]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/clang/lib/AST/DeclCXX.cpp
Merge ^/vendor/lld/dist up to its last change, and resolve conflicts.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / clang / lib / AST / DeclCXX.cpp
1 //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the C++ related Decl classes.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTUnresolvedSet.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/DeclarationName.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/LambdaCapture.h"
25 #include "clang/AST/NestedNameSpecifier.h"
26 #include "clang/AST/ODRHash.h"
27 #include "clang/AST/Type.h"
28 #include "clang/AST/TypeLoc.h"
29 #include "clang/AST/UnresolvedSet.h"
30 #include "clang/Basic/Diagnostic.h"
31 #include "clang/Basic/IdentifierTable.h"
32 #include "clang/Basic/LLVM.h"
33 #include "clang/Basic/LangOptions.h"
34 #include "clang/Basic/OperatorKinds.h"
35 #include "clang/Basic/PartialDiagnostic.h"
36 #include "clang/Basic/SourceLocation.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "llvm/ADT/None.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/iterator_range.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include <algorithm>
46 #include <cassert>
47 #include <cstddef>
48 #include <cstdint>
49
50 using namespace clang;
51
52 //===----------------------------------------------------------------------===//
53 // Decl Allocation/Deallocation Method Implementations
54 //===----------------------------------------------------------------------===//
55
56 void AccessSpecDecl::anchor() {}
57
58 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
59   return new (C, ID) AccessSpecDecl(EmptyShell());
60 }
61
62 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
63   ExternalASTSource *Source = C.getExternalSource();
64   assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
65   assert(Source && "getFromExternalSource with no external source");
66
67   for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
68     I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
69         reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
70   Impl.Decls.setLazy(false);
71 }
72
73 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
74     : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
75       Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
76       Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true),
77       HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false),
78       HasPrivateFields(false), HasProtectedFields(false),
79       HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false),
80       HasOnlyCMembers(true), HasInClassInitializer(false),
81       HasUninitializedReferenceMember(false), HasUninitializedFields(false),
82       HasInheritedConstructor(false), HasInheritedAssignment(false),
83       NeedOverloadResolutionForCopyConstructor(false),
84       NeedOverloadResolutionForMoveConstructor(false),
85       NeedOverloadResolutionForMoveAssignment(false),
86       NeedOverloadResolutionForDestructor(false),
87       DefaultedCopyConstructorIsDeleted(false),
88       DefaultedMoveConstructorIsDeleted(false),
89       DefaultedMoveAssignmentIsDeleted(false),
90       DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All),
91       HasTrivialSpecialMembersForCall(SMF_All),
92       DeclaredNonTrivialSpecialMembers(0),
93       DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true),
94       HasConstexprNonCopyMoveConstructor(false),
95       HasDefaultedDefaultConstructor(false),
96       DefaultedDefaultConstructorIsConstexpr(true),
97       HasConstexprDefaultConstructor(false),
98       DefaultedDestructorIsConstexpr(true),
99       HasNonLiteralTypeFieldsOrBases(false),
100       UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
101       ImplicitCopyConstructorCanHaveConstParamForVBase(true),
102       ImplicitCopyConstructorCanHaveConstParamForNonVBase(true),
103       ImplicitCopyAssignmentHasConstParam(true),
104       HasDeclaredCopyConstructorWithConstParam(false),
105       HasDeclaredCopyAssignmentWithConstParam(false), IsLambda(false),
106       IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false),
107       HasODRHash(false), Definition(D) {}
108
109 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
110   return Bases.get(Definition->getASTContext().getExternalSource());
111 }
112
113 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
114   return VBases.get(Definition->getASTContext().getExternalSource());
115 }
116
117 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
118                              DeclContext *DC, SourceLocation StartLoc,
