]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/utils/TableGen/CodeGenDAGPatterns.cpp
Merge llvm trunk r321414 to contrib/llvm.
[FreeBSD/FreeBSD.git] / contrib / llvm / utils / TableGen / CodeGenDAGPatterns.cpp
1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/TableGen/Error.h"
26 #include "llvm/TableGen/Record.h"
27 #include <algorithm>
28 #include <cstdio>
29 #include <set>
30 using namespace llvm;
31
32 #define DEBUG_TYPE "dag-patterns"
33
34 static inline bool isIntegerOrPtr(MVT VT) {
35   return VT.isInteger() || VT == MVT::iPTR;
36 }
37 static inline bool isFloatingPoint(MVT VT) {
38   return VT.isFloatingPoint();
39 }
40 static inline bool isVector(MVT VT) {
41   return VT.isVector();
42 }
43 static inline bool isScalar(MVT VT) {
44   return !VT.isVector();
45 }
46
47 template <typename Predicate>
48 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
49   bool Erased = false;
50   // It is ok to iterate over MachineValueTypeSet and remove elements from it
51   // at the same time.
52   for (MVT T : S) {
53     if (!P(T))
54       continue;
55     Erased = true;
56     S.erase(T);
57   }
58   return Erased;
59 }
60
61 // --- TypeSetByHwMode
62
63 // This is a parameterized type-set class. For each mode there is a list
64 // of types that are currently possible for a given tree node. Type
65 // inference will apply to each mode separately.
66
67 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
68   for (const ValueTypeByHwMode &VVT : VTList)
69     insert(VVT);
70 }
71
72 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
73   for (const auto &I : *this) {
74     if (I.second.size() > 1)
75       return false;
76     if (!AllowEmpty && I.second.empty())
77       return false;
78   }
79   return true;
80 }
81
82 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
83   assert(isValueTypeByHwMode(true) &&
84          "The type set has multiple types for at least one HW mode");
85   ValueTypeByHwMode VVT;
86   for (const auto &I : *this) {
87     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
88     VVT.getOrCreateTypeForMode(I.first, T);
89   }
90   return VVT;
91 }
92
93 bool TypeSetByHwMode::isPossible() const {
94   for (const auto &I : *this)
95     if (!I.second.empty())
96       return true;
97   return false;
98 }
99
100 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
101   bool Changed = false;
102   SmallDenseSet<unsigned, 4> Modes;
103   for (const auto &P : VVT) {
104     unsigned M = P.first;
105     Modes.insert(M);
106     // Make sure there exists a set for each specific mode from VVT.
107     Changed |= getOrCreate(M).insert(P.second).second;
108   }
109
110   // If VVT has a default mode, add the corresponding type to all
111   // modes in "this" that do not exist in VVT.
112   if (Modes.count(DefaultMode)) {
113     MVT DT = VVT.getType(DefaultMode);
114     for (auto &I : *this)
115       if (!Modes.count(I.first))
116         Changed |= I.second.insert(DT).second;
117   }
118   return Changed;
119 }
120
121 // Constrain the type set to be the intersection with VTS.
122 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
123   bool Changed = false;
124   if (hasDefault()) {
125     for (const auto &I : VTS) {
126       unsigned M = I.first;
127       if (M == DefaultMode || hasMode(M))
128         continue;
129       Map.insert({M, Map.at(DefaultMode)});
130       Changed = true;
131     }
132   }
133
134   for (auto &I : *this) {
135     unsigned M = I.first;
136     SetType &S = I.second;
137     if (VTS.hasMode(M) || VTS.hasDefault()) {
138       Changed |= intersect(I.second, VTS.get(M));
139     } else if (!S.empty()) {
140       S.clear();
141       Changed = true;
142     }
143   }
144   return Changed;
145 }
146
147 template <typename Predicate>
148 bool TypeSetByHwMode::constrain(Predicate P) {
149   bool Changed = false;
150   for (auto &I : *this)
151     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
152   return Changed;
153 }
154
155 template <typename Predicate>
156 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
157   assert(empty());
158   for (const auto &I : VTS) {
159     SetType &S = getOrCreate(I.first);
160     for (auto J : I.second)
161       if (P(J))
162         S.insert(J);
163   }
164   return !empty();
165 }
166
167 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
168   SmallVector<unsigned, 4> Modes;
169   Modes.reserve(Map.size());
170
171   for (const auto &I : *this)
172     Modes.push_back(I.first);
173   if (Modes.empty()) {
174     OS << "{}";
175     return;
176   }
177   array_pod_sort(Modes.begin(), Modes.end());
178
179   OS << '{';
180   for (unsigned M : Modes) {
181     OS << ' ' << getModeName(M) << ':';
182     writeToStream(get(M), OS);
183   }
184   OS << " }";
185 }
186
187 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
188   SmallVector<MVT, 4> Types(S.begin(), S.end());
189   array_pod_sort(Types.begin(), Types.end());
190
191   OS << '[';
192   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
193     OS << ValueTypeByHwMode::getMVTName(Types[i]);
194     if (i != e-1)
195       OS << ' ';
196   }
197   OS << ']';
198 }
199
200 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
201   bool HaveDefault = hasDefault();
202   if (HaveDefault != VTS.hasDefault())
203     return false;
204
205   if (isSimple()) {
206     if (VTS.isSimple())
207       return *begin() == *VTS.begin();
208     return false;
209   }
210
211   SmallDenseSet<unsigned, 4> Modes;
212   for (auto &I : *this)
213     Modes.insert(I.first);
214   for (const auto &I : VTS)
215     Modes.insert(I.first);
216
217   if (HaveDefault) {
218     // Both sets have default mode.
219     for (unsigned M : Modes) {
220       if (get(M) != VTS.get(M))
221         return false;
222     }
223   } else {
224     // Neither set has default mode.
225     for (unsigned M : Modes) {
226       // If there is no default mode, an empty set is equivalent to not having
227       // the corresponding mode.
228       bool NoModeThis = !hasMode(M) || get(M).empty();
229       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
230       if (NoModeThis != NoModeVTS)
231         return false;
232       if (!NoModeThis)
233         if (get(M) != VTS.get(M))
234           return false;
235     }
236   }
237
238   return true;
239 }
240
241 namespace llvm {
242   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
243     T.writeToStream(OS);
244     return OS;
245   }
246 }
247
248 LLVM_DUMP_METHOD
249 void TypeSetByHwMode::dump() const {
250   dbgs() << *this << '\n';
251 }
252
253 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
254   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
255   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
256
257   if (OutP == InP)
258     return berase_if(Out, Int);
259
260   // Compute the intersection of scalars separately to account for only
261   // one set containing iPTR.
262   // The itersection of iPTR with a set of integer scalar types that does not
263   // include iPTR will result in the most specific scalar type:
264   // - iPTR is more specific than any set with two elements or more
265   // - iPTR is less specific than any single integer scalar type.
266   // For example
267   // { iPTR } * { i32 }     -> { i32 }
268   // { iPTR } * { i32 i64 } -> { iPTR }
269   // and
270   // { iPTR i32 } * { i32 }          -> { i32 }
271   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
272   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
273
274   // Compute the difference between the two sets in such a way that the
275   // iPTR is in the set that is being subtracted. This is to see if there
276   // are any extra scalars in the set without iPTR that are not in the
277   // set containing iPTR. Then the iPTR could be considered a "wildcard"
278   // matching these scalars. If there is only one such scalar, it would
279   // replace the iPTR, if there are more, the iPTR would be retained.
280   SetType Diff;
281   if (InP) {
282     Diff = Out;
283     berase_if(Diff, [&In](MVT T) { return In.count(T); });
284     // Pre-remove these elements and rely only on InP/OutP to determine
285     // whether a change has been made.
286     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
287   } else {
288     Diff = In;
289     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
290     Out.erase(MVT::iPTR);
291   }
292
293   // The actual intersection.
294   bool Changed = berase_if(Out, Int);
295   unsigned NumD = Diff.size();
296   if (NumD == 0)
297     return Changed;
298
299   if (NumD == 1) {
300     Out.insert(*Diff.begin());
301     // This is a change only if Out was the one with iPTR (which is now
302     // being replaced).
303     Changed |= OutP;
304   } else {
305     // Multiple elements from Out are now replaced with iPTR.
306     Out.insert(MVT::iPTR);
307     Changed |= !OutP;
308   }
309   return Changed;
310 }
311
312 bool TypeSetByHwMode::validate() const {
313 #ifndef NDEBUG
314   if (empty())
315     return true;
316   bool AllEmpty = true;
317   for (const auto &I : *this)
318     AllEmpty &= I.second.empty();
319   return !AllEmpty;
320 #endif
321   return true;
322 }
323
324 // --- TypeInfer
325
326 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
327                                 const TypeSetByHwMode &In) {
328   ValidateOnExit _1(Out, *this);
329   In.validate();
330   if (In.empty() || Out == In || TP.hasError())
331     return false;
332   if (Out.empty()) {
333     Out = In;
334     return true;
335   }
336
337   bool Changed = Out.constrain(In);
338   if (Changed && Out.empty())
339     TP.error("Type contradiction");
340
341   return Changed;
342 }
343
344 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
345   ValidateOnExit _1(Out, *this);
346   if (TP.hasError())
347     return false;
348   assert(!Out.empty() && "cannot pick from an empty set");
349
350   bool Changed = false;
351   for (auto &I : Out) {
352     TypeSetByHwMode::SetType &S = I.second;
353     if (S.size() <= 1)
354       continue;
355     MVT T = *S.begin(); // Pick the first element.
356     S.clear();
357     S.insert(T);
358     Changed = true;
359   }
360   return Changed;
361 }
362
363 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
364   ValidateOnExit _1(Out, *this);
365   if (TP.hasError())
366     return false;
367   if (!Out.empty())
368     return Out.constrain(isIntegerOrPtr);
369
370   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
371 }
372
373 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
374   ValidateOnExit _1(Out, *this);
375   if (TP.hasError())
376     return false;
377   if (!Out.empty())
378     return Out.constrain(isFloatingPoint);
379
380   return Out.assign_if(getLegalTypes(), isFloatingPoint);
381 }
382
383 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
384   ValidateOnExit _1(Out, *this);
385   if (TP.hasError())
386     return false;
387   if (!Out.empty())
388     return Out.constrain(isScalar);
389
390   return Out.assign_if(getLegalTypes(), isScalar);
391 }
392
393 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
394   ValidateOnExit _1(Out, *this);
395   if (TP.hasError())
396     return false;
397   if (!Out.empty())
398     return Out.constrain(isVector);
399
400   return Out.assign_if(getLegalTypes(), isVector);
401 }
402
403 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
404   ValidateOnExit _1(Out, *this);
405   if (TP.hasError() || !Out.empty())
406     return false;
407
408   Out = getLegalTypes();
409   return true;
410 }
411
412 template <typename Iter, typename Pred, typename Less>
413 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
414   if (B == E)
415     return E;
416   Iter Min = E;
417   for (Iter I = B; I != E; ++I) {
418     if (!P(*I))
419       continue;
420     if (Min == E || L(*I, *Min))
421       Min = I;
422   }
423   return Min;
424 }
425
426 template <typename Iter, typename Pred, typename Less>
427 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
428   if (B == E)
429     return E;
430   Iter Max = E;
431   for (Iter I = B; I != E; ++I) {
432     if (!P(*I))
433       continue;
434     if (Max == E || L(*Max, *I))
435       Max = I;
436   }
437   return Max;
438 }
439
440 /// Make sure that for each type in Small, there exists a larger type in Big.
441 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
442                                    TypeSetByHwMode &Big) {
443   ValidateOnExit _1(Small, *this), _2(Big, *this);
444   if (TP.hasError())
445     return false;
446   bool Changed = false;
447
448   if (Small.empty())
449     Changed |= EnforceAny(Small);
450   if (Big.empty())
451     Changed |= EnforceAny(Big);
452
453   assert(Small.hasDefault() && Big.hasDefault());
454
455   std::vector<unsigned> Modes = union_modes(Small, Big);
456
457   // 1. Only allow integer or floating point types and make sure that
458   //    both sides are both integer or both floating point.
459   // 2. Make sure that either both sides have vector types, or neither
460   //    of them does.
461   for (unsigned M : Modes) {
462     TypeSetByHwMode::SetType &S = Small.get(M);
463     TypeSetByHwMode::SetType &B = Big.get(M);
464
465     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
466       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
467       Changed |= berase_if(S, NotInt) |
468                  berase_if(B, NotInt);
469     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
470       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
471       Changed |= berase_if(S, NotFP) |
472                  berase_if(B, NotFP);
473     } else if (S.empty() || B.empty()) {
474       Changed = !S.empty() || !B.empty();
475       S.clear();
476       B.clear();
477     } else {
478       TP.error("Incompatible types");
479       return Changed;
480     }
481
482     if (none_of(S, isVector) || none_of(B, isVector)) {
483       Changed |= berase_if(S, isVector) |
484                  berase_if(B, isVector);
485     }
486   }
487
488   auto LT = [](MVT A, MVT B) -> bool {
489     return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
490            (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
491             A.getSizeInBits() < B.getSizeInBits());
492   };
493   auto LE = [](MVT A, MVT B) -> bool {
494     // This function is used when removing elements: when a vector is compared
495     // to a non-vector, it should return false (to avoid removal).
496     if (A.isVector() != B.isVector())
497       return false;
498
499     // Note on the < comparison below:
500     // X86 has patterns like
501     //   (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))),
502     // where the truncated vector is given a type v16i8, while the source
503     // vector has type v4i32. They both have the same size in bits.
504     // The minimal type in the result is obviously v16i8, and when we remove
505     // all types from the source that are smaller-or-equal than v8i16, the
506     // only source type would also be removed (since it's equal in size).
507     return A.getScalarSizeInBits() <= B.getScalarSizeInBits() ||
508            A.getSizeInBits() < B.getSizeInBits();
509   };
510
511   for (unsigned M : Modes) {
512     TypeSetByHwMode::SetType &S = Small.get(M);
513     TypeSetByHwMode::SetType &B = Big.get(M);
514     // MinS = min scalar in Small, remove all scalars from Big that are
515     // smaller-or-equal than MinS.
516     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
517     if (MinS != S.end())
518       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
519
520     // MaxS = max scalar in Big, remove all scalars from Small that are
521     // larger than MaxS.
522     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
523     if (MaxS != B.end())
524       Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
525
526     // MinV = min vector in Small, remove all vectors from Big that are
527     // smaller-or-equal than MinV.
528     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
529     if (MinV != S.end())
530       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
531
532     // MaxV = max vector in Big, remove all vectors from Small that are
533     // larger than MaxV.
534     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
535     if (MaxV != B.end())
536       Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
537   }
538
539   return Changed;
540 }
541
542 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
543 ///    for each type U in Elem, U is a scalar type.
544 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
545 ///    type T in Vec, such that U is the element type of T.
546 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
547                                        TypeSetByHwMode &Elem) {
548   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
549   if (TP.hasError())
550     return false;
551   bool Changed = false;
552
553   if (Vec.empty())
554     Changed |= EnforceVector(Vec);
555   if (Elem.empty())
556     Changed |= EnforceScalar(Elem);
557
558   for (unsigned M : union_modes(Vec, Elem)) {
559     TypeSetByHwMode::SetType &V = Vec.get(M);
560     TypeSetByHwMode::SetType &E = Elem.get(M);
561
562     Changed |= berase_if(V, isScalar);  // Scalar = !vector
563     Changed |= berase_if(E, isVector);  // Vector = !scalar
564     assert(!V.empty() && !E.empty());
565
566     SmallSet<MVT,4> VT, ST;
567     // Collect element types from the "vector" set.
568     for (MVT T : V)
569       VT.insert(T.getVectorElementType());
570     // Collect scalar types from the "element" set.
571     for (MVT T : E)
572       ST.insert(T);
573
574     // Remove from V all (vector) types whose element type is not in S.
575     Changed |= berase_if(V, [&ST](MVT T) -> bool {
576                               return !ST.count(T.getVectorElementType());
577                             });
578     // Remove from E all (scalar) types, for which there is no corresponding
579     // type in V.
580     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
581   }
582
583   return Changed;
584 }
585
586 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
587                                        const ValueTypeByHwMode &VVT) {
588   TypeSetByHwMode Tmp(VVT);
589   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
590   return EnforceVectorEltTypeIs(Vec, Tmp);
591 }
592
593 /// Ensure that for each type T in Sub, T is a vector type, and there
594 /// exists a type U in Vec such that U is a vector type with the same
595 /// element type as T and at least as many elements as T.
596 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
597                                              TypeSetByHwMode &Sub) {
598   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
599   if (TP.hasError())
600     return false;
601
602   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
603   auto IsSubVec = [](MVT B, MVT P) -> bool {
604     if (!B.isVector() || !P.isVector())
605       return false;
606     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
607     // but until there are obvious use-cases for this, keep the
608     // types separate.
609     if (B.isScalableVector() != P.isScalableVector())
610       return false;
611     if (B.getVectorElementType() != P.getVectorElementType())
612       return false;
613     return B.getVectorNumElements() < P.getVectorNumElements();
614   };
615
616   /// Return true if S has no element (vector type) that T is a sub-vector of,
617   /// i.e. has the same element type as T and more elements.
618   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
619     for (const auto &I : S)
620       if (IsSubVec(T, I))
621         return false;
622     return true;
623   };
624
625   /// Return true if S has no element (vector type) that T is a super-vector
626   /// of, i.e. has the same element type as T and fewer elements.
