]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/utils/TableGen/CodeGenRegisters.cpp
MFC r316858 7280 Allow changing global libzpool variables in zdb
[FreeBSD/FreeBSD.git] / contrib / llvm / utils / TableGen / CodeGenRegisters.cpp
1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines structures to encapsulate information gleaned from the
11 // target register and register class definitions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CodeGenRegisters.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/IntEqClasses.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/SparseBitVector.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/TableGen/Error.h"
33 #include "llvm/TableGen/Record.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstdint>
37 #include <iterator>
38 #include <map>
39 #include <set>
40 #include <string>
41 #include <tuple>
42 #include <utility>
43 #include <vector>
44
45 using namespace llvm;
46
47 #define DEBUG_TYPE "regalloc-emitter"
48
49 //===----------------------------------------------------------------------===//
50 //                             CodeGenSubRegIndex
51 //===----------------------------------------------------------------------===//
52
53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
54   : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true) {
55   Name = R->getName();
56   if (R->getValue("Namespace"))
57     Namespace = R->getValueAsString("Namespace");
58   Size = R->getValueAsInt("Size");
59   Offset = R->getValueAsInt("Offset");
60 }
61
62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
63                                        unsigned Enum)
64   : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
65     EnumValue(Enum), AllSuperRegsCovered(true) {
66 }
67
68 std::string CodeGenSubRegIndex::getQualifiedName() const {
69   std::string N = getNamespace();
70   if (!N.empty())
71     N += "::";
72   N += getName();
73   return N;
74 }
75
76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
77   if (!TheDef)
78     return;
79
80   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
81   if (!Comps.empty()) {
82     if (Comps.size() != 2)
83       PrintFatalError(TheDef->getLoc(),
84                       "ComposedOf must have exactly two entries");
85     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
86     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
87     CodeGenSubRegIndex *X = A->addComposite(B, this);
88     if (X)
89       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
90   }
91
92   std::vector<Record*> Parts =
93     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
94   if (!Parts.empty()) {
95     if (Parts.size() < 2)
96       PrintFatalError(TheDef->getLoc(),
97                       "CoveredBySubRegs must have two or more entries");
98     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
99     for (unsigned i = 0, e = Parts.size(); i != e; ++i)
100       IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
101     RegBank.addConcatSubRegIndex(IdxParts, this);
102   }
103 }
104
105 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
106   // Already computed?
107   if (LaneMask.any())
108     return LaneMask;
109
110   // Recursion guard, shouldn't be required.
111   LaneMask = LaneBitmask::getAll();
112
113   // The lane mask is simply the union of all sub-indices.
114   LaneBitmask M;
115   for (const auto &C : Composed)
116     M |= C.second->computeLaneMask();
117   assert(M.any() && "Missing lane mask, sub-register cycle?");
118   LaneMask = M;
119   return LaneMask;
120 }
121
122 //===----------------------------------------------------------------------===//
123 //                              CodeGenRegister
124 //===----------------------------------------------------------------------===//
125
126 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
127   : TheDef(R),
128     EnumValue(Enum),
129     CostPerUse(R->getValueAsInt("CostPerUse")),
130     CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
131     HasDisjunctSubRegs(false),
132     SubRegsComplete(false),
133     SuperRegsComplete(false),
134     TopoSig(~0u)
135 {}
136
137 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
138   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
139   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
140
141   if (SRIs.size() != SRs.size())
142     PrintFatalError(TheDef->getLoc(),
143                     "SubRegs and SubRegIndices must have the same size");
144
145   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
146     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
147     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
148   }
149
150   // Also compute leading super-registers. Each register has a list of
151   // covered-by-subregs super-registers where it appears as the first explicit
152   // sub-register.
153   //
154   // This is used by computeSecondarySubRegs() to find candidates.
155   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
156     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
157
158   // Add ad hoc alias links. This is a symmetric relationship between two
159   // registers, so build a symmetric graph by adding links in both ends.
160   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
161   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
162     CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
163     ExplicitAliases.push_back(Reg);
164     Reg->ExplicitAliases.push_back(this);
165   }
166 }
167
168 const StringRef CodeGenRegister::getName() const {
169   assert(TheDef && "no def");
170   return TheDef->getName();
171 }
172
173 namespace {
174
175 // Iterate over all register units in a set of registers.
176 class RegUnitIterator {
177   CodeGenRegister::Vec::const_iterator RegI, RegE;
178   CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
179
180 public:
181   RegUnitIterator(const CodeGenRegister::Vec &Regs):
182     RegI(Regs.begin()), RegE(Regs.end()) {
183
184     if (RegI != RegE) {
185       UnitI = (*RegI)->getRegUnits().begin();
186       UnitE = (*RegI)->getRegUnits().end();
187       advance();
188     }
189   }
190
191   bool isValid() const { return UnitI != UnitE; }
192
193   unsigned operator* () const { assert(isValid()); return *UnitI; }
194
195   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
196
197   /// Preincrement.  Move to the next unit.
198   void operator++() {
199     assert(isValid() && "Cannot advance beyond the last operand");
200     ++UnitI;
201     advance();
202   }
203
204 protected:
205   void advance() {
206     while (UnitI == UnitE) {
207       if (++RegI == RegE)
208         break;
209       UnitI = (*RegI)->getRegUnits().begin();
210       UnitE = (*RegI)->getRegUnits().end();
211     }
212   }
213 };
214
215 } // end anonymous namespace
216
217 // Return true of this unit appears in RegUnits.
218 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
219   return RegUnits.test(Unit);
220 }
221
222 // Inherit register units from subregisters.
223 // Return true if the RegUnits changed.
224 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
225   bool changed = false;
226   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
227        I != E; ++I) {
228     CodeGenRegister *SR = I->second;
229     // Merge the subregister's units into this register's RegUnits.
230     changed |= (RegUnits |= SR->RegUnits);
231   }
232
233   return changed;
234 }
235
236 const CodeGenRegister::SubRegMap &
237 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
238   // Only compute this map once.
239   if (SubRegsComplete)
240     return SubRegs;
241   SubRegsComplete = true;
242
243   HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
244
245   // First insert the explicit subregs and make sure they are fully indexed.
246   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
247     CodeGenRegister *SR = ExplicitSubRegs[i];
248     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
249     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
250       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
251                       " appears twice in Register " + getName());
252     // Map explicit sub-registers first, so the names take precedence.
253     // The inherited sub-registers are mapped below.
254     SubReg2Idx.insert(std::make_pair(SR, Idx));
255   }
256
257   // Keep track of inherited subregs and how they can be reached.
258   SmallPtrSet<CodeGenRegister*, 8> Orphans;
259
260   // Clone inherited subregs and place duplicate entries in Orphans.
261   // Here the order is important - earlier subregs take precedence.
262   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
263     CodeGenRegister *SR = ExplicitSubRegs[i];
264     const SubRegMap &Map = SR->computeSubRegs(RegBank);
265     HasDisjunctSubRegs |= SR->HasDisjunctSubRegs;
266
267     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
268          ++SI) {
269       if (!SubRegs.insert(*SI).second)
270         Orphans.insert(SI->second);
271     }
272   }
273
274   // Expand any composed subreg indices.
275   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
276   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
277   // expanded subreg indices recursively.
278   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
279   for (unsigned i = 0; i != Indices.size(); ++i) {
280     CodeGenSubRegIndex *Idx = Indices[i];
281     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
282     CodeGenRegister *SR = SubRegs[Idx];
283     const SubRegMap &Map = SR->computeSubRegs(RegBank);
284
285     // Look at the possible compositions of Idx.
286     // They may not all be supported by SR.
287     for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
288            E = Comps.end(); I != E; ++I) {
289       SubRegMap::const_iterator SRI = Map.find(I->first);
290       if (SRI == Map.end())
291         continue; // Idx + I->first doesn't exist in SR.
292       // Add I->second as a name for the subreg SRI->second, assuming it is
293       // orphaned, and the name isn't already used for something else.
294       if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
295         continue;
296       // We found a new name for the orphaned sub-register.
297       SubRegs.insert(std::make_pair(I->second, SRI->second));
298       Indices.push_back(I->second);
299     }
300   }
301
302   // Now Orphans contains the inherited subregisters without a direct index.
303   // Create inferred indexes for all missing entries.
304   // Work backwards in the Indices vector in order to compose subregs bottom-up.
305   // Consider this subreg sequence:
306   //
307   //   qsub_1 -> dsub_0 -> ssub_0
308   //
309   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
310   // can be reached in two different ways:
311   //
312   //   qsub_1 -> ssub_0
313   //   dsub_2 -> ssub_0
314   //
315   // We pick the latter composition because another register may have [dsub_0,
316   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
317   // dsub_2 -> ssub_0 composition can be shared.
318   while (!Indices.empty() && !Orphans.empty()) {
319     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
320     CodeGenRegister *SR = SubRegs[Idx];
321     const SubRegMap &Map = SR->computeSubRegs(RegBank);
322     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
323          ++SI)
324       if (Orphans.erase(SI->second))
325         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
326   }
327
328   // Compute the inverse SubReg -> Idx map.
329   for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
330        SI != SE; ++SI) {
331     if (SI->second == this) {
332       ArrayRef<SMLoc> Loc;
333       if (TheDef)
334         Loc = TheDef->getLoc();
335       PrintFatalError(Loc, "Register " + getName() +
336                       " has itself as a sub-register");
337     }
338
339     // Compute AllSuperRegsCovered.
340     if (!CoveredBySubRegs)
341       SI->first->AllSuperRegsCovered = false;
342
343     // Ensure that every sub-register has a unique name.