119                              SourceLocation IdLoc, IdentifierInfo *Id,
120                              CXXRecordDecl *PrevDecl)
121     : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
122       DefinitionData(PrevDecl ? PrevDecl->DefinitionData
123                               : nullptr) {}
124
125 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
126                                      DeclContext *DC, SourceLocation StartLoc,
127                                      SourceLocation IdLoc, IdentifierInfo *Id,
128                                      CXXRecordDecl *PrevDecl,
129                                      bool DelayTypeCreation) {
130   auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id,
131                                       PrevDecl);
132   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
133
134   // FIXME: DelayTypeCreation seems like such a hack
135   if (!DelayTypeCreation)
136     C.getTypeDeclType(R, PrevDecl);
137   return R;
138 }
139
140 CXXRecordDecl *
141 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
142                             TypeSourceInfo *Info, SourceLocation Loc,
143                             bool Dependent, bool IsGeneric,
144                             LambdaCaptureDefault CaptureDefault) {
145   auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
146                                       nullptr, nullptr);
147   R->setBeingDefined(true);
148   R->DefinitionData =
149       new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric,
150                                           CaptureDefault);
151   R->setMayHaveOutOfDateDef(false);
152   R->setImplicit(true);
153   C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
154   return R;
155 }
156
157 CXXRecordDecl *
158 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
159   auto *R = new (C, ID) CXXRecordDecl(
160       CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
161       nullptr, nullptr);
162   R->setMayHaveOutOfDateDef(false);
163   return R;
164 }
165
166 /// Determine whether a class has a repeated base class. This is intended for
167 /// use when determining if a class is standard-layout, so makes no attempt to
168 /// handle virtual bases.
169 static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) {
170   llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes;
171   SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD};
172   while (!WorkList.empty()) {
173     const CXXRecordDecl *RD = WorkList.pop_back_val();
174     for (const CXXBaseSpecifier &BaseSpec : RD->bases()) {
175       if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) {
176         if (!SeenBaseTypes.insert(B).second)
177           return true;
178         WorkList.push_back(B);
179       }
180     }
181   }
182   return false;
183 }
184
185 void
186 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
187                         unsigned NumBases) {
188   ASTContext &C = getASTContext();
189
190   if (!data().Bases.isOffset() && data().NumBases > 0)
191     C.Deallocate(data().getBases());
192
193   if (NumBases) {
194     if (!C.getLangOpts().CPlusPlus17) {
195       // C++ [dcl.init.aggr]p1:
196       //   An aggregate is [...] a class with [...] no base classes [...].
197       data().Aggregate = false;
198     }
199
200     // C++ [class]p4:
201     //   A POD-struct is an aggregate class...
202     data().PlainOldData = false;
203   }
204
205   // The set of seen virtual base types.
206   llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
207
208   // The virtual bases of this class.
209   SmallVector<const CXXBaseSpecifier *, 8> VBases;
210
211   data().Bases = new(C) CXXBaseSpecifier [NumBases];
212   data().NumBases = NumBases;
213   for (unsigned i = 0; i < NumBases; ++i) {
214     data().getBases()[i] = *Bases[i];
215     // Keep track of inherited vbases for this base class.
216     const CXXBaseSpecifier *Base = Bases[i];
217     QualType BaseType = Base->getType();
218     // Skip dependent types; we can't do any checking on them now.
219     if (BaseType->isDependentType())
220       continue;
221     auto *BaseClassDecl =
222         cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
223
224     // C++2a [class]p7:
225     //   A standard-layout class is a class that:
226     //    [...]
227     //    -- has all non-static data members and bit-fields in the class and
228     //       its base classes first declared in the same class
229     if (BaseClassDecl->data().HasBasesWithFields ||
230         !BaseClassDecl->field_empty()) {
231       if (data().HasBasesWithFields)
232         // Two bases have members or bit-fields: not standard-layout.
