]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/clang/include/clang/Sema/Overload.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / clang / include / clang / Sema / Overload.h
1 //===- Overload.h - C++ Overloading -----------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the data structures and types used in C++
10 // overload resolution.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CLANG_SEMA_OVERLOAD_H
15 #define LLVM_CLANG_SEMA_OVERLOAD_H
16
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclAccessPair.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/Type.h"
24 #include "clang/Basic/LLVM.h"
25 #include "clang/Basic/SourceLocation.h"
26 #include "clang/Sema/SemaFixItUtils.h"
27 #include "clang/Sema/TemplateDeduction.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/Support/AlignOf.h"
35 #include "llvm/Support/Allocator.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include <cassert>
39 #include <cstddef>
40 #include <cstdint>
41 #include <utility>
42
43 namespace clang {
44
45 class APValue;
46 class ASTContext;
47 class Sema;
48
49   /// OverloadingResult - Capture the result of performing overload
50   /// resolution.
51   enum OverloadingResult {
52     /// Overload resolution succeeded.
53     OR_Success,
54
55     /// No viable function found.
56     OR_No_Viable_Function,
57
58     /// Ambiguous candidates found.
59     OR_Ambiguous,
60
61     /// Succeeded, but refers to a deleted function.
62     OR_Deleted
63   };
64
65   enum OverloadCandidateDisplayKind {
66     /// Requests that all candidates be shown.  Viable candidates will
67     /// be printed first.
68     OCD_AllCandidates,
69
70     /// Requests that only viable candidates be shown.
71     OCD_ViableCandidates,
72
73     /// Requests that only tied-for-best candidates be shown.
74     OCD_AmbiguousCandidates
75   };
76
77   /// The parameter ordering that will be used for the candidate. This is
78   /// used to represent C++20 binary operator rewrites that reverse the order
79   /// of the arguments. If the parameter ordering is Reversed, the Args list is
80   /// reversed (but obviously the ParamDecls for the function are not).
81   ///
82   /// After forming an OverloadCandidate with reversed parameters, the list
83   /// of conversions will (as always) be indexed by argument, so will be
84   /// in reverse parameter order.
85   enum class OverloadCandidateParamOrder : char { Normal, Reversed };
86
87   /// The kinds of rewrite we perform on overload candidates. Note that the
88   /// values here are chosen to serve as both bitflags and as a rank (lower
89   /// values are preferred by overload resolution).
90   enum OverloadCandidateRewriteKind : unsigned {
91     /// Candidate is not a rewritten candidate.
92     CRK_None = 0x0,
93
94     /// Candidate is a rewritten candidate with a different operator name.
95     CRK_DifferentOperator = 0x1,
96
97     /// Candidate is a rewritten candidate with a reversed order of parameters.
98     CRK_Reversed = 0x2,
99   };
100
101   /// ImplicitConversionKind - The kind of implicit conversion used to
102   /// convert an argument to a parameter's type. The enumerator values
103   /// match with the table titled 'Conversions' in [over.ics.scs] and are listed
104   /// such that better conversion kinds have smaller values.
105   enum ImplicitConversionKind {
106     /// Identity conversion (no conversion)
107     ICK_Identity = 0,
108
109     /// Lvalue-to-rvalue conversion (C++ [conv.lval])
110     ICK_Lvalue_To_Rvalue,
111
112     /// Array-to-pointer conversion (C++ [conv.array])
113     ICK_Array_To_Pointer,
114
115     /// Function-to-pointer (C++ [conv.array])
116     ICK_Function_To_Pointer,
117
118     /// Function pointer conversion (C++17 [conv.fctptr])
119     ICK_Function_Conversion,
120
121     /// Qualification conversions (C++ [conv.qual])
122     ICK_Qualification,
123
124     /// Integral promotions (C++ [conv.prom])
125     ICK_Integral_Promotion,
126
127     /// Floating point promotions (C++ [conv.fpprom])
128     ICK_Floating_Promotion,
129
130     /// Complex promotions (Clang extension)
131     ICK_Complex_Promotion,
132
133     /// Integral conversions (C++ [conv.integral])
134     ICK_Integral_Conversion,
135
136     /// Floating point conversions (C++ [conv.double]
137     ICK_Floating_Conversion,
138
139     /// Complex conversions (C99 6.3.1.6)
140     ICK_Complex_Conversion,
141
142     /// Floating-integral conversions (C++ [conv.fpint])
143     ICK_Floating_Integral,
144
145     /// Pointer conversions (C++ [conv.ptr])
146     ICK_Pointer_Conversion,
147
148     /// Pointer-to-member conversions (C++ [conv.mem])
149     ICK_Pointer_Member,
150
151     /// Boolean conversions (C++ [conv.bool])
152     ICK_Boolean_Conversion,
153
154     /// Conversions between compatible types in C99
155     ICK_Compatible_Conversion,
156
157     /// Derived-to-base (C++ [over.best.ics])
158     ICK_Derived_To_Base,
159
160     /// Vector conversions
161     ICK_Vector_Conversion,
162
163     /// A vector splat from an arithmetic type
164     ICK_Vector_Splat,
165
166     /// Complex-real conversions (C99 6.3.1.7)
167     ICK_Complex_Real,
168
169     /// Block Pointer conversions
170     ICK_Block_Pointer_Conversion,
171
172     /// Transparent Union Conversions
173     ICK_TransparentUnionConversion,
174
175     /// Objective-C ARC writeback conversion
176     ICK_Writeback_Conversion,
177
178     /// Zero constant to event (OpenCL1.2 6.12.10)
179     ICK_Zero_Event_Conversion,
180
181     /// Zero constant to queue
182     ICK_Zero_Queue_Conversion,
183
184     /// Conversions allowed in C, but not C++
185     ICK_C_Only_Conversion,
186
187     /// C-only conversion between pointers with incompatible types
188     ICK_Incompatible_Pointer_Conversion,
189
190     /// The number of conversion kinds
191     ICK_Num_Conversion_Kinds,
192   };
193
194   /// ImplicitConversionRank - The rank of an implicit conversion
195   /// kind. The enumerator values match with Table 9 of (C++
196   /// 13.3.3.1.1) and are listed such that better conversion ranks
197   /// have smaller values.
