   OS << "      if (Diag == Match_Success) {\n";
3558   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3559   OS << "                        dbgs() << \"match success using generic matcher\\n\");\n";
3560   OS << "        ++ActualIdx;\n";
3561   OS << "        continue;\n";
3562   OS << "      }\n";
3563   OS << "      // If the generic handler indicates an invalid operand\n";
3564   OS << "      // failure, check for a special case.\n";
3565   OS << "      if (Diag != Match_Success) {\n";
3566   OS << "        unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n";
3567   OS << "        if (TargetDiag == Match_Success) {\n";
3568   OS << "          DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3569   OS << "                          dbgs() << \"match success using target matcher\\n\");\n";
3570   OS << "          ++ActualIdx;\n";
3571   OS << "          continue;\n";
3572   OS << "        }\n";
3573   OS << "        // If the target matcher returned a specific error code use\n";
3574   OS << "        // that, else use the one from the generic matcher.\n";
3575   OS << "        if (TargetDiag != Match_InvalidOperand && "
3576         "HasRequiredFeatures)\n";
3577   OS << "          Diag = TargetDiag;\n";
3578   OS << "      }\n";
3579   OS << "      // If current formal operand wasn't matched and it is optional\n"
3580      << "      // then try to match next formal operand\n";
3581   OS << "      if (Diag == Match_InvalidOperand "
3582      << "&& isSubclass(Formal, OptionalMatchClass)) {\n";
3583   if (HasOptionalOperands) {
3584     OS << "        OptionalOperandsMask.set(FormalIdx);\n";
3585   }
3586     OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n";
3587   OS << "        continue;\n";
3588   OS << "      }\n";
3589
3590   if (ReportMultipleNearMisses) {
3591     OS << "      if (!OperandNearMiss) {\n";
3592     OS << "        // If this is the first invalid operand we have seen, record some\n";
3593     OS << "        // information about it.\n";
3594     OS << "        DEBUG_WITH_TYPE(\n";
3595     OS << "            \"asm-matcher\",\n";
3596     OS << "            dbgs()\n";
3597     OS << "                << \"operand match failed, recording near-miss with diag code \"\n";
3598     OS << "                << Diag << \"\\n\");\n";
3599     OS << "        OperandNearMiss =\n";
3600     OS << "            NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n";
3601     OS << "        ++ActualIdx;\n";
3602     OS << "      } else {\n";
3603     OS << "        // If more than one operand is invalid, give up on this match entry.\n";
3604     OS << "        DEBUG_WITH_TYPE(\n";
3605     OS << "            \"asm-matcher\",\n";
3606     OS << "            dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n";
3607     OS << "        MultipleInvalidOperands = true;\n";
3608     OS << "        break;\n";
3609     OS << "      }\n";
3610     OS << "    }\n\n";
3611   } else {
3612     OS << "      // If this operand is broken for all of the instances of this\n";
3613     OS << "      // mnemonic, keep track of it so we can report loc info.\n";
3614     OS << "      // If we already had a match that only failed due to a\n";
3615     OS << "      // target predicate, that diagnostic is preferred.\n";
3616     OS << "      if (!HadMatchOtherThanPredicate &&\n";
3617     OS << "          (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n";
3618     OS << "        if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag "
3619           "!= Match_InvalidOperand))\n";
3620     OS << "          RetCode = Diag;\n";
3621     OS << "        ErrorInfo = ActualIdx;\n";
3622     OS << "      }\n";
3623     OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
3624     OS << "      OperandsValid = false;\n";
3625     OS << "      break;\n";
3626     OS << "    }\n\n";
3627   }
3628
3629   if (ReportMultipleNearMisses)
3630     OS << "    if (MultipleInvalidOperands) {\n";
3631   else
3632     OS << "    if (!OperandsValid) {\n";
3633   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3634   OS << "                                               \"operand mismatches, ignoring \"\n";
3635   OS << "                                               \"this opcode\\n\");\n";
3636   OS << "      continue;\n";
3637   OS << "    }\n";
3638
3639   // Emit check that the required features are available.
