]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/utils/TableGen/FastISelEmitter.cpp
Upgrade NetBSD tests to 01.11.2017_23.20 snapshot
[FreeBSD/FreeBSD.git] / contrib / llvm / utils / TableGen / FastISelEmitter.cpp
1 //===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits code for use by the "fast" instruction
11 // selection algorithm. See the comments at the top of
12 // lib/CodeGen/SelectionDAG/FastISel.cpp for background.
13 //
14 // This file scans through the target's tablegen instruction-info files
15 // and extracts instructions with obvious-looking patterns, and it emits
16 // code to look up these instructions by type and operator.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "CodeGenDAGPatterns.h"
21 #include "llvm/ADT/StringSwitch.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include "llvm/TableGen/TableGenBackend.h"
27 #include <utility>
28 using namespace llvm;
29
30
31 /// InstructionMemo - This class holds additional information about an
32 /// instruction needed to emit code for it.
33 ///
34 namespace {
35 struct InstructionMemo {
36   std::string Name;
37   const CodeGenRegisterClass *RC;
38   std::string SubRegNo;
39   std::vector<std::string>* PhysRegs;
40   std::string PredicateCheck;
41 };
42 } // End anonymous namespace
43
44 /// ImmPredicateSet - This uniques predicates (represented as a string) and
45 /// gives them unique (small) integer ID's that start at 0.
46 namespace {
47 class ImmPredicateSet {
48   DenseMap<TreePattern *, unsigned> ImmIDs;
49   std::vector<TreePredicateFn> PredsByName;
50 public:
51
52   unsigned getIDFor(TreePredicateFn Pred) {
53     unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
54     if (Entry == 0) {
55       PredsByName.push_back(Pred);
56       Entry = PredsByName.size();
57     }
58     return Entry-1;
59   }
60
61   const TreePredicateFn &getPredicate(unsigned i) {
62     assert(i < PredsByName.size());
63     return PredsByName[i];
64   }
65
66   typedef std::vector<TreePredicateFn>::const_iterator iterator;
67   iterator begin() const { return PredsByName.begin(); }
68   iterator end() const { return PredsByName.end(); }
69
70 };
71 } // End anonymous namespace
72
73 /// OperandsSignature - This class holds a description of a list of operand
74 /// types. It has utility methods for emitting text based on the operands.
75 ///
76 namespace {
77 struct OperandsSignature {
78   class OpKind {
79     enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
80     char Repr;
81   public:
82
83     OpKind() : Repr(OK_Invalid) {}
84
85     bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
86     bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
87
88     static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
89     static OpKind getFP()  { OpKind K; K.Repr = OK_FP; return K; }
90     static OpKind getImm(unsigned V) {
91       assert((unsigned)OK_Imm+V < 128 &&
92              "Too many integer predicates for the 'Repr' char");
93       OpKind K; K.Repr = OK_Imm+V; return K;
94     }
95
96     bool isReg() const { return Repr == OK_Reg; }
97     bool isFP() const  { return Repr == OK_FP; }
98     bool isImm() const { return Repr >= OK_Imm; }
99
100     unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }
101
102     void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
103                              bool StripImmCodes) const {
104       if (isReg())
105         OS << 'r';
106       else if (isFP())
107         OS << 'f';
108       else {
109         OS << 'i';
110         if (!StripImmCodes)
111           if (unsigned Code = getImmCode())
112             OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
113       }
114     }
115   };
116
117
118   SmallVector<OpKind, 3> Operands;
119
120   bool operator<(const OperandsSignature &O) const {
121     return Operands < O.Operands;
122   }
123   bool operator==(const OperandsSignature &O) const {
124     return Operands == O.Operands;
125   }
126
127   bool empty() const { return Operands.empty(); }
128
129   bool hasAnyImmediateCodes() const {
130     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
131       if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
132         return true;
133     return false;
134   }
135
136   /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
137   /// to zero.
