]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/utils/TableGen/DAGISelMatcherGen.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / utils / TableGen / DAGISelMatcherGen.cpp
1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "DAGISelMatcher.h"
11 #include "CodeGenDAGPatterns.h"
12 #include "CodeGenRegisters.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/StringMap.h"
15 #include "llvm/TableGen/Error.h"
16 #include "llvm/TableGen/Record.h"
17 #include <utility>
18 using namespace llvm;
19
20
21 /// getRegisterValueType - Look up and return the ValueType of the specified
22 /// register. If the register is a member of multiple register classes which
23 /// have different associated types, return MVT::Other.
24 static MVT::SimpleValueType getRegisterValueType(Record *R,
25                                                  const CodeGenTarget &T) {
26   bool FoundRC = false;
27   MVT::SimpleValueType VT = MVT::Other;
28   const CodeGenRegister *Reg = T.getRegBank().getReg(R);
29
30   for (const auto &RC : T.getRegBank().getRegClasses()) {
31     if (!RC.contains(Reg))
32       continue;
33
34     if (!FoundRC) {
35       FoundRC = true;
36       const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
37       if (VVT.isSimple())
38         VT = VVT.getSimple().SimpleTy;
39       continue;
40     }
41
42 #ifndef NDEBUG
43     // If this occurs in multiple register classes, they all have to agree.
44     const ValueTypeByHwMode &T = RC.getValueTypeNum(0);
45     assert((!T.isSimple() || T.getSimple().SimpleTy == VT) &&
46            "ValueType mismatch between register classes for this register");
47 #endif
48   }
49   return VT;
50 }
51
52
53 namespace {
54   class MatcherGen {
55     const PatternToMatch &Pattern;
56     const CodeGenDAGPatterns &CGP;
57
58     /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
59     /// out with all of the types removed.  This allows us to insert type checks
60     /// as we scan the tree.
61     TreePatternNodePtr PatWithNoTypes;
62
63     /// VariableMap - A map from variable names ('$dst') to the recorded operand
64     /// number that they were captured as.  These are biased by 1 to make
65     /// insertion easier.
66     StringMap<unsigned> VariableMap;
67
68     /// This maintains the recorded operand number that OPC_CheckComplexPattern
69     /// drops each sub-operand into. We don't want to insert these into
70     /// VariableMap because that leads to identity checking if they are
71     /// encountered multiple times. Biased by 1 like VariableMap for
72     /// consistency.
73     StringMap<unsigned> NamedComplexPatternOperands;
74
75     /// NextRecordedOperandNo - As we emit opcodes to record matched values in
76     /// the RecordedNodes array, this keeps track of which slot will be next to
77     /// record into.
78     unsigned NextRecordedOperandNo;
79
80     /// MatchedChainNodes - This maintains the position in the recorded nodes
81     /// array of all of the recorded input nodes that have chains.
82     SmallVector<unsigned, 2> MatchedChainNodes;
83
84     /// MatchedComplexPatterns - This maintains a list of all of the
85     /// ComplexPatterns that we need to check. The second element of each pair
86     /// is the recorded operand number of the input node.
87     SmallVector<std::pair<const TreePatternNode*,
88                           unsigned>, 2> MatchedComplexPatterns;
89
90     /// PhysRegInputs - List list has an entry for each explicitly specified
91     /// physreg input to the pattern.  The first elt is the Register node, the
92     /// second is the recorded slot number the input pattern match saved it in.
93     SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
94
95     /// Matcher - This is the top level of the generated matcher, the result.
96     Matcher *TheMatcher;
97
98     /// CurPredicate - As we emit matcher nodes, this points to the latest check
99     /// which should have future checks stuck into its Next position.
100     Matcher *CurPredicate;
101   public:
102     MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
103
104     bool EmitMatcherCode(unsigned Variant);
105     void EmitResultCode();
106
107     Matcher *GetMatcher() const { return TheMatcher; }
108   private:
109     void AddMatcher(Matcher *NewNode);
110     void InferPossibleTypes(unsigned ForceMode);
111
112     // Matcher Generation.
113     void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes,
114                        unsigned ForceMode);
115     void EmitLeafMatchCode(const TreePatternNode *N);
116     void EmitOperatorMatchCode(const TreePatternNode *N,
117                                TreePatternNode *NodeNoTypes,
118                                unsigned ForceMode);
119
120     /// If this is the first time a node with unique identifier Name has been
121     /// seen, record it. Otherwise, emit a check to make sure this is the same
122     /// node. Returns true if this is the first encounter.
123     bool recordUniqueNode(ArrayRef<std::string> Names);
124
125     // Result Code Generation.