627   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
628     for (const auto &I : S)
629       if (IsSubVec(I, T))
630         return false;
631     return true;
632   };
633
634   bool Changed = false;
635
636   if (Vec.empty())
637     Changed |= EnforceVector(Vec);
638   if (Sub.empty())
639     Changed |= EnforceVector(Sub);
640
641   for (unsigned M : union_modes(Vec, Sub)) {
642     TypeSetByHwMode::SetType &S = Sub.get(M);
643     TypeSetByHwMode::SetType &V = Vec.get(M);
644
645     Changed |= berase_if(S, isScalar);
646
647     // Erase all types from S that are not sub-vectors of a type in V.
648     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
649
650     // Erase all types from V that are not super-vectors of a type in S.
651     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
652   }
653
654   return Changed;
655 }
656
657 /// 1. Ensure that V has a scalar type iff W has a scalar type.
658 /// 2. Ensure that for each vector type T in V, there exists a vector
659 ///    type U in W, such that T and U have the same number of elements.
660 /// 3. Ensure that for each vector type U in W, there exists a vector
661 ///    type T in V, such that T and U have the same number of elements
662 ///    (reverse of 2).
663 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
664   ValidateOnExit _1(V, *this), _2(W, *this);
665   if (TP.hasError())
666     return false;
667
668   bool Changed = false;
669   if (V.empty())
670     Changed |= EnforceAny(V);
671   if (W.empty())
672     Changed |= EnforceAny(W);
673
674   // An actual vector type cannot have 0 elements, so we can treat scalars
675   // as zero-length vectors. This way both vectors and scalars can be
676   // processed identically.
677   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
678     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
679   };
680
681   for (unsigned M : union_modes(V, W)) {
682     TypeSetByHwMode::SetType &VS = V.get(M);
683     TypeSetByHwMode::SetType &WS = W.get(M);
684
685     SmallSet<unsigned,2> VN, WN;
686     for (MVT T : VS)
687       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
688     for (MVT T : WS)
689       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
690
691     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
692     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
693   }
694   return Changed;
695 }
696
697 /// 1. Ensure that for each type T in A, there exists a type U in B,
698 ///    such that T and U have equal size in bits.
699 /// 2. Ensure that for each type U in B, there exists a type T in A
700 ///    such that T and U have equal size in bits (reverse of 1).
701 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
702   ValidateOnExit _1(A, *this), _2(B, *this);
703   if (TP.hasError())
704     return false;
705   bool Changed = false;
706   if (A.empty())
707     Changed |= EnforceAny(A);
708   if (B.empty())
709     Changed |= EnforceAny(B);
710
711   auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
712     return !Sizes.count(T.getSizeInBits());
713   };
714
715   for (unsigned M : union_modes(A, B)) {
716     TypeSetByHwMode::SetType &AS = A.get(M);
717     TypeSetByHwMode::SetType &BS = B.get(M);
718     SmallSet<unsigned,2> AN, BN;
719
720     for (MVT T : AS)
721       AN.insert(T.getSizeInBits());
722     for (MVT T : BS)
723       BN.insert(T.getSizeInBits());
724
725     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
726     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
727   }
728
729   return Changed;
730 }
731
732 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
733   ValidateOnExit _1(VTS, *this);
734   TypeSetByHwMode Legal = getLegalTypes();
735   bool HaveLegalDef = Legal.hasDefault();
736
737   for (auto &I : VTS) {
738     unsigned M = I.first;
739     if (!Legal.hasMode(M) && !HaveLegalDef) {
740       TP.error("Invalid mode " + Twine(M));
741       return;
742     }
743     expandOverloads(I.second, Legal.get(M));
744   }
745 }
746
747 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
748                                 const TypeSetByHwMode::SetType &Legal) {
749   std::set<MVT> Ovs;
750   for (MVT T : Out) {
751     if (!T.isOverloaded())
752       continue;
753
754     Ovs.insert(T);
755     // MachineValueTypeSet allows iteration and erasing.
756     Out.erase(T);
757   }
758
759   for (MVT Ov : Ovs) {
760     switch (Ov.SimpleTy) {
761       case MVT::iPTRAny:
762         Out.insert(MVT::iPTR);
763         return;
764       case MVT::iAny:
765         for (MVT T : MVT::integer_valuetypes())
766           if (Legal.count(T))
767             Out.insert(T);
768         for (MVT T : MVT::integer_vector_valuetypes())
769           if (Legal.count(T))
770             Out.insert(T);
771         return;
772       case MVT::fAny:
773         for (MVT T : MVT::fp_valuetypes())
774           if (Legal.count(T))
775             Out.insert(T);
776         for (MVT T : MVT::fp_vector_valuetypes())
777           if (Legal.count(T))
778             Out.insert(T);
779         return;
780       case MVT::vAny:
781         for (MVT T : MVT::vector_valuetypes())
782           if (Legal.count(T))
783             Out.insert(T);
784         return;
785       case MVT::Any:
786         for (MVT T : MVT::all_valuetypes())
787           if (Legal.count(T))
788             Out.insert(T);
789         return;
790       default:
791         break;
792     }
793   }
794 }
795
796 TypeSetByHwMode TypeInfer::getLegalTypes() {
797   if (!LegalTypesCached) {
798     // Stuff all types from all modes into the default mode.
799     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
800     for (const auto &I : LTS)
801       LegalCache.insert(I.second);
802     LegalTypesCached = true;
803   }
804   TypeSetByHwMode VTS;
805   VTS.getOrCreate(DefaultMode) = LegalCache;
806   return VTS;
807 }
808
809 #ifndef NDEBUG
810 TypeInfer::ValidateOnExit::~ValidateOnExit() {
811   if (!VTS.validate()) {
812     dbgs() << "Type set is empty for each HW mode:\n"
813               "possible type contradiction in the pattern below "
814               "(use -print-records with llvm-tblgen to see all "
815               "expanded records).\n";
816     Infer.TP.dump();
817     llvm_unreachable(nullptr);
818   }
819 }
820 #endif
821
822 //===----------------------------------------------------------------------===//
823 // TreePredicateFn Implementation
824 //===----------------------------------------------------------------------===//
825
826 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
827 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
828   assert(
829       (!hasPredCode() || !hasImmCode()) &&
830       ".td file corrupt: can't have a node predicate *and* an imm predicate");
831 }
832
833 bool TreePredicateFn::hasPredCode() const {
834   return isLoad() || isStore() || isAtomic() ||
835          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
836 }
837
838 std::string TreePredicateFn::getPredCode() const {
839   std::string Code = "";
840
841   if (!isLoad() && !isStore() && !isAtomic()) {
842     Record *MemoryVT = getMemoryVT();
843
844     if (MemoryVT)
845       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
846                       "MemoryVT requires IsLoad or IsStore");
847   }
848
849   if (!isLoad() && !isStore()) {
850     if (isUnindexed())
851       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
852                       "IsUnindexed requires IsLoad or IsStore");
853
854     Record *ScalarMemoryVT = getScalarMemoryVT();
855
856     if (ScalarMemoryVT)
857       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
858                       "ScalarMemoryVT requires IsLoad or IsStore");
859   }
860
861   if (isLoad() + isStore() + isAtomic() > 1)
862     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
863                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
864
865   if (isLoad()) {
866     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
867         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
868         getScalarMemoryVT() == nullptr)
869       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
870                       "IsLoad cannot be used by itself");
871   } else {
872     if (isNonExtLoad())
873       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
874                       "IsNonExtLoad requires IsLoad");
875     if (isAnyExtLoad())
876       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
877                       "IsAnyExtLoad requires IsLoad");
878     if (isSignExtLoad())
879       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
880                       "IsSignExtLoad requires IsLoad");
881     if (isZeroExtLoad())
882       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
883                       "IsZeroExtLoad requires IsLoad");
884   }
885
886   if (isStore()) {
887     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
888         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr)
889       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
890                       "IsStore cannot be used by itself");
891   } else {
892     if (isNonTruncStore())
893       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
894                       "IsNonTruncStore requires IsStore");
895     if (isTruncStore())
896       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
897                       "IsTruncStore requires IsStore");
898   }
899
900   if (isAtomic()) {
901     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
902         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
903         !isAtomicOrderingAcquireRelease() &&
904         !isAtomicOrderingSequentiallyConsistent() &&
905         !isAtomicOrderingAcquireOrStronger() &&
906         !isAtomicOrderingReleaseOrStronger() &&
907         !isAtomicOrderingWeakerThanAcquire() &&
908         !isAtomicOrderingWeakerThanRelease())
909       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
910                       "IsAtomic cannot be used by itself");
911   } else {
912     if (isAtomicOrderingMonotonic())
913       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
914                       "IsAtomicOrderingMonotonic requires IsAtomic");
915     if (isAtomicOrderingAcquire())
916       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
917                       "IsAtomicOrderingAcquire requires IsAtomic");
918     if (isAtomicOrderingRelease())
919       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
920                       "IsAtomicOrderingRelease requires IsAtomic");
921     if (isAtomicOrderingAcquireRelease())
922       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
923                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
924     if (isAtomicOrderingSequentiallyConsistent())
925       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
926                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
927     if (isAtomicOrderingAcquireOrStronger())
928       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
929                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
930     if (isAtomicOrderingReleaseOrStronger())
931       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
932                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
933     if (isAtomicOrderingWeakerThanAcquire())
934       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
935                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
936   }
937
938   if (isLoad() || isStore() || isAtomic()) {
939     StringRef SDNodeName =
940         isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode";
941
942     Record *MemoryVT = getMemoryVT();
943
944     if (MemoryVT)
945       Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" +
946                MemoryVT->getName() + ") return false;\n")
947                   .str();
948   }
949
950   if (isAtomic() && isAtomicOrderingMonotonic())
951     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
952             "AtomicOrdering::Monotonic) return false;\n";
953   if (isAtomic() && isAtomicOrderingAcquire())
954     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
955             "AtomicOrdering::Acquire) return false;\n";
956   if (isAtomic() && isAtomicOrderingRelease())
957     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
958             "AtomicOrdering::Release) return false;\n";
959   if (isAtomic() && isAtomicOrderingAcquireRelease())
960     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
961             "AtomicOrdering::AcquireRelease) return false;\n";
962   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
963     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
964             "AtomicOrdering::SequentiallyConsistent) return false;\n";
965
966   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
967     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
968             "return false;\n";
969   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
970     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
971             "return false;\n";
972
973   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
974     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
975             "return false;\n";
976   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
977     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
978             "return false;\n";
979
980   if (isLoad() || isStore()) {
981     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
982
983     if (isUnindexed())
984       Code += ("if (cast<" + SDNodeName +
985                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
986                "return false;\n")
987                   .str();
988
989     if (isLoad()) {
990       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
991            isZeroExtLoad()) > 1)
992         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
993                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
994                         "IsZeroExtLoad are mutually exclusive");
995       if (isNonExtLoad())
996         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
997                 "ISD::NON_EXTLOAD) return false;\n";
998       if (isAnyExtLoad())
999         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1000                 "return false;\n";
1001       if (isSignExtLoad())
1002         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1003                 "return false;\n";
1004       if (isZeroExtLoad())
1005         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1006                 "return false;\n";
1007     } else {
1008       if ((isNonTruncStore() + isTruncStore()) > 1)
1009         PrintFatalError(
1010             getOrigPatFragRecord()->getRecord()->getLoc(),
1011             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1012       if (isNonTruncStore())
1013         Code +=
1014             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1015       if (isTruncStore())
1016         Code +=
1017             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1018     }
1019
1020     Record *ScalarMemoryVT = getScalarMemoryVT();
1021
1022     if (ScalarMemoryVT)
1023       Code += ("if (cast<" + SDNodeName +
1024                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1025                ScalarMemoryVT->getName() + ") return false;\n")
1026                   .str();
1027   }
1028
1029   std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1030
1031   Code += PredicateCode;
1032
1033   if (PredicateCode.empty() && !Code.empty())
1034     Code += "return true;\n";
1035
1036   return Code;
1037 }
1038
1039 bool TreePredicateFn::hasImmCode() const {
1040   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1041 }
1042
1043 std::string TreePredicateFn::getImmCode() const {
1044   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1045 }
1046
1047 bool TreePredicateFn::immCodeUsesAPInt() const {
1048   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1049 }
1050
1051 bool TreePredicateFn::immCodeUsesAPFloat() const {
1052   bool Unset;
1053   // The return value will be false when IsAPFloat is unset.
1054   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1055                                                                    Unset);
1056 }
1057
1058 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1059                                                    bool Value) const {
1060   bool Unset;
1061   bool Result =
1062       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1063   if (Unset)
1064     return false;
1065   return Result == Value;
1066 }
1067 bool TreePredicateFn::isLoad() const {
1068   return isPredefinedPredicateEqualTo("IsLoad", true);
1069 }
1070 bool TreePredicateFn::isStore() const {
1071   return isPredefinedPredicateEqualTo("IsStore", true);
1072 }
1073 bool TreePredicateFn::isAtomic() const {
1074   return isPredefinedPredicateEqualTo("IsAtomic", true);
1075 }
1076 bool TreePredicateFn::isUnindexed() const {
1077   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1078 }
1079 bool TreePredicateFn::isNonExtLoad() const {
1080   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1081 }
1082 bool TreePredicateFn::isAnyExtLoad() const {
1083   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1084 }
1085 bool TreePredicateFn::isSignExtLoad() const {
1086   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1087 }
1088 bool TreePredicateFn::isZeroExtLoad() const {
1089   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1090 }
1091 bool TreePredicateFn::isNonTruncStore() const {
1092   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1093 }
1094 bool TreePredicateFn::isTruncStore() const {
1095   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1096 }
1097 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1098   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1099 }
1100 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1101   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1102 }
1103 bool TreePredicateFn::isAtomicOrderingRelease() const {
1104   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1105 }
1106 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1107   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1108 }
1109 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1110   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1111                                       true);
1112 }
1113 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1114   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1115 }
1116 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1117   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1118 }
1119 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1120   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1121 }
1122 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1123   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1124 }
1125 Record *TreePredicateFn::getMemoryVT() const {
1126   Record *R = getOrigPatFragRecord()->getRecord();
1127   if (R->isValueUnset("MemoryVT"))
1128     return nullptr;
1129   return R->getValueAsDef("MemoryVT");
1130 }
1131 Record *TreePredicateFn::getScalarMemoryVT() const {
1132   Record *R = getOrigPatFragRecord()->getRecord();
1133   if (R->isValueUnset("ScalarMemoryVT"))
1134     return nullptr;
1135   return R->getValueAsDef("ScalarMemoryVT");
1136 }
1137
1138 StringRef TreePredicateFn::getImmType() const {
1139   if (immCodeUsesAPInt())
1140     return "const APInt &";
1141   if (immCodeUsesAPFloat())
1142     return "const APFloat &";
1143   return "int64_t";
1144 }
1145
1146 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1147   if (immCodeUsesAPInt())
1148     return "APInt";
1149   else if (immCodeUsesAPFloat())
1150     return "APFloat";
1151   return "I64";
1152 }
1153
1154 /// isAlwaysTrue - Return true if this is a noop predicate.
1155 bool TreePredicateFn::isAlwaysTrue() const {
1156   return !hasPredCode() && !hasImmCode();
1157 }
1158
1159 /// Return the name to use in the generated code to reference this, this is
1160 /// "Predicate_foo" if from a pattern fragment "foo".
1161 std::string TreePredicateFn::getFnName() const {
1162   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1163 }
1164
1165 /// getCodeToRunOnSDNode - Return the code for the function body that
1166 /// evaluates this predicate.  The argument is expected to be in "Node",
1167 /// not N.  This handles casting and conversion to a concrete node type as
1168 /// appropriate.
1169 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1170   // Handle immediate predicates first.
1171   std::string ImmCode = getImmCode();
1172   if (!ImmCode.empty()) {
1173     if (isLoad())
1174       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1175                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1176     if (isStore())
1177       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1178                       "IsStore cannot be used with ImmLeaf or its subclasses");
1179     if (isUnindexed())
1180       PrintFatalError(
1181           getOrigPatFragRecord()->getRecord()->getLoc(),
1182           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1183     if (isNonExtLoad())
1184       PrintFatalError(
1185           getOrigPatFragRecord()->getRecord()->getLoc(),
1186           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1187     if (isAnyExtLoad())
1188       PrintFatalError(
1189           getOrigPatFragRecord()->getRecord()->getLoc(),
1190           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1191     if (isSignExtLoad())
1192       PrintFatalError(
1193           getOrigPatFragRecord()->getRecord()->getLoc(),
1194           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1195     if (isZeroExtLoad())
1196       PrintFatalError(
1197           getOrigPatFragRecord()->getRecord()->getLoc(),
1198           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1199     if (isNonTruncStore())
1200       PrintFatalError(
1201           getOrigPatFragRecord()->getRecord()->getLoc(),
1202           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1203     if (isTruncStore())
1204       PrintFatalError(
1205           getOrigPatFragRecord()->getRecord()->getLoc(),
1206           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1207     if (getMemoryVT())
1208       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1209                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1210     if (getScalarMemoryVT())
1211       PrintFatalError(
1212           getOrigPatFragRecord()->getRecord()->getLoc(),
1213           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1214
1215     std::string Result = ("    " + getImmType() + " Imm = ").str();
1216     if (immCodeUsesAPFloat())
1217       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1218     else if (immCodeUsesAPInt())
1219       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1220     else
1221       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1222     return Result + ImmCode;
1223   }
1224
1225   // Handle arbitrary node predicates.
