]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/utils/TableGen/DAGISelMatcherOpt.cpp
Merge ^/head r303250 through r308226.
[FreeBSD/FreeBSD.git] / contrib / llvm / utils / TableGen / DAGISelMatcherOpt.cpp
1 //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the DAG Matcher optimizer.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "DAGISelMatcher.h"
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/StringSet.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/raw_ostream.h"
19 using namespace llvm;
20
21 #define DEBUG_TYPE "isel-opt"
22
23 /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
24 /// into single compound nodes like RecordChild.
25 static void ContractNodes(std::unique_ptr<Matcher> &MatcherPtr,
26                           const CodeGenDAGPatterns &CGP) {
27   // If we reached the end of the chain, we're done.
28   Matcher *N = MatcherPtr.get();
29   if (!N) return;
30   
31   // If we have a scope node, walk down all of the children.
32   if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
33     for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
34       std::unique_ptr<Matcher> Child(Scope->takeChild(i));
35       ContractNodes(Child, CGP);
36       Scope->resetChild(i, Child.release());
37     }
38     return;
39   }
40   
41   // If we found a movechild node with a node that comes in a 'foochild' form,
42   // transform it.
43   if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
44     Matcher *New = nullptr;
45     if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
46       if (MC->getChildNo() < 8)  // Only have RecordChild0...7
47         New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
48                                      RM->getResultNo());
49
50     if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext()))
51       if (MC->getChildNo() < 8 &&  // Only have CheckChildType0...7
52           CT->getResNo() == 0)     // CheckChildType checks res #0
53         New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
54
55     if (CheckSameMatcher *CS = dyn_cast<CheckSameMatcher>(MC->getNext()))
56       if (MC->getChildNo() < 4)  // Only have CheckChildSame0...3
57         New = new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber());
58
59     if (CheckIntegerMatcher *CS = dyn_cast<CheckIntegerMatcher>(MC->getNext()))
60       if (MC->getChildNo() < 5)  // Only have CheckChildInteger0...4
61         New = new CheckChildIntegerMatcher(MC->getChildNo(), CS->getValue());
62
63     if (New) {
64       // Insert the new node.
65       New->setNext(MatcherPtr.release());
66       MatcherPtr.reset(New);
67       // Remove the old one.
68       MC->setNext(MC->getNext()->takeNext());
69       return ContractNodes(MatcherPtr, CGP);
70     }
71   }
72   
73   // Zap movechild -> moveparent.
74   if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
75     if (MoveParentMatcher *MP = 
76           dyn_cast<MoveParentMatcher>(MC->getNext())) {
77       MatcherPtr.reset(MP->takeNext());
78       return ContractNodes(MatcherPtr, CGP);
79     }
80
81   // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
82   if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
83     if (CompleteMatchMatcher *CM =
84           dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
85       // We can only use MorphNodeTo if the result values match up.
86       unsigned RootResultFirst = EN->getFirstResultSlot();
87       bool ResultsMatch = true;
88       for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
89         if (CM->getResult(i) != RootResultFirst+i)
90           ResultsMatch = false;
91       
92       // If the selected node defines a subset of the glue/chain results, we
93       // can't use MorphNodeTo.  For example, we can't use MorphNodeTo if the
94       // matched pattern has a chain but the root node doesn't.
95       const PatternToMatch &Pattern = CM->getPattern();
96       
97       if (!EN->hasChain() &&
98           Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
99         ResultsMatch = false;
100
101       // If the matched node has glue and the output root doesn't, we can't
102       // use MorphNodeTo.
103       //
104       // NOTE: Strictly speaking, we don't have to check for glue here
105       // because the code in the pattern generator doesn't handle it right.  We
106       // do it anyway for thoroughness.
107       if (!EN->hasOutFlag() &&
108           Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP))
109         ResultsMatch = false;
110       
111       
112       // If the root result node defines more results than the source root node
113       // *and* has a chain or glue input, then we can't match it because it
114       // would end up replacing the extra result with the chain/glue.
115 #if 0
116       if ((EN->hasGlue() || EN->hasChain()) &&
117           EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...)
118         ResultMatch = false;
119 #endif
120           
121       if (ResultsMatch) {
122         const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
123         const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
124         MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
125                                                 VTs, Operands,
126                                                 EN->hasChain(), EN->hasInFlag(),
127                                                 EN->hasOutFlag(),
128                                                 EN->hasMemRefs(),
129                                                 EN->getNumFixedArityOperands(),
130                                                 Pattern));
131         return;
132       }
133
134       // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
135       // variants.
136     }
137   
138   ContractNodes(N->getNextPtr(), CGP);
139   
140   
141   // If we have a CheckType/CheckChildType/Record node followed by a
142   // CheckOpcode, invert the two nodes.  We prefer to do structural checks
143   // before type checks, as this opens opportunities for factoring on targets
144   // like X86 where many operations are valid on multiple types.
145   if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
146        isa<RecordMatcher>(N)) &&
147       isa<CheckOpcodeMatcher>(N->getNext())) {
148     // Unlink the two nodes from the list.
