]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/utils/TableGen/X86RecognizableInstr.cpp
Copy ^/vendor/NetBSD/tests/dist/lib/libc/hash/t_hmac.c to
[FreeBSD/FreeBSD.git] / contrib / llvm / utils / TableGen / X86RecognizableInstr.cpp
1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler Emitter.
11 // It contains the implementation of a single recognizable instruction.
12 // Documentation for the disassembler emitter in general can be found in
13 //  X86DisasemblerEmitter.h.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "X86RecognizableInstr.h"
18 #include "X86DisassemblerShared.h"
19 #include "X86ModRMFilters.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include <string>
22
23 using namespace llvm;
24
25 #define MRM_MAPPING     \
26   MAP(C0, 32)           \
27   MAP(C1, 33)           \
28   MAP(C2, 34)           \
29   MAP(C3, 35)           \
30   MAP(C4, 36)           \
31   MAP(C5, 37)           \
32   MAP(C6, 38)           \
33   MAP(C7, 39)           \
34   MAP(C8, 40)           \
35   MAP(C9, 41)           \
36   MAP(CA, 42)           \
37   MAP(CB, 43)           \
38   MAP(CC, 44)           \
39   MAP(CD, 45)           \
40   MAP(CE, 46)           \
41   MAP(CF, 47)           \
42   MAP(D0, 48)           \
43   MAP(D1, 49)           \
44   MAP(D2, 50)           \
45   MAP(D3, 51)           \
46   MAP(D4, 52)           \
47   MAP(D5, 53)           \
48   MAP(D6, 54)           \
49   MAP(D7, 55)           \
50   MAP(D8, 56)           \
51   MAP(D9, 57)           \
52   MAP(DA, 58)           \
53   MAP(DB, 59)           \
54   MAP(DC, 60)           \
55   MAP(DD, 61)           \
56   MAP(DE, 62)           \
57   MAP(DF, 63)           \
58   MAP(E0, 64)           \
59   MAP(E1, 65)           \
60   MAP(E2, 66)           \
61   MAP(E3, 67)           \
62   MAP(E4, 68)           \
63   MAP(E5, 69)           \
64   MAP(E6, 70)           \
65   MAP(E7, 71)           \
66   MAP(E8, 72)           \
67   MAP(E9, 73)           \
68   MAP(EA, 74)           \
69   MAP(EB, 75)           \
70   MAP(EC, 76)           \
71   MAP(ED, 77)           \
72   MAP(EE, 78)           \
73   MAP(EF, 79)           \
74   MAP(F0, 80)           \
75   MAP(F1, 81)           \
76   MAP(F2, 82)           \
77   MAP(F3, 83)           \
78   MAP(F4, 84)           \
79   MAP(F5, 85)           \
80   MAP(F6, 86)           \
81   MAP(F7, 87)           \
82   MAP(F8, 88)           \
83   MAP(F9, 89)           \
84   MAP(FA, 90)           \
85   MAP(FB, 91)           \
86   MAP(FC, 92)           \
87   MAP(FD, 93)           \
88   MAP(FE, 94)           \
89   MAP(FF, 95)
90
91 // A clone of X86 since we can't depend on something that is generated.
92 namespace X86Local {
93   enum {
94     Pseudo      = 0,
95     RawFrm      = 1,
96     AddRegFrm   = 2,
97     MRMDestReg  = 3,
98     MRMDestMem  = 4,
99     MRMSrcReg   = 5,
100     MRMSrcMem   = 6,
101     RawFrmMemOffs = 7,
102     RawFrmSrc   = 8,
103     RawFrmDst   = 9,
104     RawFrmDstSrc = 10,
105     RawFrmImm8  = 11,
106     RawFrmImm16 = 12,
107     MRMXr = 14, MRMXm = 15,
108     MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19,
109     MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23,
110     MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27,
111     MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31,
112 #define MAP(from, to) MRM_##from = to,
113     MRM_MAPPING
114 #undef MAP
115     lastMRM
116   };
117
118   enum {
119     OB = 0, TB = 1, T8 = 2, TA = 3, XOP8 = 4, XOP9 = 5, XOPA = 6
120   };
121
122   enum {
123     PS = 1, PD = 2, XS = 3, XD = 4
124   };
125
126   enum {
127     VEX = 1, XOP = 2, EVEX = 3
128   };
129
130   enum {
131     OpSize16 = 1, OpSize32 = 2
132   };
133
134   enum {
135     AdSize16 = 1, AdSize32 = 2, AdSize64 = 3
136   };
137 }
138
139 using namespace X86Disassembler;
140
141 /// isRegFormat - Indicates whether a particular form requires the Mod field of
142 ///   the ModR/M byte to be 0b11.
143 ///
144 /// @param form - The form of the instruction.
145 /// @return     - true if the form implies that Mod must be 0b11, false
146 ///               otherwise.
147 static bool isRegFormat(uint8_t form) {
148   return (form == X86Local::MRMDestReg ||
149           form == X86Local::MRMSrcReg  ||
150           form == X86Local::MRMXr ||
151           (form >= X86Local::MRM0r && form <= X86Local::MRM7r));
152 }
153
154 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
155 ///   Useful for switch statements and the like.
156 ///
157 /// @param init - A reference to the BitsInit to be decoded.
158 /// @return     - The field, with the first bit in the BitsInit as the lowest
159 ///               order bit.
160 static uint8_t byteFromBitsInit(BitsInit &init) {
161   int width = init.getNumBits();
162
163   assert(width <= 8 && "Field is too large for uint8_t!");
164
165   int     index;
166   uint8_t mask = 0x01;
167
168   uint8_t ret = 0;
169
170   for (index = 0; index < width; index++) {
171     if (static_cast<BitInit*>(init.getBit(index))->getValue())
172       ret |= mask;
173
174     mask <<= 1;
175   }
176
177   return ret;
178 }
179
180 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
181 ///   name of the field.
182 ///
183 /// @param rec  - The record from which to extract the value.
184 /// @param name - The name of the field in the record.
185 /// @return     - The field, as translated by byteFromBitsInit().
186 static uint8_t byteFromRec(const Record* rec, const std::string &name) {
187   BitsInit* bits = rec->getValueAsBitsInit(name);
188   return byteFromBitsInit(*bits);
189 }
190
191 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
192                                      const CodeGenInstruction &insn,
193                                      InstrUID uid) {
194   UID = uid;
195
196   Rec = insn.TheDef;
197   Name = Rec->getName();
198   Spec = &tables.specForUID(UID);
199
200   if (!Rec->isSubClassOf("X86Inst")) {
201     ShouldBeEmitted = false;
202     return;
203   }
204
205   OpPrefix = byteFromRec(Rec, "OpPrefixBits");
206   OpMap    = byteFromRec(Rec, "OpMapBits");
207   Opcode   = byteFromRec(Rec, "Opcode");
208   Form     = byteFromRec(Rec, "FormBits");
209   Encoding = byteFromRec(Rec, "OpEncBits");
210
211   OpSize           = byteFromRec(Rec, "OpSizeBits");
212   AdSize           = byteFromRec(Rec, "AdSizeBits");
213   HasREX_WPrefix   = Rec->getValueAsBit("hasREX_WPrefix");
214   HasVEX_4V        = Rec->getValueAsBit("hasVEX_4V");
215   HasVEX_4VOp3     = Rec->getValueAsBit("hasVEX_4VOp3");
216   HasVEX_WPrefix   = Rec->getValueAsBit("hasVEX_WPrefix");
217   HasMemOp4Prefix  = Rec->getValueAsBit("hasMemOp4Prefix");
218   IgnoresVEX_L     = Rec->getValueAsBit("ignoresVEX_L");
219   HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2");
220   HasEVEX_K        = Rec->getValueAsBit("hasEVEX_K");
221   HasEVEX_KZ       = Rec->getValueAsBit("hasEVEX_Z");
222   HasEVEX_B        = Rec->getValueAsBit("hasEVEX_B");
223   IsCodeGenOnly    = Rec->getValueAsBit("isCodeGenOnly");
224   ForceDisassemble = Rec->getValueAsBit("ForceDisassemble");
225   CD8_Scale        = byteFromRec(Rec, "CD8_Scale");
226
227   Name      = Rec->getName();
228
229   Operands = &insn.Operands.OperandList;
230
231   HasVEX_LPrefix   = Rec->getValueAsBit("hasVEX_L");
232
233   // Check for 64-bit inst which does not require REX
234   Is32Bit = false;
235   Is64Bit = false;
236   // FIXME: Is there some better way to check for In64BitMode?