344     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
345       SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
346     if (Ins->second == SI->first)
347       continue;
348     // Trouble: Two different names for SI->second.
349     ArrayRef<SMLoc> Loc;
350     if (TheDef)
351       Loc = TheDef->getLoc();
352     PrintFatalError(Loc, "Sub-register can't have two names: " +
353                   SI->second->getName() + " available as " +
354                   SI->first->getName() + " and " + Ins->second->getName());
355   }
356
357   // Derive possible names for sub-register concatenations from any explicit
358   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
359   // that getConcatSubRegIndex() won't invent any concatenated indices that the
360   // user already specified.
361   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
362     CodeGenRegister *SR = ExplicitSubRegs[i];
363     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
364       continue;
365
366     // SR is composed of multiple sub-regs. Find their names in this register.
367     SmallVector<CodeGenSubRegIndex*, 8> Parts;
368     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
369       Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
370
371     // Offer this as an existing spelling for the concatenation of Parts.
372     RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
373   }
374
375   // Initialize RegUnitList. Because getSubRegs is called recursively, this
376   // processes the register hierarchy in postorder.
377   //
378   // Inherit all sub-register units. It is good enough to look at the explicit
379   // sub-registers, the other registers won't contribute any more units.
380   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
381     CodeGenRegister *SR = ExplicitSubRegs[i];
382     RegUnits |= SR->RegUnits;
383   }
384
385   // Absent any ad hoc aliasing, we create one register unit per leaf register.
386   // These units correspond to the maximal cliques in the register overlap
387   // graph which is optimal.
388   //
389   // When there is ad hoc aliasing, we simply create one unit per edge in the
390   // undirected ad hoc aliasing graph. Technically, we could do better by
391   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
392   // are extremely rare anyway (I've never seen one), so we don't bother with
393   // the added complexity.
394   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
395     CodeGenRegister *AR = ExplicitAliases[i];
396     // Only visit each edge once.
397     if (AR->SubRegsComplete)
398       continue;
399     // Create a RegUnit representing this alias edge, and add it to both
400     // registers.
401     unsigned Unit = RegBank.newRegUnit(this, AR);
402     RegUnits.set(Unit);
403     AR->RegUnits.set(Unit);
404   }
405
406   // Finally, create units for leaf registers without ad hoc aliases. Note that
407   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
408   // necessary. This means the aliasing leaf registers can share a single unit.
409   if (RegUnits.empty())
410     RegUnits.set(RegBank.newRegUnit(this));
411
412   // We have now computed the native register units. More may be adopted later
413   // for balancing purposes.
414   NativeRegUnits = RegUnits;
415
416   return SubRegs;
417 }
418
419 // In a register that is covered by its sub-registers, try to find redundant
420 // sub-registers. For example:
421 //
422 //   QQ0 = {Q0, Q1}
423 //   Q0 = {D0, D1}
424 //   Q1 = {D2, D3}
425 //
426 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
427 // the register definition.
428 //
429 // The explicitly specified registers form a tree. This function discovers
430 // sub-register relationships that would force a DAG.
431 //
432 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
433   // Collect new sub-registers first, add them later.
434   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
435
436   // Look at the leading super-registers of each sub-register. Those are the
437   // candidates for new sub-registers, assuming they are fully contained in
438   // this register.
439   for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
440     const CodeGenRegister *SubReg = I->second;
441     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
442     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
443       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
444       // Already got this sub-register?
445       if (Cand == this || getSubRegIndex(Cand))
446         continue;
447       // Check if each component of Cand is already a sub-register.
448       // We know that the first component is I->second, and is present with the
449       // name I->first.
450       SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
451       assert(!Cand->ExplicitSubRegs.empty() &&
452              "Super-register has no sub-registers");
453       for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
454         if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
455           Parts.push_back(Idx);
456         else {
457           // Sub-register doesn't exist.
458           Parts.clear();
459           break;
460         }
461       }
462       // If some Cand sub-register is not part of this register, or if Cand only
463       // has one sub-register, there is nothing to do.
464       if (Parts.size() <= 1)
465         continue;
466
467       // Each part of Cand is a sub-register of this. Make the full Cand also
468       // a sub-register with a concatenated sub-register index.
469       CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
470       NewSubRegs.push_back(std::make_pair(Concat, Cand));
471     }
472   }
473
474   // Now add all the new sub-registers.
475   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
476     // Don't add Cand if another sub-register is already using the index.
477     if (!SubRegs.insert(NewSubRegs[i]).second)
478       continue;
479
480     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
481     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
482     SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
483   }
484
485   // Create sub-register index composition maps for the synthesized indices.
486   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
487     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
488     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
489     for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
490            SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
491       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
492       if (!SubIdx)
493         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
494                         SI->second->getName() + " in " + getName());
495       NewIdx->addComposite(SI->first, SubIdx);
496     }
497   }
498 }
499
500 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
501   // Only visit each register once.
502   if (SuperRegsComplete)
503     return;
504   SuperRegsComplete = true;
505
506   // Make sure all sub-registers have been visited first, so the super-reg
507   // lists will be topologically ordered.
508   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
509        I != E; ++I)
510     I->second->computeSuperRegs(RegBank);
511
512   // Now add this as a super-register on all sub-registers.
513   // Also compute the TopoSigId in post-order.
514   TopoSigId Id;
515   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
516        I != E; ++I) {
517     // Topological signature computed from SubIdx, TopoId(SubReg).
518     // Loops and idempotent indices have TopoSig = ~0u.
519     Id.push_back(I->first->EnumValue);
520     Id.push_back(I->second->TopoSig);
521
522     // Don't add duplicate entries.
523     if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
524       continue;
525     I->second->SuperRegs.push_back(this);
526   }
527   TopoSig = RegBank.getTopoSig(Id);
528 }
529
530 void
531 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
532                                     CodeGenRegBank &RegBank) const {
533   assert(SubRegsComplete && "Must precompute sub-registers");
534   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
535     CodeGenRegister *SR = ExplicitSubRegs[i];
536     if (OSet.insert(SR))
537       SR->addSubRegsPreOrder(OSet, RegBank);
538   }
539   // Add any secondary sub-registers that weren't part of the explicit tree.
540   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
541        I != E; ++I)
542     OSet.insert(I->second);
543 }
544
545 // Get the sum of this register's unit weights.
546 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
547   unsigned Weight = 0;
548   for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end();
549        I != E; ++I) {
550     Weight += RegBank.getRegUnit(*I).Weight;
551   }
552   return Weight;
553 }
554
555 //===----------------------------------------------------------------------===//
556 //                               RegisterTuples
557 //===----------------------------------------------------------------------===//
558
559 // A RegisterTuples def is used to generate pseudo-registers from lists of
560 // sub-registers. We provide a SetTheory expander class that returns the new
561 // registers.
562 namespace {
563
564 struct TupleExpander : SetTheory::Expander {
565   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
566     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
567     unsigned Dim = Indices.size();
568     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
569     if (Dim != SubRegs->size())
570       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
571     if (Dim < 2)
572       PrintFatalError(Def->getLoc(),
573                       "Tuples must have at least 2 sub-registers");
574
575     // Evaluate the sub-register lists to be zipped.
576     unsigned Length = ~0u;
577     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
578     for (unsigned i = 0; i != Dim; ++i) {
579       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
580       Length = std::min(Length, unsigned(Lists[i].size()));
581     }
582
583     if (Length == 0)
584       return;
585
586     // Precompute some types.
587     Record *RegisterCl = Def->getRecords().getClass("Register");
588     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
589     StringInit *BlankName = StringInit::get("");
590
591     // Zip them up.
592     for (unsigned n = 0; n != Length; ++n) {
593       std::string Name;
594       Record *Proto = Lists[0][n];
595       std::vector<Init*> Tuple;
596       unsigned CostPerUse = 0;
597       for (unsigned i = 0; i != Dim; ++i) {
598         Record *Reg = Lists[i][n];
599         if (i) Name += '_';
600         Name += Reg->getName();
601         Tuple.push_back(DefInit::get(Reg));
602         CostPerUse = std::max(CostPerUse,
603                               unsigned(Reg->getValueAsInt("CostPerUse")));
604       }
605
606       // Create a new Record representing the synthesized register. This record
607       // is only for consumption by CodeGenRegister, it is not added to the
608       // RecordKeeper.
609       Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
610       Elts.insert(NewReg);
611
612       // Copy Proto super-classes.
613       ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
614       for (const auto &SuperPair : Supers)
615         NewReg->addSuperClass(SuperPair.first, SuperPair.second);
616
617       // Copy Proto fields.
618       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
619         RecordVal RV = Proto->getValues()[i];
620
621         // Skip existing fields, like NAME.
622         if (NewReg->getValue(RV.getNameInit()))
623           continue;
624
625         StringRef Field = RV.getName();
626
627         // Replace the sub-register list with Tuple.
628         if (Field == "SubRegs")
629           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
630
631         // Provide a blank AsmName. MC hacks are required anyway.
632         if (Field == "AsmName")
633           RV.setValue(BlankName);
634
635         // CostPerUse is aggregated from all Tuple members.
636         if (Field == "CostPerUse")
637           RV.setValue(IntInit::get(CostPerUse));
638
639         // Composite registers are always covered by sub-registers.
640         if (Field == "CoveredBySubRegs")
641           RV.setValue(BitInit::get(true));
642
643         // Copy fields from the RegisterTuples def.
644         if (Field == "SubRegIndices" ||
645             Field == "CompositeIndices") {
646           NewReg->addValue(*Def->getValue(Field));
647           continue;
648         }
649
650         // Some fields get their default uninitialized value.