126     unsigned getNamedArgumentSlot(StringRef Name) {
127       unsigned VarMapEntry = VariableMap[Name];
128       assert(VarMapEntry != 0 &&
129              "Variable referenced but not defined and not caught earlier!");
130       return VarMapEntry-1;
131     }
132
133     void EmitResultOperand(const TreePatternNode *N,
134                            SmallVectorImpl<unsigned> &ResultOps);
135     void EmitResultOfNamedOperand(const TreePatternNode *N,
136                                   SmallVectorImpl<unsigned> &ResultOps);
137     void EmitResultLeafAsOperand(const TreePatternNode *N,
138                                  SmallVectorImpl<unsigned> &ResultOps);
139     void EmitResultInstructionAsOperand(const TreePatternNode *N,
140                                         SmallVectorImpl<unsigned> &ResultOps);
141     void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
142                                         SmallVectorImpl<unsigned> &ResultOps);
143     };
144
145 } // end anon namespace.
146
147 MatcherGen::MatcherGen(const PatternToMatch &pattern,
148                        const CodeGenDAGPatterns &cgp)
149 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
150   TheMatcher(nullptr), CurPredicate(nullptr) {
151   // We need to produce the matcher tree for the patterns source pattern.  To do
152   // this we need to match the structure as well as the types.  To do the type
153   // matching, we want to figure out the fewest number of type checks we need to
154   // emit.  For example, if there is only one integer type supported by a
155   // target, there should be no type comparisons at all for integer patterns!
156   //
157   // To figure out the fewest number of type checks needed, clone the pattern,
158   // remove the types, then perform type inference on the pattern as a whole.
159   // If there are unresolved types, emit an explicit check for those types,
160   // apply the type to the tree, then rerun type inference.  Iterate until all
161   // types are resolved.
162   //
163   PatWithNoTypes = Pattern.getSrcPattern()->clone();
164   PatWithNoTypes->RemoveAllTypes();
165
166   // If there are types that are manifestly known, infer them.
167   InferPossibleTypes(Pattern.ForceMode);
168 }
169
170 /// InferPossibleTypes - As we emit the pattern, we end up generating type
171 /// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
172 /// want to propagate implied types as far throughout the tree as possible so
173 /// that we avoid doing redundant type checks.  This does the type propagation.
174 void MatcherGen::InferPossibleTypes(unsigned ForceMode) {
175   // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
176   // diagnostics, which we know are impossible at this point.
177   TreePattern &TP = *CGP.pf_begin()->second;
178   TP.getInfer().CodeGen = true;
179   TP.getInfer().ForceMode = ForceMode;
180
181   bool MadeChange = true;
182   while (MadeChange)
183     MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
184                                               true/*Ignore reg constraints*/);
185 }
186
187
188 /// AddMatcher - Add a matcher node to the current graph we're building.
189 void MatcherGen::AddMatcher(Matcher *NewNode) {
190   if (CurPredicate)
191     CurPredicate->setNext(NewNode);
192   else
193     TheMatcher = NewNode;
194   CurPredicate = NewNode;
195 }
196
197
198 //===----------------------------------------------------------------------===//
199 // Pattern Match Generation
200 //===----------------------------------------------------------------------===//
201
202 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
203 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
204   assert(N->isLeaf() && "Not a leaf?");
205
206   // Direct match against an integer constant.
207   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
208     // If this is the root of the dag we're matching, we emit a redundant opcode
209     // check to ensure that this gets folded into the normal top-level
210     // OpcodeSwitch.
211     if (N == Pattern.getSrcPattern()) {
212       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
213       AddMatcher(new CheckOpcodeMatcher(NI));
214     }
215
216     return AddMatcher(new CheckIntegerMatcher(II->getValue()));
217   }
218
219   // An UnsetInit represents a named node without any constraints.
220   if (isa<UnsetInit>(N->getLeafValue())) {
221     assert(N->hasName() && "Unnamed ? leaf");
222     return;
223   }
224
225   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
226   if (!DI) {
227     errs() << "Unknown leaf kind: " << *N << "\n";
228     abort();
229   }
230
231   Record *LeafRec = DI->getDef();
232
233   // A ValueType leaf node can represent a register when named, or itself when
234   // unnamed.
235   if (LeafRec->isSubClassOf("ValueType")) {
236     // A named ValueType leaf always matches: (add i32:$a, i32:$b).
237     if (N->hasName())
238       return;
239     // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
240     return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
241   }
242
243   if (// Handle register references.  Nothing to do here, they always match.
244       LeafRec->isSubClassOf("RegisterClass") ||
245       LeafRec->isSubClassOf("RegisterOperand") ||
246       LeafRec->isSubClassOf("PointerLikeRegClass") ||
247       LeafRec->isSubClassOf("SubRegIndex") ||
248       // Place holder for SRCVALUE nodes. Nothing to do here.