198   enum ImplicitConversionRank {
199     /// Exact Match
200     ICR_Exact_Match = 0,
201
202     /// Promotion
203     ICR_Promotion,
204
205     /// Conversion
206     ICR_Conversion,
207
208     /// OpenCL Scalar Widening
209     ICR_OCL_Scalar_Widening,
210
211     /// Complex <-> Real conversion
212     ICR_Complex_Real_Conversion,
213
214     /// ObjC ARC writeback conversion
215     ICR_Writeback_Conversion,
216
217     /// Conversion only allowed in the C standard (e.g. void* to char*).
218     ICR_C_Conversion,
219
220     /// Conversion not allowed by the C standard, but that we accept as an
221     /// extension anyway.
222     ICR_C_Conversion_Extension
223   };
224
225   ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind);
226
227   /// NarrowingKind - The kind of narrowing conversion being performed by a
228   /// standard conversion sequence according to C++11 [dcl.init.list]p7.
229   enum NarrowingKind {
230     /// Not a narrowing conversion.
231     NK_Not_Narrowing,
232
233     /// A narrowing conversion by virtue of the source and destination types.
234     NK_Type_Narrowing,
235
236     /// A narrowing conversion, because a constant expression got narrowed.
237     NK_Constant_Narrowing,
238
239     /// A narrowing conversion, because a non-constant-expression variable might
240     /// have got narrowed.
241     NK_Variable_Narrowing,
242
243     /// Cannot tell whether this is a narrowing conversion because the
244     /// expression is value-dependent.
245     NK_Dependent_Narrowing,
246   };
247
248   /// StandardConversionSequence - represents a standard conversion
249   /// sequence (C++ 13.3.3.1.1). A standard conversion sequence
250   /// contains between zero and three conversions. If a particular
251   /// conversion is not needed, it will be set to the identity conversion
252   /// (ICK_Identity). Note that the three conversions are
253   /// specified as separate members (rather than in an array) so that
254   /// we can keep the size of a standard conversion sequence to a
255   /// single word.
256   class StandardConversionSequence {
257   public:
258     /// First -- The first conversion can be an lvalue-to-rvalue
259     /// conversion, array-to-pointer conversion, or
260     /// function-to-pointer conversion.
261     ImplicitConversionKind First : 8;
262
263     /// Second - The second conversion can be an integral promotion,
264     /// floating point promotion, integral conversion, floating point
265     /// conversion, floating-integral conversion, pointer conversion,
266     /// pointer-to-member conversion, or boolean conversion.
267     ImplicitConversionKind Second : 8;
268
269     /// Third - The third conversion can be a qualification conversion
270     /// or a function conversion.
271     ImplicitConversionKind Third : 8;
272
273     /// Whether this is the deprecated conversion of a
274     /// string literal to a pointer to non-const character data
275     /// (C++ 4.2p2).
276     unsigned DeprecatedStringLiteralToCharPtr : 1;
277
278     /// Whether the qualification conversion involves a change in the
279     /// Objective-C lifetime (for automatic reference counting).
280     unsigned QualificationIncludesObjCLifetime : 1;
281
282     /// IncompatibleObjC - Whether this is an Objective-C conversion
283     /// that we should warn about (if we actually use it).
284     unsigned IncompatibleObjC : 1;
285
286     /// ReferenceBinding - True when this is a reference binding
287     /// (C++ [over.ics.ref]).
288     unsigned ReferenceBinding : 1;
289
290     /// DirectBinding - True when this is a reference binding that is a
291     /// direct binding (C++ [dcl.init.ref]).
292     unsigned DirectBinding : 1;
293
294     /// Whether this is an lvalue reference binding (otherwise, it's
295     /// an rvalue reference binding).
296     unsigned IsLvalueReference : 1;
297
298     /// Whether we're binding to a function lvalue.
299     unsigned BindsToFunctionLvalue : 1;
300
301     /// Whether we're binding to an rvalue.
302     unsigned BindsToRvalue : 1;
303
304     /// Whether this binds an implicit object argument to a
305     /// non-static member function without a ref-qualifier.
306     unsigned BindsImplicitObjectArgumentWithoutRefQualifier : 1;
307
308     /// Whether this binds a reference to an object with a different
309     /// Objective-C lifetime qualifier.
310     unsigned ObjCLifetimeConversionBinding : 1;
311
312     /// FromType - The type that this conversion is converting
313     /// from. This is an opaque pointer that can be translated into a
314     /// QualType.
315     void *FromTypePtr;
316
317     /// ToType - The types that this conversion is converting to in
318     /// each step. This is an opaque pointer that can be translated
319     /// into a QualType.