651         if (Field == "DwarfNumbers" ||
652             Field == "DwarfAlias" ||
653             Field == "Aliases") {
654           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
655             NewReg->addValue(*DefRV);
656           continue;
657         }
658
659         // Everything else is copied from Proto.
660         NewReg->addValue(RV);
661       }
662     }
663   }
664 };
665
666 } // end anonymous namespace
667
668 //===----------------------------------------------------------------------===//
669 //                            CodeGenRegisterClass
670 //===----------------------------------------------------------------------===//
671
672 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
673   std::sort(M.begin(), M.end(), deref<llvm::less>());
674   M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end());
675 }
676
677 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
678   : TheDef(R),
679     Name(R->getName()),
680     TopoSigs(RegBank.getNumTopoSigs()),
681     EnumValue(-1) {
682
683   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
684   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
685     Record *Type = TypeList[i];
686     if (!Type->isSubClassOf("ValueType"))
687       PrintFatalError("RegTypes list member '" + Type->getName() +
688         "' does not derive from the ValueType class!");
689     VTs.push_back(getValueType(Type));
690   }
691   assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
692
693   // Allocation order 0 is the full set. AltOrders provides others.
694   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
695   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
696   Orders.resize(1 + AltOrders->size());
697
698   // Default allocation order always contains all registers.
699   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
700     Orders[0].push_back((*Elements)[i]);
701     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
702     Members.push_back(Reg);
703     TopoSigs.set(Reg->getTopoSig());
704   }
705   sortAndUniqueRegisters(Members);
706
707   // Alternative allocation orders may be subsets.
708   SetTheory::RecSet Order;
709   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
710     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
711     Orders[1 + i].append(Order.begin(), Order.end());
712     // Verify that all altorder members are regclass members.
713     while (!Order.empty()) {
714       CodeGenRegister *Reg = RegBank.getReg(Order.back());
715       Order.pop_back();
716       if (!contains(Reg))
717         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
718                       " is not a class member");
719     }
720   }
721
722   // Allow targets to override the size in bits of the RegisterClass.
723   unsigned Size = R->getValueAsInt("Size");
724
725   Namespace = R->getValueAsString("Namespace");
726   SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits();
727   SpillAlignment = R->getValueAsInt("Alignment");
728   CopyCost = R->getValueAsInt("CopyCost");
729   Allocatable = R->getValueAsBit("isAllocatable");
730   AltOrderSelect = R->getValueAsString("AltOrderSelect");
731   int AllocationPriority = R->getValueAsInt("AllocationPriority");
732   if (AllocationPriority < 0 || AllocationPriority > 63)
733     PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
734   this->AllocationPriority = AllocationPriority;
735 }
736
737 // Create an inferred register class that was missing from the .td files.
738 // Most properties will be inherited from the closest super-class after the
739 // class structure has been computed.
740 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
741                                            StringRef Name, Key Props)
742   : Members(*Props.Members),
743     TheDef(nullptr),
744     Name(Name),
745     TopoSigs(RegBank.getNumTopoSigs()),
746     EnumValue(-1),
747     SpillSize(Props.SpillSize),
748     SpillAlignment(Props.SpillAlignment),
749     CopyCost(0),
750     Allocatable(true),
751     AllocationPriority(0) {
752   for (const auto R : Members)
753     TopoSigs.set(R->getTopoSig());
754 }
755
756 // Compute inherited propertied for a synthesized register class.
757 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
758   assert(!getDef() && "Only synthesized classes can inherit properties");
759   assert(!SuperClasses.empty() && "Synthesized class without super class");
760
761   // The last super-class is the smallest one.
762   CodeGenRegisterClass &Super = *SuperClasses.back();
763
764   // Most properties are copied directly.
765   // Exceptions are members, size, and alignment
766   Namespace = Super.Namespace;
767   VTs = Super.VTs;
768   CopyCost = Super.CopyCost;
769   Allocatable = Super.Allocatable;
770   AltOrderSelect = Super.AltOrderSelect;
771   AllocationPriority = Super.AllocationPriority;
772
773   // Copy all allocation orders, filter out foreign registers from the larger
774   // super-class.
775   Orders.resize(Super.Orders.size());
776   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
777     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
778       if (contains(RegBank.getReg(Super.Orders[i][j])))
779         Orders[i].push_back(Super.Orders[i][j]);
780 }
781
782 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
783   return std::binary_search(Members.begin(), Members.end(), Reg,
784                             deref<llvm::less>());
785 }
786
787 namespace llvm {
788
789   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
790     OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
791     for (const auto R : *K.Members)
792       OS << ", " << R->getName();
793     return OS << " }";
794   }
795
796 } // end namespace llvm
797
798 // This is a simple lexicographical order that can be used to search for sets.
799 // It is not the same as the topological order provided by TopoOrderRC.
800 bool CodeGenRegisterClass::Key::
801 operator<(const CodeGenRegisterClass::Key &B) const {
802   assert(Members && B.Members);
803   return std::tie(*Members, SpillSize, SpillAlignment) <
804          std::tie(*B.Members, B.SpillSize, B.SpillAlignment);
805 }
806
807 // Returns true if RC is a strict subclass.
808 // RC is a sub-class of this class if it is a valid replacement for any
809 // instruction operand where a register of this classis required. It must
810 // satisfy these conditions:
811 //
812 // 1. All RC registers are also in this.
813 // 2. The RC spill size must not be smaller than our spill size.
814 // 3. RC spill alignment must be compatible with ours.
815 //
816 static bool testSubClass(const CodeGenRegisterClass *A,
817                          const CodeGenRegisterClass *B) {
818   return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
819          A->SpillSize <= B->SpillSize &&
820          std::includes(A->getMembers().begin(), A->getMembers().end(),
821                        B->getMembers().begin(), B->getMembers().end(),
822                        deref<llvm::less>());
823 }
824
825 /// Sorting predicate for register classes.  This provides a topological
826 /// ordering that arranges all register classes before their sub-classes.
827 ///
828 /// Register classes with the same registers, spill size, and alignment form a
829 /// clique.  They will be ordered alphabetically.
830 ///
831 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
832                         const CodeGenRegisterClass &PB) {
833   auto *A = &PA;
834   auto *B = &PB;
835   if (A == B)
836     return false;
837
838   // Order by ascending spill size.
839   if (A->SpillSize < B->SpillSize)
840     return true;
841   if (A->SpillSize > B->SpillSize)
842     return false;
843
844   // Order by ascending spill alignment.
845   if (A->SpillAlignment < B->SpillAlignment)
846     return true;
847   if (A->SpillAlignment > B->SpillAlignment)
848     return false;
849
850   // Order by descending set size.  Note that the classes' allocation order may
851   // not have been computed yet.  The Members set is always vaild.
852   if (A->getMembers().size() > B->getMembers().size())
853     return true;
854   if (A->getMembers().size() < B->getMembers().size())
855     return false;
856
857   // Finally order by name as a tie breaker.
858   return StringRef(A->getName()) < B->getName();
859 }
860
861 std::string CodeGenRegisterClass::getQualifiedName() const {
862   if (Namespace.empty())
863     return getName();
864   else
865     return (Namespace + "::" + getName()).str();
866 }
867
868 // Compute sub-classes of all register classes.
869 // Assume the classes are ordered topologically.
870 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
871   auto &RegClasses = RegBank.getRegClasses();
872
873   // Visit backwards so sub-classes are seen first.
874   for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
875     CodeGenRegisterClass &RC = *I;
876     RC.SubClasses.resize(RegClasses.size());
877     RC.SubClasses.set(RC.EnumValue);
878
879     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
880     for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
881       CodeGenRegisterClass &SubRC = *I2;
882       if (RC.SubClasses.test(SubRC.EnumValue))
883         continue;
884       if (!testSubClass(&RC, &SubRC))
885         continue;
886       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
887       // check them again.
888       RC.SubClasses |= SubRC.SubClasses;
889     }
890
891     // Sweep up missed clique members.  They will be immediately preceding RC.
892     for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
893       RC.SubClasses.set(I2->EnumValue);
894   }
895
896   // Compute the SuperClasses lists from the SubClasses vectors.
897   for (auto &RC : RegClasses) {
898     const BitVector &SC = RC.getSubClasses();
899     auto I = RegClasses.begin();
900     for (int s = 0, next_s = SC.find_first(); next_s != -1;
901          next_s = SC.find_next(s)) {
902       std::advance(I, next_s - s);
903       s = next_s;
904       if (&*I == &RC)
905         continue;
906       I->SuperClasses.push_back(&RC);
907     }
908   }
909
910   // With the class hierarchy in place, let synthesized register classes inherit
911   // properties from their closest super-class. The iteration order here can
912   // propagate properties down multiple levels.
913   for (auto &RC : RegClasses)
914     if (!RC.getDef())
915       RC.inheritProperties(RegBank);
916 }
917
918 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
919 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
920     CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
921   auto SizeOrder = [](const CodeGenRegisterClass *A,
922                       const CodeGenRegisterClass *B) {
923     return A->getMembers().size() > B->getMembers().size();
924   };
925
926   auto &RegClasses = RegBank.getRegClasses();
927
928   // Find all the subclasses of this one that fully support the sub-register
929   // index and order them by size. BiggestSuperRC should always be first.
930   CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
931   if (!BiggestSuperRegRC)
932     return None;
933   BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
934   std::vector<CodeGenRegisterClass *> SuperRegRCs;
935   for (auto &RC : RegClasses)
936     if (SuperRegRCsBV[RC.EnumValue])
937       SuperRegRCs.emplace_back(&RC);
938   std::sort(SuperRegRCs.begin(), SuperRegRCs.end(), SizeOrder);
939   assert(SuperRegRCs.front() == BiggestSuperRegRC && "Biggest class wasn't first");
940
941   // Find all the subreg classes and order them by size too.