233         data().IsStandardLayout = false;
234       data().HasBasesWithFields = true;
235     }
236
237     // C++11 [class]p7:
238     //   A standard-layout class is a class that:
239     //     -- [...] has [...] at most one base class with non-static data
240     //        members
241     if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers ||
242         BaseClassDecl->hasDirectFields()) {
243       if (data().HasBasesWithNonStaticDataMembers)
244         data().IsCXX11StandardLayout = false;
245       data().HasBasesWithNonStaticDataMembers = true;
246     }
247
248     if (!BaseClassDecl->isEmpty()) {
249       // C++14 [meta.unary.prop]p4:
250       //   T is a class type [...] with [...] no base class B for which
251       //   is_empty<B>::value is false.
252       data().Empty = false;
253     }
254
255     // C++1z [dcl.init.agg]p1:
256     //   An aggregate is a class with [...] no private or protected base classes
257     if (Base->getAccessSpecifier() != AS_public)
258       data().Aggregate = false;
259
260     // C++ [class.virtual]p1:
261     //   A class that declares or inherits a virtual function is called a
262     //   polymorphic class.
263     if (BaseClassDecl->isPolymorphic()) {
264       data().Polymorphic = true;
265
266       //   An aggregate is a class with [...] no virtual functions.
267       data().Aggregate = false;
268     }
269
270     // C++0x [class]p7:
271     //   A standard-layout class is a class that: [...]
272     //    -- has no non-standard-layout base classes
273     if (!BaseClassDecl->isStandardLayout())
274       data().IsStandardLayout = false;
275     if (!BaseClassDecl->isCXX11StandardLayout())
276       data().IsCXX11StandardLayout = false;
277
278     // Record if this base is the first non-literal field or base.
279     if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
280       data().HasNonLiteralTypeFieldsOrBases = true;
281
282     // Now go through all virtual bases of this base and add them.
283     for (const auto &VBase : BaseClassDecl->vbases()) {
284       // Add this base if it's not already in the list.
285       if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
286         VBases.push_back(&VBase);
287
288         // C++11 [class.copy]p8:
289         //   The implicitly-declared copy constructor for a class X will have
290         //   the form 'X::X(const X&)' if each [...] virtual base class B of X
291         //   has a copy constructor whose first parameter is of type
292         //   'const B&' or 'const volatile B&' [...]
293         if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
294           if (!VBaseDecl->hasCopyConstructorWithConstParam())
295             data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
296
297         // C++1z [dcl.init.agg]p1:
298         //   An aggregate is a class with [...] no virtual base classes
299         data().Aggregate = false;
300       }
301     }
302
303     if (Base->isVirtual()) {
304       // Add this base if it's not already in the list.
305       if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
306         VBases.push_back(Base);
307
308       // C++14 [meta.unary.prop] is_empty:
309       //   T is a class type, but not a union type, with ... no virtual base
310       //   classes
311       data().Empty = false;
312
313       // C++1z [dcl.init.agg]p1:
314       //   An aggregate is a class with [...] no virtual base classes
315       data().Aggregate = false;
316
317       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
318       //   A [default constructor, copy/move constructor, or copy/move assignment
319       //   operator for a class X] is trivial [...] if:
320       //    -- class X has [...] no virtual base classes
321       data().HasTrivialSpecialMembers &= SMF_Destructor;
322       data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
323
324       // C++0x [class]p7:
325       //   A standard-layout class is a class that: [...]
326       //    -- has [...] no virtual base classes
327       data().IsStandardLayout = false;
328       data().IsCXX11StandardLayout = false;
329
330       // C++20 [dcl.constexpr]p3:
331       //   In the definition of a constexpr function [...]
332       //    -- if the function is a constructor or destructor,
333       //       its class shall not have any virtual base classes
334       data().DefaultedDefaultConstructorIsConstexpr = false;
335       data().DefaultedDestructorIsConstexpr = false;
336
337       // C++1z [class.copy]p8:
338       //   The implicitly-declared copy constructor for a class X will have
339       //   the form 'X::X(const X&)' if each potentially constructed subobject
340       //   has a copy constructor whose first parameter is of type
341       //   'const B&' or 'const volatile B&' [...]