1226   assert(hasPredCode() && "Don't have any predicate code!");
1227   StringRef ClassName;
1228   if (PatFragRec->getOnlyTree()->isLeaf())
1229     ClassName = "SDNode";
1230   else {
1231     Record *Op = PatFragRec->getOnlyTree()->getOperator();
1232     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1233   }
1234   std::string Result;
1235   if (ClassName == "SDNode")
1236     Result = "    SDNode *N = Node;\n";
1237   else
1238     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1239
1240   return Result + getPredCode();
1241 }
1242
1243 //===----------------------------------------------------------------------===//
1244 // PatternToMatch implementation
1245 //
1246
1247 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1248 /// patterns before small ones.  This is used to determine the size of a
1249 /// pattern.
1250 static unsigned getPatternSize(const TreePatternNode *P,
1251                                const CodeGenDAGPatterns &CGP) {
1252   unsigned Size = 3;  // The node itself.
1253   // If the root node is a ConstantSDNode, increases its size.
1254   // e.g. (set R32:$dst, 0).
1255   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1256     Size += 2;
1257
1258   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1259     Size += AM->getComplexity();
1260     // We don't want to count any children twice, so return early.
1261     return Size;
1262   }
1263
1264   // If this node has some predicate function that must match, it adds to the
1265   // complexity of this node.
1266   if (!P->getPredicateFns().empty())
1267     ++Size;
1268
1269   // Count children in the count if they are also nodes.
1270   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1271     const TreePatternNode *Child = P->getChild(i);
1272     if (!Child->isLeaf() && Child->getNumTypes()) {
1273       const TypeSetByHwMode &T0 = Child->getType(0);
1274       // At this point, all variable type sets should be simple, i.e. only
1275       // have a default mode.
1276       if (T0.getMachineValueType() != MVT::Other) {
1277         Size += getPatternSize(Child, CGP);
1278         continue;
1279       }
1280     }
1281     if (Child->isLeaf()) {
1282       if (isa<IntInit>(Child->getLeafValue()))
1283         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1284       else if (Child->getComplexPatternInfo(CGP))
1285         Size += getPatternSize(Child, CGP);
1286       else if (!Child->getPredicateFns().empty())
1287         ++Size;
1288     }
1289   }
1290
1291   return Size;
1292 }
1293
1294 /// Compute the complexity metric for the input pattern.  This roughly
1295 /// corresponds to the number of nodes that are covered.
1296 int PatternToMatch::
1297 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1298   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1299 }
1300
1301 /// getPredicateCheck - Return a single string containing all of this
1302 /// pattern's predicates concatenated with "&&" operators.
1303 ///
1304 std::string PatternToMatch::getPredicateCheck() const {
1305   SmallVector<const Predicate*,4> PredList;
1306   for (const Predicate &P : Predicates)
1307     PredList.push_back(&P);
1308   std::sort(PredList.begin(), PredList.end(), deref<llvm::less>());
1309
1310   std::string Check;
1311   for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1312     if (i != 0)
1313       Check += " && ";
1314     Check += '(' + PredList[i]->getCondString() + ')';
1315   }
1316   return Check;
1317 }
1318
1319 //===----------------------------------------------------------------------===//
1320 // SDTypeConstraint implementation
1321 //
1322
1323 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1324   OperandNo = R->getValueAsInt("OperandNum");
1325
1326   if (R->isSubClassOf("SDTCisVT")) {
1327     ConstraintType = SDTCisVT;
1328     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1329     for (const auto &P : VVT)
1330       if (P.second == MVT::isVoid)
1331         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1332   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1333     ConstraintType = SDTCisPtrTy;
1334   } else if (R->isSubClassOf("SDTCisInt")) {
1335     ConstraintType = SDTCisInt;
1336   } else if (R->isSubClassOf("SDTCisFP")) {
1337     ConstraintType = SDTCisFP;
1338   } else if (R->isSubClassOf("SDTCisVec")) {
1339     ConstraintType = SDTCisVec;
1340   } else if (R->isSubClassOf("SDTCisSameAs")) {
1341     ConstraintType = SDTCisSameAs;
1342     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1343   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1344     ConstraintType = SDTCisVTSmallerThanOp;
1345     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1346       R->getValueAsInt("OtherOperandNum");
1347   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1348     ConstraintType = SDTCisOpSmallerThanOp;
1349     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1350       R->getValueAsInt("BigOperandNum");
1351   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1352     ConstraintType = SDTCisEltOfVec;
1353     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1354   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1355     ConstraintType = SDTCisSubVecOfVec;
1356     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1357       R->getValueAsInt("OtherOpNum");
1358   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1359     ConstraintType = SDTCVecEltisVT;
1360     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1361     for (const auto &P : VVT) {
1362       MVT T = P.second;
1363       if (T.isVector())
1364         PrintFatalError(R->getLoc(),
1365                         "Cannot use vector type as SDTCVecEltisVT");
1366       if (!T.isInteger() && !T.isFloatingPoint())
1367         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1368                                      "as SDTCVecEltisVT");
1369     }
1370   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1371     ConstraintType = SDTCisSameNumEltsAs;
1372     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1373       R->getValueAsInt("OtherOperandNum");
1374   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1375     ConstraintType = SDTCisSameSizeAs;
1376     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1377       R->getValueAsInt("OtherOperandNum");
1378   } else {
1379     PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1380   }
1381 }
1382
1383 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1384 /// N, and the result number in ResNo.
1385 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1386                                       const SDNodeInfo &NodeInfo,
1387                                       unsigned &ResNo) {
1388   unsigned NumResults = NodeInfo.getNumResults();
1389   if (OpNo < NumResults) {
1390     ResNo = OpNo;
1391     return N;
1392   }
1393
1394   OpNo -= NumResults;
1395
1396   if (OpNo >= N->getNumChildren()) {
1397     std::string S;
1398     raw_string_ostream OS(S);
1399     OS << "Invalid operand number in type constraint "
1400            << (OpNo+NumResults) << " ";
1401     N->print(OS);
1402     PrintFatalError(OS.str());
1403   }
1404
1405   return N->getChild(OpNo);
1406 }
1407
1408 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1409 /// constraint to the nodes operands.  This returns true if it makes a
1410 /// change, false otherwise.  If a type contradiction is found, flag an error.
1411 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1412                                            const SDNodeInfo &NodeInfo,
1413                                            TreePattern &TP) const {
1414   if (TP.hasError())
1415     return false;
1416
1417   unsigned ResNo = 0; // The result number being referenced.
1418   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1419   TypeInfer &TI = TP.getInfer();
1420
1421   switch (ConstraintType) {
1422   case SDTCisVT:
1423     // Operand must be a particular type.
1424     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1425   case SDTCisPtrTy:
1426     // Operand must be same as target pointer type.
1427     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1428   case SDTCisInt:
1429     // Require it to be one of the legal integer VTs.
1430      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1431   case SDTCisFP:
1432     // Require it to be one of the legal fp VTs.
1433     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1434   case SDTCisVec:
1435     // Require it to be one of the legal vector VTs.
1436     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1437   case SDTCisSameAs: {
1438     unsigned OResNo = 0;
1439     TreePatternNode *OtherNode =
1440       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1441     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1442            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1443   }
1444   case SDTCisVTSmallerThanOp: {
1445     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1446     // have an integer type that is smaller than the VT.
1447     if (!NodeToApply->isLeaf() ||
1448         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1449         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1450                ->isSubClassOf("ValueType")) {
1451       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1452       return false;
1453     }
1454     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1455     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1456     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1457     TypeSetByHwMode TypeListTmp(VVT);
1458
1459     unsigned OResNo = 0;
1460     TreePatternNode *OtherNode =
1461       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1462                     OResNo);
1463
1464     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1465   }
1466   case SDTCisOpSmallerThanOp: {
1467     unsigned BResNo = 0;
1468     TreePatternNode *BigOperand =
1469       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1470                     BResNo);
1471     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1472                                  BigOperand->getExtType(BResNo));
1473   }
1474   case SDTCisEltOfVec: {
1475     unsigned VResNo = 0;
1476     TreePatternNode *VecOperand =
1477       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1478                     VResNo);
1479     // Filter vector types out of VecOperand that don't have the right element
1480     // type.
1481     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1482                                      NodeToApply->getExtType(ResNo));
1483   }
1484   case SDTCisSubVecOfVec: {
1485     unsigned VResNo = 0;
1486     TreePatternNode *BigVecOperand =
1487       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1488                     VResNo);
1489
1490     // Filter vector types out of BigVecOperand that don't have the
1491     // right subvector type.
1492     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1493                                            NodeToApply->getExtType(ResNo));
1494   }
1495   case SDTCVecEltisVT: {
1496     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1497   }
1498   case SDTCisSameNumEltsAs: {
1499     unsigned OResNo = 0;
1500     TreePatternNode *OtherNode =
1501       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1502                     N, NodeInfo, OResNo);
1503     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1504                                  NodeToApply->getExtType(ResNo));
1505   }
1506   case SDTCisSameSizeAs: {
1507     unsigned OResNo = 0;
1508     TreePatternNode *OtherNode =
1509       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1510                     N, NodeInfo, OResNo);
1511     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1512                               NodeToApply->getExtType(ResNo));
1513   }
1514   }
1515   llvm_unreachable("Invalid ConstraintType!");
1516 }
1517
1518 // Update the node type to match an instruction operand or result as specified
1519 // in the ins or outs lists on the instruction definition. Return true if the
1520 // type was actually changed.
1521 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1522                                              Record *Operand,
1523                                              TreePattern &TP) {
1524   // The 'unknown' operand indicates that types should be inferred from the
1525   // context.
1526   if (Operand->isSubClassOf("unknown_class"))
1527     return false;
1528
1529   // The Operand class specifies a type directly.
1530   if (Operand->isSubClassOf("Operand")) {
1531     Record *R = Operand->getValueAsDef("Type");
1532     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1533     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1534   }
1535
1536   // PointerLikeRegClass has a type that is determined at runtime.
1537   if (Operand->isSubClassOf("PointerLikeRegClass"))
1538     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1539
1540   // Both RegisterClass and RegisterOperand operands derive their types from a
1541   // register class def.
1542   Record *RC = nullptr;
1543   if (Operand->isSubClassOf("RegisterClass"))
1544     RC = Operand;
1545   else if (Operand->isSubClassOf("RegisterOperand"))
1546     RC = Operand->getValueAsDef("RegClass");
1547
1548   assert(RC && "Unknown operand type");
1549   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1550   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1551 }
1552
1553 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1554   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1555     if (!TP.getInfer().isConcrete(Types[i], true))
1556       return true;
1557   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1558     if (getChild(i)->ContainsUnresolvedType(TP))
1559       return true;
1560   return false;
1561 }
1562
1563 bool TreePatternNode::hasProperTypeByHwMode() const {
1564   for (const TypeSetByHwMode &S : Types)
1565     if (!S.isDefaultOnly())
1566       return true;
1567   for (TreePatternNode *C : Children)
1568     if (C->hasProperTypeByHwMode())
1569       return true;
1570   return false;
1571 }
1572
1573 bool TreePatternNode::hasPossibleType() const {
1574   for (const TypeSetByHwMode &S : Types)
1575     if (!S.isPossible())
1576       return false;
1577   for (TreePatternNode *C : Children)
1578     if (!C->hasPossibleType())
1579       return false;
1580   return true;
1581 }
1582
1583 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1584   for (TypeSetByHwMode &S : Types) {
1585     S.makeSimple(Mode);
1586     // Check if the selected mode had a type conflict.
1587     if (S.get(DefaultMode).empty())
1588       return false;
1589   }
1590   for (TreePatternNode *C : Children)
1591     if (!C->setDefaultMode(Mode))
1592       return false;
1593   return true;
1594 }
1595
1596 //===----------------------------------------------------------------------===//
1597 // SDNodeInfo implementation
1598 //
1599 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1600   EnumName    = R->getValueAsString("Opcode");
1601   SDClassName = R->getValueAsString("SDClass");
1602   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1603   NumResults = TypeProfile->getValueAsInt("NumResults");
1604   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1605
1606   // Parse the properties.
1607   Properties = parseSDPatternOperatorProperties(R);
1608
1609   // Parse the type constraints.
1610   std::vector<Record*> ConstraintList =
1611     TypeProfile->getValueAsListOfDefs("Constraints");
1612   for (Record *R : ConstraintList)
1613     TypeConstraints.emplace_back(R, CGH);
1614 }
1615
1616 /// getKnownType - If the type constraints on this node imply a fixed type
1617 /// (e.g. all stores return void, etc), then return it as an
1618 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1619 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1620   unsigned NumResults = getNumResults();
1621   assert(NumResults <= 1 &&
1622          "We only work with nodes with zero or one result so far!");
1623   assert(ResNo == 0 && "Only handles single result nodes so far");
1624
1625   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1626     // Make sure that this applies to the correct node result.
1627     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1628       continue;
1629
1630     switch (Constraint.ConstraintType) {
1631     default: break;
1632     case SDTypeConstraint::SDTCisVT:
1633       if (Constraint.VVT.isSimple())
1634         return Constraint.VVT.getSimple().SimpleTy;
1635       break;
1636     case SDTypeConstraint::SDTCisPtrTy:
1637       return MVT::iPTR;
1638     }
1639   }
1640   return MVT::Other;
1641 }
1642
1643 //===----------------------------------------------------------------------===//
1644 // TreePatternNode implementation
1645 //
1646
1647 TreePatternNode::~TreePatternNode() {
1648 #if 0 // FIXME: implement refcounted tree nodes!
1649   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1650     delete getChild(i);
1651 #endif
1652 }
1653
1654 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1655   if (Operator->getName() == "set" ||
1656       Operator->getName() == "implicit")
1657     return 0;  // All return nothing.
1658
1659   if (Operator->isSubClassOf("Intrinsic"))
1660     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1661
1662   if (Operator->isSubClassOf("SDNode"))
1663     return CDP.getSDNodeInfo(Operator).getNumResults();
1664
1665   if (Operator->isSubClassOf("PatFrag")) {
1666     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1667     // the forward reference case where one pattern fragment references another
1668     // before it is processed.
1669     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1670       return PFRec->getOnlyTree()->getNumTypes();
1671
1672     // Get the result tree.
1673     DagInit *Tree = Operator->getValueAsDag("Fragment");
1674     Record *Op = nullptr;
1675     if (Tree)
1676       if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1677         Op = DI->getDef();
1678     assert(Op && "Invalid Fragment");
1679     return GetNumNodeResults(Op, CDP);
1680   }
1681
1682   if (Operator->isSubClassOf("Instruction")) {
1683     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1684
1685     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1686
1687     // Subtract any defaulted outputs.
1688     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1689       Record *OperandNode = InstInfo.Operands[i].Rec;
1690
1691       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1692           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1693         --NumDefsToAdd;
1694     }
1695
1696     // Add on one implicit def if it has a resolvable type.
1697     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1698       ++NumDefsToAdd;
1699     return NumDefsToAdd;
1700   }
1701
1702   if (Operator->isSubClassOf("SDNodeXForm"))
1703     return 1;  // FIXME: Generalize SDNodeXForm
1704
1705   if (Operator->isSubClassOf("ValueType"))
1706     return 1;  // A type-cast of one result.
1707
1708   if (Operator->isSubClassOf("ComplexPattern"))
1709     return 1;
1710
1711   errs() << *Operator;
1712   PrintFatalError("Unhandled node in GetNumNodeResults");
1713 }
1714
1715 void TreePatternNode::print(raw_ostream &OS) const {
1716   if (isLeaf())
1717     OS << *getLeafValue();
1718   else
1719     OS << '(' << getOperator()->getName();
1720
1721   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1722     OS << ':';
1723     getExtType(i).writeToStream(OS);
1724   }
1725
1726   if (!isLeaf()) {
1727     if (getNumChildren() != 0) {
1728       OS << " ";
1729       getChild(0)->print(OS);
1730       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1731         OS << ", ";
1732         getChild(i)->print(OS);
1733       }
1734     }
1735     OS << ")";
1736   }
1737
1738   for (const TreePredicateFn &Pred : PredicateFns)
1739     OS << "<<P:" << Pred.getFnName() << ">>";
1740   if (TransformFn)
1741     OS << "<<X:" << TransformFn->getName() << ">>";
1742   if (!getName().empty())
1743     OS << ":$" << getName();
1744
1745 }
1746 void TreePatternNode::dump() const {
1747   print(errs());
1748 }
1749
1750 /// isIsomorphicTo - Return true if this node is recursively
1751 /// isomorphic to the specified node.  For this comparison, the node's
1752 /// entire state is considered. The assigned name is ignored, since
1753 /// nodes with differing names are considered isomorphic. However, if
1754 /// the assigned name is present in the dependent variable set, then
1755 /// the assigned name is considered significant and the node is
1756 /// isomorphic if the names match.
1757 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1758                                      const MultipleUseVarSet &DepVars) const {
1759   if (N == this) return true;
1760   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1761       getPredicateFns() != N->getPredicateFns() ||
1762       getTransformFn() != N->getTransformFn())
1763     return false;
1764
1765   if (isLeaf()) {
1766     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1767       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1768         return ((DI->getDef() == NDI->getDef())
1769                 && (DepVars.find(getName()) == DepVars.end()
1770                     || getName() == N->getName()));
1771       }
1772     }
1773     return getLeafValue() == N->getLeafValue();
1774   }
1775
1776   if (N->getOperator() != getOperator() ||
1777       N->getNumChildren() != getNumChildren()) return false;
1778   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1779     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1780       return false;
1781   return true;
1782 }
1783
1784 /// clone - Make a copy of this tree and all of its children.