942   std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
943   for (auto &RC: RegClasses) {
944     BitVector SuperRegClassesBV(RegClasses.size());
945     RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
946     if (SuperRegClassesBV.any())
947       SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
948   }
949   std::sort(SuperRegClasses.begin(), SuperRegClasses.end(),
950             [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
951                 const std::pair<CodeGenRegisterClass *, BitVector> &B) {
952               return SizeOrder(A.first, B.first);
953             });
954
955   // Find the biggest subclass and subreg class such that R:subidx is in the
956   // subreg class for all R in subclass.
957   //
958   // For example:
959   // All registers in X86's GR64 have a sub_32bit subregister but no class
960   // exists that contains all the 32-bit subregisters because GR64 contains RIP
961   // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
962   // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
963   // having excluded RIP, we are able to find a SubRegRC (GR32).
964   CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
965   CodeGenRegisterClass *SubRegRC = nullptr;
966   for (auto *SuperRegRC : SuperRegRCs) {
967     for (const auto &SuperRegClassPair : SuperRegClasses) {
968       const BitVector &SuperRegClassBV = SuperRegClassPair.second;
969       if (SuperRegClassBV[SuperRegRC->EnumValue]) {
970         SubRegRC = SuperRegClassPair.first;
971         ChosenSuperRegClass = SuperRegRC;
972
973         // If SubRegRC is bigger than SuperRegRC then there are members of
974         // SubRegRC that don't have super registers via SubIdx. Keep looking to
975         // find a better fit and fall back on this one if there isn't one.
976         //
977         // This is intended to prevent X86 from making odd choices such as
978         // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
979         // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
980         // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
981         // mapping.
982         if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
983           return std::make_pair(ChosenSuperRegClass, SubRegRC);
984       }
985     }
986
987     // If we found a fit but it wasn't quite ideal because SubRegRC had excess
988     // registers, then we're done.
989     if (ChosenSuperRegClass)
990       return std::make_pair(ChosenSuperRegClass, SubRegRC);
991   }
992
993   return None;
994 }
995
996 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
997                                               BitVector &Out) const {
998   auto FindI = SuperRegClasses.find(SubIdx);
999   if (FindI == SuperRegClasses.end())
1000     return;
1001   for (CodeGenRegisterClass *RC : FindI->second)
1002     Out.set(RC->EnumValue);
1003 }
1004
1005 // Populate a unique sorted list of units from a register set.
1006 void CodeGenRegisterClass::buildRegUnitSet(
1007   std::vector<unsigned> &RegUnits) const {
1008   std::vector<unsigned> TmpUnits;
1009   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
1010     TmpUnits.push_back(*UnitI);
1011   std::sort(TmpUnits.begin(), TmpUnits.end());
1012   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1013                    std::back_inserter(RegUnits));
1014 }
1015
1016 //===----------------------------------------------------------------------===//
1017 //                               CodeGenRegBank
1018 //===----------------------------------------------------------------------===//
1019
1020 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
1021   // Configure register Sets to understand register classes and tuples.
1022   Sets.addFieldExpander("RegisterClass", "MemberList");
1023   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1024   Sets.addExpander("RegisterTuples", llvm::make_unique<TupleExpander>());
1025
1026   // Read in the user-defined (named) sub-register indices.
1027   // More indices will be synthesized later.
1028   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1029   std::sort(SRIs.begin(), SRIs.end(), LessRecord());
1030   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1031     getSubRegIdx(SRIs[i]);
1032   // Build composite maps from ComposedOf fields.
1033   for (auto &Idx : SubRegIndices)
1034     Idx.updateComponents(*this);
1035
1036   // Read in the register definitions.
1037   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
1038   std::sort(Regs.begin(), Regs.end(), LessRecordRegister());
1039   // Assign the enumeration values.
1040   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1041     getReg(Regs[i]);
1042
1043   // Expand tuples and number the new registers.
1044   std::vector<Record*> Tups =
1045     Records.getAllDerivedDefinitions("RegisterTuples");
1046
1047   for (Record *R : Tups) {
1048     std::vector<Record *> TupRegs = *Sets.expand(R);
1049     std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister());
1050     for (Record *RC : TupRegs)
1051       getReg(RC);
1052   }
1053
1054   // Now all the registers are known. Build the object graph of explicit
1055   // register-register references.
1056   for (auto &Reg : Registers)
1057     Reg.buildObjectGraph(*this);
1058
1059   // Compute register name map.
1060   for (auto &Reg : Registers)
1061     // FIXME: This could just be RegistersByName[name] = register, except that
1062     // causes some failures in MIPS - perhaps they have duplicate register name
1063     // entries? (or maybe there's a reason for it - I don't know much about this
1064     // code, just drive-by refactoring)
1065     RegistersByName.insert(
1066         std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1067
1068   // Precompute all sub-register maps.
1069   // This will create Composite entries for all inferred sub-register indices.
1070   for (auto &Reg : Registers)
1071     Reg.computeSubRegs(*this);
1072
1073   // Infer even more sub-registers by combining leading super-registers.
1074   for (auto &Reg : Registers)
1075     if (Reg.CoveredBySubRegs)
1076       Reg.computeSecondarySubRegs(*this);
1077
1078   // After the sub-register graph is complete, compute the topologically
1079   // ordered SuperRegs list.
1080   for (auto &Reg : Registers)
1081     Reg.computeSuperRegs(*this);
1082
1083   // Native register units are associated with a leaf register. They've all been
1084   // discovered now.
1085   NumNativeRegUnits = RegUnits.size();
1086
1087   // Read in register class definitions.
1088   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1089   if (RCs.empty())
1090     PrintFatalError("No 'RegisterClass' subclasses defined!");
1091
1092   // Allocate user-defined register classes.
1093   for (auto *RC : RCs) {
1094     RegClasses.emplace_back(*this, RC);
1095     addToMaps(&RegClasses.back());
1096   }
1097
1098   // Infer missing classes to create a full algebra.
1099   computeInferredRegisterClasses();
1100
1101   // Order register classes topologically and assign enum values.
1102   RegClasses.sort(TopoOrderRC);
1103   unsigned i = 0;
1104   for (auto &RC : RegClasses)
1105     RC.EnumValue = i++;
1106   CodeGenRegisterClass::computeSubClasses(*this);
1107 }
1108
1109 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1110 CodeGenSubRegIndex*
1111 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1112   SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1113   return &SubRegIndices.back();
1114 }
1115
1116 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1117   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1118   if (Idx)
1119     return Idx;
1120   SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1121   Idx = &SubRegIndices.back();
1122   return Idx;
1123 }
1124
1125 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1126   CodeGenRegister *&Reg = Def2Reg[Def];
1127   if (Reg)
1128     return Reg;
1129   Registers.emplace_back(Def, Registers.size() + 1);
1130   Reg = &Registers.back();
1131   return Reg;
1132 }
1133
1134 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1135   if (Record *Def = RC->getDef())
1136     Def2RC.insert(std::make_pair(Def, RC));
1137
1138   // Duplicate classes are rejected by insert().
1139   // That's OK, we only care about the properties handled by CGRC::Key.
1140   CodeGenRegisterClass::Key K(*RC);
1141   Key2RC.insert(std::make_pair(K, RC));
1142 }
1143
1144 // Create a synthetic sub-class if it is missing.
1145 CodeGenRegisterClass*
1146 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1147                                     const CodeGenRegister::Vec *Members,
1148                                     StringRef Name) {
1149   // Synthetic sub-class has the same size and alignment as RC.
1150   CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
1151   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1152   if (FoundI != Key2RC.end())
1153     return FoundI->second;
1154
1155   // Sub-class doesn't exist, create a new one.
1156   RegClasses.emplace_back(*this, Name, K);
1157   addToMaps(&RegClasses.back());
1158   return &RegClasses.back();
1159 }
1160
1161 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1162   if (CodeGenRegisterClass *RC = Def2RC[Def])
1163     return RC;
1164
1165   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1166 }
1167
1168 CodeGenSubRegIndex*
1169 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1170                                         CodeGenSubRegIndex *B) {
1171   // Look for an existing entry.
1172   CodeGenSubRegIndex *Comp = A->compose(B);
1173   if (Comp)
1174     return Comp;
1175
1176   // None exists, synthesize one.
1177   std::string Name = A->getName() + "_then_" + B->getName();
1178   Comp = createSubRegIndex(Name, A->getNamespace());
1179   A->addComposite(B, Comp);
1180   return Comp;
1181 }
1182
1183 CodeGenSubRegIndex *CodeGenRegBank::
1184 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1185   assert(Parts.size() > 1 && "Need two parts to concatenate");
1186
1187   // Look for an existing entry.
1188   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1189   if (Idx)
1190     return Idx;
1191
1192   // None exists, synthesize one.
1193   std::string Name = Parts.front()->getName();
1194   // Determine whether all parts are contiguous.
1195   bool isContinuous = true;
1196   unsigned Size = Parts.front()->Size;
1197   unsigned LastOffset = Parts.front()->Offset;
1198   unsigned LastSize = Parts.front()->Size;
1199   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1200     Name += '_';
1201     Name += Parts[i]->getName();
1202     Size += Parts[i]->Size;
1203     if (Parts[i]->Offset != (LastOffset + LastSize))
1204       isContinuous = false;
1205     LastOffset = Parts[i]->Offset;
1206     LastSize = Parts[i]->Size;
1207   }
1208   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1209   Idx->Size = Size;
1210   Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1211   return Idx;
1212 }
1213
1214 void CodeGenRegBank::computeComposites() {
1215   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1216   // and many registers will share TopoSigs on regular architectures.