237   std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
238   for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
239     if (Predicates[i]->getName().find("Not64Bit") != Name.npos ||
240         Predicates[i]->getName().find("In32Bit") != Name.npos) {
241       Is32Bit = true;
242       break;
243     }
244     if (Predicates[i]->getName().find("In64Bit") != Name.npos) {
245       Is64Bit = true;
246       break;
247     }
248   }
249
250   if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) {
251     ShouldBeEmitted = false;
252     return;
253   }
254
255   // Special case since there is no attribute class for 64-bit and VEX
256   if (Name == "VMASKMOVDQU64") {
257     ShouldBeEmitted = false;
258     return;
259   }
260
261   ShouldBeEmitted  = true;
262 }
263
264 void RecognizableInstr::processInstr(DisassemblerTables &tables,
265                                      const CodeGenInstruction &insn,
266                                      InstrUID uid)
267 {
268   // Ignore "asm parser only" instructions.
269   if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
270     return;
271
272   RecognizableInstr recogInstr(tables, insn, uid);
273
274   if (recogInstr.shouldBeEmitted()) {
275     recogInstr.emitInstructionSpecifier();
276     recogInstr.emitDecodePath(tables);
277   }
278 }
279
280 #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \
281                     (HasEVEX_K && HasEVEX_B ? n##_K_B : \
282                     (HasEVEX_KZ ? n##_KZ : \
283                     (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n)))))
284
285 InstructionContext RecognizableInstr::insnContext() const {
286   InstructionContext insnContext;
287
288   if (Encoding == X86Local::EVEX) {
289     if (HasVEX_LPrefix && HasEVEX_L2Prefix) {
290       errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
291       llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
292     }
293     // VEX_L & VEX_W
294     if (HasVEX_LPrefix && HasVEX_WPrefix) {
295       if (OpPrefix == X86Local::PD)
296         insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
297       else if (OpPrefix == X86Local::XS)
298         insnContext = EVEX_KB(IC_EVEX_L_W_XS);
299       else if (OpPrefix == X86Local::XD)
300         insnContext = EVEX_KB(IC_EVEX_L_W_XD);
301       else if (OpPrefix == X86Local::PS)
302         insnContext = EVEX_KB(IC_EVEX_L_W);
303       else {
304         errs() << "Instruction does not use a prefix: " << Name << "\n";
305         llvm_unreachable("Invalid prefix");
306       }
307     } else if (HasVEX_LPrefix) {
308       // VEX_L
309       if (OpPrefix == X86Local::PD)
310         insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
311       else if (OpPrefix == X86Local::XS)
312         insnContext = EVEX_KB(IC_EVEX_L_XS);
313       else if (OpPrefix == X86Local::XD)
314         insnContext = EVEX_KB(IC_EVEX_L_XD);
315       else if (OpPrefix == X86Local::PS)
316         insnContext = EVEX_KB(IC_EVEX_L);
317       else {
318         errs() << "Instruction does not use a prefix: " << Name << "\n";
319         llvm_unreachable("Invalid prefix");
320       }
321     }
322     else if (HasEVEX_L2Prefix && HasVEX_WPrefix) {
323       // EVEX_L2 & VEX_W
324       if (OpPrefix == X86Local::PD)
325         insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
326       else if (OpPrefix == X86Local::XS)
327         insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
328       else if (OpPrefix == X86Local::XD)
329         insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
330       else if (OpPrefix == X86Local::PS)
331         insnContext = EVEX_KB(IC_EVEX_L2_W);
332       else {
333         errs() << "Instruction does not use a prefix: " << Name << "\n";
334         llvm_unreachable("Invalid prefix");
335       }
336     } else if (HasEVEX_L2Prefix) {
337       // EVEX_L2
338       if (OpPrefix == X86Local::PD)
339         insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
340       else if (OpPrefix == X86Local::XD)
341         insnContext = EVEX_KB(IC_EVEX_L2_XD);
342       else if (OpPrefix == X86Local::XS)
343         insnContext = EVEX_KB(IC_EVEX_L2_XS);
344       else if (OpPrefix == X86Local::PS)
345         insnContext = EVEX_KB(IC_EVEX_L2);
346       else {
347         errs() << "Instruction does not use a prefix: " << Name << "\n";
348         llvm_unreachable("Invalid prefix");
349       }
350     }
351     else if (HasVEX_WPrefix) {
352       // VEX_W
353       if (OpPrefix == X86Local::PD)
354         insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
355       else if (OpPrefix == X86Local::XS)
356         insnContext = EVEX_KB(IC_EVEX_W_XS);
357       else if (OpPrefix == X86Local::XD)
358         insnContext = EVEX_KB(IC_EVEX_W_XD);
359       else if (OpPrefix == X86Local::PS)
360         insnContext = EVEX_KB(IC_EVEX_W);
361       else {
362         errs() << "Instruction does not use a prefix: " << Name << "\n";
363         llvm_unreachable("Invalid prefix");
364       }
365     }
366     // No L, no W
367     else if (OpPrefix == X86Local::PD)
368       insnContext = EVEX_KB(IC_EVEX_OPSIZE);
369     else if (OpPrefix == X86Local::XD)
370       insnContext = EVEX_KB(IC_EVEX_XD);
371     else if (OpPrefix == X86Local::XS)
372       insnContext = EVEX_KB(IC_EVEX_XS);
373     else
374       insnContext = EVEX_KB(IC_EVEX);
375     /// eof EVEX
376   } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
377     if (HasVEX_LPrefix && HasVEX_WPrefix) {
378       if (OpPrefix == X86Local::PD)
379         insnContext = IC_VEX_L_W_OPSIZE;
380       else if (OpPrefix == X86Local::XS)
381         insnContext = IC_VEX_L_W_XS;
382       else if (OpPrefix == X86Local::XD)
383         insnContext = IC_VEX_L_W_XD;
384       else if (OpPrefix == X86Local::PS)
385         insnContext = IC_VEX_L_W;
386       else {
387         errs() << "Instruction does not use a prefix: " << Name << "\n";
388         llvm_unreachable("Invalid prefix");
389       }
390     } else if (OpPrefix == X86Local::PD && HasVEX_LPrefix)
391       insnContext = IC_VEX_L_OPSIZE;
392     else if (OpPrefix == X86Local::PD && HasVEX_WPrefix)
393       insnContext = IC_VEX_W_OPSIZE;
394     else if (OpPrefix == X86Local::PD)
395       insnContext = IC_VEX_OPSIZE;
396     else if (HasVEX_LPrefix && OpPrefix == X86Local::XS)
397       insnContext = IC_VEX_L_XS;
398     else if (HasVEX_LPrefix && OpPrefix == X86Local::XD)
399       insnContext = IC_VEX_L_XD;
400     else if (HasVEX_WPrefix && OpPrefix == X86Local::XS)
401       insnContext = IC_VEX_W_XS;
402     else if (HasVEX_WPrefix && OpPrefix == X86Local::XD)
403       insnContext = IC_VEX_W_XD;
404     else if (HasVEX_WPrefix && OpPrefix == X86Local::PS)