1785 ///
1786 TreePatternNode *TreePatternNode::clone() const {
1787   TreePatternNode *New;
1788   if (isLeaf()) {
1789     New = new TreePatternNode(getLeafValue(), getNumTypes());
1790   } else {
1791     std::vector<TreePatternNode*> CChildren;
1792     CChildren.reserve(Children.size());
1793     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1794       CChildren.push_back(getChild(i)->clone());
1795     New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1796   }
1797   New->setName(getName());
1798   New->Types = Types;
1799   New->setPredicateFns(getPredicateFns());
1800   New->setTransformFn(getTransformFn());
1801   return New;
1802 }
1803
1804 /// RemoveAllTypes - Recursively strip all the types of this tree.
1805 void TreePatternNode::RemoveAllTypes() {
1806   // Reset to unknown type.
1807   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1808   if (isLeaf()) return;
1809   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1810     getChild(i)->RemoveAllTypes();
1811 }
1812
1813
1814 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1815 /// with actual values specified by ArgMap.
1816 void TreePatternNode::
1817 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1818   if (isLeaf()) return;
1819
1820   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1821     TreePatternNode *Child = getChild(i);
1822     if (Child->isLeaf()) {
1823       Init *Val = Child->getLeafValue();
1824       // Note that, when substituting into an output pattern, Val might be an
1825       // UnsetInit.
1826       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1827           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1828         // We found a use of a formal argument, replace it with its value.
1829         TreePatternNode *NewChild = ArgMap[Child->getName()];
1830         assert(NewChild && "Couldn't find formal argument!");
1831         assert((Child->getPredicateFns().empty() ||
1832                 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1833                "Non-empty child predicate clobbered!");
1834         setChild(i, NewChild);
1835       }
1836     } else {
1837       getChild(i)->SubstituteFormalArguments(ArgMap);
1838     }
1839   }
1840 }
1841
1842
1843 /// InlinePatternFragments - If this pattern refers to any pattern
1844 /// fragments, inline them into place, giving us a pattern without any
1845 /// PatFrag references.
1846 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1847   if (TP.hasError())
1848     return nullptr;
1849
1850   if (isLeaf())
1851      return this;  // nothing to do.
1852   Record *Op = getOperator();
1853
1854   if (!Op->isSubClassOf("PatFrag")) {
1855     // Just recursively inline children nodes.
1856     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1857       TreePatternNode *Child = getChild(i);
1858       TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1859
1860       assert((Child->getPredicateFns().empty() ||
1861               NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1862              "Non-empty child predicate clobbered!");
1863
1864       setChild(i, NewChild);
1865     }
1866     return this;
1867   }
1868
1869   // Otherwise, we found a reference to a fragment.  First, look up its
1870   // TreePattern record.
1871   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1872
1873   // Verify that we are passing the right number of operands.
1874   if (Frag->getNumArgs() != Children.size()) {
1875     TP.error("'" + Op->getName() + "' fragment requires " +
1876              utostr(Frag->getNumArgs()) + " operands!");
1877     return nullptr;
1878   }
1879
1880   TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1881
1882   TreePredicateFn PredFn(Frag);
1883   if (!PredFn.isAlwaysTrue())
1884     FragTree->addPredicateFn(PredFn);
1885
1886   // Resolve formal arguments to their actual value.
1887   if (Frag->getNumArgs()) {
1888     // Compute the map of formal to actual arguments.
1889     std::map<std::string, TreePatternNode*> ArgMap;
1890     for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1891       ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1892
1893     FragTree->SubstituteFormalArguments(ArgMap);
1894   }
1895
1896   FragTree->setName(getName());
1897   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1898     FragTree->UpdateNodeType(i, getExtType(i), TP);
1899
1900   // Transfer in the old predicates.
1901   for (const TreePredicateFn &Pred : getPredicateFns())
1902     FragTree->addPredicateFn(Pred);
1903
1904   // Get a new copy of this fragment to stitch into here.
1905   //delete this;    // FIXME: implement refcounting!
1906
1907   // The fragment we inlined could have recursive inlining that is needed.  See
1908   // if there are any pattern fragments in it and inline them as needed.
1909   return FragTree->InlinePatternFragments(TP);
1910 }
1911
1912 /// getImplicitType - Check to see if the specified record has an implicit
1913 /// type which should be applied to it.  This will infer the type of register
1914 /// references from the register file information, for example.
1915 ///
1916 /// When Unnamed is set, return the type of a DAG operand with no name, such as
1917 /// the F8RC register class argument in:
1918 ///
1919 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
1920 ///
1921 /// When Unnamed is false, return the type of a named DAG operand such as the
1922 /// GPR:$src operand above.
1923 ///
1924 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
1925                                        bool NotRegisters,
1926                                        bool Unnamed,
1927                                        TreePattern &TP) {
1928   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1929
1930   // Check to see if this is a register operand.
1931   if (R->isSubClassOf("RegisterOperand")) {
1932     assert(ResNo == 0 && "Regoperand ref only has one result!");
1933     if (NotRegisters)
1934       return TypeSetByHwMode(); // Unknown.
1935     Record *RegClass = R->getValueAsDef("RegClass");
1936     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1937     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
1938   }
1939
1940   // Check to see if this is a register or a register class.
1941   if (R->isSubClassOf("RegisterClass")) {
1942     assert(ResNo == 0 && "Regclass ref only has one result!");
1943     // An unnamed register class represents itself as an i32 immediate, for
1944     // example on a COPY_TO_REGCLASS instruction.
1945     if (Unnamed)
1946       return TypeSetByHwMode(MVT::i32);
1947
1948     // In a named operand, the register class provides the possible set of
1949     // types.
1950     if (NotRegisters)
1951       return TypeSetByHwMode(); // Unknown.
1952     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1953     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
1954   }
1955
1956   if (R->isSubClassOf("PatFrag")) {
1957     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1958     // Pattern fragment types will be resolved when they are inlined.
1959     return TypeSetByHwMode(); // Unknown.
1960   }
1961
1962   if (R->isSubClassOf("Register")) {
1963     assert(ResNo == 0 && "Registers only produce one result!");
1964     if (NotRegisters)
1965       return TypeSetByHwMode(); // Unknown.
1966     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1967     return TypeSetByHwMode(T.getRegisterVTs(R));
1968   }
1969
1970   if (R->isSubClassOf("SubRegIndex")) {
1971     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1972     return TypeSetByHwMode(MVT::i32);
1973   }
1974
1975   if (R->isSubClassOf("ValueType")) {
1976     assert(ResNo == 0 && "This node only has one result!");
1977     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
1978     //
1979     //   (sext_inreg GPR:$src, i16)
1980     //                         ~~~
1981     if (Unnamed)
1982       return TypeSetByHwMode(MVT::Other);
1983     // With a name, the ValueType simply provides the type of the named
1984     // variable.
1985     //
1986     //   (sext_inreg i32:$src, i16)
1987     //               ~~~~~~~~
1988     if (NotRegisters)
1989       return TypeSetByHwMode(); // Unknown.
1990     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
1991     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
1992   }
1993
1994   if (R->isSubClassOf("CondCode")) {
1995     assert(ResNo == 0 && "This node only has one result!");
1996     // Using a CondCodeSDNode.
1997     return TypeSetByHwMode(MVT::Other);
1998   }
1999
2000   if (R->isSubClassOf("ComplexPattern")) {
2001     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2002     if (NotRegisters)
2003       return TypeSetByHwMode(); // Unknown.
2004     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2005   }
2006   if (R->isSubClassOf("PointerLikeRegClass")) {
2007     assert(ResNo == 0 && "Regclass can only have one result!");
2008     TypeSetByHwMode VTS(MVT::iPTR);
2009     TP.getInfer().expandOverloads(VTS);
2010     return VTS;
2011   }
2012
2013   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2014       R->getName() == "zero_reg") {
2015     // Placeholder.
2016     return TypeSetByHwMode(); // Unknown.
2017   }
2018
2019   if (R->isSubClassOf("Operand")) {
2020     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2021     Record *T = R->getValueAsDef("Type");
2022     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2023   }
2024
2025   TP.error("Unknown node flavor used in pattern: " + R->getName());
2026   return TypeSetByHwMode(MVT::Other);
2027 }
2028
2029
2030 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2031 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2032 const CodeGenIntrinsic *TreePatternNode::
2033 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2034   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2035       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2036       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2037     return nullptr;
2038
2039   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2040   return &CDP.getIntrinsicInfo(IID);
2041 }
2042
2043 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2044 /// return the ComplexPattern information, otherwise return null.
2045 const ComplexPattern *
2046 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2047   Record *Rec;
2048   if (isLeaf()) {
2049     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2050     if (!DI)
2051       return nullptr;
2052     Rec = DI->getDef();
2053   } else
2054     Rec = getOperator();
2055
2056   if (!Rec->isSubClassOf("ComplexPattern"))
2057     return nullptr;
2058   return &CGP.getComplexPattern(Rec);
2059 }
2060
2061 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2062   // A ComplexPattern specifically declares how many results it fills in.
2063   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2064     return CP->getNumOperands();
2065
2066   // If MIOperandInfo is specified, that gives the count.
2067   if (isLeaf()) {
2068     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2069     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2070       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2071       if (MIOps->getNumArgs())
2072         return MIOps->getNumArgs();
2073     }
2074   }
2075
2076   // Otherwise there is just one result.
2077   return 1;
2078 }
2079
2080 /// NodeHasProperty - Return true if this node has the specified property.
2081 bool TreePatternNode::NodeHasProperty(SDNP Property,
2082                                       const CodeGenDAGPatterns &CGP) const {
2083   if (isLeaf()) {
2084     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2085       return CP->hasProperty(Property);
2086
2087     return false;
2088   }
2089
2090   if (Property != SDNPHasChain) {
2091     // The chain proprety is already present on the different intrinsic node
2092     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2093     // on the intrinsic. Anything else is specific to the individual intrinsic.
2094     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2095       return Int->hasProperty(Property);
2096   }
2097
2098   if (!Operator->isSubClassOf("SDPatternOperator"))
2099     return false;
2100
2101   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2102 }
2103
2104
2105
2106
2107 /// TreeHasProperty - Return true if any node in this tree has the specified
2108 /// property.
2109 bool TreePatternNode::TreeHasProperty(SDNP Property,
2110                                       const CodeGenDAGPatterns &CGP) const {
2111   if (NodeHasProperty(Property, CGP))
2112     return true;
2113   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2114     if (getChild(i)->TreeHasProperty(Property, CGP))
2115       return true;
2116   return false;
2117 }
2118
2119 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2120 /// commutative intrinsic.
2121 bool
2122 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2123   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2124     return Int->isCommutative;
2125   return false;
2126 }
2127
2128 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2129   if (!N->isLeaf())
2130     return N->getOperator()->isSubClassOf(Class);
2131
2132   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2133   if (DI && DI->getDef()->isSubClassOf(Class))
2134     return true;
2135
2136   return false;
2137 }
2138
2139 static void emitTooManyOperandsError(TreePattern &TP,
2140                                      StringRef InstName,
2141                                      unsigned Expected,
2142                                      unsigned Actual) {
2143   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2144            " operands but expected only " + Twine(Expected) + "!");
2145 }
2146
2147 static void emitTooFewOperandsError(TreePattern &TP,
2148                                     StringRef InstName,
2149                                     unsigned Actual) {
2150   TP.error("Instruction '" + InstName +
2151            "' expects more than the provided " + Twine(Actual) + " operands!");
2152 }
2153
2154 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2155 /// this node and its children in the tree.  This returns true if it makes a
2156 /// change, false otherwise.  If a type contradiction is found, flag an error.
2157 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2158   if (TP.hasError())
2159     return false;
2160
2161   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2162   if (isLeaf()) {
2163     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2164       // If it's a regclass or something else known, include the type.
2165       bool MadeChange = false;
2166       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2167         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2168                                                         NotRegisters,
2169                                                         !hasName(), TP), TP);
2170       return MadeChange;
2171     }
2172
2173     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2174       assert(Types.size() == 1 && "Invalid IntInit");
2175
2176       // Int inits are always integers. :)
2177       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2178
2179       if (!TP.getInfer().isConcrete(Types[0], false))
2180         return MadeChange;
2181
2182       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2183       for (auto &P : VVT) {
2184         MVT::SimpleValueType VT = P.second.SimpleTy;
2185         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2186           continue;
2187         unsigned Size = MVT(VT).getSizeInBits();
2188         // Make sure that the value is representable for this type.
2189         if (Size >= 32)
2190           continue;
2191         // Check that the value doesn't use more bits than we have. It must
2192         // either be a sign- or zero-extended equivalent of the original.
2193         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2194         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2195             SignBitAndAbove == 1)
2196           continue;
2197
2198         TP.error("Integer value '" + itostr(II->getValue()) +
2199                  "' is out of range for type '" + getEnumName(VT) + "'!");
2200         break;
2201       }
2202       return MadeChange;
2203     }
2204
2205     return false;
2206   }
2207
2208   // special handling for set, which isn't really an SDNode.
2209   if (getOperator()->getName() == "set") {
2210     assert(getNumTypes() == 0 && "Set doesn't produce a value");
2211     assert(getNumChildren() >= 2 && "Missing RHS of a set?");
2212     unsigned NC = getNumChildren();
2213
2214     TreePatternNode *SetVal = getChild(NC-1);
2215     bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
2216
2217     for (unsigned i = 0; i < NC-1; ++i) {
2218       TreePatternNode *Child = getChild(i);
2219       MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
2220
2221       // Types of operands must match.
2222       MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
2223       MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
2224     }
2225     return MadeChange;
2226   }
2227
2228   if (getOperator()->getName() == "implicit") {
2229     assert(getNumTypes() == 0 && "Node doesn't produce a value");
2230
2231     bool MadeChange = false;
2232     for (unsigned i = 0; i < getNumChildren(); ++i)
2233       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2234     return MadeChange;
2235   }
2236
2237   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2238     bool MadeChange = false;
2239
2240     // Apply the result type to the node.
2241     unsigned NumRetVTs = Int->IS.RetVTs.size();
2242     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2243
2244     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2245       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2246
2247     if (getNumChildren() != NumParamVTs + 1) {
2248       TP.error("Intrinsic '" + Int->Name + "' expects " +
2249                utostr(NumParamVTs) + " operands, not " +
2250                utostr(getNumChildren() - 1) + " operands!");
2251       return false;
2252     }
2253
2254     // Apply type info to the intrinsic ID.
2255     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2256
2257     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2258       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2259
2260       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2261       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2262       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2263     }
2264     return MadeChange;
2265   }
2266
2267   if (getOperator()->isSubClassOf("SDNode")) {
2268     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2269
2270     // Check that the number of operands is sane.  Negative operands -> varargs.
2271     if (NI.getNumOperands() >= 0 &&
2272         getNumChildren() != (unsigned)NI.getNumOperands()) {
2273       TP.error(getOperator()->getName() + " node requires exactly " +
2274                itostr(NI.getNumOperands()) + " operands!");
2275       return false;
2276     }
2277
2278     bool MadeChange = false;
2279     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2280       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2281     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2282     return MadeChange;
2283   }
2284
2285   if (getOperator()->isSubClassOf("Instruction")) {
2286     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2287     CodeGenInstruction &InstInfo =
2288       CDP.getTargetInfo().getInstruction(getOperator());
2289
2290     bool MadeChange = false;
2291
2292     // Apply the result types to the node, these come from the things in the
2293     // (outs) list of the instruction.
2294     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2295                                         Inst.getNumResults());
2296     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2297       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2298
2299     // If the instruction has implicit defs, we apply the first one as a result.
2300     // FIXME: This sucks, it should apply all implicit defs.
2301     if (!InstInfo.ImplicitDefs.empty()) {
2302       unsigned ResNo = NumResultsToAdd;
2303
2304       // FIXME: Generalize to multiple possible types and multiple possible
2305       // ImplicitDefs.
2306       MVT::SimpleValueType VT =
2307         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2308
2309       if (VT != MVT::Other)
2310         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2311     }
2312
2313     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2314     // be the same.
2315     if (getOperator()->getName() == "INSERT_SUBREG") {
2316       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2317       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2318       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2319     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2320       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2321       // variadic.
2322
2323       unsigned NChild = getNumChildren();
2324       if (NChild < 3) {
2325         TP.error("REG_SEQUENCE requires at least 3 operands!");
2326         return false;
2327       }
2328
2329       if (NChild % 2 == 0) {
2330         TP.error("REG_SEQUENCE requires an odd number of operands!");
2331         return false;
2332       }
2333
2334       if (!isOperandClass(getChild(0), "RegisterClass")) {
2335         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2336         return false;
2337       }
2338
2339       for (unsigned I = 1; I < NChild; I += 2) {
2340         TreePatternNode *SubIdxChild = getChild(I + 1);
2341         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2342           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2343                    itostr(I + 1) + "!");
2344           return false;
2345         }
2346       }
2347     }
2348
2349     unsigned ChildNo = 0;
2350     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2351       Record *OperandNode = Inst.getOperand(i);
2352
2353       // If the instruction expects a predicate or optional def operand, we
2354       // codegen this by setting the operand to it's default value if it has a
2355       // non-empty DefaultOps field.
2356       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
2357           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
2358         continue;
2359
2360       // Verify that we didn't run out of provided operands.
2361       if (ChildNo >= getNumChildren()) {
2362         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2363         return false;
2364       }
2365
2366       TreePatternNode *Child = getChild(ChildNo++);
2367       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2368
2369       // If the operand has sub-operands, they may be provided by distinct
2370       // child patterns, so attempt to match each sub-operand separately.