149     Matcher *CheckType = MatcherPtr.release();
150     Matcher *CheckOpcode = CheckType->takeNext();
151     Matcher *Tail = CheckOpcode->takeNext();
152     
153     // Relink them.
154     MatcherPtr.reset(CheckOpcode);
155     CheckOpcode->setNext(CheckType);
156     CheckType->setNext(Tail);
157     return ContractNodes(MatcherPtr, CGP);
158   }
159 }
160
161 /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
162 /// specified kind.  Return null if we didn't find one otherwise return the
163 /// matcher.
164 static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
165   for (; M; M = M->getNext())
166     if (M->getKind() == Kind)
167       return M;
168   return nullptr;
169 }
170
171
172 /// FactorNodes - Turn matches like this:
173 ///   Scope
174 ///     OPC_CheckType i32
175 ///       ABC
176 ///     OPC_CheckType i32
177 ///       XYZ
178 /// into:
179 ///   OPC_CheckType i32
180 ///     Scope
181 ///       ABC
182 ///       XYZ
183 ///
184 static void FactorNodes(std::unique_ptr<Matcher> &MatcherPtr) {
185   // If we reached the end of the chain, we're done.
186   Matcher *N = MatcherPtr.get();
187   if (!N) return;
188   
189   // If this is not a push node, just scan for one.
190   ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
191   if (!Scope)
192     return FactorNodes(N->getNextPtr());
193   
194   // Okay, pull together the children of the scope node into a vector so we can
195   // inspect it more easily.
196   SmallVector<Matcher*, 32> OptionsToMatch;
197   
198   for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
199     // Factor the subexpression.
200     std::unique_ptr<Matcher> Child(Scope->takeChild(i));
201     FactorNodes(Child);
202     
203     if (Matcher *N = Child.release())
204       OptionsToMatch.push_back(N);
205   }
206   
207   SmallVector<Matcher*, 32> NewOptionsToMatch;
208   
209   // Loop over options to match, merging neighboring patterns with identical
210   // starting nodes into a shared matcher.
211   for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
212     // Find the set of matchers that start with this node.
213     Matcher *Optn = OptionsToMatch[OptionIdx++];
214
215     if (OptionIdx == e) {
216       NewOptionsToMatch.push_back(Optn);
217       continue;
218     }
219     
220     // See if the next option starts with the same matcher.  If the two
221     // neighbors *do* start with the same matcher, we can factor the matcher out
222     // of at least these two patterns.  See what the maximal set we can merge
223     // together is.
224     SmallVector<Matcher*, 8> EqualMatchers;
225     EqualMatchers.push_back(Optn);
226     
227     // Factor all of the known-equal matchers after this one into the same
228     // group.
229     while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
230       EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
231
232     // If we found a non-equal matcher, see if it is contradictory with the
233     // current node.  If so, we know that the ordering relation between the
234     // current sets of nodes and this node don't matter.  Look past it to see if
235     // we can merge anything else into this matching group.
236     unsigned Scan = OptionIdx;
237     while (1) {
238       // If we ran out of stuff to scan, we're done.
239       if (Scan == e) break;
240       
241       Matcher *ScanMatcher = OptionsToMatch[Scan];
242       
243       // If we found an entry that matches out matcher, merge it into the set to
244       // handle.
245       if (Optn->isEqual(ScanMatcher)) {
246         // If is equal after all, add the option to EqualMatchers and remove it
247         // from OptionsToMatch.
248         EqualMatchers.push_back(ScanMatcher);
249         OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
250         --e;
251         continue;
252       }
253       
254       // If the option we're checking for contradicts the start of the list,
255       // skip over it.
256       if (Optn->isContradictory(ScanMatcher)) {
257         ++Scan;
258         continue;
259       }
260
261       // If we're scanning for a simple node, see if it occurs later in the
262       // sequence.  If so, and if we can move it up, it might be contradictory
263       // or the same as what we're looking for.  If so, reorder it.
264       if (Optn->isSimplePredicateOrRecordNode()) {
265         Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
266         if (M2 && M2 != ScanMatcher &&
267             M2->canMoveBefore(ScanMatcher) &&
268             (M2->isEqual(Optn) || M2->isContradictory(Optn))) {
269           Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
270           M2->setNext(MatcherWithoutM2);
271           OptionsToMatch[Scan] = M2;
272           continue;
273         }
274       }
275       
276       // Otherwise, we don't know how to handle this entry, we have to bail.
277       break;
278     }
279       
280     if (Scan != e &&
281         // Don't print it's obvious nothing extra could be merged anyway.
282         Scan+1 != e) {
283       DEBUG(errs() << "Couldn't merge this:\n";
284             Optn->print(errs(), 4);
285             errs() << "into this:\n";
286             OptionsToMatch[Scan]->print(errs(), 4);
287             if (Scan+1 != e)
288               OptionsToMatch[Scan+1]->printOne(errs());
289             if (Scan+2 < e)
290               OptionsToMatch[Scan+2]->printOne(errs());
291             errs() << "\n");
292     }
293     
294     // If we only found one option starting with this matcher, no factoring is
295     // possible.