320     void *ToTypePtrs[3];
321
322     /// CopyConstructor - The copy constructor that is used to perform
323     /// this conversion, when the conversion is actually just the
324     /// initialization of an object via copy constructor. Such
325     /// conversions are either identity conversions or derived-to-base
326     /// conversions.
327     CXXConstructorDecl *CopyConstructor;
328     DeclAccessPair FoundCopyConstructor;
329
330     void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); }
331
332     void setToType(unsigned Idx, QualType T) {
333       assert(Idx < 3 && "To type index is out of range");
334       ToTypePtrs[Idx] = T.getAsOpaquePtr();
335     }
336
337     void setAllToTypes(QualType T) {
338       ToTypePtrs[0] = T.getAsOpaquePtr();
339       ToTypePtrs[1] = ToTypePtrs[0];
340       ToTypePtrs[2] = ToTypePtrs[0];
341     }
342
343     QualType getFromType() const {
344       return QualType::getFromOpaquePtr(FromTypePtr);
345     }
346
347     QualType getToType(unsigned Idx) const {
348       assert(Idx < 3 && "To type index is out of range");
349       return QualType::getFromOpaquePtr(ToTypePtrs[Idx]);
350     }
351
352     void setAsIdentityConversion();
353
354     bool isIdentityConversion() const {
355       return Second == ICK_Identity && Third == ICK_Identity;
356     }
357
358     ImplicitConversionRank getRank() const;
359     NarrowingKind
360     getNarrowingKind(ASTContext &Context, const Expr *Converted,
361                      APValue &ConstantValue, QualType &ConstantType,
362                      bool IgnoreFloatToIntegralConversion = false) const;
363     bool isPointerConversionToBool() const;
364     bool isPointerConversionToVoidPointer(ASTContext& Context) const;
365     void dump() const;
366   };
367
368   /// UserDefinedConversionSequence - Represents a user-defined
369   /// conversion sequence (C++ 13.3.3.1.2).
370   struct UserDefinedConversionSequence {
371     /// Represents the standard conversion that occurs before
372     /// the actual user-defined conversion.
373     ///
374     /// C++11 13.3.3.1.2p1:
375     ///   If the user-defined conversion is specified by a constructor
376     ///   (12.3.1), the initial standard conversion sequence converts
377     ///   the source type to the type required by the argument of the
378     ///   constructor. If the user-defined conversion is specified by
379     ///   a conversion function (12.3.2), the initial standard
380     ///   conversion sequence converts the source type to the implicit
381     ///   object parameter of the conversion function.
382     StandardConversionSequence Before;
383
384     /// EllipsisConversion - When this is true, it means user-defined
385     /// conversion sequence starts with a ... (ellipsis) conversion, instead of
386     /// a standard conversion. In this case, 'Before' field must be ignored.
387     // FIXME. I much rather put this as the first field. But there seems to be
388     // a gcc code gen. bug which causes a crash in a test. Putting it here seems
389     // to work around the crash.
390     bool EllipsisConversion : 1;
391
392     /// HadMultipleCandidates - When this is true, it means that the
393     /// conversion function was resolved from an overloaded set having
394     /// size greater than 1.
395     bool HadMultipleCandidates : 1;
396
397     /// After - Represents the standard conversion that occurs after
398     /// the actual user-defined conversion.
399     StandardConversionSequence After;
400
401     /// ConversionFunction - The function that will perform the
402     /// user-defined conversion. Null if the conversion is an
403     /// aggregate initialization from an initializer list.
404     FunctionDecl* ConversionFunction;
405
406     /// The declaration that we found via name lookup, which might be
407     /// the same as \c ConversionFunction or it might be a using declaration
408     /// that refers to \c ConversionFunction.
409     DeclAccessPair FoundConversionFunction;
410
411     void dump() const;
412   };
413
414   /// Represents an ambiguous user-defined conversion sequence.
415   struct AmbiguousConversionSequence {
416     using ConversionSet =
417         SmallVector<std::pair<NamedDecl *, FunctionDecl *>, 4>;
418
419     void *FromTypePtr;
420     void *ToTypePtr;
421     char Buffer[sizeof(ConversionSet)];
422
423     QualType getFromType() const {
424       return QualType::getFromOpaquePtr(FromTypePtr);
425     }
426
427     QualType getToType() const {
428       return QualType::getFromOpaquePtr(ToTypePtr);
429     }
430
431     void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); }
432     void setToType(QualType T) { ToTypePtr = T.getAsOpaquePtr(); }
433
434     ConversionSet &conversions() {
435       return *reinterpret_cast<ConversionSet*>(Buffer);
436     }
437
438     const ConversionSet &conversions() const {
439       return *reinterpret_cast<const ConversionSet*>(Buffer);
440     }
441
442     void addConversion(NamedDecl *Found, FunctionDecl *D) {
443       conversions().push_back(std::make_pair(Found, D));
444     }
445
446     using iterator = ConversionSet::iterator;
447
448     iterator begin() { return conversions().begin(); }
449     iterator end() { return conversions().end(); }
450
451     using const_iterator = ConversionSet::const_iterator;
452
453     const_iterator begin() const { return conversions().begin(); }
454     const_iterator end() const { return conversions().end(); }
455
456     void construct();
457     void destruct();
458     void copyFrom(const AmbiguousConversionSequence &);
459   };
460
461   /// BadConversionSequence - Records information about an invalid
462   /// conversion sequence.