1217   BitVector TopoSigs(getNumTopoSigs());
1218
1219   for (const auto &Reg1 : Registers) {
1220     // Skip identical subreg structures already processed.
1221     if (TopoSigs.test(Reg1.getTopoSig()))
1222       continue;
1223     TopoSigs.set(Reg1.getTopoSig());
1224
1225     const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1226     for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1227          e1 = SRM1.end(); i1 != e1; ++i1) {
1228       CodeGenSubRegIndex *Idx1 = i1->first;
1229       CodeGenRegister *Reg2 = i1->second;
1230       // Ignore identity compositions.
1231       if (&Reg1 == Reg2)
1232         continue;
1233       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1234       // Try composing Idx1 with another SubRegIndex.
1235       for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1236            e2 = SRM2.end(); i2 != e2; ++i2) {
1237         CodeGenSubRegIndex *Idx2 = i2->first;
1238         CodeGenRegister *Reg3 = i2->second;
1239         // Ignore identity compositions.
1240         if (Reg2 == Reg3)
1241           continue;
1242         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1243         CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1244         assert(Idx3 && "Sub-register doesn't have an index");
1245
1246         // Conflicting composition? Emit a warning but allow it.
1247         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
1248           PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1249                        " and " + Idx2->getQualifiedName() +
1250                        " compose ambiguously as " + Prev->getQualifiedName() +
1251                        " or " + Idx3->getQualifiedName());
1252       }
1253     }
1254   }
1255 }
1256
1257 // Compute lane masks. This is similar to register units, but at the
1258 // sub-register index level. Each bit in the lane mask is like a register unit
1259 // class, and two lane masks will have a bit in common if two sub-register
1260 // indices overlap in some register.
1261 //
1262 // Conservatively share a lane mask bit if two sub-register indices overlap in
1263 // some registers, but not in others. That shouldn't happen a lot.
1264 void CodeGenRegBank::computeSubRegLaneMasks() {
1265   // First assign individual bits to all the leaf indices.
1266   unsigned Bit = 0;
1267   // Determine mask of lanes that cover their registers.
1268   CoveringLanes = LaneBitmask::getAll();
1269   for (auto &Idx : SubRegIndices) {
1270     if (Idx.getComposites().empty()) {
1271       if (Bit > LaneBitmask::BitWidth) {
1272         PrintFatalError(
1273           Twine("Ran out of lanemask bits to represent subregister ")
1274           + Idx.getName());
1275       }
1276       Idx.LaneMask = LaneBitmask::getLane(Bit);
1277       ++Bit;
1278     } else {
1279       Idx.LaneMask = LaneBitmask::getNone();
1280     }
1281   }
1282
1283   // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1284   // here is that for each possible target subregister we look at the leafs
1285   // in the subregister graph that compose for this target and create
1286   // transformation sequences for the lanemasks. Each step in the sequence
1287   // consists of a bitmask and a bitrotate operation. As the rotation amounts
1288   // are usually the same for many subregisters we can easily combine the steps
1289   // by combining the masks.
1290   for (const auto &Idx : SubRegIndices) {
1291     const auto &Composites = Idx.getComposites();
1292     auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1293
1294     if (Composites.empty()) {
1295       // Moving from a class with no subregisters we just had a single lane:
1296       // The subregister must be a leaf subregister and only occupies 1 bit.
1297       // Move the bit from the class without subregisters into that position.
1298       static_assert(sizeof(Idx.LaneMask.getAsInteger()) == 4,
1299                     "Change Log2_32 to a proper one");
1300       unsigned DstBit = Log2_32(Idx.LaneMask.getAsInteger());
1301       assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1302              "Must be a leaf subregister");
1303       MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
1304       LaneTransforms.push_back(MaskRol);
1305     } else {
1306       // Go through all leaf subregisters and find the ones that compose with
1307       // Idx. These make out all possible valid bits in the lane mask we want to
1308       // transform. Looking only at the leafs ensure that only a single bit in
1309       // the mask is set.
1310       unsigned NextBit = 0;
1311       for (auto &Idx2 : SubRegIndices) {
1312         // Skip non-leaf subregisters.
1313         if (!Idx2.getComposites().empty())
1314           continue;
1315         // Replicate the behaviour from the lane mask generation loop above.
1316         unsigned SrcBit = NextBit;
1317         LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1318         if (NextBit < LaneBitmask::BitWidth-1)
1319           ++NextBit;
1320         assert(Idx2.LaneMask == SrcMask);
1321
1322         // Get the composed subregister if there is any.
1323         auto C = Composites.find(&Idx2);
1324         if (C == Composites.end())
1325           continue;
1326         const CodeGenSubRegIndex *Composite = C->second;
1327         // The Composed subreg should be a leaf subreg too
1328         assert(Composite->getComposites().empty());
1329
1330         // Create Mask+Rotate operation and merge with existing ops if possible.
1331         static_assert(sizeof(Composite->LaneMask.getAsInteger()) == 4,
1332                       "Change Log2_32 to a proper one");
1333         unsigned DstBit = Log2_32(Composite->LaneMask.getAsInteger());
1334         int Shift = DstBit - SrcBit;
1335         uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
1336                                         : LaneBitmask::BitWidth + Shift;
1337         for (auto &I : LaneTransforms) {
1338           if (I.RotateLeft == RotateLeft) {
1339             I.Mask |= SrcMask;
1340             SrcMask = LaneBitmask::getNone();
1341           }
1342         }
1343         if (SrcMask.any()) {
1344           MaskRolPair MaskRol = { SrcMask, RotateLeft };
1345           LaneTransforms.push_back(MaskRol);
1346         }
1347       }
1348     }
1349
1350     // Optimize if the transformation consists of one step only: Set mask to
1351     // 0xffffffff (including some irrelevant invalid bits) so that it should
1352     // merge with more entries later while compressing the table.
1353     if (LaneTransforms.size() == 1)
1354       LaneTransforms[0].Mask = LaneBitmask::getAll();
1355
1356     // Further compression optimization: For invalid compositions resulting
1357     // in a sequence with 0 entries we can just pick any other. Choose
1358     // Mask 0xffffffff with Rotation 0.
1359     if (LaneTransforms.size() == 0) {
1360       MaskRolPair P = { LaneBitmask::getAll(), 0 };
1361       LaneTransforms.push_back(P);
1362     }
1363   }
1364
1365   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1366   // by the sub-register graph? This doesn't occur in any known targets.
1367
1368   // Inherit lanes from composites.
1369   for (const auto &Idx : SubRegIndices) {
1370     LaneBitmask Mask = Idx.computeLaneMask();
1371     // If some super-registers without CoveredBySubRegs use this index, we can
1372     // no longer assume that the lanes are covering their registers.
1373     if (!Idx.AllSuperRegsCovered)
1374       CoveringLanes &= ~Mask;
1375   }
1376
1377   // Compute lane mask combinations for register classes.
1378   for (auto &RegClass : RegClasses) {
1379     LaneBitmask LaneMask;
1380     for (const auto &SubRegIndex : SubRegIndices) {
1381       if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1382         continue;
1383       LaneMask |= SubRegIndex.LaneMask;
1384     }
1385
1386     // For classes without any subregisters set LaneMask to 1 instead of 0.
1387     // This makes it easier for client code to handle classes uniformly.
1388     if (LaneMask.none())
1389       LaneMask = LaneBitmask::getLane(0);
1390
1391     RegClass.LaneMask = LaneMask;
1392   }
1393 }
1394
1395 namespace {
1396
1397 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1398 // the transitive closure of the union of overlapping register
1399 // classes. Together, the UberRegSets form a partition of the registers. If we
1400 // consider overlapping register classes to be connected, then each UberRegSet
1401 // is a set of connected components.
1402 //
1403 // An UberRegSet will likely be a horizontal slice of register names of
1404 // the same width. Nontrivial subregisters should then be in a separate
1405 // UberRegSet. But this property isn't required for valid computation of
1406 // register unit weights.
1407 //
1408 // A Weight field caches the max per-register unit weight in each UberRegSet.
1409 //
1410 // A set of SingularDeterminants flags single units of some register in this set
1411 // for which the unit weight equals the set weight. These units should not have
1412 // their weight increased.
1413 struct UberRegSet {
1414   CodeGenRegister::Vec Regs;
1415   unsigned Weight = 0;
1416   CodeGenRegister::RegUnitList SingularDeterminants;
1417
1418   UberRegSet() = default;
1419 };
1420
1421 } // end anonymous namespace
1422
1423 // Partition registers into UberRegSets, where each set is the transitive
1424 // closure of the union of overlapping register classes.
1425 //
1426 // UberRegSets[0] is a special non-allocatable set.
1427 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1428                             std::vector<UberRegSet*> &RegSets,
1429                             CodeGenRegBank &RegBank) {
1430   const auto &Registers = RegBank.getRegisters();
1431
1432   // The Register EnumValue is one greater than its index into Registers.
1433   assert(Registers.size() == Registers.back().EnumValue &&
1434          "register enum value mismatch");
1435
1436   // For simplicitly make the SetID the same as EnumValue.
1437   IntEqClasses UberSetIDs(Registers.size()+1);
1438   std::set<unsigned> AllocatableRegs;
1439   for (auto &RegClass : RegBank.getRegClasses()) {
1440     if (!RegClass.Allocatable)
1441       continue;
1442
1443     const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1444     if (Regs.empty())
1445       continue;
1446
1447     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1448     assert(USetID && "register number 0 is invalid");
1449
1450     AllocatableRegs.insert((*Regs.begin())->EnumValue);
1451     for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
1452       AllocatableRegs.insert((*I)->EnumValue);
1453       UberSetIDs.join(USetID, (*I)->EnumValue);
1454     }
1455   }
1456   // Combine non-allocatable regs.