405       insnContext = IC_VEX_W;
406     else if (HasVEX_LPrefix && OpPrefix == X86Local::PS)
407       insnContext = IC_VEX_L;
408     else if (OpPrefix == X86Local::XD)
409       insnContext = IC_VEX_XD;
410     else if (OpPrefix == X86Local::XS)
411       insnContext = IC_VEX_XS;
412     else if (OpPrefix == X86Local::PS)
413       insnContext = IC_VEX;
414     else {
415       errs() << "Instruction does not use a prefix: " << Name << "\n";
416       llvm_unreachable("Invalid prefix");
417     }
418   } else if (Is64Bit || HasREX_WPrefix || AdSize == X86Local::AdSize64) {
419     if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
420       insnContext = IC_64BIT_REXW_OPSIZE;
421     else if (HasREX_WPrefix && AdSize == X86Local::AdSize32)
422       insnContext = IC_64BIT_REXW_ADSIZE;
423     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
424       insnContext = IC_64BIT_XD_OPSIZE;
425     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
426       insnContext = IC_64BIT_XS_OPSIZE;
427     else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32)
428       insnContext = IC_64BIT_OPSIZE_ADSIZE;
429     else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
430       insnContext = IC_64BIT_OPSIZE;
431     else if (AdSize == X86Local::AdSize32)
432       insnContext = IC_64BIT_ADSIZE;
433     else if (HasREX_WPrefix && OpPrefix == X86Local::XS)
434       insnContext = IC_64BIT_REXW_XS;
435     else if (HasREX_WPrefix && OpPrefix == X86Local::XD)
436       insnContext = IC_64BIT_REXW_XD;
437     else if (OpPrefix == X86Local::XD)
438       insnContext = IC_64BIT_XD;
439     else if (OpPrefix == X86Local::XS)
440       insnContext = IC_64BIT_XS;
441     else if (HasREX_WPrefix)
442       insnContext = IC_64BIT_REXW;
443     else
444       insnContext = IC_64BIT;
445   } else {
446     if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
447       insnContext = IC_XD_OPSIZE;
448     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
449       insnContext = IC_XS_OPSIZE;
450     else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16)
451       insnContext = IC_OPSIZE_ADSIZE;
452     else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
453       insnContext = IC_OPSIZE;
454     else if (AdSize == X86Local::AdSize16)
455       insnContext = IC_ADSIZE;
456     else if (OpPrefix == X86Local::XD)
457       insnContext = IC_XD;
458     else if (OpPrefix == X86Local::XS)
459       insnContext = IC_XS;
460     else
461       insnContext = IC;
462   }
463
464   return insnContext;
465 }
466
467 void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) {
468   // The scaling factor for AVX512 compressed displacement encoding is an
469   // instruction attribute.  Adjust the ModRM encoding type to include the
470   // scale for compressed displacement.
471   if (encoding != ENCODING_RM || CD8_Scale == 0)
472     return;
473   encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale));
474   assert(encoding <= ENCODING_RM_CD64 && "Invalid CDisp scaling");
475 }
476
477 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
478                                       unsigned &physicalOperandIndex,
479                                       unsigned numPhysicalOperands,
480                                       const unsigned *operandMapping,
481                                       OperandEncoding (*encodingFromString)
482                                         (const std::string&,
483                                          uint8_t OpSize)) {
484   if (optional) {
485     if (physicalOperandIndex >= numPhysicalOperands)
486       return;
487   } else {
488     assert(physicalOperandIndex < numPhysicalOperands);
489   }
490
491   while (operandMapping[operandIndex] != operandIndex) {
492     Spec->operands[operandIndex].encoding = ENCODING_DUP;
493     Spec->operands[operandIndex].type =
494       (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
495     ++operandIndex;
496   }
497
498   const std::string &typeName = (*Operands)[operandIndex].Rec->getName();
499
500   OperandEncoding encoding = encodingFromString(typeName, OpSize);
501   // Adjust the encoding type for an operand based on the instruction.
502   adjustOperandEncoding(encoding);
503   Spec->operands[operandIndex].encoding = encoding;
504   Spec->operands[operandIndex].type = typeFromString(typeName,
505                                                      HasREX_WPrefix, OpSize);
506
507   ++operandIndex;
508   ++physicalOperandIndex;
509 }
510
511 void RecognizableInstr::emitInstructionSpecifier() {
512   Spec->name       = Name;
513
514   Spec->insnContext = insnContext();
515
516   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
517
518   unsigned numOperands = OperandList.size();
519   unsigned numPhysicalOperands = 0;
520
521   // operandMapping maps from operands in OperandList to their originals.
522   // If operandMapping[i] != i, then the entry is a duplicate.
523   unsigned operandMapping[X86_MAX_OPERANDS];
524   assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
525
526   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
527     if (!OperandList[operandIndex].Constraints.empty()) {
528       const CGIOperandList::ConstraintInfo &Constraint =
529         OperandList[operandIndex].Constraints[0];
530       if (Constraint.isTied()) {
531         operandMapping[operandIndex] = operandIndex;
532         operandMapping[Constraint.getTiedOperand()] = operandIndex;
533       } else {
534         ++numPhysicalOperands;
535         operandMapping[operandIndex] = operandIndex;
536       }
537     } else {
538       ++numPhysicalOperands;
539       operandMapping[operandIndex] = operandIndex;
540     }
541   }
542
543 #define HANDLE_OPERAND(class)               \
544   handleOperand(false,                      \
545                 operandIndex,               \
546                 physicalOperandIndex,       \
547                 numPhysicalOperands,        \
548                 operandMapping,             \
549                 class##EncodingFromString);
550
551 #define HANDLE_OPTIONAL(class)              \
552   handleOperand(true,                       \
553                 operandIndex,               \
554                 physicalOperandIndex,       \
555                 numPhysicalOperands,        \
556                 operandMapping,             \
557                 class##EncodingFromString);
558
559   // operandIndex should always be < numOperands
560   unsigned operandIndex = 0;
561   // physicalOperandIndex should always be < numPhysicalOperands
562   unsigned physicalOperandIndex = 0;
563
564 #ifndef NDEBUG
565   // Given the set of prefix bits, how many additional operands does the
566   // instruction have?