463   struct BadConversionSequence {
464     enum FailureKind {
465       no_conversion,
466       unrelated_class,
467       bad_qualifiers,
468       lvalue_ref_to_rvalue,
469       rvalue_ref_to_lvalue
470     };
471
472     // This can be null, e.g. for implicit object arguments.
473     Expr *FromExpr;
474
475     FailureKind Kind;
476
477   private:
478     // The type we're converting from (an opaque QualType).
479     void *FromTy;
480
481     // The type we're converting to (an opaque QualType).
482     void *ToTy;
483
484   public:
485     void init(FailureKind K, Expr *From, QualType To) {
486       init(K, From->getType(), To);
487       FromExpr = From;
488     }
489
490     void init(FailureKind K, QualType From, QualType To) {
491       Kind = K;
492       FromExpr = nullptr;
493       setFromType(From);
494       setToType(To);
495     }
496
497     QualType getFromType() const { return QualType::getFromOpaquePtr(FromTy); }
498     QualType getToType() const { return QualType::getFromOpaquePtr(ToTy); }
499
500     void setFromExpr(Expr *E) {
501       FromExpr = E;
502       setFromType(E->getType());
503     }
504
505     void setFromType(QualType T) { FromTy = T.getAsOpaquePtr(); }
506     void setToType(QualType T) { ToTy = T.getAsOpaquePtr(); }
507   };
508
509   /// ImplicitConversionSequence - Represents an implicit conversion
510   /// sequence, which may be a standard conversion sequence
511   /// (C++ 13.3.3.1.1), user-defined conversion sequence (C++ 13.3.3.1.2),
512   /// or an ellipsis conversion sequence (C++ 13.3.3.1.3).
513   class ImplicitConversionSequence {
514   public:
515     /// Kind - The kind of implicit conversion sequence. BadConversion
516     /// specifies that there is no conversion from the source type to
517     /// the target type.  AmbiguousConversion represents the unique
518     /// ambiguous conversion (C++0x [over.best.ics]p10).
519     enum Kind {
520       StandardConversion = 0,
521       UserDefinedConversion,
522       AmbiguousConversion,
523       EllipsisConversion,
524       BadConversion
525     };
526
527   private:
528     enum {
529       Uninitialized = BadConversion + 1
530     };
531
532     /// ConversionKind - The kind of implicit conversion sequence.
533     unsigned ConversionKind : 30;
534
535     /// Whether the target is really a std::initializer_list, and the
536     /// sequence only represents the worst element conversion.
537     unsigned StdInitializerListElement : 1;
538
539     void setKind(Kind K) {
540       destruct();
541       ConversionKind = K;
542     }
543
544     void destruct() {
545       if (ConversionKind == AmbiguousConversion) Ambiguous.destruct();
546     }
547
548   public:
549     union {
550       /// When ConversionKind == StandardConversion, provides the
551       /// details of the standard conversion sequence.
552       StandardConversionSequence Standard;
553
554       /// When ConversionKind == UserDefinedConversion, provides the
555       /// details of the user-defined conversion sequence.
556       UserDefinedConversionSequence UserDefined;
557
558       /// When ConversionKind == AmbiguousConversion, provides the
559       /// details of the ambiguous conversion.
560       AmbiguousConversionSequence Ambiguous;
561
562       /// When ConversionKind == BadConversion, provides the details
563       /// of the bad conversion.
564       BadConversionSequence Bad;
565     };
566
567     ImplicitConversionSequence()
568         : ConversionKind(Uninitialized), StdInitializerListElement(false) {
569       Standard.setAsIdentityConversion();
570     }
571
572     ImplicitConversionSequence(const ImplicitConversionSequence &Other)
573         : ConversionKind(Other.ConversionKind),
574           StdInitializerListElement(Other.StdInitializerListElement) {
575       switch (ConversionKind) {
576       case Uninitialized: break;
577       case StandardConversion: Standard = Other.Standard; break;
578       case UserDefinedConversion: UserDefined = Other.UserDefined; break;
579       case AmbiguousConversion: Ambiguous.copyFrom(Other.Ambiguous); break;
580       case EllipsisConversion: break;
581       case BadConversion: Bad = Other.Bad; break;
582       }
583     }
584
585     ImplicitConversionSequence &
586     operator=(const ImplicitConversionSequence &Other) {
587       destruct();
588       new (this) ImplicitConversionSequence(Other);
589       return *this;
590     }
591
592     ~ImplicitConversionSequence() {
593       destruct();
594     }
595
596     Kind getKind() const {
597       assert(isInitialized() && "querying uninitialized conversion");
598       return Kind(ConversionKind);
599     }
600
601     /// Return a ranking of the implicit conversion sequence
602     /// kind, where smaller ranks represent better conversion
603     /// sequences.
604     ///
605     /// In particular, this routine gives user-defined conversion
606     /// sequences and ambiguous conversion sequences the same rank,
607     /// per C++ [over.best.ics]p10.
608     unsigned getKindRank() const {
609       switch (getKind()) {
610       case StandardConversion:
611         return 0;
612
613       case UserDefinedConversion:
614       case AmbiguousConversion:
615         return 1;
616
617       case EllipsisConversion:
618         return 2;
619
620       case BadConversion:
621         return 3;
622       }
623
624       llvm_unreachable("Invalid ImplicitConversionSequence::Kind!");
625     }
626
627     bool isBad() const { return getKind() == BadConversion; }
628     bool isStandard() const { return getKind() == StandardConversion; }
629     bool isEllipsis() const { return getKind() == EllipsisConversion; }
630     bool isAmbiguous() const { return getKind() == AmbiguousConversion; }
631     bool isUserDefined() const { return getKind() == UserDefinedConversion; }
632     bool isFailure() const { return isBad() || isAmbiguous(); }
633
634     /// Determines whether this conversion sequence has been
635     /// initialized.  Most operations should never need to query
636     /// uninitialized conversions and should assert as above.