249       LeafRec->getName() == "srcvalue")
250     return;
251
252   // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
253   // record the register
254   if (LeafRec->isSubClassOf("Register")) {
255     AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(),
256                                  NextRecordedOperandNo));
257     PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
258     return;
259   }
260
261   if (LeafRec->isSubClassOf("CondCode"))
262     return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
263
264   if (LeafRec->isSubClassOf("ComplexPattern")) {
265     // We can't model ComplexPattern uses that don't have their name taken yet.
266     // The OPC_CheckComplexPattern operation implicitly records the results.
267     if (N->getName().empty()) {
268       std::string S;
269       raw_string_ostream OS(S);
270       OS << "We expect complex pattern uses to have names: " << *N;
271       PrintFatalError(OS.str());
272     }
273
274     // Remember this ComplexPattern so that we can emit it after all the other
275     // structural matches are done.
276     unsigned InputOperand = VariableMap[N->getName()] - 1;
277     MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
278     return;
279   }
280
281   errs() << "Unknown leaf kind: " << *N << "\n";
282   abort();
283 }
284
285 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
286                                        TreePatternNode *NodeNoTypes,
287                                        unsigned ForceMode) {
288   assert(!N->isLeaf() && "Not an operator?");
289
290   if (N->getOperator()->isSubClassOf("ComplexPattern")) {
291     // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
292     // "MY_PAT:op1:op2". We should already have validated that the uses are
293     // consistent.
294     std::string PatternName = N->getOperator()->getName();
295     for (unsigned i = 0; i < N->getNumChildren(); ++i) {
296       PatternName += ":";
297       PatternName += N->getChild(i)->getName();
298     }
299
300     if (recordUniqueNode(PatternName)) {
301       auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
302       MatchedComplexPatterns.push_back(NodeAndOpNum);
303     }
304
305     return;
306   }
307
308   const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
309
310   // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
311   // a constant without a predicate fn that has more than one bit set, handle
312   // this as a special case.  This is usually for targets that have special
313   // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
314   // handling stuff).  Using these instructions is often far more efficient
315   // than materializing the constant.  Unfortunately, both the instcombiner
316   // and the dag combiner can often infer that bits are dead, and thus drop
317   // them from the mask in the dag.  For example, it might turn 'AND X, 255'
318   // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
319   // to handle this.
320   if ((N->getOperator()->getName() == "and" ||
321        N->getOperator()->getName() == "or") &&
322       N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateCalls().empty() &&
323       N->getPredicateCalls().empty()) {
324     if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
325       if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
326         // If this is at the root of the pattern, we emit a redundant
327         // CheckOpcode so that the following checks get factored properly under
328         // a single opcode check.
329         if (N == Pattern.getSrcPattern())
330           AddMatcher(new CheckOpcodeMatcher(CInfo));
331
332         // Emit the CheckAndImm/CheckOrImm node.
333         if (N->getOperator()->getName() == "and")
334           AddMatcher(new CheckAndImmMatcher(II->getValue()));
335         else
336           AddMatcher(new CheckOrImmMatcher(II->getValue()));
337
338         // Match the LHS of the AND as appropriate.
339         AddMatcher(new MoveChildMatcher(0));
340         EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0), ForceMode);
341         AddMatcher(new MoveParentMatcher());
342         return;
343       }
344     }
345   }
346
347   // Check that the current opcode lines up.
348   AddMatcher(new CheckOpcodeMatcher(CInfo));
349
350   // If this node has memory references (i.e. is a load or store), tell the
351   // interpreter to capture them in the memref array.
352   if (N->NodeHasProperty(SDNPMemOperand, CGP))
353     AddMatcher(new RecordMemRefMatcher());
354
355   // If this node has a chain, then the chain is operand #0 is the SDNode, and
356   // the child numbers of the node are all offset by one.
357   unsigned OpNo = 0;
358   if (N->NodeHasProperty(SDNPHasChain, CGP)) {
359     // Record the node and remember it in our chained nodes list.
360     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
361                                          "' chained node",
362                                  NextRecordedOperandNo));
363     // Remember all of the input chains our pattern will match.
364     MatchedChainNodes.push_back(NextRecordedOperandNo++);
365
366     // Don't look at the input chain when matching the tree pattern to the
367     // SDNode.
368     OpNo = 1;
369
370     // If this node is not the root and the subtree underneath it produces a
371     // chain, then the result of matching the node is also produce a chain.