2371       if (OperandNode->isSubClassOf("Operand")) {
2372         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2373         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2374           // But don't do that if the whole operand is being provided by
2375           // a single ComplexPattern-related Operand.
2376
2377           if (Child->getNumMIResults(CDP) < NumArgs) {
2378             // Match first sub-operand against the child we already have.
2379             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2380             MadeChange |=
2381               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2382
2383             // And the remaining sub-operands against subsequent children.
2384             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2385               if (ChildNo >= getNumChildren()) {
2386                 emitTooFewOperandsError(TP, getOperator()->getName(),
2387                                         getNumChildren());
2388                 return false;
2389               }
2390               Child = getChild(ChildNo++);
2391
2392               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2393               MadeChange |=
2394                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2395             }
2396             continue;
2397           }
2398         }
2399       }
2400
2401       // If we didn't match by pieces above, attempt to match the whole
2402       // operand now.
2403       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2404     }
2405
2406     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2407       emitTooManyOperandsError(TP, getOperator()->getName(),
2408                                ChildNo, getNumChildren());
2409       return false;
2410     }
2411
2412     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2413       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2414     return MadeChange;
2415   }
2416
2417   if (getOperator()->isSubClassOf("ComplexPattern")) {
2418     bool MadeChange = false;
2419
2420     for (unsigned i = 0; i < getNumChildren(); ++i)
2421       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2422
2423     return MadeChange;
2424   }
2425
2426   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2427
2428   // Node transforms always take one operand.
2429   if (getNumChildren() != 1) {
2430     TP.error("Node transform '" + getOperator()->getName() +
2431              "' requires one operand!");
2432     return false;
2433   }
2434
2435   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2436   return MadeChange;
2437 }
2438
2439 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2440 /// RHS of a commutative operation, not the on LHS.
2441 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2442   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2443     return true;
2444   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2445     return true;
2446   return false;
2447 }
2448
2449
2450 /// canPatternMatch - If it is impossible for this pattern to match on this
2451 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2452 /// used as a sanity check for .td files (to prevent people from writing stuff
2453 /// that can never possibly work), and to prevent the pattern permuter from
2454 /// generating stuff that is useless.
2455 bool TreePatternNode::canPatternMatch(std::string &Reason,
2456                                       const CodeGenDAGPatterns &CDP) {
2457   if (isLeaf()) return true;
2458
2459   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2460     if (!getChild(i)->canPatternMatch(Reason, CDP))
2461       return false;
2462
2463   // If this is an intrinsic, handle cases that would make it not match.  For
2464   // example, if an operand is required to be an immediate.
2465   if (getOperator()->isSubClassOf("Intrinsic")) {
2466     // TODO:
2467     return true;
2468   }
2469
2470   if (getOperator()->isSubClassOf("ComplexPattern"))
2471     return true;
2472
2473   // If this node is a commutative operator, check that the LHS isn't an
2474   // immediate.
2475   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2476   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2477   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2478     // Scan all of the operands of the node and make sure that only the last one
2479     // is a constant node, unless the RHS also is.
2480     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2481       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2482       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2483         if (OnlyOnRHSOfCommutative(getChild(i))) {
2484           Reason="Immediate value must be on the RHS of commutative operators!";
2485           return false;
2486         }
2487     }
2488   }
2489
2490   return true;
2491 }
2492
2493 //===----------------------------------------------------------------------===//
2494 // TreePattern implementation
2495 //
2496
2497 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2498                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2499                          isInputPattern(isInput), HasError(false),
2500                          Infer(*this) {
2501   for (Init *I : RawPat->getValues())
2502     Trees.push_back(ParseTreePattern(I, ""));
2503 }
2504
2505 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2506                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2507                          isInputPattern(isInput), HasError(false),
2508                          Infer(*this) {
2509   Trees.push_back(ParseTreePattern(Pat, ""));
2510 }
2511
2512 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
2513                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2514                          isInputPattern(isInput), HasError(false),
2515                          Infer(*this) {
2516   Trees.push_back(Pat);
2517 }
2518
2519 void TreePattern::error(const Twine &Msg) {
2520   if (HasError)
2521     return;
2522   dump();
2523   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2524   HasError = true;
2525 }
2526
2527 void TreePattern::ComputeNamedNodes() {
2528   for (TreePatternNode *Tree : Trees)
2529     ComputeNamedNodes(Tree);
2530 }
2531
2532 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2533   if (!N->getName().empty())
2534     NamedNodes[N->getName()].push_back(N);
2535
2536   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2537     ComputeNamedNodes(N->getChild(i));
2538 }
2539
2540
2541 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
2542   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2543     Record *R = DI->getDef();
2544
2545     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2546     // TreePatternNode of its own.  For example:
2547     ///   (foo GPR, imm) -> (foo GPR, (imm))
2548     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
2549       return ParseTreePattern(
2550         DagInit::get(DI, nullptr,
2551                      std::vector<std::pair<Init*, StringInit*> >()),
2552         OpName);
2553
2554     // Input argument?
2555     TreePatternNode *Res = new TreePatternNode(DI, 1);
2556     if (R->getName() == "node" && !OpName.empty()) {
2557       if (OpName.empty())
2558         error("'node' argument requires a name to match with operand list");
2559       Args.push_back(OpName);
2560     }
2561
2562     Res->setName(OpName);
2563     return Res;
2564   }
2565
2566   // ?:$name or just $name.
2567   if (isa<UnsetInit>(TheInit)) {
2568     if (OpName.empty())
2569       error("'?' argument requires a name to match with operand list");
2570     TreePatternNode *Res = new TreePatternNode(TheInit, 1);
2571     Args.push_back(OpName);
2572     Res->setName(OpName);
2573     return Res;
2574   }
2575
2576   if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
2577     if (!OpName.empty())
2578       error("Constant int argument should not have a name!");
2579     return new TreePatternNode(II, 1);
2580   }
2581
2582   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2583     // Turn this into an IntInit.
2584     Init *II = BI->convertInitializerTo(IntRecTy::get());
2585     if (!II || !isa<IntInit>(II))
2586       error("Bits value must be constants!");
2587     return ParseTreePattern(II, OpName);
2588   }
2589
2590   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2591   if (!Dag) {
2592     TheInit->print(errs());
2593     error("Pattern has unexpected init kind!");
2594   }
2595   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2596   if (!OpDef) error("Pattern has unexpected operator type!");
2597   Record *Operator = OpDef->getDef();
2598
2599   if (Operator->isSubClassOf("ValueType")) {
2600     // If the operator is a ValueType, then this must be "type cast" of a leaf
2601     // node.
2602     if (Dag->getNumArgs() != 1)
2603       error("Type cast only takes one operand!");
2604
2605     TreePatternNode *New = ParseTreePattern(Dag->getArg(0),
2606                                             Dag->getArgNameStr(0));
2607
2608     // Apply the type cast.
2609     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2610     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2611     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2612
2613     if (!OpName.empty())
2614       error("ValueType cast should not have a name!");
2615     return New;
2616   }
2617
2618   // Verify that this is something that makes sense for an operator.
2619   if (!Operator->isSubClassOf("PatFrag") &&
2620       !Operator->isSubClassOf("SDNode") &&
2621       !Operator->isSubClassOf("Instruction") &&
2622       !Operator->isSubClassOf("SDNodeXForm") &&
2623       !Operator->isSubClassOf("Intrinsic") &&
2624       !Operator->isSubClassOf("ComplexPattern") &&
2625       Operator->getName() != "set" &&
2626       Operator->getName() != "implicit")
2627     error("Unrecognized node '" + Operator->getName() + "'!");
2628
2629   //  Check to see if this is something that is illegal in an input pattern.
2630   if (isInputPattern) {
2631     if (Operator->isSubClassOf("Instruction") ||
2632         Operator->isSubClassOf("SDNodeXForm"))
2633       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2634   } else {
2635     if (Operator->isSubClassOf("Intrinsic"))
2636       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2637
2638     if (Operator->isSubClassOf("SDNode") &&
2639         Operator->getName() != "imm" &&
2640         Operator->getName() != "fpimm" &&
2641         Operator->getName() != "tglobaltlsaddr" &&
2642         Operator->getName() != "tconstpool" &&
2643         Operator->getName() != "tjumptable" &&
2644         Operator->getName() != "tframeindex" &&
2645         Operator->getName() != "texternalsym" &&
2646         Operator->getName() != "tblockaddress" &&
2647         Operator->getName() != "tglobaladdr" &&
2648         Operator->getName() != "bb" &&
2649         Operator->getName() != "vt" &&
2650         Operator->getName() != "mcsym")
2651       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2652   }
2653
2654   std::vector<TreePatternNode*> Children;
2655
2656   // Parse all the operands.
2657   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2658     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2659
2660   // If the operator is an intrinsic, then this is just syntactic sugar for for
2661   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2662   // convert the intrinsic name to a number.
2663   if (Operator->isSubClassOf("Intrinsic")) {
2664     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2665     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2666
2667     // If this intrinsic returns void, it must have side-effects and thus a
2668     // chain.
2669     if (Int.IS.RetVTs.empty())
2670       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2671     else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2672       // Has side-effects, requires chain.
2673       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2674     else // Otherwise, no chain.
2675       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2676
2677     TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
2678     Children.insert(Children.begin(), IIDNode);
2679   }
2680
2681   if (Operator->isSubClassOf("ComplexPattern")) {
2682     for (unsigned i = 0; i < Children.size(); ++i) {
2683       TreePatternNode *Child = Children[i];
2684
2685       if (Child->getName().empty())
2686         error("All arguments to a ComplexPattern must be named");
2687
2688       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2689       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2690       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2691       auto OperandId = std::make_pair(Operator, i);
2692       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2693       if (PrevOp != ComplexPatternOperands.end()) {
2694         if (PrevOp->getValue() != OperandId)
2695           error("All ComplexPattern operands must appear consistently: "
2696                 "in the same order in just one ComplexPattern instance.");
2697       } else
2698         ComplexPatternOperands[Child->getName()] = OperandId;
2699     }
2700   }
2701
2702   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2703   TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
2704   Result->setName(OpName);
2705
2706   if (Dag->getName()) {
2707     assert(Result->getName().empty());
2708     Result->setName(Dag->getNameStr());
2709   }
2710   return Result;
2711 }
2712
2713 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2714 /// will never match in favor of something obvious that will.  This is here
2715 /// strictly as a convenience to target authors because it allows them to write
2716 /// more type generic things and have useless type casts fold away.
2717 ///
2718 /// This returns true if any change is made.
2719 static bool SimplifyTree(TreePatternNode *&N) {
2720   if (N->isLeaf())
2721     return false;
2722
2723   // If we have a bitconvert with a resolved type and if the source and
2724   // destination types are the same, then the bitconvert is useless, remove it.
2725   if (N->getOperator()->getName() == "bitconvert" &&
2726       N->getExtType(0).isValueTypeByHwMode(false) &&
2727       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2728       N->getName().empty()) {
2729     N = N->getChild(0);
2730     SimplifyTree(N);
2731     return true;
2732   }
2733
2734   // Walk all children.
2735   bool MadeChange = false;
2736   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2737     TreePatternNode *Child = N->getChild(i);
2738     MadeChange |= SimplifyTree(Child);
2739     N->setChild(i, Child);
2740   }
2741   return MadeChange;
2742 }
2743
2744
2745
2746 /// InferAllTypes - Infer/propagate as many types throughout the expression
2747 /// patterns as possible.  Return true if all types are inferred, false
2748 /// otherwise.  Flags an error if a type contradiction is found.
2749 bool TreePattern::
2750 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2751   if (NamedNodes.empty())
2752     ComputeNamedNodes();
2753
2754   bool MadeChange = true;
2755   while (MadeChange) {
2756     MadeChange = false;
2757     for (TreePatternNode *&Tree : Trees) {
2758       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2759       MadeChange |= SimplifyTree(Tree);
2760     }
2761
2762     // If there are constraints on our named nodes, apply them.
2763     for (auto &Entry : NamedNodes) {
2764       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2765
2766       // If we have input named node types, propagate their types to the named
2767       // values here.
2768       if (InNamedTypes) {
2769         if (!InNamedTypes->count(Entry.getKey())) {
2770           error("Node '" + std::string(Entry.getKey()) +
2771                 "' in output pattern but not input pattern");
2772           return true;
2773         }
2774
2775         const SmallVectorImpl<TreePatternNode*> &InNodes =
2776           InNamedTypes->find(Entry.getKey())->second;
2777
2778         // The input types should be fully resolved by now.
2779         for (TreePatternNode *Node : Nodes) {
2780           // If this node is a register class, and it is the root of the pattern
2781           // then we're mapping something onto an input register.  We allow
2782           // changing the type of the input register in this case.  This allows
2783           // us to match things like:
2784           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2785           if (Node == Trees[0] && Node->isLeaf()) {
2786             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2787             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2788                        DI->getDef()->isSubClassOf("RegisterOperand")))
2789               continue;
2790           }
2791
2792           assert(Node->getNumTypes() == 1 &&
2793                  InNodes[0]->getNumTypes() == 1 &&
2794                  "FIXME: cannot name multiple result nodes yet");
2795           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2796                                              *this);
2797         }
2798       }
2799
2800       // If there are multiple nodes with the same name, they must all have the
2801       // same type.
2802       if (Entry.second.size() > 1) {
2803         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2804           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2805           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2806                  "FIXME: cannot name multiple result nodes yet");
2807
2808           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2809           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2810         }
2811       }
2812     }
2813   }
2814
2815   bool HasUnresolvedTypes = false;
2816   for (const TreePatternNode *Tree : Trees)
2817     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2818   return !HasUnresolvedTypes;
2819 }
2820
2821 void TreePattern::print(raw_ostream &OS) const {
2822   OS << getRecord()->getName();
2823   if (!Args.empty()) {
2824     OS << "(" << Args[0];
2825     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2826       OS << ", " << Args[i];
2827     OS << ")";
2828   }
2829   OS << ": ";
2830
2831   if (Trees.size() > 1)
2832     OS << "[\n";
2833   for (const TreePatternNode *Tree : Trees) {
2834     OS << "\t";
2835     Tree->print(OS);
2836     OS << "\n";
2837   }
2838
2839   if (Trees.size() > 1)
2840     OS << "]\n";
2841 }
2842
2843 void TreePattern::dump() const { print(errs()); }
2844
2845 //===----------------------------------------------------------------------===//
2846 // CodeGenDAGPatterns implementation
2847 //
2848
2849 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
2850                                        PatternRewriterFn PatternRewriter)
2851     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
2852       PatternRewriter(PatternRewriter) {
2853
2854   Intrinsics = CodeGenIntrinsicTable(Records, false);
2855   TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
2856   ParseNodeInfo();
2857   ParseNodeTransforms();
2858   ParseComplexPatterns();
2859   ParsePatternFragments();
2860   ParseDefaultOperands();
2861   ParseInstructions();
2862   ParsePatternFragments(/*OutFrags*/true);
2863   ParsePatterns();
2864
2865   // Break patterns with parameterized types into a series of patterns,
2866   // where each one has a fixed type and is predicated on the conditions
2867   // of the associated HW mode.
2868   ExpandHwModeBasedTypes();
2869
2870   // Generate variants.  For example, commutative patterns can match
2871   // multiple ways.  Add them to PatternsToMatch as well.
2872   GenerateVariants();
2873
2874   // Infer instruction flags.  For example, we can detect loads,
2875   // stores, and side effects in many cases by examining an
2876   // instruction's pattern.
2877   InferInstructionFlags();
2878
2879   // Verify that instruction flags match the patterns.
2880   VerifyInstructionFlags();
2881 }
2882
2883 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2884   Record *N = Records.getDef(Name);
2885   if (!N || !N->isSubClassOf("SDNode"))
2886     PrintFatalError("Error getting SDNode '" + Name + "'!");
2887
2888   return N;
2889 }
2890
2891 // Parse all of the SDNode definitions for the target, populating SDNodes.
2892 void CodeGenDAGPatterns::ParseNodeInfo() {
2893   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2894   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
2895
2896   while (!Nodes.empty()) {
2897     Record *R = Nodes.back();
2898     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
2899     Nodes.pop_back();
2900   }
2901
2902   // Get the builtin intrinsic nodes.
2903   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2904   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2905   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2906 }
2907
2908 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2909 /// map, and emit them to the file as functions.
2910 void CodeGenDAGPatterns::ParseNodeTransforms() {
2911   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2912   while (!Xforms.empty()) {
2913     Record *XFormNode = Xforms.back();
2914     Record *SDNode = XFormNode->getValueAsDef("Opcode");
2915     StringRef Code = XFormNode->getValueAsString("XFormFunction");
2916     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2917
2918     Xforms.pop_back();
2919   }
2920 }
2921
2922 void CodeGenDAGPatterns::ParseComplexPatterns() {
2923   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2924   while (!AMs.empty()) {
2925     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2926     AMs.pop_back();
2927   }
2928 }
2929
2930
2931 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2932 /// file, building up the PatternFragments map.  After we've collected them all,
2933 /// inline fragments together as necessary, so that there are no references left
2934 /// inside a pattern fragment to a pattern fragment.
2935 ///
2936 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
2937   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2938
2939   // First step, parse all of the fragments.
2940   for (Record *Frag : Fragments) {
2941     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2942       continue;
2943
2944     DagInit *Tree = Frag->getValueAsDag("Fragment");
2945     TreePattern *P =
2946         (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
2947              Frag, Tree, !Frag->isSubClassOf("OutPatFrag"),
2948              *this)).get();
2949
2950     // Validate the argument list, converting it to set, to discard duplicates.