567   unsigned additionalOperands = 0;
568   if (HasVEX_4V || HasVEX_4VOp3)
569     ++additionalOperands;
570   if (HasEVEX_K)
571     ++additionalOperands;
572 #endif
573
574   switch (Form) {
575   default: llvm_unreachable("Unhandled form");
576   case X86Local::RawFrmSrc:
577     HANDLE_OPERAND(relocation);
578     return;
579   case X86Local::RawFrmDst:
580     HANDLE_OPERAND(relocation);
581     return;
582   case X86Local::RawFrmDstSrc:
583     HANDLE_OPERAND(relocation);
584     HANDLE_OPERAND(relocation);
585     return;
586   case X86Local::RawFrm:
587     // Operand 1 (optional) is an address or immediate.
588     assert(numPhysicalOperands <= 1 &&
589            "Unexpected number of operands for RawFrm");
590     HANDLE_OPTIONAL(relocation)
591     break;
592   case X86Local::RawFrmMemOffs:
593     // Operand 1 is an address.
594     HANDLE_OPERAND(relocation);
595     break;
596   case X86Local::AddRegFrm:
597     // Operand 1 is added to the opcode.
598     // Operand 2 (optional) is an address.
599     assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
600            "Unexpected number of operands for AddRegFrm");
601     HANDLE_OPERAND(opcodeModifier)
602     HANDLE_OPTIONAL(relocation)
603     break;
604   case X86Local::MRMDestReg:
605     // Operand 1 is a register operand in the R/M field.
606     // - In AVX512 there may be a mask operand here -
607     // Operand 2 is a register operand in the Reg/Opcode field.
608     // - In AVX, there is a register operand in the VEX.vvvv field here -
609     // Operand 3 (optional) is an immediate.
610     assert(numPhysicalOperands >= 2 + additionalOperands &&
611            numPhysicalOperands <= 3 + additionalOperands &&
612            "Unexpected number of operands for MRMDestRegFrm");
613
614     HANDLE_OPERAND(rmRegister)
615     if (HasEVEX_K)
616       HANDLE_OPERAND(writemaskRegister)
617
618     if (HasVEX_4V)
619       // FIXME: In AVX, the register below becomes the one encoded
620       // in ModRMVEX and the one above the one in the VEX.VVVV field
621       HANDLE_OPERAND(vvvvRegister)
622
623     HANDLE_OPERAND(roRegister)
624     HANDLE_OPTIONAL(immediate)
625     break;
626   case X86Local::MRMDestMem:
627     // Operand 1 is a memory operand (possibly SIB-extended)
628     // Operand 2 is a register operand in the Reg/Opcode field.
629     // - In AVX, there is a register operand in the VEX.vvvv field here -
630     // Operand 3 (optional) is an immediate.
631     assert(numPhysicalOperands >= 2 + additionalOperands &&
632            numPhysicalOperands <= 3 + additionalOperands &&
633            "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
634
635     HANDLE_OPERAND(memory)
636
637     if (HasEVEX_K)
638       HANDLE_OPERAND(writemaskRegister)
639
640     if (HasVEX_4V)
641       // FIXME: In AVX, the register below becomes the one encoded
642       // in ModRMVEX and the one above the one in the VEX.VVVV field
643       HANDLE_OPERAND(vvvvRegister)
644
645     HANDLE_OPERAND(roRegister)
646     HANDLE_OPTIONAL(immediate)
647     break;
648   case X86Local::MRMSrcReg:
649     // Operand 1 is a register operand in the Reg/Opcode field.
650     // Operand 2 is a register operand in the R/M field.
651     // - In AVX, there is a register operand in the VEX.vvvv field here -
652     // Operand 3 (optional) is an immediate.
653     // Operand 4 (optional) is an immediate.
654
655     assert(numPhysicalOperands >= 2 + additionalOperands &&
656            numPhysicalOperands <= 4 + additionalOperands &&
657            "Unexpected number of operands for MRMSrcRegFrm");
658
659     HANDLE_OPERAND(roRegister)
660
661     if (HasEVEX_K)
662       HANDLE_OPERAND(writemaskRegister)
663
664     if (HasVEX_4V)
665       // FIXME: In AVX, the register below becomes the one encoded
666       // in ModRMVEX and the one above the one in the VEX.VVVV field
667       HANDLE_OPERAND(vvvvRegister)
668
669     if (HasMemOp4Prefix)
670       HANDLE_OPERAND(immediate)
671
672     HANDLE_OPERAND(rmRegister)
673
674     if (HasVEX_4VOp3)
675       HANDLE_OPERAND(vvvvRegister)
676
677     if (!HasMemOp4Prefix)
678       HANDLE_OPTIONAL(immediate)
679     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
680     HANDLE_OPTIONAL(immediate)
681     break;
682   case X86Local::MRMSrcMem:
683     // Operand 1 is a register operand in the Reg/Opcode field.
684     // Operand 2 is a memory operand (possibly SIB-extended)
685     // - In AVX, there is a register operand in the VEX.vvvv field here -
686     // Operand 3 (optional) is an immediate.
687
688     assert(numPhysicalOperands >= 2 + additionalOperands &&
689            numPhysicalOperands <= 4 + additionalOperands &&
690            "Unexpected number of operands for MRMSrcMemFrm");
691
692     HANDLE_OPERAND(roRegister)
693
694     if (HasEVEX_K)
695       HANDLE_OPERAND(writemaskRegister)
696
697     if (HasVEX_4V)
698       // FIXME: In AVX, the register below becomes the one encoded
699       // in ModRMVEX and the one above the one in the VEX.VVVV field
700       HANDLE_OPERAND(vvvvRegister)
701
702     if (HasMemOp4Prefix)
703       HANDLE_OPERAND(immediate)
704
705     HANDLE_OPERAND(memory)
706
707     if (HasVEX_4VOp3)
708       HANDLE_OPERAND(vvvvRegister)
709
710     if (!HasMemOp4Prefix)
711       HANDLE_OPTIONAL(immediate)
712     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
713     break;
714   case X86Local::MRMXr:
715   case X86Local::MRM0r:
716   case X86Local::MRM1r:
717   case X86Local::MRM2r:
718   case X86Local::MRM3r:
719   case X86Local::MRM4r:
720   case X86Local::MRM5r:
721   case X86Local::MRM6r:
722   case X86Local::MRM7r:
723     // Operand 1 is a register operand in the R/M field.
724     // Operand 2 (optional) is an immediate or relocation.
725     // Operand 3 (optional) is an immediate.
726     assert(numPhysicalOperands >= 0 + additionalOperands &&
727            numPhysicalOperands <= 3 + additionalOperands &&
728            "Unexpected number of operands for MRMnr");
729
730     if (HasVEX_4V)
731       HANDLE_OPERAND(vvvvRegister)
732
733     if (HasEVEX_K)
734       HANDLE_OPERAND(writemaskRegister)
735     HANDLE_OPTIONAL(rmRegister)
736     HANDLE_OPTIONAL(relocation)
737     HANDLE_OPTIONAL(immediate)
738     break;
739   case X86Local::MRMXm:
740   case X86Local::MRM0m:
741   case X86Local::MRM1m:
742   case X86Local::MRM2m:
743   case X86Local::MRM3m:
744   case X86Local::MRM4m:
745   case X86Local::MRM5m:
746   case X86Local::MRM6m:
747   case X86Local::MRM7m:
748     // Operand 1 is a memory operand (possibly SIB-extended)
749     // Operand 2 (optional) is an immediate or relocation.