372     // Beyond that, this means that we're also folding (at least) the root node
373     // into the node that produce the chain (for example, matching
374     // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
375     // problematic, if the 'reg' node also uses the load (say, its chain).
376     // Graphically:
377     //
378     //         [LD]
379     //         ^  ^
380     //         |  \                              DAG's like cheese.
381     //        /    |
382     //       /    [YY]
383     //       |     ^
384     //      [XX]--/
385     //
386     // It would be invalid to fold XX and LD.  In this case, folding the two
387     // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
388     // To prevent this, we emit a dynamic check for legality before allowing
389     // this to be folded.
390     //
391     const TreePatternNode *Root = Pattern.getSrcPattern();
392     if (N != Root) {                             // Not the root of the pattern.
393       // If there is a node between the root and this node, then we definitely
394       // need to emit the check.
395       bool NeedCheck = !Root->hasChild(N);
396
397       // If it *is* an immediate child of the root, we can still need a check if
398       // the root SDNode has multiple inputs.  For us, this means that it is an
399       // intrinsic, has multiple operands, or has other inputs like chain or
400       // glue).
401       if (!NeedCheck) {
402         const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
403         NeedCheck =
404           Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
405           Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
406           Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
407           PInfo.getNumOperands() > 1 ||
408           PInfo.hasProperty(SDNPHasChain) ||
409           PInfo.hasProperty(SDNPInGlue) ||
410           PInfo.hasProperty(SDNPOptInGlue);
411       }
412
413       if (NeedCheck)
414         AddMatcher(new CheckFoldableChainNodeMatcher());
415     }
416   }
417
418   // If this node has an output glue and isn't the root, remember it.
419   if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
420       N != Pattern.getSrcPattern()) {
421     // TODO: This redundantly records nodes with both glues and chains.
422
423     // Record the node and remember it in our chained nodes list.
424     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
425                                          "' glue output node",
426                                  NextRecordedOperandNo));
427   }
428
429   // If this node is known to have an input glue or if it *might* have an input
430   // glue, capture it as the glue input of the pattern.
431   if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
432       N->NodeHasProperty(SDNPInGlue, CGP))
433     AddMatcher(new CaptureGlueInputMatcher());
434
435   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
436     // Get the code suitable for matching this child.  Move to the child, check
437     // it then move back to the parent.
438     AddMatcher(new MoveChildMatcher(OpNo));
439     EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i), ForceMode);
440     AddMatcher(new MoveParentMatcher());
441   }
442 }
443
444 bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) {
445   unsigned Entry = 0;
446   for (const std::string &Name : Names) {
447     unsigned &VarMapEntry = VariableMap[Name];
448     if (!Entry)
449       Entry = VarMapEntry;
450     assert(Entry == VarMapEntry);
451   }
452
453   bool NewRecord = false;
454   if (Entry == 0) {
455     // If it is a named node, we must emit a 'Record' opcode.
456     std::string WhatFor;
457     for (const std::string &Name : Names) {
458       if (!WhatFor.empty())
459         WhatFor += ',';
460       WhatFor += "$" + Name;
461     }
462     AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo));
463     Entry = ++NextRecordedOperandNo;
464     NewRecord = true;
465   } else {
466     // If we get here, this is a second reference to a specific name.  Since
467     // we already have checked that the first reference is valid, we don't
468     // have to recursively match it, just check that it's the same as the
469     // previously named thing.
470     AddMatcher(new CheckSameMatcher(Entry-1));
471   }
472
473   for (const std::string &Name : Names)
474     VariableMap[Name] = Entry;
475
476   return NewRecord;
477 }
478
479 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
480                                TreePatternNode *NodeNoTypes,
481                                unsigned ForceMode) {
482   // If N and NodeNoTypes don't agree on a type, then this is a case where we
483   // need to do a type check.  Emit the check, apply the type to NodeNoTypes and
484   // reinfer any correlated types.
485   SmallVector<unsigned, 2> ResultsToTypeCheck;
486
487   for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
488     if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
489     NodeNoTypes->setType(i, N->getExtType(i));
490     InferPossibleTypes(ForceMode);
491     ResultsToTypeCheck.push_back(i);
492   }
493
494   // If this node has a name associated with it, capture it in VariableMap. If
495   // we already saw this in the pattern, emit code to verify dagness.
496   SmallVector<std::string, 4> Names;
497   if (!N->getName().empty())
498     Names.push_back(N->getName());
499
500   for (const ScopedName &Name : N->getNamesAsPredicateArg()) {
501     Names.push_back(("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str());
502   }
503
504   if (!Names.empty()) {
505     if (!recordUniqueNode(Names))
506       return;
507   }
508
509   if (N->isLeaf())
510     EmitLeafMatchCode(N);
511   else
512     EmitOperatorMatchCode(N, NodeNoTypes, ForceMode);
513
514   // If there are node predicates for this node, generate their checks.