2951     std::vector<std::string> &Args = P->getArgList();
2952     // Copy the args so we can take StringRefs to them.
2953     auto ArgsCopy = Args;
2954     SmallDenseSet<StringRef, 4> OperandsSet;
2955     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
2956
2957     if (OperandsSet.count(""))
2958       P->error("Cannot have unnamed 'node' values in pattern fragment!");
2959
2960     // Parse the operands list.
2961     DagInit *OpsList = Frag->getValueAsDag("Operands");
2962     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2963     // Special cases: ops == outs == ins. Different names are used to
2964     // improve readability.
2965     if (!OpsOp ||
2966         (OpsOp->getDef()->getName() != "ops" &&
2967          OpsOp->getDef()->getName() != "outs" &&
2968          OpsOp->getDef()->getName() != "ins"))
2969       P->error("Operands list should start with '(ops ... '!");
2970
2971     // Copy over the arguments.
2972     Args.clear();
2973     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2974       if (!isa<DefInit>(OpsList->getArg(j)) ||
2975           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2976         P->error("Operands list should all be 'node' values.");
2977       if (!OpsList->getArgName(j))
2978         P->error("Operands list should have names for each operand!");
2979       StringRef ArgNameStr = OpsList->getArgNameStr(j);
2980       if (!OperandsSet.count(ArgNameStr))
2981         P->error("'" + ArgNameStr +
2982                  "' does not occur in pattern or was multiply specified!");
2983       OperandsSet.erase(ArgNameStr);
2984       Args.push_back(ArgNameStr);
2985     }
2986
2987     if (!OperandsSet.empty())
2988       P->error("Operands list does not contain an entry for operand '" +
2989                *OperandsSet.begin() + "'!");
2990
2991     // If there is a code init for this fragment, keep track of the fact that
2992     // this fragment uses it.
2993     TreePredicateFn PredFn(P);
2994     if (!PredFn.isAlwaysTrue())
2995       P->getOnlyTree()->addPredicateFn(PredFn);
2996
2997     // If there is a node transformation corresponding to this, keep track of
2998     // it.
2999     Record *Transform = Frag->getValueAsDef("OperandTransform");
3000     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3001       P->getOnlyTree()->setTransformFn(Transform);
3002   }
3003
3004   // Now that we've parsed all of the tree fragments, do a closure on them so
3005   // that there are not references to PatFrags left inside of them.
3006   for (Record *Frag : Fragments) {
3007     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3008       continue;
3009
3010     TreePattern &ThePat = *PatternFragments[Frag];
3011     ThePat.InlinePatternFragments();
3012
3013     // Infer as many types as possible.  Don't worry about it if we don't infer
3014     // all of them, some may depend on the inputs of the pattern.
3015     ThePat.InferAllTypes();
3016     ThePat.resetError();
3017
3018     // If debugging, print out the pattern fragment result.
3019     DEBUG(ThePat.dump());
3020   }
3021 }
3022
3023 void CodeGenDAGPatterns::ParseDefaultOperands() {
3024   std::vector<Record*> DefaultOps;
3025   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3026
3027   // Find some SDNode.
3028   assert(!SDNodes.empty() && "No SDNodes parsed?");
3029   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3030
3031   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3032     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3033
3034     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3035     // SomeSDnode so that we can parse this.
3036     std::vector<std::pair<Init*, StringInit*> > Ops;
3037     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3038       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3039                                    DefaultInfo->getArgName(op)));
3040     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3041
3042     // Create a TreePattern to parse this.
3043     TreePattern P(DefaultOps[i], DI, false, *this);
3044     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3045
3046     // Copy the operands over into a DAGDefaultOperand.
3047     DAGDefaultOperand DefaultOpInfo;
3048
3049     TreePatternNode *T = P.getTree(0);
3050     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3051       TreePatternNode *TPN = T->getChild(op);
3052       while (TPN->ApplyTypeConstraints(P, false))
3053         /* Resolve all types */;
3054
3055       if (TPN->ContainsUnresolvedType(P)) {
3056         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3057                         DefaultOps[i]->getName() +
3058                         "' doesn't have a concrete type!");
3059       }
3060       DefaultOpInfo.DefaultOps.push_back(TPN);
3061     }
3062
3063     // Insert it into the DefaultOperands map so we can find it later.
3064     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3065   }
3066 }
3067
3068 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3069 /// instruction input.  Return true if this is a real use.
3070 static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
3071                       std::map<std::string, TreePatternNode*> &InstInputs) {
3072   // No name -> not interesting.
3073   if (Pat->getName().empty()) {
3074     if (Pat->isLeaf()) {
3075       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3076       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3077                  DI->getDef()->isSubClassOf("RegisterOperand")))
3078         I->error("Input " + DI->getDef()->getName() + " must be named!");
3079     }
3080     return false;
3081   }
3082
3083   Record *Rec;
3084   if (Pat->isLeaf()) {
3085     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3086     if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
3087     Rec = DI->getDef();
3088   } else {
3089     Rec = Pat->getOperator();
3090   }
3091
3092   // SRCVALUE nodes are ignored.
3093   if (Rec->getName() == "srcvalue")
3094     return false;
3095
3096   TreePatternNode *&Slot = InstInputs[Pat->getName()];
3097   if (!Slot) {
3098     Slot = Pat;
3099     return true;
3100   }
3101   Record *SlotRec;
3102   if (Slot->isLeaf()) {
3103     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3104   } else {
3105     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3106     SlotRec = Slot->getOperator();
3107   }
3108
3109   // Ensure that the inputs agree if we've already seen this input.
3110   if (Rec != SlotRec)
3111     I->error("All $" + Pat->getName() + " inputs must agree with each other");
3112   if (Slot->getExtTypes() != Pat->getExtTypes())
3113     I->error("All $" + Pat->getName() + " inputs must agree with each other");
3114   return true;
3115 }
3116
3117 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3118 /// part of "I", the instruction), computing the set of inputs and outputs of
3119 /// the pattern.  Report errors if we see anything naughty.
3120 void CodeGenDAGPatterns::
3121 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
3122                             std::map<std::string, TreePatternNode*> &InstInputs,
3123                             std::map<std::string, TreePatternNode*>&InstResults,
3124                             std::vector<Record*> &InstImpResults) {
3125   if (Pat->isLeaf()) {
3126     bool isUse = HandleUse(I, Pat, InstInputs);
3127     if (!isUse && Pat->getTransformFn())
3128       I->error("Cannot specify a transform function for a non-input value!");
3129     return;
3130   }
3131
3132   if (Pat->getOperator()->getName() == "implicit") {
3133     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3134       TreePatternNode *Dest = Pat->getChild(i);
3135       if (!Dest->isLeaf())
3136         I->error("implicitly defined value should be a register!");
3137
3138       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3139       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3140         I->error("implicitly defined value should be a register!");
3141       InstImpResults.push_back(Val->getDef());
3142     }
3143     return;
3144   }
3145
3146   if (Pat->getOperator()->getName() != "set") {
3147     // If this is not a set, verify that the children nodes are not void typed,
3148     // and recurse.
3149     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3150       if (Pat->getChild(i)->getNumTypes() == 0)
3151         I->error("Cannot have void nodes inside of patterns!");
3152       FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
3153                                   InstImpResults);
3154     }
3155
3156     // If this is a non-leaf node with no children, treat it basically as if
3157     // it were a leaf.  This handles nodes like (imm).
3158     bool isUse = HandleUse(I, Pat, InstInputs);
3159
3160     if (!isUse && Pat->getTransformFn())
3161       I->error("Cannot specify a transform function for a non-input value!");
3162     return;
3163   }
3164
3165   // Otherwise, this is a set, validate and collect instruction results.
3166   if (Pat->getNumChildren() == 0)
3167     I->error("set requires operands!");
3168
3169   if (Pat->getTransformFn())
3170     I->error("Cannot specify a transform function on a set node!");
3171
3172   // Check the set destinations.
3173   unsigned NumDests = Pat->getNumChildren()-1;
3174   for (unsigned i = 0; i != NumDests; ++i) {
3175     TreePatternNode *Dest = Pat->getChild(i);
3176     if (!Dest->isLeaf())
3177       I->error("set destination should be a register!");
3178
3179     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3180     if (!Val) {
3181       I->error("set destination should be a register!");
3182       continue;
3183     }
3184
3185     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3186         Val->getDef()->isSubClassOf("ValueType") ||
3187         Val->getDef()->isSubClassOf("RegisterOperand") ||
3188         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3189       if (Dest->getName().empty())
3190         I->error("set destination must have a name!");
3191       if (InstResults.count(Dest->getName()))
3192         I->error("cannot set '" + Dest->getName() +"' multiple times");
3193       InstResults[Dest->getName()] = Dest;
3194     } else if (Val->getDef()->isSubClassOf("Register")) {
3195       InstImpResults.push_back(Val->getDef());
3196     } else {
3197       I->error("set destination should be a register!");
3198     }
3199   }
3200
3201   // Verify and collect info from the computation.
3202   FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
3203                               InstInputs, InstResults, InstImpResults);
3204 }
3205
3206 //===----------------------------------------------------------------------===//
3207 // Instruction Analysis
3208 //===----------------------------------------------------------------------===//
3209
3210 class InstAnalyzer {
3211   const CodeGenDAGPatterns &CDP;
3212 public:
3213   bool hasSideEffects;
3214   bool mayStore;
3215   bool mayLoad;
3216   bool isBitcast;
3217   bool isVariadic;
3218
3219   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3220     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3221       isBitcast(false), isVariadic(false) {}
3222
3223   void Analyze(const TreePattern *Pat) {
3224     // Assume only the first tree is the pattern. The others are clobber nodes.
3225     AnalyzeNode(Pat->getTree(0));
3226   }
3227
3228   void Analyze(const PatternToMatch &Pat) {
3229     AnalyzeNode(Pat.getSrcPattern());
3230   }
3231
3232 private:
3233   bool IsNodeBitcast(const TreePatternNode *N) const {
3234     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3235       return false;
3236
3237     if (N->getNumChildren() != 2)
3238       return false;
3239
3240     const TreePatternNode *N0 = N->getChild(0);
3241     if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
3242       return false;
3243
3244     const TreePatternNode *N1 = N->getChild(1);
3245     if (N1->isLeaf())
3246       return false;
3247     if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
3248       return false;
3249
3250     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
3251     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3252       return false;
3253     return OpInfo.getEnumName() == "ISD::BITCAST";
3254   }
3255
3256 public:
3257   void AnalyzeNode(const TreePatternNode *N) {
3258     if (N->isLeaf()) {
3259       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3260         Record *LeafRec = DI->getDef();
3261         // Handle ComplexPattern leaves.
3262         if (LeafRec->isSubClassOf("ComplexPattern")) {
3263           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3264           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3265           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3266           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3267         }
3268       }
3269       return;
3270     }
3271
3272     // Analyze children.
3273     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3274       AnalyzeNode(N->getChild(i));
3275
3276     // Ignore set nodes, which are not SDNodes.
3277     if (N->getOperator()->getName() == "set") {
3278       isBitcast = IsNodeBitcast(N);
3279       return;
3280     }
3281
3282     // Notice properties of the node.
3283     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3284     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3285     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3286     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3287
3288     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3289       // If this is an intrinsic, analyze it.
3290       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3291         mayLoad = true;// These may load memory.
3292
3293       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3294         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3295
3296       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3297           IntInfo->hasSideEffects)
3298         // ReadWriteMem intrinsics can have other strange effects.
3299         hasSideEffects = true;
3300     }
3301   }
3302
3303 };
3304
3305 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3306                              const InstAnalyzer &PatInfo,
3307                              Record *PatDef) {
3308   bool Error = false;
3309
3310   // Remember where InstInfo got its flags.
3311   if (InstInfo.hasUndefFlags())
3312       InstInfo.InferredFrom = PatDef;
3313
3314   // Check explicitly set flags for consistency.
3315   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3316       !InstInfo.hasSideEffects_Unset) {
3317     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3318     // the pattern has no side effects. That could be useful for div/rem
3319     // instructions that may trap.
3320     if (!InstInfo.hasSideEffects) {
3321       Error = true;
3322       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3323                  Twine(InstInfo.hasSideEffects));
3324     }
3325   }
3326
3327   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3328     Error = true;
3329     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3330                Twine(InstInfo.mayStore));
3331   }
3332
3333   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3334     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3335     // Some targets translate immediates to loads.
3336     if (!InstInfo.mayLoad) {
3337       Error = true;
3338       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3339                  Twine(InstInfo.mayLoad));
3340     }
3341   }
3342
3343   // Transfer inferred flags.
3344   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3345   InstInfo.mayStore |= PatInfo.mayStore;
3346   InstInfo.mayLoad |= PatInfo.mayLoad;
3347
3348   // These flags are silently added without any verification.
3349   InstInfo.isBitcast |= PatInfo.isBitcast;
3350
3351   // Don't infer isVariadic. This flag means something different on SDNodes and
3352   // instructions. For example, a CALL SDNode is variadic because it has the
3353   // call arguments as operands, but a CALL instruction is not variadic - it
3354   // has argument registers as implicit, not explicit uses.
3355
3356   return Error;
3357 }
3358
3359 /// hasNullFragReference - Return true if the DAG has any reference to the
3360 /// null_frag operator.
3361 static bool hasNullFragReference(DagInit *DI) {
3362   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3363   if (!OpDef) return false;
3364   Record *Operator = OpDef->getDef();
3365
3366   // If this is the null fragment, return true.
3367   if (Operator->getName() == "null_frag") return true;
3368   // If any of the arguments reference the null fragment, return true.
3369   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3370     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3371     if (Arg && hasNullFragReference(Arg))
3372       return true;
3373   }
3374
3375   return false;
3376 }
3377
3378 /// hasNullFragReference - Return true if any DAG in the list references
3379 /// the null_frag operator.
3380 static bool hasNullFragReference(ListInit *LI) {
3381   for (Init *I : LI->getValues()) {
3382     DagInit *DI = dyn_cast<DagInit>(I);
3383     assert(DI && "non-dag in an instruction Pattern list?!");
3384     if (hasNullFragReference(DI))
3385       return true;
3386   }
3387   return false;
3388 }
3389
3390 /// Get all the instructions in a tree.
3391 static void
3392 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3393   if (Tree->isLeaf())
3394     return;
3395   if (Tree->getOperator()->isSubClassOf("Instruction"))
3396     Instrs.push_back(Tree->getOperator());
3397   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3398     getInstructionsInTree(Tree->getChild(i), Instrs);
3399 }
3400
3401 /// Check the class of a pattern leaf node against the instruction operand it
3402 /// represents.
3403 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3404                               Record *Leaf) {
3405   if (OI.Rec == Leaf)
3406     return true;
3407
3408   // Allow direct value types to be used in instruction set patterns.
3409   // The type will be checked later.
3410   if (Leaf->isSubClassOf("ValueType"))
3411     return true;
3412
3413   // Patterns can also be ComplexPattern instances.
3414   if (Leaf->isSubClassOf("ComplexPattern"))
3415     return true;
3416
3417   return false;
3418 }
3419
3420 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern(
3421     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3422
3423   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3424
3425   // Parse the instruction.
3426   TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this);
3427   // Inline pattern fragments into it.
3428   I->InlinePatternFragments();
3429
3430   // Infer as many types as possible.  If we cannot infer all of them, we can
3431   // never do anything with this instruction pattern: report it to the user.
3432   if (!I->InferAllTypes())
3433     I->error("Could not infer all types in pattern!");
3434
3435   // InstInputs - Keep track of all of the inputs of the instruction, along
3436   // with the record they are declared as.
3437   std::map<std::string, TreePatternNode*> InstInputs;
3438
3439   // InstResults - Keep track of all the virtual registers that are 'set'
3440   // in the instruction, including what reg class they are.
3441   std::map<std::string, TreePatternNode*> InstResults;
3442
3443   std::vector<Record*> InstImpResults;
3444
3445   // Verify that the top-level forms in the instruction are of void type, and
3446   // fill in the InstResults map.
3447   SmallString<32> TypesString;
3448   for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
3449     TypesString.clear();
3450     TreePatternNode *Pat = I->getTree(j);
3451     if (Pat->getNumTypes() != 0) {
3452       raw_svector_ostream OS(TypesString);
3453       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3454         if (k > 0)
3455           OS << ", ";
3456         Pat->getExtType(k).writeToStream(OS);
3457       }
3458       I->error("Top-level forms in instruction pattern should have"
3459                " void types, has types " +
3460                OS.str());
3461     }
3462
3463     // Find inputs and outputs, and verify the structure of the uses/defs.
3464     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3465                                 InstImpResults);
3466   }
3467
3468   // Now that we have inputs and outputs of the pattern, inspect the operands
3469   // list for the instruction.  This determines the order that operands are
3470   // added to the machine instruction the node corresponds to.
3471   unsigned NumResults = InstResults.size();
3472
3473   // Parse the operands list from the (ops) list, validating it.
3474   assert(I->getArgList().empty() && "Args list should still be empty here!");
3475
3476   // Check that all of the results occur first in the list.
3477   std::vector<Record*> Results;
3478   SmallVector<TreePatternNode *, 2> ResNodes;
3479   for (unsigned i = 0; i != NumResults; ++i) {
3480     if (i == CGI.Operands.size())
3481       I->error("'" + InstResults.begin()->first +
3482                "' set but does not appear in operand list!");
3483     const std::string &OpName = CGI.Operands[i].Name;
3484
3485     // Check that it exists in InstResults.