750     assert(numPhysicalOperands >= 1 + additionalOperands &&
751            numPhysicalOperands <= 2 + additionalOperands &&
752            "Unexpected number of operands for MRMnm");
753
754     if (HasVEX_4V)
755       HANDLE_OPERAND(vvvvRegister)
756     if (HasEVEX_K)
757       HANDLE_OPERAND(writemaskRegister)
758     HANDLE_OPERAND(memory)
759     HANDLE_OPTIONAL(relocation)
760     break;
761   case X86Local::RawFrmImm8:
762     // operand 1 is a 16-bit immediate
763     // operand 2 is an 8-bit immediate
764     assert(numPhysicalOperands == 2 &&
765            "Unexpected number of operands for X86Local::RawFrmImm8");
766     HANDLE_OPERAND(immediate)
767     HANDLE_OPERAND(immediate)
768     break;
769   case X86Local::RawFrmImm16:
770     // operand 1 is a 16-bit immediate
771     // operand 2 is a 16-bit immediate
772     HANDLE_OPERAND(immediate)
773     HANDLE_OPERAND(immediate)
774     break;
775   case X86Local::MRM_F8:
776     if (Opcode == 0xc6) {
777       assert(numPhysicalOperands == 1 &&
778              "Unexpected number of operands for X86Local::MRM_F8");
779       HANDLE_OPERAND(immediate)
780     } else if (Opcode == 0xc7) {
781       assert(numPhysicalOperands == 1 &&
782              "Unexpected number of operands for X86Local::MRM_F8");
783       HANDLE_OPERAND(relocation)
784     }
785     break;
786   case X86Local::MRM_C0: case X86Local::MRM_C1: case X86Local::MRM_C2:
787   case X86Local::MRM_C3: case X86Local::MRM_C4: case X86Local::MRM_C8:
788   case X86Local::MRM_C9: case X86Local::MRM_CA: case X86Local::MRM_CB:
789   case X86Local::MRM_CF: case X86Local::MRM_D0: case X86Local::MRM_D1:
790   case X86Local::MRM_D4: case X86Local::MRM_D5: case X86Local::MRM_D6:
791   case X86Local::MRM_D7: case X86Local::MRM_D8: case X86Local::MRM_D9:
792   case X86Local::MRM_DA: case X86Local::MRM_DB: case X86Local::MRM_DC:
793   case X86Local::MRM_DD: case X86Local::MRM_DE: case X86Local::MRM_DF:
794   case X86Local::MRM_E0: case X86Local::MRM_E1: case X86Local::MRM_E2:
795   case X86Local::MRM_E3: case X86Local::MRM_E4: case X86Local::MRM_E5:
796   case X86Local::MRM_E8: case X86Local::MRM_E9: case X86Local::MRM_EA:
797   case X86Local::MRM_EB: case X86Local::MRM_EC: case X86Local::MRM_ED:
798   case X86Local::MRM_EE: case X86Local::MRM_EF: case X86Local::MRM_F0:
799   case X86Local::MRM_F1: case X86Local::MRM_F2: case X86Local::MRM_F3:
800   case X86Local::MRM_F4: case X86Local::MRM_F5: case X86Local::MRM_F6:
801   case X86Local::MRM_F7: case X86Local::MRM_F9: case X86Local::MRM_FA:
802   case X86Local::MRM_FB: case X86Local::MRM_FC: case X86Local::MRM_FD:
803   case X86Local::MRM_FE: case X86Local::MRM_FF:
804     // Ignored.
805     break;
806   }
807
808   #undef HANDLE_OPERAND
809   #undef HANDLE_OPTIONAL
810 }
811
812 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
813   // Special cases where the LLVM tables are not complete
814
815 #define MAP(from, to)                     \
816   case X86Local::MRM_##from:
817
818   OpcodeType    opcodeType  = (OpcodeType)-1;
819
820   ModRMFilter*  filter      = nullptr;
821   uint8_t       opcodeToSet = 0;
822
823   switch (OpMap) {
824   default: llvm_unreachable("Invalid map!");
825   case X86Local::OB:
826   case X86Local::TB:
827   case X86Local::T8:
828   case X86Local::TA:
829   case X86Local::XOP8:
830   case X86Local::XOP9:
831   case X86Local::XOPA:
832     switch (OpMap) {
833     default: llvm_unreachable("Unexpected map!");
834     case X86Local::OB:   opcodeType = ONEBYTE;      break;
835     case X86Local::TB:   opcodeType = TWOBYTE;      break;
836     case X86Local::T8:   opcodeType = THREEBYTE_38; break;
837     case X86Local::TA:   opcodeType = THREEBYTE_3A; break;
838     case X86Local::XOP8: opcodeType = XOP8_MAP;     break;
839     case X86Local::XOP9: opcodeType = XOP9_MAP;     break;
840     case X86Local::XOPA: opcodeType = XOPA_MAP;     break;
841     }
842
843     switch (Form) {
844     default:
845       filter = new DumbFilter();
846       break;
847     case X86Local::MRMDestReg: case X86Local::MRMDestMem:
848     case X86Local::MRMSrcReg:  case X86Local::MRMSrcMem:
849     case X86Local::MRMXr:      case X86Local::MRMXm:
850       filter = new ModFilter(isRegFormat(Form));
851       break;
852     case X86Local::MRM0r:      case X86Local::MRM1r:
853     case X86Local::MRM2r:      case X86Local::MRM3r:
854     case X86Local::MRM4r:      case X86Local::MRM5r:
855     case X86Local::MRM6r:      case X86Local::MRM7r:
856       filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
857       break;
858     case X86Local::MRM0m:      case X86Local::MRM1m:
859     case X86Local::MRM2m:      case X86Local::MRM3m:
860     case X86Local::MRM4m:      case X86Local::MRM5m:
861     case X86Local::MRM6m:      case X86Local::MRM7m:
862       filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
863       break;
864     MRM_MAPPING
865       filter = new ExactFilter(0xC0 + Form - X86Local::MRM_C0);   \
866       break;
867     } // switch (Form)
868
869     opcodeToSet = Opcode;
870     break;
871   } // switch (OpMap)
872
873   unsigned AddressSize = 0;
874   switch (AdSize) {
875   case X86Local::AdSize16: AddressSize = 16; break;
876   case X86Local::AdSize32: AddressSize = 32; break;
877   case X86Local::AdSize64: AddressSize = 64; break;
878   }
879
880   assert(opcodeType != (OpcodeType)-1 &&
881          "Opcode type not set");
882   assert(filter && "Filter not set");
883
884   if (Form == X86Local::AddRegFrm) {
885     assert(((opcodeToSet & 7) == 0) &&
886            "ADDREG_FRM opcode not aligned");
887
888     uint8_t currentOpcode;
889
890     for (currentOpcode = opcodeToSet;
891          currentOpcode < opcodeToSet + 8;
892          ++currentOpcode)
893       tables.setTableFields(opcodeType,
894                             insnContext(),
895                             currentOpcode,
896                             *filter,
897                             UID, Is32Bit, IgnoresVEX_L, AddressSize);
898   } else {
899     tables.setTableFields(opcodeType,
900                           insnContext(),
901                           opcodeToSet,
902                           *filter,
903                           UID, Is32Bit, IgnoresVEX_L, AddressSize);
904   }
905
906   delete filter;
907
908 #undef MAP
909 }
910
911 #define TYPE(str, type) if (s == str) return type;
912 OperandType RecognizableInstr::typeFromString(const std::string &s,
913                                               bool hasREX_WPrefix,
914                                               uint8_t OpSize) {
915   if(hasREX_WPrefix) {
916     // For instructions with a REX_W prefix, a declared 32-bit register encoding
917     // is special.