138   OperandsSignature getWithoutImmCodes() const {
139     OperandsSignature Result;
140     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
141       if (!Operands[i].isImm())
142         Result.Operands.push_back(Operands[i]);
143       else
144         Result.Operands.push_back(OpKind::getImm(0));
145     return Result;
146   }
147
148   void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
149     bool EmittedAnything = false;
150     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
151       if (!Operands[i].isImm()) continue;
152
153       unsigned Code = Operands[i].getImmCode();
154       if (Code == 0) continue;
155
156       if (EmittedAnything)
157         OS << " &&\n        ";
158
159       TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);
160
161       // Emit the type check.
162       OS << "VT == "
163          << getEnumName(PredFn.getOrigPatFragRecord()->getTree(0)->getType(0))
164          << " && ";
165
166
167       OS << PredFn.getFnName() << "(imm" << i <<')';
168       EmittedAnything = true;
169     }
170   }
171
172   /// initialize - Examine the given pattern and initialize the contents
173   /// of the Operands array accordingly. Return true if all the operands
174   /// are supported, false otherwise.
175   ///
176   bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
177                   MVT::SimpleValueType VT,
178                   ImmPredicateSet &ImmediatePredicates,
179                   const CodeGenRegisterClass *OrigDstRC) {
180     if (InstPatNode->isLeaf())
181       return false;
182
183     if (InstPatNode->getOperator()->getName() == "imm") {
184       Operands.push_back(OpKind::getImm(0));
185       return true;
186     }
187
188     if (InstPatNode->getOperator()->getName() == "fpimm") {
189       Operands.push_back(OpKind::getFP());
190       return true;
191     }
192
193     const CodeGenRegisterClass *DstRC = nullptr;
194
195     for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
196       TreePatternNode *Op = InstPatNode->getChild(i);
197
198       // Handle imm operands specially.
199       if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
200         unsigned PredNo = 0;
201         if (!Op->getPredicateFns().empty()) {
202           TreePredicateFn PredFn = Op->getPredicateFns()[0];
203           // If there is more than one predicate weighing in on this operand
204           // then we don't handle it.  This doesn't typically happen for
205           // immediates anyway.
206           if (Op->getPredicateFns().size() > 1 ||
207               !PredFn.isImmediatePattern())
208             return false;
209           // Ignore any instruction with 'FastIselShouldIgnore', these are
210           // not needed and just bloat the fast instruction selector.  For
211           // example, X86 doesn't need to generate code to match ADD16ri8 since
212           // ADD16ri will do just fine.
213           Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
214           if (Rec->getValueAsBit("FastIselShouldIgnore"))
215             return false;
216
217           PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
218         }
219
220         // Handle unmatched immediate sizes here.
221         //if (Op->getType(0) != VT)
222         //  return false;
223
224         Operands.push_back(OpKind::getImm(PredNo));
225         continue;
226       }
227
228
229       // For now, filter out any operand with a predicate.
230       // For now, filter out any operand with multiple values.
231       if (!Op->getPredicateFns().empty() || Op->getNumTypes() != 1)
232         return false;
233
234       if (!Op->isLeaf()) {
235          if (Op->getOperator()->getName() == "fpimm") {
236           Operands.push_back(OpKind::getFP());
237           continue;
238         }
239         // For now, ignore other non-leaf nodes.
240         return false;
241       }
242
243       assert(Op->hasTypeSet(0) && "Type infererence not done?");
244
245       // For now, all the operands must have the same type (if they aren't
246       // immediates).  Note that this causes us to reject variable sized shifts
247       // on X86.
248       if (Op->getType(0) != VT)
249         return false;
250
251       DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
252       if (!OpDI)
253         return false;
254       Record *OpLeafRec = OpDI->getDef();
255
256       // For now, the only other thing we accept is register operands.
257       const CodeGenRegisterClass *RC = nullptr;
258       if (OpLeafRec->isSubClassOf("RegisterOperand"))
259         OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
260       if (OpLeafRec->isSubClassOf("RegisterClass"))
261         RC = &Target.getRegisterClass(OpLeafRec);
262       else if (OpLeafRec->isSubClassOf("Register"))
263         RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
264       else if (OpLeafRec->isSubClassOf("ValueType")) {
265         RC = OrigDstRC;
266       } else
267         return false;
268
269       // For now, this needs to be a register class of some sort.