3640   OS << "    if (!HasRequiredFeatures) {\n";
3641   if (!ReportMultipleNearMisses)
3642     OS << "      HadMatchOtherThanFeatures = true;\n";
3643   OS << "      uint64_t NewMissingFeatures = it->RequiredFeatures & "
3644         "~AvailableFeatures;\n";
3645   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features: \"\n";
3646   OS << "                                            << format_hex(NewMissingFeatures, 18)\n";
3647   OS << "                                            << \"\\n\");\n";
3648   if (ReportMultipleNearMisses) {
3649     OS << "      FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n";
3650   } else {
3651     OS << "      if (countPopulation(NewMissingFeatures) <=\n"
3652           "          countPopulation(MissingFeatures))\n";
3653     OS << "        MissingFeatures = NewMissingFeatures;\n";
3654     OS << "      continue;\n";
3655   }
3656   OS << "    }\n";
3657   OS << "\n";
3658   OS << "    Inst.clear();\n\n";
3659   OS << "    Inst.setOpcode(it->Opcode);\n";
3660   // Verify the instruction with the target-specific match predicate function.
3661   OS << "    // We have a potential match but have not rendered the operands.\n"
3662      << "    // Check the target predicate to handle any context sensitive\n"
3663         "    // constraints.\n"
3664      << "    // For example, Ties that are referenced multiple times must be\n"
3665         "    // checked here to ensure the input is the same for each match\n"
3666         "    // constraints. If we leave it any later the ties will have been\n"
3667         "    // canonicalized\n"
3668      << "    unsigned MatchResult;\n"
3669      << "    if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, "
3670         "Operands)) != Match_Success) {\n"
3671      << "      Inst.clear();\n";
3672   OS << "      DEBUG_WITH_TYPE(\n";
3673   OS << "          \"asm-matcher\",\n";
3674   OS << "          dbgs() << \"Early target match predicate failed with diag code \"\n";
3675   OS << "                 << MatchResult << \"\\n\");\n";
3676   if (ReportMultipleNearMisses) {
3677     OS << "      EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3678   } else {
3679     OS << "      RetCode = MatchResult;\n"
3680        << "      HadMatchOtherThanPredicate = true;\n"
3681        << "      continue;\n";
3682   }
3683   OS << "    }\n\n";
3684
3685   if (ReportMultipleNearMisses) {
3686     OS << "    // If we did not successfully match the operands, then we can't convert to\n";
3687     OS << "    // an MCInst, so bail out on this instruction variant now.\n";
3688     OS << "    if (OperandNearMiss) {\n";
3689     OS << "      // If the operand mismatch was the only problem, reprrt it as a near-miss.\n";
3690     OS << "      if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n";
3691     OS << "        DEBUG_WITH_TYPE(\n";
3692     OS << "            \"asm-matcher\",\n";
3693     OS << "            dbgs()\n";
3694     OS << "                << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n";
3695     OS << "        NearMisses->push_back(OperandNearMiss);\n";
3696     OS << "      } else {\n";
3697     OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3698     OS << "                                                 \"types of mismatch, so not \"\n";
3699     OS << "                                                 \"reporting near-miss\\n\");\n";
3700     OS << "      }\n";
3701     OS << "      continue;\n";
3702     OS << "    }\n\n";
3703   }
3704
3705   OS << "    if (matchingInlineAsm) {\n";
3706   OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
3707   if (!ReportMultipleNearMisses) {
3708     OS << "      if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3709           "Operands, ErrorInfo))\n";
3710     OS << "        return Match_InvalidTiedOperand;\n";
3711     OS << "\n";
3712   }
3713   OS << "      return Match_Success;\n";
3714   OS << "    }\n\n";
3715   OS << "    // We have selected a definite instruction, convert the parsed\n"
3716      << "    // operands into the appropriate MCInst.\n";
3717   if (HasOptionalOperands) {
3718     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
3719        << "                    OptionalOperandsMask);\n";
3720   } else {
3721     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
3722   }
3723   OS << "\n";
3724
3725   // Verify the instruction with the target-specific match predicate function.