637     bool isInitialized() const { return ConversionKind != Uninitialized; }
638
639     /// Sets this sequence as a bad conversion for an explicit argument.
640     void setBad(BadConversionSequence::FailureKind Failure,
641                 Expr *FromExpr, QualType ToType) {
642       setKind(BadConversion);
643       Bad.init(Failure, FromExpr, ToType);
644     }
645
646     /// Sets this sequence as a bad conversion for an implicit argument.
647     void setBad(BadConversionSequence::FailureKind Failure,
648                 QualType FromType, QualType ToType) {
649       setKind(BadConversion);
650       Bad.init(Failure, FromType, ToType);
651     }
652
653     void setStandard() { setKind(StandardConversion); }
654     void setEllipsis() { setKind(EllipsisConversion); }
655     void setUserDefined() { setKind(UserDefinedConversion); }
656
657     void setAmbiguous() {
658       if (ConversionKind == AmbiguousConversion) return;
659       ConversionKind = AmbiguousConversion;
660       Ambiguous.construct();
661     }
662
663     void setAsIdentityConversion(QualType T) {
664       setStandard();
665       Standard.setAsIdentityConversion();
666       Standard.setFromType(T);
667       Standard.setAllToTypes(T);
668     }
669
670     /// Whether the target is really a std::initializer_list, and the
671     /// sequence only represents the worst element conversion.
672     bool isStdInitializerListElement() const {
673       return StdInitializerListElement;
674     }
675
676     void setStdInitializerListElement(bool V = true) {
677       StdInitializerListElement = V;
678     }
679
680     // The result of a comparison between implicit conversion
681     // sequences. Use Sema::CompareImplicitConversionSequences to
682     // actually perform the comparison.
683     enum CompareKind {
684       Better = -1,
685       Indistinguishable = 0,
686       Worse = 1
687     };
688
689     void DiagnoseAmbiguousConversion(Sema &S,
690                                      SourceLocation CaretLoc,
691                                      const PartialDiagnostic &PDiag) const;
692
693     void dump() const;
694   };
695
696   enum OverloadFailureKind {
697     ovl_fail_too_many_arguments,
698     ovl_fail_too_few_arguments,
699     ovl_fail_bad_conversion,
700     ovl_fail_bad_deduction,
701
702     /// This conversion candidate was not considered because it
703     /// duplicates the work of a trivial or derived-to-base
704     /// conversion.
705     ovl_fail_trivial_conversion,
706
707     /// This conversion candidate was not considered because it is
708     /// an illegal instantiation of a constructor temploid: it is
709     /// callable with one argument, we only have one argument, and
710     /// its first parameter type is exactly the type of the class.
711     ///
712     /// Defining such a constructor directly is illegal, and
713     /// template-argument deduction is supposed to ignore such
714     /// instantiations, but we can still get one with the right
715     /// kind of implicit instantiation.
716     ovl_fail_illegal_constructor,
717
718     /// This conversion candidate is not viable because its result
719     /// type is not implicitly convertible to the desired type.
720     ovl_fail_bad_final_conversion,
721
722     /// This conversion function template specialization candidate is not
723     /// viable because the final conversion was not an exact match.
724     ovl_fail_final_conversion_not_exact,
725
726     /// (CUDA) This candidate was not viable because the callee
727     /// was not accessible from the caller's target (i.e. host->device,
728     /// global->host, device->host).
729     ovl_fail_bad_target,
730
731     /// This candidate function was not viable because an enable_if
732     /// attribute disabled it.
733     ovl_fail_enable_if,
734
735     /// This candidate constructor or conversion function is explicit but
736     /// the context doesn't permit explicit functions.
737     ovl_fail_explicit,
738
739     /// This candidate was not viable because its address could not be taken.
740     ovl_fail_addr_not_available,
741
742     /// This candidate was not viable because its OpenCL extension is disabled.
743     ovl_fail_ext_disabled,
744
745     /// This inherited constructor is not viable because it would slice the
746     /// argument.
747     ovl_fail_inhctor_slice,
748
749     /// This candidate was not viable because it is a non-default multiversioned
750     /// function.
751     ovl_non_default_multiversion_function,
752
753     /// This constructor/conversion candidate fail due to an address space
754     /// mismatch between the object being constructed and the overload
755     /// candidate.
756     ovl_fail_object_addrspace_mismatch,
757
758     /// This candidate was not viable because its associated constraints were
759     /// not satisfied.
760     ovl_fail_constraints_not_satisfied,
761   };
762
763   /// A list of implicit conversion sequences for the arguments of an
764   /// OverloadCandidate.
765   using ConversionSequenceList =
766       llvm::MutableArrayRef<ImplicitConversionSequence>;
767
768   /// OverloadCandidate - A single candidate in an overload set (C++ 13.3).
769   struct OverloadCandidate {
770     /// Function - The actual function that this candidate
771     /// represents. When NULL, this is a built-in candidate
772     /// (C++ [over.oper]) or a surrogate for a conversion to a
773     /// function pointer or reference (C++ [over.call.object]).