1457   for (const auto &Reg : Registers) {
1458     unsigned RegNum = Reg.EnumValue;
1459     if (AllocatableRegs.count(RegNum))
1460       continue;
1461
1462     UberSetIDs.join(0, RegNum);
1463   }
1464   UberSetIDs.compress();
1465
1466   // Make the first UberSet a special unallocatable set.
1467   unsigned ZeroID = UberSetIDs[0];
1468
1469   // Insert Registers into the UberSets formed by union-find.
1470   // Do not resize after this.
1471   UberSets.resize(UberSetIDs.getNumClasses());
1472   unsigned i = 0;
1473   for (const CodeGenRegister &Reg : Registers) {
1474     unsigned USetID = UberSetIDs[Reg.EnumValue];
1475     if (!USetID)
1476       USetID = ZeroID;
1477     else if (USetID == ZeroID)
1478       USetID = 0;
1479
1480     UberRegSet *USet = &UberSets[USetID];
1481     USet->Regs.push_back(&Reg);
1482     sortAndUniqueRegisters(USet->Regs);
1483     RegSets[i++] = USet;
1484   }
1485 }
1486
1487 // Recompute each UberSet weight after changing unit weights.
1488 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1489                                CodeGenRegBank &RegBank) {
1490   // Skip the first unallocatable set.
1491   for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1492          E = UberSets.end(); I != E; ++I) {
1493
1494     // Initialize all unit weights in this set, and remember the max units/reg.
1495     const CodeGenRegister *Reg = nullptr;
1496     unsigned MaxWeight = 0, Weight = 0;
1497     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1498       if (Reg != UnitI.getReg()) {
1499         if (Weight > MaxWeight)
1500           MaxWeight = Weight;
1501         Reg = UnitI.getReg();
1502         Weight = 0;
1503       }
1504       unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1505       if (!UWeight) {
1506         UWeight = 1;
1507         RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1508       }
1509       Weight += UWeight;
1510     }
1511     if (Weight > MaxWeight)
1512       MaxWeight = Weight;
1513     if (I->Weight != MaxWeight) {
1514       DEBUG(
1515         dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight;
1516         for (auto &Unit : I->Regs)
1517           dbgs() << " " << Unit->getName();
1518         dbgs() << "\n");
1519       // Update the set weight.
1520       I->Weight = MaxWeight;
1521     }
1522
1523     // Find singular determinants.
1524     for (const auto R : I->Regs) {
1525       if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1526         I->SingularDeterminants |= R->getRegUnits();
1527       }
1528     }
1529   }
1530 }
1531
1532 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1533 // a register and its subregisters so that they have the same weight as their
1534 // UberSet. Self-recursion processes the subregister tree in postorder so
1535 // subregisters are normalized first.
1536 //
1537 // Side effects:
1538 // - creates new adopted register units
1539 // - causes superregisters to inherit adopted units
1540 // - increases the weight of "singular" units
1541 // - induces recomputation of UberWeights.
1542 static bool normalizeWeight(CodeGenRegister *Reg,
1543                             std::vector<UberRegSet> &UberSets,
1544                             std::vector<UberRegSet*> &RegSets,
1545                             SparseBitVector<> &NormalRegs,
1546                             CodeGenRegister::RegUnitList &NormalUnits,
1547                             CodeGenRegBank &RegBank) {
1548   if (NormalRegs.test(Reg->EnumValue))
1549     return false;
1550   NormalRegs.set(Reg->EnumValue);
1551
1552   bool Changed = false;
1553   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1554   for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1555          SRE = SRM.end(); SRI != SRE; ++SRI) {
1556     if (SRI->second == Reg)
1557       continue; // self-cycles happen
1558
1559     Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1560                                NormalRegs, NormalUnits, RegBank);
1561   }
1562   // Postorder register normalization.
1563
1564   // Inherit register units newly adopted by subregisters.
1565   if (Reg->inheritRegUnits(RegBank))
1566     computeUberWeights(UberSets, RegBank);
1567
1568   // Check if this register is too skinny for its UberRegSet.
1569   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1570
1571   unsigned RegWeight = Reg->getWeight(RegBank);
1572   if (UberSet->Weight > RegWeight) {
1573     // A register unit's weight can be adjusted only if it is the singular unit
1574     // for this register, has not been used to normalize a subregister's set,
1575     // and has not already been used to singularly determine this UberRegSet.
1576     unsigned AdjustUnit = *Reg->getRegUnits().begin();
1577     if (Reg->getRegUnits().count() != 1
1578         || hasRegUnit(NormalUnits, AdjustUnit)
1579         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1580       // We don't have an adjustable unit, so adopt a new one.
1581       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1582       Reg->adoptRegUnit(AdjustUnit);
1583       // Adopting a unit does not immediately require recomputing set weights.
1584     }
1585     else {
1586       // Adjust the existing single unit.
1587       RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1588       // The unit may be shared among sets and registers within this set.
1589       computeUberWeights(UberSets, RegBank);
1590     }
1591     Changed = true;
1592   }
1593
1594   // Mark these units normalized so superregisters can't change their weights.
1595   NormalUnits |= Reg->getRegUnits();
1596
1597   return Changed;
1598 }
1599
1600 // Compute a weight for each register unit created during getSubRegs.
1601 //
1602 // The goal is that two registers in the same class will have the same weight,
1603 // where each register's weight is defined as sum of its units' weights.
1604 void CodeGenRegBank::computeRegUnitWeights() {
1605   std::vector<UberRegSet> UberSets;
1606   std::vector<UberRegSet*> RegSets(Registers.size());
1607   computeUberSets(UberSets, RegSets, *this);
1608   // UberSets and RegSets are now immutable.
1609
1610   computeUberWeights(UberSets, *this);
1611
1612   // Iterate over each Register, normalizing the unit weights until reaching
1613   // a fix point.
1614   unsigned NumIters = 0;
1615   for (bool Changed = true; Changed; ++NumIters) {
1616     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1617     Changed = false;
1618     for (auto &Reg : Registers) {
1619       CodeGenRegister::RegUnitList NormalUnits;
1620       SparseBitVector<> NormalRegs;
1621       Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1622                                  NormalUnits, *this);
1623     }
1624   }
1625 }
1626
1627 // Find a set in UniqueSets with the same elements as Set.
1628 // Return an iterator into UniqueSets.
1629 static std::vector<RegUnitSet>::const_iterator
1630 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1631                const RegUnitSet &Set) {
1632   std::vector<RegUnitSet>::const_iterator
1633     I = UniqueSets.begin(), E = UniqueSets.end();
1634   for(;I != E; ++I) {
1635     if (I->Units == Set.Units)
1636       break;
1637   }
1638   return I;
1639 }
1640
1641 // Return true if the RUSubSet is a subset of RUSuperSet.
1642 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1643                             const std::vector<unsigned> &RUSuperSet) {
1644   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1645                        RUSubSet.begin(), RUSubSet.end());
1646 }
1647
1648 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1649 /// but with one or two registers removed. We occasionally have registers like
1650 /// APSR and PC thrown in with the general registers. We also see many
1651 /// special-purpose register subsets, such as tail-call and Thumb
1652 /// encodings. Generating all possible overlapping sets is combinatorial and
1653 /// overkill for modeling pressure. Ideally we could fix this statically in
1654 /// tablegen by (1) having the target define register classes that only include
1655 /// the allocatable registers and marking other classes as non-allocatable and
1656 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1657 /// the purpose of pressure.  However, we make an attempt to handle targets that
1658 /// are not nicely defined by merging nearly identical register unit sets
1659 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1660 /// set limit by filtering the reserved registers.
1661 ///
1662 /// Merge sets only if the units have the same weight. For example, on ARM,
1663 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1664 /// should not expand the S set to include D regs.
1665 void CodeGenRegBank::pruneUnitSets() {
1666   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1667
1668   // Form an equivalence class of UnitSets with no significant difference.
1669   std::vector<unsigned> SuperSetIDs;
1670   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1671        SubIdx != EndIdx; ++SubIdx) {
1672     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1673     unsigned SuperIdx = 0;
1674     for (; SuperIdx != EndIdx; ++SuperIdx) {
1675       if (SuperIdx == SubIdx)
1676         continue;
1677
1678       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1679       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1680       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1681           && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1682           && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1683           && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1684         DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1685               << "\n");
1686         // We can pick any of the set names for the merged set. Go for the
1687         // shortest one to avoid picking the name of one of the classes that are
1688         // artificially created by tablegen. So "FPR128_lo" instead of
1689         // "QQQQ_with_qsub3_in_FPR128_lo".
1690         if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1691           RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1692         break;
1693       }
1694     }
1695     if (SuperIdx == EndIdx)
1696       SuperSetIDs.push_back(SubIdx);
1697   }
1698   // Populate PrunedUnitSets with each equivalence class's superset.
1699   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1700   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1701     unsigned SuperIdx = SuperSetIDs[i];
1702     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1703     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1704   }
1705   RegUnitSets.swap(PrunedUnitSets);
1706 }
1707
1708 // Create a RegUnitSet for each RegClass that contains all units in the class
1709 // including adopted units that are necessary to model register pressure. Then
1710 // iteratively compute RegUnitSets such that the union of any two overlapping
1711 // RegUnitSets is repreresented.
1712 //
1713 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1714 // RegUnitSet that is a superset of that RegUnitClass.