918     TYPE("GR32",              TYPE_R32)
919   }
920   if(OpSize == X86Local::OpSize16) {
921     // For OpSize16 instructions, a declared 16-bit register or
922     // immediate encoding is special.
923     TYPE("GR16",              TYPE_Rv)
924     TYPE("i16imm",            TYPE_IMMv)
925   } else if(OpSize == X86Local::OpSize32) {
926     // For OpSize32 instructions, a declared 32-bit register or
927     // immediate encoding is special.
928     TYPE("GR32",              TYPE_Rv)
929   }
930   TYPE("i16mem",              TYPE_Mv)
931   TYPE("i16imm",              TYPE_IMM16)
932   TYPE("i16i8imm",            TYPE_IMMv)
933   TYPE("GR16",                TYPE_R16)
934   TYPE("i32mem",              TYPE_Mv)
935   TYPE("i32imm",              TYPE_IMMv)
936   TYPE("i32i8imm",            TYPE_IMM32)
937   TYPE("GR32",                TYPE_R32)
938   TYPE("GR32orGR64",          TYPE_R32)
939   TYPE("i64mem",              TYPE_Mv)
940   TYPE("i64i32imm",           TYPE_IMM64)
941   TYPE("i64i8imm",            TYPE_IMM64)
942   TYPE("GR64",                TYPE_R64)
943   TYPE("i8mem",               TYPE_M8)
944   TYPE("i8imm",               TYPE_IMM8)
945   TYPE("u8imm",               TYPE_UIMM8)
946   TYPE("i32u8imm",            TYPE_UIMM8)
947   TYPE("GR8",                 TYPE_R8)
948   TYPE("VR128",               TYPE_XMM128)
949   TYPE("VR128X",              TYPE_XMM128)
950   TYPE("f128mem",             TYPE_M128)
951   TYPE("f256mem",             TYPE_M256)
952   TYPE("f512mem",             TYPE_M512)
953   TYPE("FR128",               TYPE_XMM128)
954   TYPE("FR64",                TYPE_XMM64)
955   TYPE("FR64X",               TYPE_XMM64)
956   TYPE("f64mem",              TYPE_M64FP)
957   TYPE("sdmem",               TYPE_M64FP)
958   TYPE("FR32",                TYPE_XMM32)
959   TYPE("FR32X",               TYPE_XMM32)
960   TYPE("f32mem",              TYPE_M32FP)
961   TYPE("ssmem",               TYPE_M32FP)
962   TYPE("RST",                 TYPE_ST)
963   TYPE("i128mem",             TYPE_M128)
964   TYPE("i256mem",             TYPE_M256)
965   TYPE("i512mem",             TYPE_M512)
966   TYPE("i64i32imm_pcrel",     TYPE_REL64)
967   TYPE("i16imm_pcrel",        TYPE_REL16)
968   TYPE("i32imm_pcrel",        TYPE_REL32)
969   TYPE("SSECC",               TYPE_IMM3)
970   TYPE("XOPCC",               TYPE_IMM3)
971   TYPE("AVXCC",               TYPE_IMM5)
972   TYPE("AVX512ICC",           TYPE_AVX512ICC)
973   TYPE("AVX512RC",            TYPE_IMM32)
974   TYPE("brtarget32",          TYPE_RELv)
975   TYPE("brtarget16",          TYPE_RELv)
976   TYPE("brtarget8",           TYPE_REL8)
977   TYPE("f80mem",              TYPE_M80FP)
978   TYPE("lea64_32mem",         TYPE_LEA)
979   TYPE("lea64mem",            TYPE_LEA)
980   TYPE("VR64",                TYPE_MM64)
981   TYPE("i64imm",              TYPE_IMMv)
982   TYPE("anymem",              TYPE_M)
983   TYPE("opaque32mem",         TYPE_M1616)
984   TYPE("opaque48mem",         TYPE_M1632)
985   TYPE("opaque80mem",         TYPE_M1664)
986   TYPE("opaque512mem",        TYPE_M512)
987   TYPE("SEGMENT_REG",         TYPE_SEGMENTREG)
988   TYPE("DEBUG_REG",           TYPE_DEBUGREG)
989   TYPE("CONTROL_REG",         TYPE_CONTROLREG)
990   TYPE("srcidx8",             TYPE_SRCIDX8)
991   TYPE("srcidx16",            TYPE_SRCIDX16)
992   TYPE("srcidx32",            TYPE_SRCIDX32)
993   TYPE("srcidx64",            TYPE_SRCIDX64)
994   TYPE("dstidx8",             TYPE_DSTIDX8)
995   TYPE("dstidx16",            TYPE_DSTIDX16)
996   TYPE("dstidx32",            TYPE_DSTIDX32)
997   TYPE("dstidx64",            TYPE_DSTIDX64)
998   TYPE("offset16_8",          TYPE_MOFFS8)
999   TYPE("offset16_16",         TYPE_MOFFS16)
1000   TYPE("offset16_32",         TYPE_MOFFS32)
1001   TYPE("offset32_8",          TYPE_MOFFS8)
1002   TYPE("offset32_16",         TYPE_MOFFS16)
1003   TYPE("offset32_32",         TYPE_MOFFS32)
1004   TYPE("offset32_64",         TYPE_MOFFS64)
1005   TYPE("offset64_8",          TYPE_MOFFS8)
1006   TYPE("offset64_16",         TYPE_MOFFS16)
1007   TYPE("offset64_32",         TYPE_MOFFS32)
1008   TYPE("offset64_64",         TYPE_MOFFS64)
1009   TYPE("VR256",               TYPE_XMM256)
1010   TYPE("VR256X",              TYPE_XMM256)
1011   TYPE("VR512",               TYPE_XMM512)
1012   TYPE("VK1",                 TYPE_VK1)
1013   TYPE("VK1WM",               TYPE_VK1)
1014   TYPE("VK2",                 TYPE_VK2)
1015   TYPE("VK2WM",               TYPE_VK2)
1016   TYPE("VK4",                 TYPE_VK4)
1017   TYPE("VK4WM",               TYPE_VK4)
1018   TYPE("VK8",                 TYPE_VK8)
1019   TYPE("VK8WM",               TYPE_VK8)
1020   TYPE("VK16",                TYPE_VK16)
1021   TYPE("VK16WM",              TYPE_VK16)
1022   TYPE("VK32",                TYPE_VK32)
1023   TYPE("VK32WM",              TYPE_VK32)
1024   TYPE("VK64",                TYPE_VK64)
1025   TYPE("VK64WM",              TYPE_VK64)
1026   TYPE("GR32_NOAX",           TYPE_Rv)
1027   TYPE("vx64mem",             TYPE_M64)
1028   TYPE("vx128mem",            TYPE_M128)
1029   TYPE("vx256mem",            TYPE_M256)
1030   TYPE("vy128mem",            TYPE_M128)
1031   TYPE("vy256mem",            TYPE_M256)
1032   TYPE("vx64xmem",            TYPE_M64)
1033   TYPE("vx128xmem",           TYPE_M128)
1034   TYPE("vx256xmem",           TYPE_M256)
1035   TYPE("vy128xmem",           TYPE_M128)
1036   TYPE("vy256xmem",           TYPE_M256)
1037   TYPE("vy512mem",            TYPE_M512)
1038   TYPE("vz512mem",            TYPE_M512)
1039   TYPE("BNDR",                TYPE_BNDR)
1040   errs() << "Unhandled type string " << s << "\n";
1041   llvm_unreachable("Unhandled type string");
1042 }
1043 #undef TYPE
1044
1045 #define ENCODING(str, encoding) if (s == str) return encoding;
1046 OperandEncoding
1047 RecognizableInstr::immediateEncodingFromString(const std::string &s,
1048                                                uint8_t OpSize) {
1049   if(OpSize != X86Local::OpSize16) {
1050     // For instructions without an OpSize prefix, a declared 16-bit register or
1051     // immediate encoding is special.