270       if (!RC)
271         return false;
272
273       // For now, all the operands must have the same register class or be
274       // a strict subclass of the destination.
275       if (DstRC) {
276         if (DstRC != RC && !DstRC->hasSubClass(RC))
277           return false;
278       } else
279         DstRC = RC;
280       Operands.push_back(OpKind::getReg());
281     }
282     return true;
283   }
284
285   void PrintParameters(raw_ostream &OS) const {
286     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
287       if (Operands[i].isReg()) {
288         OS << "unsigned Op" << i << ", bool Op" << i << "IsKill";
289       } else if (Operands[i].isImm()) {
290         OS << "uint64_t imm" << i;
291       } else if (Operands[i].isFP()) {
292         OS << "const ConstantFP *f" << i;
293       } else {
294         llvm_unreachable("Unknown operand kind!");
295       }
296       if (i + 1 != e)
297         OS << ", ";
298     }
299   }
300
301   void PrintArguments(raw_ostream &OS,
302                       const std::vector<std::string> &PR) const {
303     assert(PR.size() == Operands.size());
304     bool PrintedArg = false;
305     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
306       if (PR[i] != "")
307         // Implicit physical register operand.
308         continue;
309
310       if (PrintedArg)
311         OS << ", ";
312       if (Operands[i].isReg()) {
313         OS << "Op" << i << ", Op" << i << "IsKill";
314         PrintedArg = true;
315       } else if (Operands[i].isImm()) {
316         OS << "imm" << i;
317         PrintedArg = true;
318       } else if (Operands[i].isFP()) {
319         OS << "f" << i;
320         PrintedArg = true;
321       } else {
322         llvm_unreachable("Unknown operand kind!");
323       }
324     }
325   }
326
327   void PrintArguments(raw_ostream &OS) const {
328     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
329       if (Operands[i].isReg()) {
330         OS << "Op" << i << ", Op" << i << "IsKill";
331       } else if (Operands[i].isImm()) {
332         OS << "imm" << i;
333       } else if (Operands[i].isFP()) {
334         OS << "f" << i;
335       } else {
336         llvm_unreachable("Unknown operand kind!");
337       }
338       if (i + 1 != e)
339         OS << ", ";
340     }
341   }
342
343
344   void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
345                            ImmPredicateSet &ImmPredicates,
346                            bool StripImmCodes = false) const {
347     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
348       if (PR[i] != "")
349         // Implicit physical register operand. e.g. Instruction::Mul expect to
350         // select to a binary op. On x86, mul may take a single operand with
351         // the other operand being implicit. We must emit something that looks
352         // like a binary instruction except for the very inner fastEmitInst_*
353         // call.
354         continue;
355       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
356     }
357   }
358
359   void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
360                            bool StripImmCodes = false) const {
361     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
362       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
363   }
364 };
365 } // End anonymous namespace
366
367 namespace {
368 class FastISelMap {
369   // A multimap is needed instead of a "plain" map because the key is 
370   // the instruction's complexity (an int) and they are not unique.
371   typedef std::multimap<int, InstructionMemo> PredMap;
372   typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
373   typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
374   typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
375   typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
376             OperandsOpcodeTypeRetPredMap;
377
378   OperandsOpcodeTypeRetPredMap SimplePatterns;
379
380   // This is used to check that there are no duplicate predicates            
381   typedef std::multimap<std::string, bool> PredCheckMap;
382   typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap;
383   typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap;
384   typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap;
385   typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap>
386             OperandsOpcodeTypeRetPredCheckMap;
387
388   OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck;
389
390   std::map<OperandsSignature, std::vector<OperandsSignature> >
391     SignaturesWithConstantForms;
392
393   std::string InstNS;
394   ImmPredicateSet ImmediatePredicates;
395 public:
396   explicit FastISelMap(std::string InstNS);
397
398   void collectPatterns(CodeGenDAGPatterns &CGP);
399   void printImmediatePredicates(raw_ostream &OS);
400   void printFunctionDefinitions(raw_ostream &OS);
401 private:  
402   void emitInstructionCode(raw_ostream &OS, 
403                            const OperandsSignature &Operands,
404                            const PredMap &PM, 
405                            const std::string &RetVTName);
406 };
407 } // End anonymous namespace
408
409 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
410   return CGP.getSDNodeInfo(Op).getEnumName();
411 }
412
413 static std::string getLegalCName(std::string OpName) {
414   std::string::size_type pos = OpName.find("::");
415   if (pos != std::string::npos)
416     OpName.replace(pos, 2, "_");
417   return OpName;
418 }
419
420 FastISelMap::FastISelMap(std::string instns) : InstNS(std::move(instns)) {}
421
422 static std::string PhyRegForNode(TreePatternNode *Op,
423                                  const CodeGenTarget &Target) {
424   std::string PhysReg;
425
426   if (!Op->isLeaf())
427     return PhysReg;
428
429   Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
430   if (!OpLeafRec->isSubClassOf("Register"))
431     return PhysReg;
432
433   PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
434                ->getValue();
435   PhysReg += "::";
436   PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
437   return PhysReg;
438 }
439
440 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
441   const CodeGenTarget &Target = CGP.getTargetInfo();
442
443   // Determine the target's namespace name.