1715 void CodeGenRegBank::computeRegUnitSets() {
1716   assert(RegUnitSets.empty() && "dirty RegUnitSets");
1717
1718   // Compute a unique RegUnitSet for each RegClass.
1719   auto &RegClasses = getRegClasses();
1720   for (auto &RC : RegClasses) {
1721     if (!RC.Allocatable)
1722       continue;
1723
1724     // Speculatively grow the RegUnitSets to hold the new set.
1725     RegUnitSets.resize(RegUnitSets.size() + 1);
1726     RegUnitSets.back().Name = RC.getName();
1727
1728     // Compute a sorted list of units in this class.
1729     RC.buildRegUnitSet(RegUnitSets.back().Units);
1730
1731     // Find an existing RegUnitSet.
1732     std::vector<RegUnitSet>::const_iterator SetI =
1733       findRegUnitSet(RegUnitSets, RegUnitSets.back());
1734     if (SetI != std::prev(RegUnitSets.end()))
1735       RegUnitSets.pop_back();
1736   }
1737
1738   DEBUG(dbgs() << "\nBefore pruning:\n";
1739         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1740              USIdx < USEnd; ++USIdx) {
1741           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1742                  << ":";
1743           for (auto &U : RegUnitSets[USIdx].Units)
1744             printRegUnitName(U);
1745           dbgs() << "\n";
1746         });
1747
1748   // Iteratively prune unit sets.
1749   pruneUnitSets();
1750
1751   DEBUG(dbgs() << "\nBefore union:\n";
1752         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1753              USIdx < USEnd; ++USIdx) {
1754           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1755                  << ":";
1756           for (auto &U : RegUnitSets[USIdx].Units)
1757             printRegUnitName(U);
1758           dbgs() << "\n";
1759         }
1760         dbgs() << "\nUnion sets:\n");
1761
1762   // Iterate over all unit sets, including new ones added by this loop.
1763   unsigned NumRegUnitSubSets = RegUnitSets.size();
1764   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1765     // In theory, this is combinatorial. In practice, it needs to be bounded
1766     // by a small number of sets for regpressure to be efficient.
1767     // If the assert is hit, we need to implement pruning.
1768     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1769
1770     // Compare new sets with all original classes.
1771     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1772          SearchIdx != EndIdx; ++SearchIdx) {
1773       std::set<unsigned> Intersection;
1774       std::set_intersection(RegUnitSets[Idx].Units.begin(),
1775                             RegUnitSets[Idx].Units.end(),
1776                             RegUnitSets[SearchIdx].Units.begin(),
1777                             RegUnitSets[SearchIdx].Units.end(),
1778                             std::inserter(Intersection, Intersection.begin()));
1779       if (Intersection.empty())
1780         continue;
1781
1782       // Speculatively grow the RegUnitSets to hold the new set.
1783       RegUnitSets.resize(RegUnitSets.size() + 1);
1784       RegUnitSets.back().Name =
1785         RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1786
1787       std::set_union(RegUnitSets[Idx].Units.begin(),
1788                      RegUnitSets[Idx].Units.end(),
1789                      RegUnitSets[SearchIdx].Units.begin(),
1790                      RegUnitSets[SearchIdx].Units.end(),
1791                      std::inserter(RegUnitSets.back().Units,
1792                                    RegUnitSets.back().Units.begin()));
1793
1794       // Find an existing RegUnitSet, or add the union to the unique sets.
1795       std::vector<RegUnitSet>::const_iterator SetI =
1796         findRegUnitSet(RegUnitSets, RegUnitSets.back());
1797       if (SetI != std::prev(RegUnitSets.end()))
1798         RegUnitSets.pop_back();
1799       else {
1800         DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1
1801               << " " << RegUnitSets.back().Name << ":";
1802               for (auto &U : RegUnitSets.back().Units)
1803                 printRegUnitName(U);
1804               dbgs() << "\n";);
1805       }
1806     }
1807   }
1808
1809   // Iteratively prune unit sets after inferring supersets.
1810   pruneUnitSets();
1811
1812   DEBUG(dbgs() << "\n";
1813         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1814              USIdx < USEnd; ++USIdx) {
1815           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1816                  << ":";
1817           for (auto &U : RegUnitSets[USIdx].Units)
1818             printRegUnitName(U);
1819           dbgs() << "\n";
1820         });
1821
1822   // For each register class, list the UnitSets that are supersets.
1823   RegClassUnitSets.resize(RegClasses.size());
1824   int RCIdx = -1;
1825   for (auto &RC : RegClasses) {
1826     ++RCIdx;
1827     if (!RC.Allocatable)
1828       continue;
1829
1830     // Recompute the sorted list of units in this class.
1831     std::vector<unsigned> RCRegUnits;
1832     RC.buildRegUnitSet(RCRegUnits);
1833
1834     // Don't increase pressure for unallocatable regclasses.
1835     if (RCRegUnits.empty())
1836       continue;
1837
1838     DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n";
1839           for (auto U : RCRegUnits)
1840             printRegUnitName(U);
1841           dbgs() << "\n  UnitSetIDs:");
1842
1843     // Find all supersets.
1844     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1845          USIdx != USEnd; ++USIdx) {
1846       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
1847         DEBUG(dbgs() << " " << USIdx);
1848         RegClassUnitSets[RCIdx].push_back(USIdx);
1849       }
1850     }
1851     DEBUG(dbgs() << "\n");
1852     assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
1853   }
1854
1855   // For each register unit, ensure that we have the list of UnitSets that
1856   // contain the unit. Normally, this matches an existing list of UnitSets for a
1857   // register class. If not, we create a new entry in RegClassUnitSets as a
1858   // "fake" register class.
1859   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
1860        UnitIdx < UnitEnd; ++UnitIdx) {
1861     std::vector<unsigned> RUSets;
1862     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
1863       RegUnitSet &RUSet = RegUnitSets[i];
1864       if (!is_contained(RUSet.Units, UnitIdx))
1865         continue;
1866       RUSets.push_back(i);
1867     }
1868     unsigned RCUnitSetsIdx = 0;
1869     for (unsigned e = RegClassUnitSets.size();
1870          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
1871       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
1872         break;
1873       }
1874     }
1875     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
1876     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
1877       // Create a new list of UnitSets as a "fake" register class.
1878       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
1879       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
1880     }
1881   }
1882 }
1883
1884 void CodeGenRegBank::computeRegUnitLaneMasks() {
1885   for (auto &Register : Registers) {
1886     // Create an initial lane mask for all register units.
1887     const auto &RegUnits = Register.getRegUnits();
1888     CodeGenRegister::RegUnitLaneMaskList
1889         RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone());
1890     // Iterate through SubRegisters.
1891     typedef CodeGenRegister::SubRegMap SubRegMap;
1892     const SubRegMap &SubRegs = Register.getSubRegs();
1893     for (SubRegMap::const_iterator S = SubRegs.begin(),
1894          SE = SubRegs.end(); S != SE; ++S) {
1895       CodeGenRegister *SubReg = S->second;
1896       // Ignore non-leaf subregisters, their lane masks are fully covered by
1897       // the leaf subregisters anyway.
1898       if (!SubReg->getSubRegs().empty())
1899         continue;
1900       CodeGenSubRegIndex *SubRegIndex = S->first;
1901       const CodeGenRegister *SubRegister = S->second;
1902       LaneBitmask LaneMask = SubRegIndex->LaneMask;
1903       // Distribute LaneMask to Register Units touched.
1904       for (unsigned SUI : SubRegister->getRegUnits()) {
1905         bool Found = false;
1906         unsigned u = 0;
1907         for (unsigned RU : RegUnits) {
1908           if (SUI == RU) {
1909             RegUnitLaneMasks[u] |= LaneMask;
1910             assert(!Found);
1911             Found = true;
1912           }
1913           ++u;
1914         }
1915         (void)Found;
1916         assert(Found);
1917       }
1918     }
1919     Register.setRegUnitLaneMasks(RegUnitLaneMasks);
1920   }
1921 }
1922
1923 void CodeGenRegBank::computeDerivedInfo() {
1924   computeComposites();
1925   computeSubRegLaneMasks();
1926
1927   // Compute a weight for each register unit created during getSubRegs.
1928   // This may create adopted register units (with unit # >= NumNativeRegUnits).
1929   computeRegUnitWeights();
1930
1931   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
1932   // supersets for the union of overlapping sets.
1933   computeRegUnitSets();
1934
1935   computeRegUnitLaneMasks();
1936
1937   // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
1938   for (CodeGenRegisterClass &RC : RegClasses) {
1939     RC.HasDisjunctSubRegs = false;
1940     RC.CoveredBySubRegs = true;
1941     for (const CodeGenRegister *Reg : RC.getMembers()) {
1942       RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
1943       RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
1944     }
1945   }
1946
1947   // Get the weight of each set.
1948   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1949     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
1950
1951   // Find the order of each set.
1952   RegUnitSetOrder.reserve(RegUnitSets.size());
1953   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1954     RegUnitSetOrder.push_back(Idx);
1955
1956   std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(),
1957                    [this](unsigned ID1, unsigned ID2) {
1958     return getRegPressureSet(ID1).Units.size() <
1959            getRegPressureSet(ID2).Units.size();
1960   });
1961   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1962     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
1963   }
1964 }
1965
1966 //
1967 // Synthesize missing register class intersections.
1968 //
1969 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
1970 // returns a maximal register class for all X.
1971 //
1972 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
1973   assert(!RegClasses.empty());
1974   // Stash the iterator to the last element so that this loop doesn't visit
1975   // elements added by the getOrCreateSubClass call within it.