1052     ENCODING("i16imm",        ENCODING_IW)
1053   }
1054   ENCODING("i32i8imm",        ENCODING_IB)
1055   ENCODING("SSECC",           ENCODING_IB)
1056   ENCODING("XOPCC",           ENCODING_IB)
1057   ENCODING("AVXCC",           ENCODING_IB)
1058   ENCODING("AVX512ICC",       ENCODING_IB)
1059   ENCODING("AVX512RC",        ENCODING_IB)
1060   ENCODING("i16imm",          ENCODING_Iv)
1061   ENCODING("i16i8imm",        ENCODING_IB)
1062   ENCODING("i32imm",          ENCODING_Iv)
1063   ENCODING("i64i32imm",       ENCODING_ID)
1064   ENCODING("i64i8imm",        ENCODING_IB)
1065   ENCODING("i8imm",           ENCODING_IB)
1066   ENCODING("u8imm",           ENCODING_IB)
1067   ENCODING("i32u8imm",        ENCODING_IB)
1068   // This is not a typo.  Instructions like BLENDVPD put
1069   // register IDs in 8-bit immediates nowadays.
1070   ENCODING("FR32",            ENCODING_IB)
1071   ENCODING("FR64",            ENCODING_IB)
1072   ENCODING("FR128",           ENCODING_IB)
1073   ENCODING("VR128",           ENCODING_IB)
1074   ENCODING("VR256",           ENCODING_IB)
1075   ENCODING("FR32X",           ENCODING_IB)
1076   ENCODING("FR64X",           ENCODING_IB)
1077   ENCODING("VR128X",          ENCODING_IB)
1078   ENCODING("VR256X",          ENCODING_IB)
1079   ENCODING("VR512",           ENCODING_IB)
1080   errs() << "Unhandled immediate encoding " << s << "\n";
1081   llvm_unreachable("Unhandled immediate encoding");
1082 }
1083
1084 OperandEncoding
1085 RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
1086                                                 uint8_t OpSize) {
1087   ENCODING("RST",             ENCODING_FP)
1088   ENCODING("GR16",            ENCODING_RM)
1089   ENCODING("GR32",            ENCODING_RM)
1090   ENCODING("GR32orGR64",      ENCODING_RM)
1091   ENCODING("GR64",            ENCODING_RM)
1092   ENCODING("GR8",             ENCODING_RM)
1093   ENCODING("VR128",           ENCODING_RM)
1094   ENCODING("VR128X",          ENCODING_RM)
1095   ENCODING("FR128",           ENCODING_RM)
1096   ENCODING("FR64",            ENCODING_RM)
1097   ENCODING("FR32",            ENCODING_RM)
1098   ENCODING("FR64X",           ENCODING_RM)
1099   ENCODING("FR32X",           ENCODING_RM)
1100   ENCODING("VR64",            ENCODING_RM)
1101   ENCODING("VR256",           ENCODING_RM)
1102   ENCODING("VR256X",          ENCODING_RM)
1103   ENCODING("VR512",           ENCODING_RM)
1104   ENCODING("VK1",             ENCODING_RM)
1105   ENCODING("VK2",             ENCODING_RM)
1106   ENCODING("VK4",             ENCODING_RM)
1107   ENCODING("VK8",             ENCODING_RM)
1108   ENCODING("VK16",            ENCODING_RM)
1109   ENCODING("VK32",            ENCODING_RM)
1110   ENCODING("VK64",            ENCODING_RM)
1111   ENCODING("BNDR",            ENCODING_RM)
1112   errs() << "Unhandled R/M register encoding " << s << "\n";
1113   llvm_unreachable("Unhandled R/M register encoding");
1114 }
1115
1116 OperandEncoding
1117 RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
1118                                                 uint8_t OpSize) {
1119   ENCODING("GR16",            ENCODING_REG)
1120   ENCODING("GR32",            ENCODING_REG)
1121   ENCODING("GR32orGR64",      ENCODING_REG)
1122   ENCODING("GR64",            ENCODING_REG)
1123   ENCODING("GR8",             ENCODING_REG)
1124   ENCODING("VR128",           ENCODING_REG)
1125   ENCODING("FR128",           ENCODING_REG)
1126   ENCODING("FR64",            ENCODING_REG)
1127   ENCODING("FR32",            ENCODING_REG)
1128   ENCODING("VR64",            ENCODING_REG)
1129   ENCODING("SEGMENT_REG",     ENCODING_REG)
1130   ENCODING("DEBUG_REG",       ENCODING_REG)
1131   ENCODING("CONTROL_REG",     ENCODING_REG)
1132   ENCODING("VR256",           ENCODING_REG)
1133   ENCODING("VR256X",          ENCODING_REG)
1134   ENCODING("VR128X",          ENCODING_REG)
1135   ENCODING("FR64X",           ENCODING_REG)
1136   ENCODING("FR32X",           ENCODING_REG)
1137   ENCODING("VR512",           ENCODING_REG)
1138   ENCODING("VK1",             ENCODING_REG)
1139   ENCODING("VK2",             ENCODING_REG)
1140   ENCODING("VK4",             ENCODING_REG)
1141   ENCODING("VK8",             ENCODING_REG)
1142   ENCODING("VK16",            ENCODING_REG)
1143   ENCODING("VK32",            ENCODING_REG)
1144   ENCODING("VK64",            ENCODING_REG)
1145   ENCODING("VK1WM",           ENCODING_REG)
1146   ENCODING("VK2WM",           ENCODING_REG)
1147   ENCODING("VK4WM",           ENCODING_REG)
1148   ENCODING("VK8WM",           ENCODING_REG)
1149   ENCODING("VK16WM",          ENCODING_REG)
1150   ENCODING("VK32WM",          ENCODING_REG)
1151   ENCODING("VK64WM",          ENCODING_REG)
1152   ENCODING("BNDR",            ENCODING_REG)
1153   errs() << "Unhandled reg/opcode register encoding " << s << "\n";
1154   llvm_unreachable("Unhandled reg/opcode register encoding");
1155 }
1156
1157 OperandEncoding
1158 RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
1159                                                   uint8_t OpSize) {
1160   ENCODING("GR32",            ENCODING_VVVV)
1161   ENCODING("GR64",            ENCODING_VVVV)
1162   ENCODING("FR32",            ENCODING_VVVV)
1163   ENCODING("FR128",           ENCODING_VVVV)
1164   ENCODING("FR64",            ENCODING_VVVV)
1165   ENCODING("VR128",           ENCODING_VVVV)
1166   ENCODING("VR256",           ENCODING_VVVV)
1167   ENCODING("FR32X",           ENCODING_VVVV)
1168   ENCODING("FR64X",           ENCODING_VVVV)
1169   ENCODING("VR128X",          ENCODING_VVVV)
1170   ENCODING("VR256X",          ENCODING_VVVV)
1171   ENCODING("VR512",           ENCODING_VVVV)
1172   ENCODING("VK1",             ENCODING_VVVV)
1173   ENCODING("VK2",             ENCODING_VVVV)