444   InstNS = Target.getInstNamespace() + "::";
445   assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");
446
447   // Scan through all the patterns and record the simple ones.
448   for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
449        E = CGP.ptm_end(); I != E; ++I) {
450     const PatternToMatch &Pattern = *I;
451
452     // For now, just look at Instructions, so that we don't have to worry
453     // about emitting multiple instructions for a pattern.
454     TreePatternNode *Dst = Pattern.getDstPattern();
455     if (Dst->isLeaf()) continue;
456     Record *Op = Dst->getOperator();
457     if (!Op->isSubClassOf("Instruction"))
458       continue;
459     CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
460     if (II.Operands.empty())
461       continue;
462
463     // For now, ignore multi-instruction patterns.
464     bool MultiInsts = false;
465     for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
466       TreePatternNode *ChildOp = Dst->getChild(i);
467       if (ChildOp->isLeaf())
468         continue;
469       if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
470         MultiInsts = true;
471         break;
472       }
473     }
474     if (MultiInsts)
475       continue;
476
477     // For now, ignore instructions where the first operand is not an
478     // output register.
479     const CodeGenRegisterClass *DstRC = nullptr;
480     std::string SubRegNo;
481     if (Op->getName() != "EXTRACT_SUBREG") {
482       Record *Op0Rec = II.Operands[0].Rec;
483       if (Op0Rec->isSubClassOf("RegisterOperand"))
484         Op0Rec = Op0Rec->getValueAsDef("RegClass");
485       if (!Op0Rec->isSubClassOf("RegisterClass"))
486         continue;
487       DstRC = &Target.getRegisterClass(Op0Rec);
488       if (!DstRC)
489         continue;
490     } else {
491       // If this isn't a leaf, then continue since the register classes are
492       // a bit too complicated for now.
493       if (!Dst->getChild(1)->isLeaf()) continue;
494
495       DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
496       if (SR)
497         SubRegNo = getQualifiedName(SR->getDef());
498       else
499         SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
500     }
501
502     // Inspect the pattern.
503     TreePatternNode *InstPatNode = Pattern.getSrcPattern();
504     if (!InstPatNode) continue;
505     if (InstPatNode->isLeaf()) continue;
506
507     // Ignore multiple result nodes for now.
508     if (InstPatNode->getNumTypes() > 1) continue;
509
510     Record *InstPatOp = InstPatNode->getOperator();
511     std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
512     MVT::SimpleValueType RetVT = MVT::isVoid;
513     if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getType(0);
514     MVT::SimpleValueType VT = RetVT;
515     if (InstPatNode->getNumChildren()) {
516       assert(InstPatNode->getChild(0)->getNumTypes() == 1);
517       VT = InstPatNode->getChild(0)->getType(0);
518     }
519
520     // For now, filter out any instructions with predicates.
521     if (!InstPatNode->getPredicateFns().empty())
522       continue;
523
524     // Check all the operands.