296     if (EqualMatchers.size() == 1) {
297       NewOptionsToMatch.push_back(EqualMatchers[0]);
298       continue;
299     }
300     
301     // Factor these checks by pulling the first node off each entry and
302     // discarding it.  Take the first one off the first entry to reuse.
303     Matcher *Shared = Optn;
304     Optn = Optn->takeNext();
305     EqualMatchers[0] = Optn;
306
307     // Remove and delete the first node from the other matchers we're factoring.
308     for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
309       Matcher *Tmp = EqualMatchers[i]->takeNext();
310       delete EqualMatchers[i];
311       EqualMatchers[i] = Tmp;
312     }
313     
314     Shared->setNext(new ScopeMatcher(EqualMatchers));
315
316     // Recursively factor the newly created node.
317     FactorNodes(Shared->getNextPtr());
318     
319     NewOptionsToMatch.push_back(Shared);
320   }
321   
322   // If we're down to a single pattern to match, then we don't need this scope
323   // anymore.
324   if (NewOptionsToMatch.size() == 1) {
325     MatcherPtr.reset(NewOptionsToMatch[0]);
326     return;
327   }
328   
329   if (NewOptionsToMatch.empty()) {
330     MatcherPtr.reset();
331     return;
332   }
333   
334   // If our factoring failed (didn't achieve anything) see if we can simplify in
335   // other ways.
336   
337   // Check to see if all of the leading entries are now opcode checks.  If so,
338   // we can convert this Scope to be a OpcodeSwitch instead.
339   bool AllOpcodeChecks = true, AllTypeChecks = true;
340   for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
341     // Check to see if this breaks a series of CheckOpcodeMatchers.
342     if (AllOpcodeChecks &&
343         !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) {
344 #if 0
345       if (i > 3) {
346         errs() << "FAILING OPC #" << i << "\n";
347         NewOptionsToMatch[i]->dump();
348       }
349 #endif
350       AllOpcodeChecks = false;
351     }
352
353     // Check to see if this breaks a series of CheckTypeMatcher's.
354     if (AllTypeChecks) {
355       CheckTypeMatcher *CTM =
356         cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
357                                                         Matcher::CheckType));
358       if (!CTM ||
359           // iPTR checks could alias any other case without us knowing, don't
360           // bother with them.
361           CTM->getType() == MVT::iPTR ||
362           // SwitchType only works for result #0.
363           CTM->getResNo() != 0 ||
364           // If the CheckType isn't at the start of the list, see if we can move
365           // it there.
366           !CTM->canMoveBefore(NewOptionsToMatch[i])) {
367 #if 0
368         if (i > 3 && AllTypeChecks) {
369           errs() << "FAILING TYPE #" << i << "\n";
370           NewOptionsToMatch[i]->dump();
371         }
372 #endif
373         AllTypeChecks = false;
374       }
375     }
376   }
377   
378   // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
379   if (AllOpcodeChecks) {
380     StringSet<> Opcodes;
381     SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases;
382     for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
383       CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]);
384       assert(Opcodes.insert(COM->getOpcode().getEnumName()).second &&
385              "Duplicate opcodes not factored?");
386       Cases.push_back(std::make_pair(&COM->getOpcode(), COM->takeNext()));
387       delete COM;
388     }
389     
390     MatcherPtr.reset(new SwitchOpcodeMatcher(Cases));
391     return;
392   }
393   
394   // If all the options are CheckType's, we can form the SwitchType, woot.
395   if (AllTypeChecks) {
396     DenseMap<unsigned, unsigned> TypeEntry;
397     SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases;
398     for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
399       CheckTypeMatcher *CTM =
400         cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
401                                                         Matcher::CheckType));
402       Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM);
403       MVT::SimpleValueType CTMTy = CTM->getType();
404       delete CTM;
405       
406       unsigned &Entry = TypeEntry[CTMTy];
407       if (Entry != 0) {
408         // If we have unfactored duplicate types, then we should factor them.
409         Matcher *PrevMatcher = Cases[Entry-1].second;
410         if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
411           SM->setNumChildren(SM->getNumChildren()+1);
412           SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM);
413           continue;
414         }
415         
416         Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM };
417         std::unique_ptr<Matcher> Case(new ScopeMatcher(Entries));
418         FactorNodes(Case);
419         Cases[Entry-1].second = Case.release();
420         continue;
421       }
422       
423       Entry = Cases.size()+1;
424       Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM));
425     }
426     
427     if (Cases.size() != 1) {
428       MatcherPtr.reset(new SwitchTypeMatcher(Cases));
429     } else {
430       // If we factored and ended up with one case, create it now.
431       MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0));
432       MatcherPtr->setNext(Cases[0].second);
433     }
434     return;
435   }
436   
437
438   // Reassemble the Scope node with the adjusted children.
439   Scope->setNumChildren(NewOptionsToMatch.size());
440   for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
441     Scope->resetChild(i, NewOptionsToMatch[i]);
442 }
443
444 void
445 llvm::OptimizeMatcher(std::unique_ptr<Matcher> &MatcherPtr,
446                       const CodeGenDAGPatterns &CGP) {
447   ContractNodes(MatcherPtr, CGP);
448   FactorNodes(MatcherPtr);
449 }