774     FunctionDecl *Function;
775
776     /// FoundDecl - The original declaration that was looked up /
777     /// invented / otherwise found, together with its access.
778     /// Might be a UsingShadowDecl or a FunctionTemplateDecl.
779     DeclAccessPair FoundDecl;
780
781     /// BuiltinParamTypes - Provides the parameter types of a built-in overload
782     /// candidate. Only valid when Function is NULL.
783     QualType BuiltinParamTypes[3];
784
785     /// Surrogate - The conversion function for which this candidate
786     /// is a surrogate, but only if IsSurrogate is true.
787     CXXConversionDecl *Surrogate;
788
789     /// The conversion sequences used to convert the function arguments
790     /// to the function parameters. Note that these are indexed by argument,
791     /// so may not match the parameter order of Function.
792     ConversionSequenceList Conversions;
793
794     /// The FixIt hints which can be used to fix the Bad candidate.
795     ConversionFixItGenerator Fix;
796
797     /// Viable - True to indicate that this overload candidate is viable.
798     bool Viable : 1;
799
800     /// Whether this candidate is the best viable function, or tied for being
801     /// the best viable function.
802     ///
803     /// For an ambiguous overload resolution, indicates whether this candidate
804     /// was part of the ambiguity kernel: the minimal non-empty set of viable
805     /// candidates such that all elements of the ambiguity kernel are better
806     /// than all viable candidates not in the ambiguity kernel.
807     bool Best : 1;
808
809     /// IsSurrogate - True to indicate that this candidate is a
810     /// surrogate for a conversion to a function pointer or reference
811     /// (C++ [over.call.object]).
812     bool IsSurrogate : 1;
813
814     /// IgnoreObjectArgument - True to indicate that the first
815     /// argument's conversion, which for this function represents the
816     /// implicit object argument, should be ignored. This will be true
817     /// when the candidate is a static member function (where the
818     /// implicit object argument is just a placeholder) or a
819     /// non-static member function when the call doesn't have an
820     /// object argument.
821     bool IgnoreObjectArgument : 1;
822
823     /// True if the candidate was found using ADL.
824     CallExpr::ADLCallKind IsADLCandidate : 1;
825
826     /// Whether this is a rewritten candidate, and if so, of what kind?
827     unsigned RewriteKind : 2;
828
829     /// FailureKind - The reason why this candidate is not viable.
830     /// Actually an OverloadFailureKind.
831     unsigned char FailureKind;
832
833     /// The number of call arguments that were explicitly provided,
834     /// to be used while performing partial ordering of function templates.
835     unsigned ExplicitCallArguments;
836
837     union {
838       DeductionFailureInfo DeductionFailure;
839
840       /// FinalConversion - For a conversion function (where Function is
841       /// a CXXConversionDecl), the standard conversion that occurs
842       /// after the call to the overload candidate to convert the result
843       /// of calling the conversion function to the required type.
844       StandardConversionSequence FinalConversion;
845     };
846
847     /// Get RewriteKind value in OverloadCandidateRewriteKind type (This
848     /// function is to workaround the spurious GCC bitfield enum warning)
849     OverloadCandidateRewriteKind getRewriteKind() const {
850       return static_cast<OverloadCandidateRewriteKind>(RewriteKind);
851     }
852
853     /// hasAmbiguousConversion - Returns whether this overload
854     /// candidate requires an ambiguous conversion or not.
855     bool hasAmbiguousConversion() const {
856       for (auto &C : Conversions) {
857         if (!C.isInitialized()) return false;
858         if (C.isAmbiguous()) return true;
859       }
860       return false;
861     }
862
863     bool TryToFixBadConversion(unsigned Idx, Sema &S) {
864       bool CanFix = Fix.tryToFixConversion(
865                       Conversions[Idx].Bad.FromExpr,
866                       Conversions[Idx].Bad.getFromType(),
867                       Conversions[Idx].Bad.getToType(), S);
868
869       // If at least one conversion fails, the candidate cannot be fixed.
870       if (!CanFix)
871         Fix.clear();
872
873       return CanFix;
874     }
875
876     unsigned getNumParams() const {
877       if (IsSurrogate) {
878         QualType STy = Surrogate->getConversionType();
879         while (STy->isPointerType() || STy->isReferenceType())
880           STy = STy->getPointeeType();
881         return STy->castAs<FunctionProtoType>()->getNumParams();
882       }
883       if (Function)
884         return Function->getNumParams();
885       return ExplicitCallArguments;
886     }
887
888   private:
889     friend class OverloadCandidateSet;
890     OverloadCandidate()
891         : IsADLCandidate(CallExpr::NotADL), RewriteKind(CRK_None) {}
892   };
893
894   /// OverloadCandidateSet - A set of overload candidates, used in C++
895   /// overload resolution (C++ 13.3).
896   class OverloadCandidateSet {
897   public:
898     enum CandidateSetKind {
899       /// Normal lookup.
900       CSK_Normal,
901
902       /// C++ [over.match.oper]:
903       /// Lookup of operator function candidates in a call using operator
904       /// syntax. Candidates that have no parameters of class type will be
905       /// skipped unless there is a parameter of (reference to) enum type and
906       /// the corresponding argument is of the same enum type.
907       CSK_Operator,
908
909       /// C++ [over.match.copy]:
910       /// Copy-initialization of an object of class type by user-defined
911       /// conversion.
912       CSK_InitByUserDefinedConversion,
913
914       /// C++ [over.match.ctor], [over.match.list]
915       /// Initialization of an object of class type by constructor,
916       /// using either a parenthesized or braced list of arguments.