525     OperandsSignature Operands;
526     if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
527                              DstRC))
528       continue;
529
530     std::vector<std::string>* PhysRegInputs = new std::vector<std::string>();
531     if (InstPatNode->getOperator()->getName() == "imm" ||
532         InstPatNode->getOperator()->getName() == "fpimm")
533       PhysRegInputs->push_back("");
534     else {
535       // Compute the PhysRegs used by the given pattern, and check that
536       // the mapping from the src to dst patterns is simple.
537       bool FoundNonSimplePattern = false;
538       unsigned DstIndex = 0;
539       for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
540         std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
541         if (PhysReg.empty()) {
542           if (DstIndex >= Dst->getNumChildren() ||
543               Dst->getChild(DstIndex)->getName() !=
544               InstPatNode->getChild(i)->getName()) {
545             FoundNonSimplePattern = true;
546             break;
547           }
548           ++DstIndex;
549         }
550
551         PhysRegInputs->push_back(PhysReg);
552       }
553
554       if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
555         FoundNonSimplePattern = true;
556
557       if (FoundNonSimplePattern)
558         continue;
559     }
560
561     // Check if the operands match one of the patterns handled by FastISel.
562     std::string ManglingSuffix;
563     raw_string_ostream SuffixOS(ManglingSuffix);
564     Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
565     SuffixOS.flush();
566     if (!StringSwitch<bool>(ManglingSuffix)
567         .Cases("", "r", "rr", "ri", "rf", true)
568         .Cases("rri", "i", "f", true)
569         .Default(false))
570       continue;
571
572     // Get the predicate that guards this pattern.
573     std::string PredicateCheck = Pattern.getPredicateCheck();
574
575     // Ok, we found a pattern that we can handle. Remember it.
576     InstructionMemo Memo = {
577       Pattern.getDstPattern()->getOperator()->getName(),
578       DstRC,
579       SubRegNo,
580       PhysRegInputs,
581       PredicateCheck
582     };
583     
584     int complexity = Pattern.getPatternComplexity(CGP);
585
586     if (SimplePatternsCheck[Operands][OpcodeName][VT]
587          [RetVT].count(PredicateCheck)) {
588       PrintFatalError(Pattern.getSrcRecord()->getLoc(),
589                     "Duplicate predicate in FastISel table!");
590     }
591     SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert(
592             std::make_pair(PredicateCheck, true));
593
594        // Note: Instructions with the same complexity will appear in the order
595           // that they are encountered.
596     SimplePatterns[Operands][OpcodeName][VT][RetVT].insert(
597       std::make_pair(complexity, Memo));
598
599     // If any of the operands were immediates with predicates on them, strip
600     // them down to a signature that doesn't have predicates so that we can
601     // associate them with the stripped predicate version.
602     if (Operands.hasAnyImmediateCodes()) {
603       SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
604         .push_back(Operands);
605     }
606   }
607 }
608
609 void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
610   if (ImmediatePredicates.begin() == ImmediatePredicates.end())
611     return;
612
613   OS << "\n// FastEmit Immediate Predicate functions.\n";
614   for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(),
615        E = ImmediatePredicates.end(); I != E; ++I) {
616     OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n";
617     OS << I->getImmediatePredicateCode() << "\n}\n";
618   }
619
620   OS << "\n\n";
621 }
622
623 void FastISelMap::emitInstructionCode(raw_ostream &OS, 
624                                       const OperandsSignature &Operands,
625                                       const PredMap &PM, 
626                                       const std::string &RetVTName) {
627   // Emit code for each possible instruction. There may be
628   // multiple if there are subtarget concerns.  A reverse iterator
629   // is used to produce the ones with highest complexity first.
630
631   bool OneHadNoPredicate = false;
632   for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
633        PI != PE; ++PI) {
634     const InstructionMemo &Memo = PI->second;
635     std::string PredicateCheck = Memo.PredicateCheck;
636
637     if (PredicateCheck.empty()) {
638       assert(!OneHadNoPredicate &&
639              "Multiple instructions match and more than one had "
640              "no predicate!");
641       OneHadNoPredicate = true;
642     } else {
643       if (OneHadNoPredicate) {
644         // FIXME: This should be a PrintError once the x86 target
645         // fixes PR21575.