515   for (unsigned i = 0, e = N->getPredicateCalls().size(); i != e; ++i) {
516     const TreePredicateCall &Pred = N->getPredicateCalls()[i];
517     SmallVector<unsigned, 4> Operands;
518     if (Pred.Fn.usesOperands()) {
519       TreePattern *TP = Pred.Fn.getOrigPatFragRecord();
520       for (unsigned i = 0; i < TP->getNumArgs(); ++i) {
521         std::string Name =
522             ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str();
523         Operands.push_back(getNamedArgumentSlot(Name));
524       }
525     }
526     AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands));
527   }
528
529   for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
530     AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]),
531                                     ResultsToTypeCheck[i]));
532 }
533
534 /// EmitMatcherCode - Generate the code that matches the predicate of this
535 /// pattern for the specified Variant.  If the variant is invalid this returns
536 /// true and does not generate code, if it is valid, it returns false.
537 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
538   // If the root of the pattern is a ComplexPattern and if it is specified to
539   // match some number of root opcodes, these are considered to be our variants.
540   // Depending on which variant we're generating code for, emit the root opcode
541   // check.
542   if (const ComplexPattern *CP =
543                    Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
544     const std::vector<Record*> &OpNodes = CP->getRootNodes();
545     assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
546     if (Variant >= OpNodes.size()) return true;
547
548     AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
549   } else {
550     if (Variant != 0) return true;
551   }
552
553   // Emit the matcher for the pattern structure and types.
554   EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get(),
555                 Pattern.ForceMode);
556
557   // If the pattern has a predicate on it (e.g. only enabled when a subtarget
558   // feature is around, do the check).
559   if (!Pattern.getPredicateCheck().empty())
560     AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
561
562   // Now that we've completed the structural type match, emit any ComplexPattern
563   // checks (e.g. addrmode matches).  We emit this after the structural match
564   // because they are generally more expensive to evaluate and more difficult to
565   // factor.
566   for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
567     auto N = MatchedComplexPatterns[i].first;
568
569     // Remember where the results of this match get stuck.
570     if (N->isLeaf()) {
571       NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
572     } else {
573       unsigned CurOp = NextRecordedOperandNo;
574       for (unsigned i = 0; i < N->getNumChildren(); ++i) {
575         NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
576         CurOp += N->getChild(i)->getNumMIResults(CGP);
577       }
578     }
579
580     // Get the slot we recorded the value in from the name on the node.
581     unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
582
583     const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
584
585     // Emit a CheckComplexPat operation, which does the match (aborting if it
586     // fails) and pushes the matched operands onto the recorded nodes list.
587     AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
588                                           N->getName(), NextRecordedOperandNo));
589
590     // Record the right number of operands.
591     NextRecordedOperandNo += CP.getNumOperands();
592     if (CP.hasProperty(SDNPHasChain)) {
593       // If the complex pattern has a chain, then we need to keep track of the
594       // fact that we just recorded a chain input.  The chain input will be
595       // matched as the last operand of the predicate if it was successful.
596       ++NextRecordedOperandNo; // Chained node operand.
597
598       // It is the last operand recorded.
599       assert(NextRecordedOperandNo > 1 &&
600              "Should have recorded input/result chains at least!");
601       MatchedChainNodes.push_back(NextRecordedOperandNo-1);
602     }
603
604     // TODO: Complex patterns can't have output glues, if they did, we'd want
605     // to record them.
606   }
607
608   return false;
609 }
610
611
612 //===----------------------------------------------------------------------===//
613 // Node Result Generation
614 //===----------------------------------------------------------------------===//
615
616 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
617                                           SmallVectorImpl<unsigned> &ResultOps){
618   assert(!N->getName().empty() && "Operand not named!");
619
620   if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
621     // Complex operands have already been completely selected, just find the
622     // right slot ant add the arguments directly.
623     for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
624       ResultOps.push_back(SlotNo - 1 + i);
625
626     return;
627   }
628
629   unsigned SlotNo = getNamedArgumentSlot(N->getName());
630
631   // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
632   // version of the immediate so that it doesn't get selected due to some other
633   // node use.
634   if (!N->isLeaf()) {
635     StringRef OperatorName = N->getOperator()->getName();
636     if (OperatorName == "imm" || OperatorName == "fpimm") {
637       AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
638       ResultOps.push_back(NextRecordedOperandNo++);
639       return;
640     }
641   }
642
643   for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
644     ResultOps.push_back(SlotNo + i);
645 }
646
647 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
648                                          SmallVectorImpl<unsigned> &ResultOps) {
649   assert(N->isLeaf() && "Must be a leaf");
650
651   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
652     AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0)));
653     ResultOps.push_back(NextRecordedOperandNo++);
654     return;
655   }
656
657   // If this is an explicit register reference, handle it.