917       CSK_InitByConstructor,
918     };
919
920     /// Information about operator rewrites to consider when adding operator
921     /// functions to a candidate set.
922     struct OperatorRewriteInfo {
923       OperatorRewriteInfo()
924           : OriginalOperator(OO_None), AllowRewrittenCandidates(false) {}
925       OperatorRewriteInfo(OverloadedOperatorKind Op, bool AllowRewritten)
926           : OriginalOperator(Op), AllowRewrittenCandidates(AllowRewritten) {}
927
928       /// The original operator as written in the source.
929       OverloadedOperatorKind OriginalOperator;
930       /// Whether we should include rewritten candidates in the overload set.
931       bool AllowRewrittenCandidates;
932
933       /// Would use of this function result in a rewrite using a different
934       /// operator?
935       bool isRewrittenOperator(const FunctionDecl *FD) {
936         return OriginalOperator &&
937                FD->getDeclName().getCXXOverloadedOperator() != OriginalOperator;
938       }
939
940       bool isAcceptableCandidate(const FunctionDecl *FD) {
941         if (!OriginalOperator)
942           return true;
943
944         // For an overloaded operator, we can have candidates with a different
945         // name in our unqualified lookup set. Make sure we only consider the
946         // ones we're supposed to.
947         OverloadedOperatorKind OO =
948             FD->getDeclName().getCXXOverloadedOperator();
949         return OO && (OO == OriginalOperator ||
950                       (AllowRewrittenCandidates &&
951                        OO == getRewrittenOverloadedOperator(OriginalOperator)));
952       }
953
954       /// Determine the kind of rewrite that should be performed for this
955       /// candidate.
956       OverloadCandidateRewriteKind
957       getRewriteKind(const FunctionDecl *FD, OverloadCandidateParamOrder PO) {
958         OverloadCandidateRewriteKind CRK = CRK_None;
959         if (isRewrittenOperator(FD))
960           CRK = OverloadCandidateRewriteKind(CRK | CRK_DifferentOperator);
961         if (PO == OverloadCandidateParamOrder::Reversed)
962           CRK = OverloadCandidateRewriteKind(CRK | CRK_Reversed);
963         return CRK;
964       }
965
966       /// Determine whether we should consider looking for and adding reversed
967       /// candidates for operator Op.
968       bool shouldAddReversed(OverloadedOperatorKind Op);
969
970       /// Determine whether we should add a rewritten candidate for \p FD with
971       /// reversed parameter order.
972       bool shouldAddReversed(ASTContext &Ctx, const FunctionDecl *FD);
973     };
974
975   private:
976     SmallVector<OverloadCandidate, 16> Candidates;
977     llvm::SmallPtrSet<uintptr_t, 16> Functions;
978
979     // Allocator for ConversionSequenceLists. We store the first few of these
980     // inline to avoid allocation for small sets.
981     llvm::BumpPtrAllocator SlabAllocator;
982
983     SourceLocation Loc;
984     CandidateSetKind Kind;
985     OperatorRewriteInfo RewriteInfo;
986
987     constexpr static unsigned NumInlineBytes =
988         24 * sizeof(ImplicitConversionSequence);
989     unsigned NumInlineBytesUsed = 0;
990     alignas(void *) char InlineSpace[NumInlineBytes];
991
992     // Address space of the object being constructed.
993     LangAS DestAS = LangAS::Default;
994
995     /// If we have space, allocates from inline storage. Otherwise, allocates
996     /// from the slab allocator.
997     /// FIXME: It would probably be nice to have a SmallBumpPtrAllocator
998     /// instead.
999     /// FIXME: Now that this only allocates ImplicitConversionSequences, do we
1000     /// want to un-generalize this?
1001     template <typename T>
1002     T *slabAllocate(unsigned N) {
1003       // It's simpler if this doesn't need to consider alignment.
1004       static_assert(alignof(T) == alignof(void *),
1005                     "Only works for pointer-aligned types.");
1006       static_assert(std::is_trivial<T>::value ||
1007                         std::is_same<ImplicitConversionSequence, T>::value,
1008                     "Add destruction logic to OverloadCandidateSet::clear().");
1009
1010       unsigned NBytes = sizeof(T) * N;
1011       if (NBytes > NumInlineBytes - NumInlineBytesUsed)
1012         return SlabAllocator.Allocate<T>(N);
1013       char *FreeSpaceStart = InlineSpace + NumInlineBytesUsed;
1014       assert(uintptr_t(FreeSpaceStart) % alignof(void *) == 0 &&
1015              "Misaligned storage!");
1016
1017       NumInlineBytesUsed += NBytes;
1018       return reinterpret_cast<T *>(FreeSpaceStart);
1019     }
1020
1021     void destroyCandidates();
1022
1023   public:
1024     OverloadCandidateSet(SourceLocation Loc, CandidateSetKind CSK,
1025                          OperatorRewriteInfo RewriteInfo = {})
1026         : Loc(Loc), Kind(CSK), RewriteInfo(RewriteInfo) {}
1027     OverloadCandidateSet(const OverloadCandidateSet &) = delete;
1028     OverloadCandidateSet &operator=(const OverloadCandidateSet &) = delete;
1029     ~OverloadCandidateSet() { destroyCandidates(); }
1030
1031     SourceLocation getLocation() const { return Loc; }
1032     CandidateSetKind getKind() const { return Kind; }
1033     OperatorRewriteInfo getRewriteInfo() const { return RewriteInfo; }
1034
1035     /// Determine when this overload candidate will be new to the
1036     /// overload set.