646         PrintWarning("Multiple instructions match and one with no "
647                      "predicate came before one with a predicate!  "
648                      "name:" + Memo.Name + "  predicate: " + 
649                      PredicateCheck);
650       }
651       OS << "  if (" + PredicateCheck + ") {\n";
652       OS << "  ";
653     }
654
655     for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) {
656       if ((*Memo.PhysRegs)[i] != "")
657         OS << "  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, "
658            << "TII.get(TargetOpcode::COPY), "
659            << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n";
660     }
661
662     OS << "  return fastEmitInst_";
663     if (Memo.SubRegNo.empty()) {
664       Operands.PrintManglingSuffix(OS, *Memo.PhysRegs,
665      ImmediatePredicates, true);
666       OS << "(" << InstNS << Memo.Name << ", ";
667       OS << "&" << InstNS << Memo.RC->getName() << "RegClass";
668       if (!Operands.empty())
669         OS << ", ";
670       Operands.PrintArguments(OS, *Memo.PhysRegs);
671       OS << ");\n";
672     } else {
673       OS << "extractsubreg(" << RetVTName
674          << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n";
675     }
676
677     if (!PredicateCheck.empty()) {
678       OS << "  }\n";
679     }
680   }
681   // Return 0 if all of the possibilities had predicates but none
682   // were satisfied.
683   if (!OneHadNoPredicate)
684     OS << "  return 0;\n";
685   OS << "}\n";
686   OS << "\n";
687 }
688
689
690 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
691   // Now emit code for all the patterns that we collected.
692   for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(),
693        OE = SimplePatterns.end(); OI != OE; ++OI) {
694     const OperandsSignature &Operands = OI->first;
695     const OpcodeTypeRetPredMap &OTM = OI->second;
696
697     for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
698          I != E; ++I) {
699       const std::string &Opcode = I->first;
700       const TypeRetPredMap &TM = I->second;
701
702       OS << "// FastEmit functions for " << Opcode << ".\n";
703       OS << "\n";
704
705       // Emit one function for each opcode,type pair.
706       for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
707            TI != TE; ++TI) {
708         MVT::SimpleValueType VT = TI->first;
709         const RetPredMap &RM = TI->second;
710         if (RM.size() != 1) {
711           for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
712                RI != RE; ++RI) {
713             MVT::SimpleValueType RetVT = RI->first;
714             const PredMap &PM = RI->second;
715
716             OS << "unsigned fastEmit_"
717                << getLegalCName(Opcode)
718                << "_" << getLegalCName(getName(VT))
719                << "_" << getLegalCName(getName(RetVT)) << "_";
720             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
721             OS << "(";
722             Operands.PrintParameters(OS);
723             OS << ") {\n";
724
725             emitInstructionCode(OS, Operands, PM, getName(RetVT));
726           }
727
728           // Emit one function for the type that demultiplexes on return type.
729           OS << "unsigned fastEmit_"
730              << getLegalCName(Opcode) << "_"
731              << getLegalCName(getName(VT)) << "_";
732           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
733           OS << "(MVT RetVT";
734           if (!Operands.empty())
735             OS << ", ";
736           Operands.PrintParameters(OS);
737           OS << ") {\nswitch (RetVT.SimpleTy) {\n";
738           for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
739                RI != RE; ++RI) {
740             MVT::SimpleValueType RetVT = RI->first;
741             OS << "  case " << getName(RetVT) << ": return fastEmit_"
742                << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT))
743                << "_" << getLegalCName(getName(RetVT)) << "_";
744             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
745             OS << "(";
746             Operands.PrintArguments(OS);
747             OS << ");\n";
748           }
749           OS << "  default: return 0;\n}\n}\n\n";
750
751         } else {
752           // Non-variadic return type.
753           OS << "unsigned fastEmit_"
754              << getLegalCName(Opcode) << "_"
755              << getLegalCName(getName(VT)) << "_";
756           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
757           OS << "(MVT RetVT";
758           if (!Operands.empty())
759             OS << ", ";
760           Operands.PrintParameters(OS);
761           OS << ") {\n";
762
763           OS << "  if (RetVT.SimpleTy != " << getName(RM.begin()->first)
764              << ")\n    return 0;\n";
765
766           const PredMap &PM = RM.begin()->second;
767
768           emitInstructionCode(OS, Operands, PM, "RetVT");
769         }
770       }
771
772       // Emit one function for the opcode that demultiplexes based on the type.