658   if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
659     Record *Def = DI->getDef();
660     if (Def->isSubClassOf("Register")) {
661       const CodeGenRegister *Reg =
662         CGP.getTargetInfo().getRegBank().getReg(Def);
663       AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0)));
664       ResultOps.push_back(NextRecordedOperandNo++);
665       return;
666     }
667
668     if (Def->getName() == "zero_reg") {
669       AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0)));
670       ResultOps.push_back(NextRecordedOperandNo++);
671       return;
672     }
673
674     // Handle a reference to a register class. This is used
675     // in COPY_TO_SUBREG instructions.
676     if (Def->isSubClassOf("RegisterOperand"))
677       Def = Def->getValueAsDef("RegClass");
678     if (Def->isSubClassOf("RegisterClass")) {
679       std::string Value = getQualifiedName(Def) + "RegClassID";
680       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
681       ResultOps.push_back(NextRecordedOperandNo++);
682       return;
683     }
684
685     // Handle a subregister index. This is used for INSERT_SUBREG etc.
686     if (Def->isSubClassOf("SubRegIndex")) {
687       std::string Value = getQualifiedName(Def);
688       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
689       ResultOps.push_back(NextRecordedOperandNo++);
690       return;
691     }
692   }
693
694   errs() << "unhandled leaf node: \n";
695   N->dump();
696 }
697
698 static bool
699 mayInstNodeLoadOrStore(const TreePatternNode *N,
700                        const CodeGenDAGPatterns &CGP) {
701   Record *Op = N->getOperator();
702   const CodeGenTarget &CGT = CGP.getTargetInfo();
703   CodeGenInstruction &II = CGT.getInstruction(Op);
704   return II.mayLoad || II.mayStore;
705 }
706
707 static unsigned
708 numNodesThatMayLoadOrStore(const TreePatternNode *N,
709                            const CodeGenDAGPatterns &CGP) {
710   if (N->isLeaf())
711     return 0;
712
713   Record *OpRec = N->getOperator();
714   if (!OpRec->isSubClassOf("Instruction"))
715     return 0;
716
717   unsigned Count = 0;
718   if (mayInstNodeLoadOrStore(N, CGP))
719     ++Count;
720
721   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
722     Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
723
724   return Count;
725 }
726
727 void MatcherGen::
728 EmitResultInstructionAsOperand(const TreePatternNode *N,
729                                SmallVectorImpl<unsigned> &OutputOps) {
730   Record *Op = N->getOperator();
731   const CodeGenTarget &CGT = CGP.getTargetInfo();
732   CodeGenInstruction &II = CGT.getInstruction(Op);
733   const DAGInstruction &Inst = CGP.getInstruction(Op);
734
735   bool isRoot = N == Pattern.getDstPattern();
736
737   // TreeHasOutGlue - True if this tree has glue.
738   bool TreeHasInGlue = false, TreeHasOutGlue = false;
739   if (isRoot) {
740     const TreePatternNode *SrcPat = Pattern.getSrcPattern();
741     TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
742                     SrcPat->TreeHasProperty(SDNPInGlue, CGP);
743
744     // FIXME2: this is checking the entire pattern, not just the node in
745     // question, doing this just for the root seems like a total hack.
746     TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
747   }
748
749   // NumResults - This is the number of results produced by the instruction in
750   // the "outs" list.
751   unsigned NumResults = Inst.getNumResults();
752
753   // Number of operands we know the output instruction must have. If it is
754   // variadic, we could have more operands.
755   unsigned NumFixedOperands = II.Operands.size();
756
757   SmallVector<unsigned, 8> InstOps;
758
759   // Loop over all of the fixed operands of the instruction pattern, emitting
760   // code to fill them all in. The node 'N' usually has number children equal to
761   // the number of input operands of the instruction.  However, in cases where
762   // there are predicate operands for an instruction, we need to fill in the
763   // 'execute always' values. Match up the node operands to the instruction
764   // operands to do this.
765   unsigned ChildNo = 0;
766   for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
767        InstOpNo != e; ++InstOpNo) {
768     // Determine what to emit for this operand.
769     Record *OperandNode = II.Operands[InstOpNo].Rec;
770     if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
771         !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
772       // This is a predicate or optional def operand; emit the
773       // 'default ops' operands.
774       const DAGDefaultOperand &DefaultOp
775         = CGP.getDefaultOperand(OperandNode);
776       for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
777         EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps);
778       continue;
779     }
780
781     // Otherwise this is a normal operand or a predicate operand without
782     // 'execute always'; emit it.