342       if (!BaseClassDecl->hasCopyConstructorWithConstParam())
343         data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
344     } else {
345       // C++ [class.ctor]p5:
346       //   A default constructor is trivial [...] if:
347       //    -- all the direct base classes of its class have trivial default
348       //       constructors.
349       if (!BaseClassDecl->hasTrivialDefaultConstructor())
350         data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
351
352       // C++0x [class.copy]p13:
353       //   A copy/move constructor for class X is trivial if [...]
354       //    [...]
355       //    -- the constructor selected to copy/move each direct base class
356       //       subobject is trivial, and
357       if (!BaseClassDecl->hasTrivialCopyConstructor())
358         data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
359
360       if (!BaseClassDecl->hasTrivialCopyConstructorForCall())
361         data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
362
363       // If the base class doesn't have a simple move constructor, we'll eagerly
364       // declare it and perform overload resolution to determine which function
365       // it actually calls. If it does have a simple move constructor, this
366       // check is correct.
367       if (!BaseClassDecl->hasTrivialMoveConstructor())
368         data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
369
370       if (!BaseClassDecl->hasTrivialMoveConstructorForCall())
371         data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
372
373       // C++0x [class.copy]p27:
374       //   A copy/move assignment operator for class X is trivial if [...]
375       //    [...]
376       //    -- the assignment operator selected to copy/move each direct base
377       //       class subobject is trivial, and
378       if (!BaseClassDecl->hasTrivialCopyAssignment())
379         data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
380       // If the base class doesn't have a simple move assignment, we'll eagerly
381       // declare it and perform overload resolution to determine which function
382       // it actually calls. If it does have a simple move assignment, this
383       // check is correct.
384       if (!BaseClassDecl->hasTrivialMoveAssignment())
385         data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
386
387       // C++11 [class.ctor]p6:
388       //   If that user-written default constructor would satisfy the
389       //   requirements of a constexpr constructor, the implicitly-defined
390       //   default constructor is constexpr.
391       if (!BaseClassDecl->hasConstexprDefaultConstructor())
392         data().DefaultedDefaultConstructorIsConstexpr = false;
393
394       // C++1z [class.copy]p8:
395       //   The implicitly-declared copy constructor for a class X will have
396       //   the form 'X::X(const X&)' if each potentially constructed subobject
397       //   has a copy constructor whose first parameter is of type
398       //   'const B&' or 'const volatile B&' [...]
399       if (!BaseClassDecl->hasCopyConstructorWithConstParam())
400         data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
401     }
402
403     // C++ [class.ctor]p3:
404     //   A destructor is trivial if all the direct base classes of its class
405     //   have trivial destructors.
406     if (!BaseClassDecl->hasTrivialDestructor())
407       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
408
409     if (!BaseClassDecl->hasTrivialDestructorForCall())
410       data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
411
412     if (!BaseClassDecl->hasIrrelevantDestructor())
413       data().HasIrrelevantDestructor = false;
414
415     // C++11 [class.copy]p18:
416     //   The implicitly-declared copy assignment oeprator for a class X will
417     //   have the form 'X& X::operator=(const X&)' if each direct base class B
418     //   of X has a copy assignment operator whose parameter is of type 'const
419     //   B&', 'const volatile B&', or 'B' [...]
420     if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
421       data().ImplicitCopyAssignmentHasConstParam = false;
422
423     // A class has an Objective-C object member if... or any of its bases
424     // has an Objective-C object member.
425     if (BaseClassDecl->hasObjectMember())
426       setHasObjectMember(true);
427
428     if (BaseClassDecl->hasVolatileMember())
429       setHasVolatileMember(true);
430
431     if (BaseClassDecl->getArgPassingRestrictions() ==
432         RecordDecl::APK_CanNeverPassInRegs)
433       setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
434
435     // Keep track of the presence of mutable fields.