3486     TreePatternNode *RNode = InstResults[OpName];
3487     if (!RNode)
3488       I->error("Operand $" + OpName + " does not exist in operand list!");
3489
3490     ResNodes.push_back(RNode);
3491
3492     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3493     if (!R)
3494       I->error("Operand $" + OpName + " should be a set destination: all "
3495                "outputs must occur before inputs in operand list!");
3496
3497     if (!checkOperandClass(CGI.Operands[i], R))
3498       I->error("Operand $" + OpName + " class mismatch!");
3499
3500     // Remember the return type.
3501     Results.push_back(CGI.Operands[i].Rec);
3502
3503     // Okay, this one checks out.
3504     InstResults.erase(OpName);
3505   }
3506
3507   // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
3508   // the copy while we're checking the inputs.
3509   std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
3510
3511   std::vector<TreePatternNode*> ResultNodeOperands;
3512   std::vector<Record*> Operands;
3513   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3514     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3515     const std::string &OpName = Op.Name;
3516     if (OpName.empty())
3517       I->error("Operand #" + utostr(i) + " in operands list has no name!");
3518
3519     if (!InstInputsCheck.count(OpName)) {
3520       // If this is an operand with a DefaultOps set filled in, we can ignore
3521       // this.  When we codegen it, we will do so as always executed.
3522       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3523         // Does it have a non-empty DefaultOps field?  If so, ignore this
3524         // operand.
3525         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3526           continue;
3527       }
3528       I->error("Operand $" + OpName +
3529                " does not appear in the instruction pattern");
3530     }
3531     TreePatternNode *InVal = InstInputsCheck[OpName];
3532     InstInputsCheck.erase(OpName);   // It occurred, remove from map.
3533
3534     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3535       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3536       if (!checkOperandClass(Op, InRec))
3537         I->error("Operand $" + OpName + "'s register class disagrees"
3538                  " between the operand and pattern");
3539     }
3540     Operands.push_back(Op.Rec);
3541
3542     // Construct the result for the dest-pattern operand list.
3543     TreePatternNode *OpNode = InVal->clone();
3544
3545     // No predicate is useful on the result.
3546     OpNode->clearPredicateFns();
3547
3548     // Promote the xform function to be an explicit node if set.
3549     if (Record *Xform = OpNode->getTransformFn()) {
3550       OpNode->setTransformFn(nullptr);
3551       std::vector<TreePatternNode*> Children;
3552       Children.push_back(OpNode);
3553       OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3554     }
3555
3556     ResultNodeOperands.push_back(OpNode);
3557   }
3558
3559   if (!InstInputsCheck.empty())
3560     I->error("Input operand $" + InstInputsCheck.begin()->first +
3561              " occurs in pattern but not in operands list!");
3562
3563   TreePatternNode *ResultPattern =
3564     new TreePatternNode(I->getRecord(), ResultNodeOperands,
3565                         GetNumNodeResults(I->getRecord(), *this));
3566   // Copy fully inferred output node types to instruction result pattern.
3567   for (unsigned i = 0; i != NumResults; ++i) {
3568     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3569     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3570   }
3571
3572   // Create and insert the instruction.
3573   // FIXME: InstImpResults should not be part of DAGInstruction.
3574   DAGInstruction TheInst(I, Results, Operands, InstImpResults);
3575   DAGInsts.insert(std::make_pair(I->getRecord(), TheInst));
3576
3577   // Use a temporary tree pattern to infer all types and make sure that the
3578   // constructed result is correct.  This depends on the instruction already
3579   // being inserted into the DAGInsts map.
3580   TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
3581   Temp.InferAllTypes(&I->getNamedNodesMap());
3582
3583   DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second;
3584   TheInsertedInst.setResultPattern(Temp.getOnlyTree());
3585
3586   return TheInsertedInst;
3587 }
3588
3589 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3590 /// any fragments involved.  This populates the Instructions list with fully
3591 /// resolved instructions.
3592 void CodeGenDAGPatterns::ParseInstructions() {
3593   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3594
3595   for (Record *Instr : Instrs) {
3596     ListInit *LI = nullptr;
3597
3598     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3599       LI = Instr->getValueAsListInit("Pattern");
3600
3601     // If there is no pattern, only collect minimal information about the
3602     // instruction for its operand list.  We have to assume that there is one
3603     // result, as we have no detailed info. A pattern which references the
3604     // null_frag operator is as-if no pattern were specified. Normally this
3605     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3606     // null_frag.
3607     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3608       std::vector<Record*> Results;
3609       std::vector<Record*> Operands;
3610
3611       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3612
3613       if (InstInfo.Operands.size() != 0) {
3614         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3615           Results.push_back(InstInfo.Operands[j].Rec);
3616
3617         // The rest are inputs.
3618         for (unsigned j = InstInfo.Operands.NumDefs,
3619                e = InstInfo.Operands.size(); j < e; ++j)
3620           Operands.push_back(InstInfo.Operands[j].Rec);
3621       }
3622
3623       // Create and insert the instruction.
3624       std::vector<Record*> ImpResults;
3625       Instructions.insert(std::make_pair(Instr,
3626                           DAGInstruction(nullptr, Results, Operands, ImpResults)));
3627       continue;  // no pattern.
3628     }
3629
3630     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3631     const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions);
3632
3633     (void)DI;
3634     DEBUG(DI.getPattern()->dump());
3635   }
3636
3637   // If we can, convert the instructions to be patterns that are matched!
3638   for (auto &Entry : Instructions) {
3639     DAGInstruction &TheInst = Entry.second;
3640     TreePattern *I = TheInst.getPattern();
3641     if (!I) continue;  // No pattern.
3642
3643     if (PatternRewriter)
3644       PatternRewriter(I);
3645     // FIXME: Assume only the first tree is the pattern. The others are clobber
3646     // nodes.
3647     TreePatternNode *Pattern = I->getTree(0);
3648     TreePatternNode *SrcPattern;
3649     if (Pattern->getOperator()->getName() == "set") {
3650       SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3651     } else{
3652       // Not a set (store or something?)
3653       SrcPattern = Pattern;
3654     }
3655
3656     Record *Instr = Entry.first;
3657     ListInit *Preds = Instr->getValueAsListInit("Predicates");
3658     int Complexity = Instr->getValueAsInt("AddedComplexity");
3659     AddPatternToMatch(
3660         I,
3661         PatternToMatch(Instr, makePredList(Preds), SrcPattern,
3662                        TheInst.getResultPattern(), TheInst.getImpResults(),
3663                        Complexity, Instr->getID()));
3664   }
3665 }
3666
3667
3668 typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
3669
3670 static void FindNames(const TreePatternNode *P,
3671                       std::map<std::string, NameRecord> &Names,
3672                       TreePattern *PatternTop) {
3673   if (!P->getName().empty()) {
3674     NameRecord &Rec = Names[P->getName()];
3675     // If this is the first instance of the name, remember the node.
3676     if (Rec.second++ == 0)
3677       Rec.first = P;
3678     else if (Rec.first->getExtTypes() != P->getExtTypes())
3679       PatternTop->error("repetition of value: $" + P->getName() +
3680                         " where different uses have different types!");
3681   }
3682
3683   if (!P->isLeaf()) {
3684     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3685       FindNames(P->getChild(i), Names, PatternTop);
3686   }
3687 }
3688
3689 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3690   std::vector<Predicate> Preds;
3691   for (Init *I : L->getValues()) {
3692     if (DefInit *Pred = dyn_cast<DefInit>(I))
3693       Preds.push_back(Pred->getDef());
3694     else
3695       llvm_unreachable("Non-def on the list");
3696   }
3697
3698   // Sort so that different orders get canonicalized to the same string.
3699   std::sort(Preds.begin(), Preds.end());
3700   return Preds;
3701 }
3702
3703 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3704                                            PatternToMatch &&PTM) {
3705   // Do some sanity checking on the pattern we're about to match.
3706   std::string Reason;
3707   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3708     PrintWarning(Pattern->getRecord()->getLoc(),
3709       Twine("Pattern can never match: ") + Reason);
3710     return;
3711   }
3712
3713   // If the source pattern's root is a complex pattern, that complex pattern
3714   // must specify the nodes it can potentially match.
3715   if (const ComplexPattern *CP =
3716         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3717     if (CP->getRootNodes().empty())
3718       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3719                      " could match");
3720
3721
3722   // Find all of the named values in the input and output, ensure they have the
3723   // same type.
3724   std::map<std::string, NameRecord> SrcNames, DstNames;
3725   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3726   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3727
3728   // Scan all of the named values in the destination pattern, rejecting them if
3729   // they don't exist in the input pattern.
3730   for (const auto &Entry : DstNames) {
3731     if (SrcNames[Entry.first].first == nullptr)
3732       Pattern->error("Pattern has input without matching name in output: $" +
3733                      Entry.first);
3734   }
3735
3736   // Scan all of the named values in the source pattern, rejecting them if the
3737   // name isn't used in the dest, and isn't used to tie two values together.
3738   for (const auto &Entry : SrcNames)
3739     if (DstNames[Entry.first].first == nullptr &&
3740         SrcNames[Entry.first].second == 1)
3741       Pattern->error("Pattern has dead named input: $" + Entry.first);
3742
3743   PatternsToMatch.push_back(std::move(PTM));
3744 }
3745
3746 void CodeGenDAGPatterns::InferInstructionFlags() {
3747   ArrayRef<const CodeGenInstruction*> Instructions =
3748     Target.getInstructionsByEnumValue();
3749
3750   // First try to infer flags from the primary instruction pattern, if any.
3751   SmallVector<CodeGenInstruction*, 8> Revisit;
3752   unsigned Errors = 0;
3753   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3754     CodeGenInstruction &InstInfo =
3755       const_cast<CodeGenInstruction &>(*Instructions[i]);
3756
3757     // Get the primary instruction pattern.
3758     const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
3759     if (!Pattern) {
3760       if (InstInfo.hasUndefFlags())
3761         Revisit.push_back(&InstInfo);
3762       continue;
3763     }
3764     InstAnalyzer PatInfo(*this);
3765     PatInfo.Analyze(Pattern);
3766     Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
3767   }
3768
3769   // Second, look for single-instruction patterns defined outside the
3770   // instruction.
3771   for (const PatternToMatch &PTM : ptms()) {
3772     // We can only infer from single-instruction patterns, otherwise we won't
3773     // know which instruction should get the flags.
3774     SmallVector<Record*, 8> PatInstrs;
3775     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3776     if (PatInstrs.size() != 1)
3777       continue;
3778
3779     // Get the single instruction.
3780     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3781
3782     // Only infer properties from the first pattern. We'll verify the others.
3783     if (InstInfo.InferredFrom)
3784       continue;
3785
3786     InstAnalyzer PatInfo(*this);
3787     PatInfo.Analyze(PTM);
3788     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3789   }
3790
3791   if (Errors)
3792     PrintFatalError("pattern conflicts");
3793
3794   // Revisit instructions with undefined flags and no pattern.
3795   if (Target.guessInstructionProperties()) {
3796     for (CodeGenInstruction *InstInfo : Revisit) {
3797       if (InstInfo->InferredFrom)
3798         continue;
3799       // The mayLoad and mayStore flags default to false.
3800       // Conservatively assume hasSideEffects if it wasn't explicit.
3801       if (InstInfo->hasSideEffects_Unset)
3802         InstInfo->hasSideEffects = true;
3803     }
3804     return;
3805   }
3806
3807   // Complain about any flags that are still undefined.
3808   for (CodeGenInstruction *InstInfo : Revisit) {
3809     if (InstInfo->InferredFrom)
3810       continue;
3811     if (InstInfo->hasSideEffects_Unset)
3812       PrintError(InstInfo->TheDef->getLoc(),
3813                  "Can't infer hasSideEffects from patterns");
3814     if (InstInfo->mayStore_Unset)
3815       PrintError(InstInfo->TheDef->getLoc(),
3816                  "Can't infer mayStore from patterns");
3817     if (InstInfo->mayLoad_Unset)
3818       PrintError(InstInfo->TheDef->getLoc(),
3819                  "Can't infer mayLoad from patterns");
3820   }
3821 }
3822
3823
3824 /// Verify instruction flags against pattern node properties.
3825 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3826   unsigned Errors = 0;
3827   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3828     const PatternToMatch &PTM = *I;
3829     SmallVector<Record*, 8> Instrs;
3830     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3831     if (Instrs.empty())
3832       continue;
3833
3834     // Count the number of instructions with each flag set.
3835     unsigned NumSideEffects = 0;
3836     unsigned NumStores = 0;
3837     unsigned NumLoads = 0;
3838     for (const Record *Instr : Instrs) {
3839       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3840       NumSideEffects += InstInfo.hasSideEffects;
3841       NumStores += InstInfo.mayStore;
3842       NumLoads += InstInfo.mayLoad;
3843     }
3844
3845     // Analyze the source pattern.
3846     InstAnalyzer PatInfo(*this);
3847     PatInfo.Analyze(PTM);
3848
3849     // Collect error messages.
3850     SmallVector<std::string, 4> Msgs;
3851
3852     // Check for missing flags in the output.
3853     // Permit extra flags for now at least.
3854     if (PatInfo.hasSideEffects && !NumSideEffects)
3855       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3856
3857     // Don't verify store flags on instructions with side effects. At least for
3858     // intrinsics, side effects implies mayStore.
3859     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3860       Msgs.push_back("pattern may store, but mayStore isn't set");
3861
3862     // Similarly, mayStore implies mayLoad on intrinsics.
3863     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3864       Msgs.push_back("pattern may load, but mayLoad isn't set");
3865
3866     // Print error messages.
3867     if (Msgs.empty())
3868       continue;
3869     ++Errors;
3870
3871     for (const std::string &Msg : Msgs)
3872       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3873                  (Instrs.size() == 1 ?
3874                   "instruction" : "output instructions"));
3875     // Provide the location of the relevant instruction definitions.
3876     for (const Record *Instr : Instrs) {
3877       if (Instr != PTM.getSrcRecord())
3878         PrintError(Instr->getLoc(), "defined here");
3879       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3880       if (InstInfo.InferredFrom &&
3881           InstInfo.InferredFrom != InstInfo.TheDef &&
3882           InstInfo.InferredFrom != PTM.getSrcRecord())
3883         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3884     }
3885   }
3886   if (Errors)
3887     PrintFatalError("Errors in DAG patterns");
3888 }
3889
3890 /// Given a pattern result with an unresolved type, see if we can find one
3891 /// instruction with an unresolved result type.  Force this result type to an
3892 /// arbitrary element if it's possible types to converge results.
3893 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3894   if (N->isLeaf())
3895     return false;
3896
3897   // Analyze children.
3898   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3899     if (ForceArbitraryInstResultType(N->getChild(i), TP))
3900       return true;
3901
3902   if (!N->getOperator()->isSubClassOf("Instruction"))
3903     return false;
3904
3905   // If this type is already concrete or completely unknown we can't do
3906   // anything.
3907   TypeInfer &TI = TP.getInfer();
3908   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3909     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
3910       continue;
3911
3912     // Otherwise, force its type to an arbitrary choice.
3913     if (TI.forceArbitrary(N->getExtType(i)))
3914       return true;
3915   }
3916
3917   return false;
3918 }
3919
3920 void CodeGenDAGPatterns::ParsePatterns() {
3921   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3922
3923   for (Record *CurPattern : Patterns) {
3924     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3925
3926     // If the pattern references the null_frag, there's nothing to do.
3927     if (hasNullFragReference(Tree))
3928       continue;
3929
3930     TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3931
3932     // Inline pattern fragments into it.
3933     Pattern->InlinePatternFragments();
3934
3935     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3936     if (LI->empty()) continue;  // no pattern.
3937
3938     // Parse the instruction.
3939     TreePattern Result(CurPattern, LI, false, *this);
3940
3941     // Inline pattern fragments into it.
3942     Result.InlinePatternFragments();
3943
3944     if (Result.getNumTrees() != 1)
3945       Result.error("Cannot handle instructions producing instructions "
3946                    "with temporaries yet!");
3947
3948     bool IterateInference;
3949     bool InferredAllPatternTypes, InferredAllResultTypes;
3950     do {
3951       // Infer as many types as possible.  If we cannot infer all of them, we
3952       // can never do anything with this pattern: report it to the user.
3953       InferredAllPatternTypes =
3954         Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3955
3956       // Infer as many types as possible.  If we cannot infer all of them, we
3957       // can never do anything with this pattern: report it to the user.
3958       InferredAllResultTypes =
3959           Result.InferAllTypes(&Pattern->getNamedNodesMap());
3960
3961       IterateInference = false;
3962
3963       // Apply the type of the result to the source pattern.  This helps us
3964       // resolve cases where the input type is known to be a pointer type (which
3965       // is considered resolved), but the result knows it needs to be 32- or
3966       // 64-bits.  Infer the other way for good measure.
3967       for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(),
3968                                         Pattern->getTree(0)->getNumTypes());
3969            i != e; ++i) {
3970         IterateInference = Pattern->getTree(0)->UpdateNodeType(
3971             i, Result.getTree(0)->getExtType(i), Result);
3972         IterateInference |= Result.getTree(0)->UpdateNodeType(
3973             i, Pattern->getTree(0)->getExtType(i), Result);
3974       }
3975
3976       // If our iteration has converged and the input pattern's types are fully
3977       // resolved but the result pattern is not fully resolved, we may have a
3978       // situation where we have two instructions in the result pattern and
3979       // the instructions require a common register class, but don't care about
3980       // what actual MVT is used.  This is actually a bug in our modelling:
3981       // output patterns should have register classes, not MVTs.