783
784     // For operands with multiple sub-operands we may need to emit
785     // multiple child patterns to cover them all.  However, ComplexPattern
786     // children may themselves emit multiple MI operands.
787     unsigned NumSubOps = 1;
788     if (OperandNode->isSubClassOf("Operand")) {
789       DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
790       if (unsigned NumArgs = MIOpInfo->getNumArgs())
791         NumSubOps = NumArgs;
792     }
793
794     unsigned FinalNumOps = InstOps.size() + NumSubOps;
795     while (InstOps.size() < FinalNumOps) {
796       const TreePatternNode *Child = N->getChild(ChildNo);
797       unsigned BeforeAddingNumOps = InstOps.size();
798       EmitResultOperand(Child, InstOps);
799       assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
800
801       // If the operand is an instruction and it produced multiple results, just
802       // take the first one.
803       if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
804         InstOps.resize(BeforeAddingNumOps+1);
805
806       ++ChildNo;
807     }
808   }
809
810   // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
811   // expand suboperands, use default operands, or other features determined from
812   // the CodeGenInstruction after the fixed operands, which were handled
813   // above. Emit the remaining instructions implicitly added by the use for
814   // variable_ops.
815   if (II.Operands.isVariadic) {
816     for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
817       EmitResultOperand(N->getChild(I), InstOps);
818   }
819
820   // If this node has input glue or explicitly specified input physregs, we
821   // need to add chained and glued copyfromreg nodes and materialize the glue
822   // input.
823   if (isRoot && !PhysRegInputs.empty()) {
824     // Emit all of the CopyToReg nodes for the input physical registers.  These
825     // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
826     for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
827       AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
828                                           PhysRegInputs[i].first));
829     // Even if the node has no other glue inputs, the resultant node must be
830     // glued to the CopyFromReg nodes we just generated.
831     TreeHasInGlue = true;
832   }
833
834   // Result order: node results, chain, glue
835
836   // Determine the result types.
837   SmallVector<MVT::SimpleValueType, 4> ResultVTs;
838   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
839     ResultVTs.push_back(N->getSimpleType(i));
840
841   // If this is the root instruction of a pattern that has physical registers in
842   // its result pattern, add output VTs for them.  For example, X86 has:
843   //   (set AL, (mul ...))
844   // This also handles implicit results like:
845   //   (implicit EFLAGS)
846   if (isRoot && !Pattern.getDstRegs().empty()) {
847     // If the root came from an implicit def in the instruction handling stuff,
848     // don't re-add it.
849     Record *HandledReg = nullptr;
850     if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
851       HandledReg = II.ImplicitDefs[0];
852
853     for (Record *Reg : Pattern.getDstRegs()) {
854       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
855       ResultVTs.push_back(getRegisterValueType(Reg, CGT));
856     }
857   }
858
859   // If this is the root of the pattern and the pattern we're matching includes
860   // a node that is variadic, mark the generated node as variadic so that it
861   // gets the excess operands from the input DAG.
862   int NumFixedArityOperands = -1;
863   if (isRoot &&
864       Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
865     NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
866
867   // If this is the root node and multiple matched nodes in the input pattern
868   // have MemRefs in them, have the interpreter collect them and plop them onto
869   // this node. If there is just one node with MemRefs, leave them on that node
870   // even if it is not the root.
871   //
872   // FIXME3: This is actively incorrect for result patterns with multiple
873   // memory-referencing instructions.
874   bool PatternHasMemOperands =
875     Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
876
877   bool NodeHasMemRefs = false;
878   if (PatternHasMemOperands) {
879     unsigned NumNodesThatLoadOrStore =
880       numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
881     bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
882                                    NumNodesThatLoadOrStore == 1;
883     NodeHasMemRefs =
884       NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
885                                              NumNodesThatLoadOrStore != 1));
886   }
887
888   // Determine whether we need to attach a chain to this node.
889   bool NodeHasChain = false;
890   if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) {
891     // For some instructions, we were able to infer from the pattern whether
892     // they should have a chain.  Otherwise, attach the chain to the root.
893     //
894     // FIXME2: This is extremely dubious for several reasons, not the least of
895     // which it gives special status to instructions with patterns that Pat<>
896     // nodes can't duplicate.
897     if (II.hasChain_Inferred)
898       NodeHasChain = II.hasChain;
899     else
900       NodeHasChain = isRoot;
901     // Instructions which load and store from memory should have a chain,
902     // regardless of whether they happen to have a pattern saying so.