436     if (BaseClassDecl->hasMutableFields()) {
437       data().HasMutableFields = true;
438       data().NeedOverloadResolutionForCopyConstructor = true;
439     }
440
441     if (BaseClassDecl->hasUninitializedReferenceMember())
442       data().HasUninitializedReferenceMember = true;
443
444     if (!BaseClassDecl->allowConstDefaultInit())
445       data().HasUninitializedFields = true;
446
447     addedClassSubobject(BaseClassDecl);
448   }
449
450   // C++2a [class]p7:
451   //   A class S is a standard-layout class if it:
452   //     -- has at most one base class subobject of any given type
453   //
454   // Note that we only need to check this for classes with more than one base
455   // class. If there's only one base class, and it's standard layout, then
456   // we know there are no repeated base classes.
457   if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this))
458     data().IsStandardLayout = false;
459
460   if (VBases.empty()) {
461     data().IsParsingBaseSpecifiers = false;
462     return;
463   }
464
465   // Create base specifier for any direct or indirect virtual bases.
466   data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
467   data().NumVBases = VBases.size();
468   for (int I = 0, E = VBases.size(); I != E; ++I) {
469     QualType Type = VBases[I]->getType();
470     if (!Type->isDependentType())
471       addedClassSubobject(Type->getAsCXXRecordDecl());
472     data().getVBases()[I] = *VBases[I];
473   }
474
475   data().IsParsingBaseSpecifiers = false;
476 }
477
478 unsigned CXXRecordDecl::getODRHash() const {
479   assert(hasDefinition() && "ODRHash only for records with definitions");
480
481   // Previously calculated hash is stored in DefinitionData.
482   if (DefinitionData->HasODRHash)
483     return DefinitionData->ODRHash;
484
485   // Only calculate hash on first call of getODRHash per record.
486   ODRHash Hash;
487   Hash.AddCXXRecordDecl(getDefinition());
488   DefinitionData->HasODRHash = true;
489   DefinitionData->ODRHash = Hash.CalculateHash();
490
491   return DefinitionData->ODRHash;
492 }
493
494 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
495   // C++11 [class.copy]p11:
496   //   A defaulted copy/move constructor for a class X is defined as
497   //   deleted if X has:
498   //    -- a direct or virtual base class B that cannot be copied/moved [...]
499   //    -- a non-static data member of class type M (or array thereof)
500   //       that cannot be copied or moved [...]
501   if (!Subobj->hasSimpleCopyConstructor())
502     data().NeedOverloadResolutionForCopyConstructor = true;
503   if (!Subobj->hasSimpleMoveConstructor())
504     data().NeedOverloadResolutionForMoveConstructor = true;
505
506   // C++11 [class.copy]p23:
507   //   A defaulted copy/move assignment operator for a class X is defined as
508   //   deleted if X has:
509   //    -- a direct or virtual base class B that cannot be copied/moved [...]
510   //    -- a non-static data member of class type M (or array thereof)
511   //        that cannot be copied or moved [...]