1976   for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
1977        I != std::next(E); ++I) {
1978     CodeGenRegisterClass *RC1 = RC;
1979     CodeGenRegisterClass *RC2 = &*I;
1980     if (RC1 == RC2)
1981       continue;
1982
1983     // Compute the set intersection of RC1 and RC2.
1984     const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
1985     const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
1986     CodeGenRegister::Vec Intersection;
1987     std::set_intersection(
1988         Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(),
1989         std::inserter(Intersection, Intersection.begin()), deref<llvm::less>());
1990
1991     // Skip disjoint class pairs.
1992     if (Intersection.empty())
1993       continue;
1994
1995     // If RC1 and RC2 have different spill sizes or alignments, use the
1996     // larger size for sub-classing.  If they are equal, prefer RC1.
1997     if (RC2->SpillSize > RC1->SpillSize ||
1998         (RC2->SpillSize == RC1->SpillSize &&
1999          RC2->SpillAlignment > RC1->SpillAlignment))
2000       std::swap(RC1, RC2);
2001
2002     getOrCreateSubClass(RC1, &Intersection,
2003                         RC1->getName() + "_and_" + RC2->getName());
2004   }
2005 }
2006
2007 //
2008 // Synthesize missing sub-classes for getSubClassWithSubReg().
2009 //
2010 // Make sure that the set of registers in RC with a given SubIdx sub-register
2011 // form a register class.  Update RC->SubClassWithSubReg.
2012 //
2013 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2014   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2015   typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2016                    deref<llvm::less>> SubReg2SetMap;
2017
2018   // Compute the set of registers supporting each SubRegIndex.
2019   SubReg2SetMap SRSets;
2020   for (const auto R : RC->getMembers()) {
2021     const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2022     for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2023          E = SRM.end(); I != E; ++I)
2024       SRSets[I->first].push_back(R);
2025   }
2026
2027   for (auto I : SRSets)
2028     sortAndUniqueRegisters(I.second);
2029
2030   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
2031   // numerical order to visit synthetic indices last.
2032   for (const auto &SubIdx : SubRegIndices) {
2033     SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2034     // Unsupported SubRegIndex. Skip it.
2035     if (I == SRSets.end())
2036       continue;
2037     // In most cases, all RC registers support the SubRegIndex.
2038     if (I->second.size() == RC->getMembers().size()) {
2039       RC->setSubClassWithSubReg(&SubIdx, RC);
2040       continue;
2041     }
2042     // This is a real subset.  See if we have a matching class.
2043     CodeGenRegisterClass *SubRC =
2044       getOrCreateSubClass(RC, &I->second,
2045                           RC->getName() + "_with_" + I->first->getName());
2046     RC->setSubClassWithSubReg(&SubIdx, SubRC);
2047   }
2048 }
2049
2050 //
2051 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2052 //
2053 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2054 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2055 //
2056
2057 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
2058                                                 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2059   SmallVector<std::pair<const CodeGenRegister*,
2060                         const CodeGenRegister*>, 16> SSPairs;
2061   BitVector TopoSigs(getNumTopoSigs());
2062
2063   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2064   for (auto &SubIdx : SubRegIndices) {
2065     // Skip indexes that aren't fully supported by RC's registers. This was
2066     // computed by inferSubClassWithSubReg() above which should have been
2067     // called first.
2068     if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2069       continue;
2070
2071     // Build list of (Super, Sub) pairs for this SubIdx.
2072     SSPairs.clear();
2073     TopoSigs.reset();
2074     for (const auto Super : RC->getMembers()) {
2075       const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2076       assert(Sub && "Missing sub-register");
2077       SSPairs.push_back(std::make_pair(Super, Sub));
2078       TopoSigs.set(Sub->getTopoSig());
2079     }
2080
2081     // Iterate over sub-register class candidates.  Ignore classes created by
2082     // this loop. They will never be useful.
2083     // Store an iterator to the last element (not end) so that this loop doesn't
2084     // visit newly inserted elements.
2085     assert(!RegClasses.empty());
2086     for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2087          I != std::next(E); ++I) {
2088       CodeGenRegisterClass &SubRC = *I;
2089       // Topological shortcut: SubRC members have the wrong shape.
2090       if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2091         continue;
2092       // Compute the subset of RC that maps into SubRC.
2093       CodeGenRegister::Vec SubSetVec;
2094       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
2095         if (SubRC.contains(SSPairs[i].second))
2096           SubSetVec.push_back(SSPairs[i].first);
2097
2098       if (SubSetVec.empty())
2099         continue;
2100
2101       // RC injects completely into SubRC.
2102       sortAndUniqueRegisters(SubSetVec);
2103       if (SubSetVec.size() == SSPairs.size()) {
2104         SubRC.addSuperRegClass(&SubIdx, RC);
2105         continue;
2106       }
2107
2108       // Only a subset of RC maps into SubRC. Make sure it is represented by a
2109       // class.
2110       getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2111                                           SubIdx.getName() + "_in_" +
2112                                           SubRC.getName());
2113     }
2114   }
2115 }
2116
2117 //
2118 // Infer missing register classes.
2119 //
2120 void CodeGenRegBank::computeInferredRegisterClasses() {
2121   assert(!RegClasses.empty());
2122   // When this function is called, the register classes have not been sorted
2123   // and assigned EnumValues yet.  That means getSubClasses(),
2124   // getSuperClasses(), and hasSubClass() functions are defunct.
2125
2126   // Use one-before-the-end so it doesn't move forward when new elements are
2127   // added.
2128   auto FirstNewRC = std::prev(RegClasses.end());
2129
2130   // Visit all register classes, including the ones being added by the loop.
2131   // Watch out for iterator invalidation here.
2132   for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2133     CodeGenRegisterClass *RC = &*I;
2134
2135     // Synthesize answers for getSubClassWithSubReg().
2136     inferSubClassWithSubReg(RC);
2137
2138     // Synthesize answers for getCommonSubClass().
2139     inferCommonSubClass(RC);
2140
2141     // Synthesize answers for getMatchingSuperRegClass().
2142     inferMatchingSuperRegClass(RC);
2143
2144     // New register classes are created while this loop is running, and we need
2145     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2146     // to match old super-register classes with sub-register classes created
2147     // after inferMatchingSuperRegClass was called.  At this point,
2148     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2149     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2150     if (I == FirstNewRC) {
2151       auto NextNewRC = std::prev(RegClasses.end());
2152       for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2153            ++I2)
2154         inferMatchingSuperRegClass(&*I2, E2);
2155       FirstNewRC = NextNewRC;
2156     }
2157   }
2158 }
2159
2160 /// getRegisterClassForRegister - Find the register class that contains the
2161 /// specified physical register.  If the register is not in a register class,
2162 /// return null. If the register is in multiple classes, and the classes have a
2163 /// superset-subset relationship and the same set of types, return the
2164 /// superclass.  Otherwise return null.
2165 const CodeGenRegisterClass*
2166 CodeGenRegBank::getRegClassForRegister(Record *R) {
2167   const CodeGenRegister *Reg = getReg(R);
2168   const CodeGenRegisterClass *FoundRC = nullptr;
2169   for (const auto &RC : getRegClasses()) {
2170     if (!RC.contains(Reg))
2171       continue;
2172
2173     // If this is the first class that contains the register,
2174     // make a note of it and go on to the next class.
2175     if (!FoundRC) {
2176       FoundRC = &RC;
2177       continue;
2178     }
2179
2180     // If a register's classes have different types, return null.
2181     if (RC.getValueTypes() != FoundRC->getValueTypes())
2182       return nullptr;
2183
2184     // Check to see if the previously found class that contains
2185     // the register is a subclass of the current class. If so,
2186     // prefer the superclass.
2187     if (RC.hasSubClass(FoundRC)) {
2188       FoundRC = &RC;
2189       continue;
2190     }
2191
2192     // Check to see if the previously found class that contains
2193     // the register is a superclass of the current class. If so,
2194     // prefer the superclass.
2195     if (FoundRC->hasSubClass(&RC))
2196       continue;
2197
2198     // Multiple classes, and neither is a superclass of the other.
2199     // Return null.
2200     return nullptr;
2201   }
2202   return FoundRC;
2203 }
2204
2205 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2206   SetVector<const CodeGenRegister*> Set;
2207
2208   // First add Regs with all sub-registers.
2209   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2210     CodeGenRegister *Reg = getReg(Regs[i]);
2211     if (Set.insert(Reg))
2212       // Reg is new, add all sub-registers.
2213       // The pre-ordering is not important here.
2214       Reg->addSubRegsPreOrder(Set, *this);
2215   }
2216
2217   // Second, find all super-registers that are completely covered by the set.
2218   for (unsigned i = 0; i != Set.size(); ++i) {
2219     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2220     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2221       const CodeGenRegister *Super = SR[j];
2222       if (!Super->CoveredBySubRegs || Set.count(Super))
2223         continue;
2224       // This new super-register is covered by its sub-registers.
2225       bool AllSubsInSet = true;
2226       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2227       for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2228              E = SRM.end(); I != E; ++I)
2229         if (!Set.count(I->second)) {
2230           AllSubsInSet = false;
2231           break;
2232         }
2233       // All sub-registers in Set, add Super as well.
2234       // We will visit Super later to recheck its super-registers.
2235       if (AllSubsInSet)
2236         Set.insert(Super);
2237     }
2238   }
2239
2240   // Convert to BitVector.
2241   BitVector BV(Registers.size() + 1);
2242   for (unsigned i = 0, e = Set.size(); i != e; ++i)
2243     BV.set(Set[i]->EnumValue);
2244   return BV;
2245 }
2246
2247 void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2248   if (Unit < NumNativeRegUnits)
2249     dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2250   else
2251     dbgs() << " #" << Unit;
2252 }