903     if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
904         II.hasSideEffects)
905       NodeHasChain = true;
906   }
907
908   assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
909          "Node has no result");
910
911   AddMatcher(new EmitNodeMatcher(II.Namespace.str()+"::"+II.TheDef->getName().str(),
912                                  ResultVTs, InstOps,
913                                  NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
914                                  NodeHasMemRefs, NumFixedArityOperands,
915                                  NextRecordedOperandNo));
916
917   // The non-chain and non-glue results of the newly emitted node get recorded.
918   for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
919     if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
920     OutputOps.push_back(NextRecordedOperandNo++);
921   }
922 }
923
924 void MatcherGen::
925 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
926                                SmallVectorImpl<unsigned> &ResultOps) {
927   assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
928
929   // Emit the operand.
930   SmallVector<unsigned, 8> InputOps;
931
932   // FIXME2: Could easily generalize this to support multiple inputs and outputs
933   // to the SDNodeXForm.  For now we just support one input and one output like
934   // the old instruction selector.
935   assert(N->getNumChildren() == 1);
936   EmitResultOperand(N->getChild(0), InputOps);
937
938   // The input currently must have produced exactly one result.
939   assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
940
941   AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
942   ResultOps.push_back(NextRecordedOperandNo++);
943 }
944
945 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
946                                    SmallVectorImpl<unsigned> &ResultOps) {
947   // This is something selected from the pattern we matched.
948   if (!N->getName().empty())
949     return EmitResultOfNamedOperand(N, ResultOps);
950
951   if (N->isLeaf())
952     return EmitResultLeafAsOperand(N, ResultOps);
953
954   Record *OpRec = N->getOperator();
955   if (OpRec->isSubClassOf("Instruction"))
956     return EmitResultInstructionAsOperand(N, ResultOps);
957   if (OpRec->isSubClassOf("SDNodeXForm"))
958     return EmitResultSDNodeXFormAsOperand(N, ResultOps);
959   errs() << "Unknown result node to emit code for: " << *N << '\n';
960   PrintFatalError("Unknown node in result pattern!");
961 }
962
963 void MatcherGen::EmitResultCode() {
964   // Patterns that match nodes with (potentially multiple) chain inputs have to
965   // merge them together into a token factor.  This informs the generated code
966   // what all the chained nodes are.
967   if (!MatchedChainNodes.empty())
968     AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
969
970   // Codegen the root of the result pattern, capturing the resulting values.
971   SmallVector<unsigned, 8> Ops;
972   EmitResultOperand(Pattern.getDstPattern(), Ops);
973
974   // At this point, we have however many values the result pattern produces.
975   // However, the input pattern might not need all of these.  If there are
976   // excess values at the end (such as implicit defs of condition codes etc)
977   // just lop them off.  This doesn't need to worry about glue or chains, just
978   // explicit results.
979   //
980   unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
981
982   // If the pattern also has (implicit) results, count them as well.
983   if (!Pattern.getDstRegs().empty()) {
984     // If the root came from an implicit def in the instruction handling stuff,
985     // don't re-add it.
986     Record *HandledReg = nullptr;
987     const TreePatternNode *DstPat = Pattern.getDstPattern();
988     if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
989       const CodeGenTarget &CGT = CGP.getTargetInfo();
990       CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
991
992       if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
993         HandledReg = II.ImplicitDefs[0];
994     }
995
996     for (Record *Reg : Pattern.getDstRegs()) {
997       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
998       ++NumSrcResults;
999     }
1000   }
1001
1002   assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
1003   SmallVector<unsigned, 8> Results(Ops);
1004
1005   // Apply result permutation.
1006   for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern()->getNumResults();
1007        ++ResNo) {
1008     Results[ResNo] = Ops[Pattern.getDstPattern()->getResultIndex(ResNo)];
1009   }
1010
1011   Results.resize(NumSrcResults);
1012   AddMatcher(new CompleteMatchMatcher(Results, Pattern));
1013 }
1014
1015
1016 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
1017 /// the specified variant.  If the variant number is invalid, this returns null.
1018 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
1019                                        unsigned Variant,
1020                                        const CodeGenDAGPatterns &CGP) {
1021   MatcherGen Gen(Pattern, CGP);
1022
1023   // Generate the code for the matcher.
1024   if (Gen.EmitMatcherCode(Variant))
1025     return nullptr;
1026
1027   // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1028   // FIXME2: Split result code out to another table, and make the matcher end
1029   // with an "Emit <index>" command.  This allows result generation stuff to be
1030   // shared and factored?
1031
1032   // If the match succeeds, then we generate Pattern.
1033   Gen.EmitResultCode();
1034
1035   // Unconditional match.
1036   return Gen.GetMatcher();
1037 }