1174   ENCODING("VK4",             ENCODING_VVVV)
1175   ENCODING("VK8",             ENCODING_VVVV)
1176   ENCODING("VK16",            ENCODING_VVVV)
1177   ENCODING("VK32",            ENCODING_VVVV)
1178   ENCODING("VK64",            ENCODING_VVVV)
1179   errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
1180   llvm_unreachable("Unhandled VEX.vvvv register encoding");
1181 }
1182
1183 OperandEncoding
1184 RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
1185                                                        uint8_t OpSize) {
1186   ENCODING("VK1WM",           ENCODING_WRITEMASK)
1187   ENCODING("VK2WM",           ENCODING_WRITEMASK)
1188   ENCODING("VK4WM",           ENCODING_WRITEMASK)
1189   ENCODING("VK8WM",           ENCODING_WRITEMASK)
1190   ENCODING("VK16WM",          ENCODING_WRITEMASK)
1191   ENCODING("VK32WM",          ENCODING_WRITEMASK)
1192   ENCODING("VK64WM",          ENCODING_WRITEMASK)
1193   errs() << "Unhandled mask register encoding " << s << "\n";
1194   llvm_unreachable("Unhandled mask register encoding");
1195 }
1196
1197 OperandEncoding
1198 RecognizableInstr::memoryEncodingFromString(const std::string &s,
1199                                             uint8_t OpSize) {
1200   ENCODING("i16mem",          ENCODING_RM)
1201   ENCODING("i32mem",          ENCODING_RM)
1202   ENCODING("i64mem",          ENCODING_RM)
1203   ENCODING("i8mem",           ENCODING_RM)
1204   ENCODING("ssmem",           ENCODING_RM)
1205   ENCODING("sdmem",           ENCODING_RM)
1206   ENCODING("f128mem",         ENCODING_RM)
1207   ENCODING("f256mem",         ENCODING_RM)
1208   ENCODING("f512mem",         ENCODING_RM)
1209   ENCODING("f64mem",          ENCODING_RM)
1210   ENCODING("f32mem",          ENCODING_RM)
1211   ENCODING("i128mem",         ENCODING_RM)
1212   ENCODING("i256mem",         ENCODING_RM)
1213   ENCODING("i512mem",         ENCODING_RM)
1214   ENCODING("f80mem",          ENCODING_RM)
1215   ENCODING("lea64_32mem",     ENCODING_RM)
1216   ENCODING("lea64mem",        ENCODING_RM)
1217   ENCODING("anymem",          ENCODING_RM)
1218   ENCODING("opaque32mem",     ENCODING_RM)
1219   ENCODING("opaque48mem",     ENCODING_RM)
1220   ENCODING("opaque80mem",     ENCODING_RM)
1221   ENCODING("opaque512mem",    ENCODING_RM)
1222   ENCODING("vx64mem",         ENCODING_RM)
1223   ENCODING("vx128mem",        ENCODING_RM)
1224   ENCODING("vx256mem",        ENCODING_RM)
1225   ENCODING("vy128mem",        ENCODING_RM)
1226   ENCODING("vy256mem",        ENCODING_RM)
1227   ENCODING("vx64xmem",        ENCODING_RM)
1228   ENCODING("vx128xmem",       ENCODING_RM)
1229   ENCODING("vx256xmem",       ENCODING_RM)
1230   ENCODING("vy128xmem",       ENCODING_RM)
1231   ENCODING("vy256xmem",       ENCODING_RM)
1232   ENCODING("vy512mem",        ENCODING_RM)
1233   ENCODING("vz512mem",        ENCODING_RM)
1234   errs() << "Unhandled memory encoding " << s << "\n";
1235   llvm_unreachable("Unhandled memory encoding");
1236 }
1237
1238 OperandEncoding
1239 RecognizableInstr::relocationEncodingFromString(const std::string &s,
1240                                                 uint8_t OpSize) {
1241   if(OpSize != X86Local::OpSize16) {
1242     // For instructions without an OpSize prefix, a declared 16-bit register or
1243     // immediate encoding is special.
1244     ENCODING("i16imm",        ENCODING_IW)
1245   }
1246   ENCODING("i16imm",          ENCODING_Iv)
1247   ENCODING("i16i8imm",        ENCODING_IB)
1248   ENCODING("i32imm",          ENCODING_Iv)
1249   ENCODING("i32i8imm",        ENCODING_IB)
1250   ENCODING("i64i32imm",       ENCODING_ID)
1251   ENCODING("i64i8imm",        ENCODING_IB)
1252   ENCODING("i8imm",           ENCODING_IB)
1253   ENCODING("u8imm",           ENCODING_IB)
1254   ENCODING("i32u8imm",        ENCODING_IB)
1255   ENCODING("i64i32imm_pcrel", ENCODING_ID)
1256   ENCODING("i16imm_pcrel",    ENCODING_IW)
1257   ENCODING("i32imm_pcrel",    ENCODING_ID)
1258   ENCODING("brtarget32",      ENCODING_Iv)
1259   ENCODING("brtarget16",      ENCODING_Iv)
1260   ENCODING("brtarget8",       ENCODING_IB)
1261   ENCODING("i64imm",          ENCODING_IO)
1262   ENCODING("offset16_8",      ENCODING_Ia)
1263   ENCODING("offset16_16",     ENCODING_Ia)
1264   ENCODING("offset16_32",     ENCODING_Ia)
1265   ENCODING("offset32_8",      ENCODING_Ia)
1266   ENCODING("offset32_16",     ENCODING_Ia)
1267   ENCODING("offset32_32",     ENCODING_Ia)
1268   ENCODING("offset32_64",     ENCODING_Ia)
1269   ENCODING("offset64_8",      ENCODING_Ia)
1270   ENCODING("offset64_16",     ENCODING_Ia)
1271   ENCODING("offset64_32",     ENCODING_Ia)
1272   ENCODING("offset64_64",     ENCODING_Ia)
1273   ENCODING("srcidx8",         ENCODING_SI)
1274   ENCODING("srcidx16",        ENCODING_SI)
1275   ENCODING("srcidx32",        ENCODING_SI)
1276   ENCODING("srcidx64",        ENCODING_SI)
1277   ENCODING("dstidx8",         ENCODING_DI)
1278   ENCODING("dstidx16",        ENCODING_DI)
1279   ENCODING("dstidx32",        ENCODING_DI)
1280   ENCODING("dstidx64",        ENCODING_DI)
1281   errs() << "Unhandled relocation encoding " << s << "\n";
1282   llvm_unreachable("Unhandled relocation encoding");
1283 }
1284
1285 OperandEncoding
1286 RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
1287                                                     uint8_t OpSize) {
1288   ENCODING("GR32",            ENCODING_Rv)
1289   ENCODING("GR64",            ENCODING_RO)
1290   ENCODING("GR16",            ENCODING_Rv)
1291   ENCODING("GR8",             ENCODING_RB)
1292   ENCODING("GR32_NOAX",       ENCODING_Rv)
1293   errs() << "Unhandled opcode modifier encoding " << s << "\n";
1294   llvm_unreachable("Unhandled opcode modifier encoding");
1295 }
1296 #undef ENCODING