1037     bool isNewCandidate(Decl *F, OverloadCandidateParamOrder PO =
1038                                      OverloadCandidateParamOrder::Normal) {
1039       uintptr_t Key = reinterpret_cast<uintptr_t>(F->getCanonicalDecl());
1040       Key |= static_cast<uintptr_t>(PO);
1041       return Functions.insert(Key).second;
1042     }
1043
1044     /// Exclude a function from being considered by overload resolution.
1045     void exclude(Decl *F) {
1046       isNewCandidate(F, OverloadCandidateParamOrder::Normal);
1047       isNewCandidate(F, OverloadCandidateParamOrder::Reversed);
1048     }
1049
1050     /// Clear out all of the candidates.
1051     void clear(CandidateSetKind CSK);
1052
1053     using iterator = SmallVectorImpl<OverloadCandidate>::iterator;
1054
1055     iterator begin() { return Candidates.begin(); }
1056     iterator end() { return Candidates.end(); }
1057
1058     size_t size() const { return Candidates.size(); }
1059     bool empty() const { return Candidates.empty(); }
1060
1061     /// Allocate storage for conversion sequences for NumConversions
1062     /// conversions.
1063     ConversionSequenceList
1064     allocateConversionSequences(unsigned NumConversions) {
1065       ImplicitConversionSequence *Conversions =
1066           slabAllocate<ImplicitConversionSequence>(NumConversions);
1067
1068       // Construct the new objects.
1069       for (unsigned I = 0; I != NumConversions; ++I)
1070         new (&Conversions[I]) ImplicitConversionSequence();
1071
1072       return ConversionSequenceList(Conversions, NumConversions);
1073     }
1074
1075     /// Add a new candidate with NumConversions conversion sequence slots
1076     /// to the overload set.
1077     OverloadCandidate &addCandidate(unsigned NumConversions = 0,
1078                                     ConversionSequenceList Conversions = None) {
1079       assert((Conversions.empty() || Conversions.size() == NumConversions) &&
1080              "preallocated conversion sequence has wrong length");
1081
1082       Candidates.push_back(OverloadCandidate());
1083       OverloadCandidate &C = Candidates.back();
1084       C.Conversions = Conversions.empty()
1085                           ? allocateConversionSequences(NumConversions)
1086                           : Conversions;
1087       return C;
1088     }
1089
1090     /// Find the best viable function on this overload set, if it exists.
1091     OverloadingResult BestViableFunction(Sema &S, SourceLocation Loc,
1092                                          OverloadCandidateSet::iterator& Best);
1093
1094     SmallVector<OverloadCandidate *, 32> CompleteCandidates(
1095         Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
1096         SourceLocation OpLoc = SourceLocation(),
1097         llvm::function_ref<bool(OverloadCandidate &)> Filter =
1098             [](OverloadCandidate &) { return true; });
1099
1100     void NoteCandidates(
1101         PartialDiagnosticAt PA, Sema &S, OverloadCandidateDisplayKind OCD,
1102         ArrayRef<Expr *> Args, StringRef Opc = "",
1103         SourceLocation Loc = SourceLocation(),
1104         llvm::function_ref<bool(OverloadCandidate &)> Filter =
1105             [](OverloadCandidate &) { return true; });
1106
1107     void NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
1108                         ArrayRef<OverloadCandidate *> Cands,
1109                         StringRef Opc = "",
1110                         SourceLocation OpLoc = SourceLocation());
1111
1112     LangAS getDestAS() { return DestAS; }
1113
1114     void setDestAS(LangAS AS) {
1115       assert((Kind == CSK_InitByConstructor ||
1116               Kind == CSK_InitByUserDefinedConversion) &&
1117              "can't set the destination address space when not constructing an "
1118              "object");
1119       DestAS = AS;
1120     }
1121
1122   };
1123
1124   bool isBetterOverloadCandidate(Sema &S,
1125                                  const OverloadCandidate &Cand1,
1126                                  const OverloadCandidate &Cand2,
1127                                  SourceLocation Loc,
1128                                  OverloadCandidateSet::CandidateSetKind Kind);
1129
1130   struct ConstructorInfo {
1131     DeclAccessPair FoundDecl;
1132     CXXConstructorDecl *Constructor;
1133     FunctionTemplateDecl *ConstructorTmpl;
1134
1135     explicit operator bool() const { return Constructor; }
1136   };
1137
1138   // FIXME: Add an AddOverloadCandidate / AddTemplateOverloadCandidate overload
1139   // that takes one of these.
1140   inline ConstructorInfo getConstructorInfo(NamedDecl *ND) {
1141     if (isa<UsingDecl>(ND))
1142       return ConstructorInfo{};
1143
1144     // For constructors, the access check is performed against the underlying
1145     // declaration, not the found declaration.
1146     auto *D = ND->getUnderlyingDecl();
1147     ConstructorInfo Info = {DeclAccessPair::make(ND, D->getAccess()), nullptr,
1148                             nullptr};
1149     Info.ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
1150     if (Info.ConstructorTmpl)
1151       D = Info.ConstructorTmpl->getTemplatedDecl();
1152     Info.Constructor = dyn_cast<CXXConstructorDecl>(D);
1153     return Info;
1154   }
1155
1156 } // namespace clang
1157
1158 #endif // LLVM_CLANG_SEMA_OVERLOAD_H