3982       //
3983       // In any case, to handle this, we just go through and disambiguate some
3984       // arbitrary types to the result pattern's nodes.
3985       if (!IterateInference && InferredAllPatternTypes &&
3986           !InferredAllResultTypes)
3987         IterateInference =
3988             ForceArbitraryInstResultType(Result.getTree(0), Result);
3989     } while (IterateInference);
3990
3991     // Verify that we inferred enough types that we can do something with the
3992     // pattern and result.  If these fire the user has to add type casts.
3993     if (!InferredAllPatternTypes)
3994       Pattern->error("Could not infer all types in pattern!");
3995     if (!InferredAllResultTypes) {
3996       Pattern->dump();
3997       Result.error("Could not infer all types in pattern result!");
3998     }
3999
4000     // Validate that the input pattern is correct.
4001     std::map<std::string, TreePatternNode*> InstInputs;
4002     std::map<std::string, TreePatternNode*> InstResults;
4003     std::vector<Record*> InstImpResults;
4004     for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
4005       FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
4006                                   InstInputs, InstResults,
4007                                   InstImpResults);
4008
4009     // Promote the xform function to be an explicit node if set.
4010     TreePatternNode *DstPattern = Result.getOnlyTree();
4011     std::vector<TreePatternNode*> ResultNodeOperands;
4012     for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
4013       TreePatternNode *OpNode = DstPattern->getChild(ii);
4014       if (Record *Xform = OpNode->getTransformFn()) {
4015         OpNode->setTransformFn(nullptr);
4016         std::vector<TreePatternNode*> Children;
4017         Children.push_back(OpNode);
4018         OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
4019       }
4020       ResultNodeOperands.push_back(OpNode);
4021     }
4022     DstPattern = Result.getOnlyTree();
4023     if (!DstPattern->isLeaf())
4024       DstPattern = new TreePatternNode(DstPattern->getOperator(),
4025                                        ResultNodeOperands,
4026                                        DstPattern->getNumTypes());
4027
4028     for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i)
4029       DstPattern->setType(i, Result.getOnlyTree()->getExtType(i));
4030
4031     TreePattern Temp(Result.getRecord(), DstPattern, false, *this);
4032     Temp.InferAllTypes();
4033
4034     // A pattern may end up with an "impossible" type, i.e. a situation
4035     // where all types have been eliminated for some node in this pattern.
4036     // This could occur for intrinsics that only make sense for a specific
4037     // value type, and use a specific register class. If, for some mode,
4038     // that register class does not accept that type, the type inference
4039     // will lead to a contradiction, which is not an error however, but
4040     // a sign that this pattern will simply never match.
4041     if (Pattern->getTree(0)->hasPossibleType() &&
4042         Temp.getOnlyTree()->hasPossibleType()) {
4043       ListInit *Preds = CurPattern->getValueAsListInit("Predicates");
4044       int Complexity = CurPattern->getValueAsInt("AddedComplexity");
4045       if (PatternRewriter)
4046         PatternRewriter(Pattern);
4047       AddPatternToMatch(
4048           Pattern,
4049           PatternToMatch(
4050               CurPattern, makePredList(Preds), Pattern->getTree(0),
4051               Temp.getOnlyTree(), std::move(InstImpResults), Complexity,
4052               CurPattern->getID()));
4053     }
4054   }
4055 }
4056
4057 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4058   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4059     for (const auto &I : VTS)
4060       Modes.insert(I.first);
4061
4062   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4063     collectModes(Modes, N->getChild(i));
4064 }
4065
4066 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4067   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4068   std::map<unsigned,std::vector<Predicate>> ModeChecks;
4069   std::vector<PatternToMatch> Copy = PatternsToMatch;
4070   PatternsToMatch.clear();
4071
4072   auto AppendPattern = [this,&ModeChecks](PatternToMatch &P, unsigned Mode) {
4073     TreePatternNode *NewSrc = P.SrcPattern->clone();
4074     TreePatternNode *NewDst = P.DstPattern->clone();
4075     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4076       delete NewSrc;
4077       delete NewDst;
4078       return;
4079     }
4080
4081     std::vector<Predicate> Preds = P.Predicates;
4082     const std::vector<Predicate> &MC = ModeChecks[Mode];
4083     Preds.insert(Preds.end(), MC.begin(), MC.end());
4084     PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, NewSrc, NewDst,
4085                                  P.getDstRegs(), P.getAddedComplexity(),
4086                                  Record::getNewUID(), Mode);
4087   };
4088
4089   for (PatternToMatch &P : Copy) {
4090     TreePatternNode *SrcP = nullptr, *DstP = nullptr;
4091     if (P.SrcPattern->hasProperTypeByHwMode())
4092       SrcP = P.SrcPattern;
4093     if (P.DstPattern->hasProperTypeByHwMode())
4094       DstP = P.DstPattern;
4095     if (!SrcP && !DstP) {
4096       PatternsToMatch.push_back(P);
4097       continue;
4098     }
4099
4100     std::set<unsigned> Modes;
4101     if (SrcP)
4102       collectModes(Modes, SrcP);
4103     if (DstP)
4104       collectModes(Modes, DstP);
4105
4106     // The predicate for the default mode needs to be constructed for each
4107     // pattern separately.
4108     // Since not all modes must be present in each pattern, if a mode m is
4109     // absent, then there is no point in constructing a check for m. If such
4110     // a check was created, it would be equivalent to checking the default
4111     // mode, except not all modes' predicates would be a part of the checking
4112     // code. The subsequently generated check for the default mode would then
4113     // have the exact same patterns, but a different predicate code. To avoid
4114     // duplicated patterns with different predicate checks, construct the
4115     // default check as a negation of all predicates that are actually present
4116     // in the source/destination patterns.
4117     std::vector<Predicate> DefaultPred;
4118
4119     for (unsigned M : Modes) {
4120       if (M == DefaultMode)
4121         continue;
4122       if (ModeChecks.find(M) != ModeChecks.end())
4123         continue;
4124
4125       // Fill the map entry for this mode.
4126       const HwMode &HM = CGH.getMode(M);
4127       ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4128
4129       // Add negations of the HM's predicates to the default predicate.
4130       DefaultPred.emplace_back(Predicate(HM.Features, false));
4131     }
4132
4133     for (unsigned M : Modes) {
4134       if (M == DefaultMode)
4135         continue;
4136       AppendPattern(P, M);
4137     }
4138
4139     bool HasDefault = Modes.count(DefaultMode);
4140     if (HasDefault)
4141       AppendPattern(P, DefaultMode);
4142   }
4143 }
4144
4145 /// Dependent variable map for CodeGenDAGPattern variant generation
4146 typedef StringMap<int> DepVarMap;
4147
4148 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4149   if (N->isLeaf()) {
4150     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4151       DepMap[N->getName()]++;
4152   } else {
4153     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4154       FindDepVarsOf(N->getChild(i), DepMap);
4155   }
4156 }
4157
4158 /// Find dependent variables within child patterns
4159 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4160   DepVarMap depcounts;
4161   FindDepVarsOf(N, depcounts);
4162   for (const auto &Pair : depcounts) {
4163     if (Pair.getValue() > 1)
4164       DepVars.insert(Pair.getKey());
4165   }
4166 }
4167
4168 #ifndef NDEBUG
4169 /// Dump the dependent variable set:
4170 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4171   if (DepVars.empty()) {
4172     DEBUG(errs() << "<empty set>");
4173   } else {
4174     DEBUG(errs() << "[ ");
4175     for (const auto &DepVar : DepVars) {
4176       DEBUG(errs() << DepVar.getKey() << " ");
4177     }
4178     DEBUG(errs() << "]");
4179   }
4180 }
4181 #endif
4182
4183
4184 /// CombineChildVariants - Given a bunch of permutations of each child of the
4185 /// 'operator' node, put them together in all possible ways.
4186 static void CombineChildVariants(TreePatternNode *Orig,
4187                const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
4188                                  std::vector<TreePatternNode*> &OutVariants,
4189                                  CodeGenDAGPatterns &CDP,
4190                                  const MultipleUseVarSet &DepVars) {
4191   // Make sure that each operand has at least one variant to choose from.
4192   for (const auto &Variants : ChildVariants)
4193     if (Variants.empty())
4194       return;
4195
4196   // The end result is an all-pairs construction of the resultant pattern.
4197   std::vector<unsigned> Idxs;
4198   Idxs.resize(ChildVariants.size());
4199   bool NotDone;
4200   do {
4201 #ifndef NDEBUG
4202     DEBUG(if (!Idxs.empty()) {
4203             errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4204               for (unsigned Idx : Idxs) {
4205                 errs() << Idx << " ";
4206             }
4207             errs() << "]\n";
4208           });
4209 #endif
4210     // Create the variant and add it to the output list.
4211     std::vector<TreePatternNode*> NewChildren;
4212     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4213       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4214     auto R = llvm::make_unique<TreePatternNode>(
4215         Orig->getOperator(), NewChildren, Orig->getNumTypes());
4216
4217     // Copy over properties.
4218     R->setName(Orig->getName());
4219     R->setPredicateFns(Orig->getPredicateFns());
4220     R->setTransformFn(Orig->getTransformFn());
4221     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4222       R->setType(i, Orig->getExtType(i));
4223
4224     // If this pattern cannot match, do not include it as a variant.
4225     std::string ErrString;
4226     // Scan to see if this pattern has already been emitted.  We can get
4227     // duplication due to things like commuting:
4228     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4229     // which are the same pattern.  Ignore the dups.
4230     if (R->canPatternMatch(ErrString, CDP) &&
4231         none_of(OutVariants, [&](TreePatternNode *Variant) {
4232           return R->isIsomorphicTo(Variant, DepVars);
4233         }))
4234       OutVariants.push_back(R.release());
4235
4236     // Increment indices to the next permutation by incrementing the
4237     // indices from last index backward, e.g., generate the sequence
4238     // [0, 0], [0, 1], [1, 0], [1, 1].
4239     int IdxsIdx;
4240     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4241       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4242         Idxs[IdxsIdx] = 0;
4243       else
4244         break;
4245     }
4246     NotDone = (IdxsIdx >= 0);
4247   } while (NotDone);
4248 }
4249
4250 /// CombineChildVariants - A helper function for binary operators.
4251 ///
4252 static void CombineChildVariants(TreePatternNode *Orig,
4253                                  const std::vector<TreePatternNode*> &LHS,
4254                                  const std::vector<TreePatternNode*> &RHS,
4255                                  std::vector<TreePatternNode*> &OutVariants,
4256                                  CodeGenDAGPatterns &CDP,
4257                                  const MultipleUseVarSet &DepVars) {
4258   std::vector<std::vector<TreePatternNode*> > ChildVariants;
4259   ChildVariants.push_back(LHS);
4260   ChildVariants.push_back(RHS);
4261   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4262 }
4263
4264
4265 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
4266                                      std::vector<TreePatternNode *> &Children) {
4267   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4268   Record *Operator = N->getOperator();
4269
4270   // Only permit raw nodes.
4271   if (!N->getName().empty() || !N->getPredicateFns().empty() ||
4272       N->getTransformFn()) {
4273     Children.push_back(N);
4274     return;
4275   }
4276
4277   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4278     Children.push_back(N->getChild(0));
4279   else
4280     GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
4281
4282   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4283     Children.push_back(N->getChild(1));
4284   else
4285     GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
4286 }
4287
4288 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4289 /// the (potentially recursive) pattern by using algebraic laws.
4290 ///
4291 static void GenerateVariantsOf(TreePatternNode *N,
4292                                std::vector<TreePatternNode*> &OutVariants,
4293                                CodeGenDAGPatterns &CDP,
4294                                const MultipleUseVarSet &DepVars) {
4295   // We cannot permute leaves or ComplexPattern uses.
4296   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4297     OutVariants.push_back(N);
4298     return;
4299   }
4300
4301   // Look up interesting info about the node.
4302   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4303
4304   // If this node is associative, re-associate.
4305   if (NodeInfo.hasProperty(SDNPAssociative)) {
4306     // Re-associate by pulling together all of the linked operators
4307     std::vector<TreePatternNode*> MaximalChildren;
4308     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4309
4310     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4311     // permutations.
4312     if (MaximalChildren.size() == 3) {
4313       // Find the variants of all of our maximal children.
4314       std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
4315       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4316       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4317       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4318
4319       // There are only two ways we can permute the tree:
4320       //   (A op B) op C    and    A op (B op C)
4321       // Within these forms, we can also permute A/B/C.
4322
4323       // Generate legal pair permutations of A/B/C.
4324       std::vector<TreePatternNode*> ABVariants;
4325       std::vector<TreePatternNode*> BAVariants;
4326       std::vector<TreePatternNode*> ACVariants;
4327       std::vector<TreePatternNode*> CAVariants;
4328       std::vector<TreePatternNode*> BCVariants;
4329       std::vector<TreePatternNode*> CBVariants;
4330       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4331       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4332       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4333       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4334       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4335       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4336
4337       // Combine those into the result: (x op x) op x
4338       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4339       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4340       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4341       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4342       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4343       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4344
4345       // Combine those into the result: x op (x op x)
4346       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4347       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4348       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4349       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4350       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4351       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4352       return;
4353     }
4354   }
4355
4356   // Compute permutations of all children.
4357   std::vector<std::vector<TreePatternNode*> > ChildVariants;
4358   ChildVariants.resize(N->getNumChildren());
4359   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4360     GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
4361
4362   // Build all permutations based on how the children were formed.
4363   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4364
4365   // If this node is commutative, consider the commuted order.
4366   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4367   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4368     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4369            "Commutative but doesn't have 2 children!");
4370     // Don't count children which are actually register references.
4371     unsigned NC = 0;
4372     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4373       TreePatternNode *Child = N->getChild(i);
4374       if (Child->isLeaf())
4375         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4376           Record *RR = DI->getDef();
4377           if (RR->isSubClassOf("Register"))
4378             continue;
4379         }
4380       NC++;
4381     }
4382     // Consider the commuted order.
4383     if (isCommIntrinsic) {
4384       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4385       // operands are the commutative operands, and there might be more operands
4386       // after those.
4387       assert(NC >= 3 &&
4388              "Commutative intrinsic should have at least 3 children!");
4389       std::vector<std::vector<TreePatternNode*> > Variants;
4390       Variants.push_back(ChildVariants[0]); // Intrinsic id.
4391       Variants.push_back(ChildVariants[2]);
4392       Variants.push_back(ChildVariants[1]);
4393       for (unsigned i = 3; i != NC; ++i)
4394         Variants.push_back(ChildVariants[i]);
4395       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4396     } else if (NC == N->getNumChildren()) {
4397       std::vector<std::vector<TreePatternNode*> > Variants;
4398       Variants.push_back(ChildVariants[1]);
4399       Variants.push_back(ChildVariants[0]);
4400       for (unsigned i = 2; i != NC; ++i)
4401         Variants.push_back(ChildVariants[i]);
4402       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4403     }
4404   }
4405 }
4406
4407
4408 // GenerateVariants - Generate variants.  For example, commutative patterns can
4409 // match multiple ways.  Add them to PatternsToMatch as well.
4410 void CodeGenDAGPatterns::GenerateVariants() {
4411   DEBUG(errs() << "Generating instruction variants.\n");
4412
4413   // Loop over all of the patterns we've collected, checking to see if we can
4414   // generate variants of the instruction, through the exploitation of
4415   // identities.  This permits the target to provide aggressive matching without
4416   // the .td file having to contain tons of variants of instructions.
4417   //
4418   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4419   // intentionally do not reconsider these.  Any variants of added patterns have
4420   // already been added.
4421   //
4422   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4423     MultipleUseVarSet             DepVars;
4424     std::vector<TreePatternNode*> Variants;
4425     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4426     DEBUG(errs() << "Dependent/multiply used variables: ");
4427     DEBUG(DumpDepVars(DepVars));
4428     DEBUG(errs() << "\n");
4429     GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
4430                        DepVars);
4431
4432     assert(!Variants.empty() && "Must create at least original variant!");
4433     if (Variants.size() == 1)  // No additional variants for this pattern.
4434       continue;
4435
4436     DEBUG(errs() << "FOUND VARIANTS OF: ";
4437           PatternsToMatch[i].getSrcPattern()->dump();
4438           errs() << "\n");
4439
4440     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4441       TreePatternNode *Variant = Variants[v];
4442
4443       DEBUG(errs() << "  VAR#" << v <<  ": ";
4444             Variant->dump();
4445             errs() << "\n");
4446
4447       // Scan to see if an instruction or explicit pattern already matches this.
4448       bool AlreadyExists = false;
4449       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4450         // Skip if the top level predicates do not match.
4451         if (PatternsToMatch[i].getPredicates() !=
4452             PatternsToMatch[p].getPredicates())
4453           continue;
4454         // Check to see if this variant already exists.
4455         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4456                                     DepVars)) {
4457           DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4458           AlreadyExists = true;
4459           break;
4460         }
4461       }
4462       // If we already have it, ignore the variant.
4463       if (AlreadyExists) continue;
4464
4465       // Otherwise, add it to the list of patterns we have.
4466       PatternsToMatch.push_back(PatternToMatch(
4467           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4468           Variant, PatternsToMatch[i].getDstPattern(),
4469           PatternsToMatch[i].getDstRegs(),
4470           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4471     }
4472
4473     DEBUG(errs() << "\n");
4474   }
4475 }