773       OS << "unsigned fastEmit_"
774          << getLegalCName(Opcode) << "_";
775       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
776       OS << "(MVT VT, MVT RetVT";
777       if (!Operands.empty())
778         OS << ", ";
779       Operands.PrintParameters(OS);
780       OS << ") {\n";
781       OS << "  switch (VT.SimpleTy) {\n";
782       for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
783            TI != TE; ++TI) {
784         MVT::SimpleValueType VT = TI->first;
785         std::string TypeName = getName(VT);
786         OS << "  case " << TypeName << ": return fastEmit_"
787            << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
788         Operands.PrintManglingSuffix(OS, ImmediatePredicates);
789         OS << "(RetVT";
790         if (!Operands.empty())
791           OS << ", ";
792         Operands.PrintArguments(OS);
793         OS << ");\n";
794       }
795       OS << "  default: return 0;\n";
796       OS << "  }\n";
797       OS << "}\n";
798       OS << "\n";
799     }
800
801     OS << "// Top-level FastEmit function.\n";
802     OS << "\n";
803
804     // Emit one function for the operand signature that demultiplexes based
805     // on opcode and type.
806     OS << "unsigned fastEmit_";
807     Operands.PrintManglingSuffix(OS, ImmediatePredicates);
808     OS << "(MVT VT, MVT RetVT, unsigned Opcode";
809     if (!Operands.empty())
810       OS << ", ";
811     Operands.PrintParameters(OS);
812     OS << ") ";
813     if (!Operands.hasAnyImmediateCodes())
814       OS << "override ";
815     OS << "{\n";
816
817     // If there are any forms of this signature available that operate on
818     // constrained forms of the immediate (e.g., 32-bit sext immediate in a
819     // 64-bit operand), check them first.
820
821     std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
822       = SignaturesWithConstantForms.find(Operands);
823     if (MI != SignaturesWithConstantForms.end()) {
824       // Unique any duplicates out of the list.
825       std::sort(MI->second.begin(), MI->second.end());
826       MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
827                        MI->second.end());
828
829       // Check each in order it was seen.  It would be nice to have a good
830       // relative ordering between them, but we're not going for optimality
831       // here.
832       for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
833         OS << "  if (";
834         MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
835         OS << ")\n    if (unsigned Reg = fastEmit_";
836         MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
837         OS << "(VT, RetVT, Opcode";
838         if (!MI->second[i].empty())
839           OS << ", ";
840         MI->second[i].PrintArguments(OS);
841         OS << "))\n      return Reg;\n\n";
842       }
843
844       // Done with this, remove it.
845       SignaturesWithConstantForms.erase(MI);
846     }
847
848     OS << "  switch (Opcode) {\n";
849     for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
850          I != E; ++I) {
851       const std::string &Opcode = I->first;
852
853       OS << "  case " << Opcode << ": return fastEmit_"
854          << getLegalCName(Opcode) << "_";
855       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
856       OS << "(VT, RetVT";
857       if (!Operands.empty())
858         OS << ", ";
859       Operands.PrintArguments(OS);
860       OS << ");\n";
861     }
862     OS << "  default: return 0;\n";
863     OS << "  }\n";
864     OS << "}\n";
865     OS << "\n";
866   }
867
868   // TODO: SignaturesWithConstantForms should be empty here.
869 }
870
871 namespace llvm {
872
873 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
874   CodeGenDAGPatterns CGP(RK);
875   const CodeGenTarget &Target = CGP.getTargetInfo();
876   emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
877                        Target.getName() + " target", OS);
878
879   // Determine the target's namespace name.
880   std::string InstNS = Target.getInstNamespace() + "::";
881   assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");
882
883   FastISelMap F(InstNS);
884   F.collectPatterns(CGP);
885   F.printImmediatePredicates(OS);
886   F.printFunctionDefinitions(OS);
887 }
888
889 } // End llvm namespace