3726   OS << "    // We have a potential match. Check the target predicate to\n"
3727      << "    // handle any context sensitive constraints.\n"
3728      << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
3729      << " Match_Success) {\n"
3730      << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n"
3731      << "                      dbgs() << \"Target match predicate failed with diag code \"\n"
3732      << "                             << MatchResult << \"\\n\");\n"
3733      << "      Inst.clear();\n";
3734   if (ReportMultipleNearMisses) {
3735     OS << "      LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3736   } else {
3737     OS << "      RetCode = MatchResult;\n"
3738        << "      HadMatchOtherThanPredicate = true;\n"
3739        << "      continue;\n";
3740   }
3741   OS << "    }\n\n";
3742
3743   if (ReportMultipleNearMisses) {
3744     OS << "    int NumNearMisses = ((int)(bool)OperandNearMiss +\n";
3745     OS << "                         (int)(bool)FeaturesNearMiss +\n";
3746     OS << "                         (int)(bool)EarlyPredicateNearMiss +\n";
3747     OS << "                         (int)(bool)LatePredicateNearMiss);\n";
3748     OS << "    if (NumNearMisses == 1) {\n";
3749     OS << "      // We had exactly one type of near-miss, so add that to the list.\n";
3750     OS << "      assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n";
3751     OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n";
3752     OS << "                                            \"mismatch, so reporting a \"\n";
3753     OS << "                                            \"near-miss\\n\");\n";
3754     OS << "      if (NearMisses && FeaturesNearMiss)\n";
3755     OS << "        NearMisses->push_back(FeaturesNearMiss);\n";
3756     OS << "      else if (NearMisses && EarlyPredicateNearMiss)\n";
3757     OS << "        NearMisses->push_back(EarlyPredicateNearMiss);\n";
3758     OS << "      else if (NearMisses && LatePredicateNearMiss)\n";
3759     OS << "        NearMisses->push_back(LatePredicateNearMiss);\n";
3760     OS << "\n";
3761     OS << "      continue;\n";
3762     OS << "    } else if (NumNearMisses > 1) {\n";
3763     OS << "      // This instruction missed in more than one way, so ignore it.\n";
3764     OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3765     OS << "                                               \"types of mismatch, so not \"\n";
3766     OS << "                                               \"reporting near-miss\\n\");\n";
3767     OS << "      continue;\n";
3768     OS << "    }\n";
3769   }
3770
3771   // Call the post-processing function, if used.
3772   StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup");
3773   if (!InsnCleanupFn.empty())
3774     OS << "    " << InsnCleanupFn << "(Inst);\n";
3775
3776   if (HasDeprecation) {
3777     OS << "    std::string Info;\n";
3778     OS << "    if (!getParser().getTargetParser().\n";
3779     OS << "        getTargetOptions().MCNoDeprecatedWarn &&\n";
3780     OS << "        MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
3781     OS << "      SMLoc Loc = ((" << Target.getName()
3782        << "Operand&)*Operands[0]).getStartLoc();\n";
3783     OS << "      getParser().Warning(Loc, Info, None);\n";
3784     OS << "    }\n";
3785   }
3786
3787   if (!ReportMultipleNearMisses) {
3788     OS << "    if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3789           "Operands, ErrorInfo))\n";
3790     OS << "      return Match_InvalidTiedOperand;\n";
3791     OS << "\n";
3792   }
3793
3794   OS << "    DEBUG_WITH_TYPE(\n";
3795   OS << "        \"asm-matcher\",\n";
3796   OS << "        dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n";
3797   OS << "    return Match_Success;\n";
3798   OS << "  }\n\n";
3799
3800   if (ReportMultipleNearMisses) {
3801     OS << "  // No instruction variants matched exactly.\n";
3802     OS << "  return Match_NearMisses;\n";
3803   } else {
3804     OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
3805     OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
3806     OS << "    return RetCode;\n\n";
3807     OS << "  // Missing feature matches return which features were missing\n";
3808     OS << "  ErrorInfo = MissingFeatures;\n";
3809     OS << "  return Match_MissingFeature;\n";
3810   }
3811   OS << "}\n\n";
3812
3813   if (!Info.OperandMatchInfo.empty())
3814     emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
3815                              MaxMnemonicIndex, HasMnemonicFirst);
3816
3817   OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
3818
3819   OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n";
3820   OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n";
3821
3822   emitMnemonicSpellChecker(OS, Target, VariantCount);
3823
3824   OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n";
3825 }
3826
3827 namespace llvm {
3828
3829 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
3830   emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
3831   AsmMatcherEmitter(RK).run(OS);
3832 }
3833
3834 } // end namespace llvm