512   if (!Subobj->hasSimpleMoveAssignment())
513     data().NeedOverloadResolutionForMoveAssignment = true;
514
515   // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
516   //   A defaulted [ctor or dtor] for a class X is defined as
517   //   deleted if X has:
518   //    -- any direct or virtual base class [...] has a type with a destructor
519   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
520   //    -- any non-static data member has a type with a destructor
521   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
522   if (!Subobj->hasSimpleDestructor()) {
523     data().NeedOverloadResolutionForCopyConstructor = true;
524     data().NeedOverloadResolutionForMoveConstructor = true;
525     data().NeedOverloadResolutionForDestructor = true;
526   }
527
528   // C++2a [dcl.constexpr]p4:
529   //   The definition of a constexpr destructor [shall] satisfy the
530   //   following requirement:
531   //   -- for every subobject of class type or (possibly multi-dimensional)
532   //      array thereof, that class type shall have a constexpr destructor
533   if (!Subobj->hasConstexprDestructor())
534     data().DefaultedDestructorIsConstexpr = false;
535 }
536
537 bool CXXRecordDecl::hasConstexprDestructor() const {
538   auto *Dtor = getDestructor();
539   return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr();
540 }
541
542 bool CXXRecordDecl::hasAnyDependentBases() const {
543   if (!isDependentContext())
544     return false;
545
546   return !forallBases([](const CXXRecordDecl *) { return true; });
547 }
548
549 bool CXXRecordDecl::isTriviallyCopyable() const {
550   // C++0x [class]p5:
551   //   A trivially copyable class is a class that:
552   //   -- has no non-trivial copy constructors,
553   if (hasNonTrivialCopyConstructor()) return false;
554   //   -- has no non-trivial move constructors,
555   if (hasNonTrivialMoveConstructor()) return false;
556   //   -- has no non-trivial copy assignment operators,
557   if (hasNonTrivialCopyAssignment()) return false;
558   //   -- has no non-trivial move assignment operators, and
559   if (hasNonTrivialMoveAssignment()) return false;
560   //   -- has a trivial destructor.
561   if (!hasTrivialDestructor()) return false;
562
563   return true;
564 }
565
566 void CXXRecordDecl::markedVirtualFunctionPure() {
567   // C++ [class.abstract]p2:
568   //   A class is abstract if it has at least one pure virtual function.
569   data().Abstract = true;
570 }
571
572 bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType(
573     ASTContext &Ctx, const CXXRecordDecl *XFirst) {
574   if (!getNumBases())
575     return false;
576
577   llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases;
578   llvm::SmallPtrSet<const CXXRecordDecl*, 8> M;
579   SmallVector<const CXXRecordDecl*, 8> WorkList;
580
581   // Visit a type that we have determined is an element of M(S).
582   auto Visit = [&](const CXXRecordDecl *RD) -> bool {
583     RD = RD->getCanonicalDecl();
584
585     // C++2a [class]p8:
586     //   A class S is a standard-layout class if it [...] has no element of the
587     //   set M(S) of types as a base class.
588     //
589     // If we find a subobject of an empty type, it might also be a base class,
590     // so we'll need to walk the base classes to check.
591     if (!RD->data().HasBasesWithFields) {
592       // Walk the bases the first time, stopping if we find the type. Build a
593       // set of them so we don't need to walk them again.
594       if (Bases.empty()) {
595         bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool {
596           Base = Base->getCanonicalDecl();
597           if (RD == Base)
598             return false;
599           Bases.insert(Base);
600           return true;
601         });
602         if (RDIsBase)
603           return true;
604       } else {
605         if (Bases.count(RD))
606           return true;
607       }
608     }
609
610     if (M.insert(RD).second)
611       WorkList.push_back(RD);
612     return false;
613   };
614
615   if (Visit(XFirst))
616     return true;
617
618   while (!WorkList.empty()) {
619     const CXXRecordDecl *X = WorkList.pop_back_val();
620
621     // FIXME: We don't check the bases of X. That matches the standard, but
622     // that sure looks like a wording bug.
623
624     //   -- If X is a non-union class type with a non-static data member
625     //      [recurse to each field] that is either of zero size or is the
626     //      first non-static data member of X
627     //   -- If X is a union type, [recurse to union members]
628     bool IsFirstField = true;
629     for (auto *FD : X->fields()) {
630       // FIXME: Should we really care about the type of the first non-static
631       // data member of a non-union if there are preceding unnamed bit-fields?
632       if (FD->isUnnamedBitfield())
633         continue;
634
635       if (!IsFirstField && !FD->isZeroSize(Ctx))
636         continue;
637
638       //   -- If X is n array type, [visit the element type]
639       QualType T = Ctx.getBaseElementType(FD->getType());
640       if (auto *RD = T->getAsCXXRecordDecl())
641         if (Visit(RD))
642           return true;
643
644       if (!X->isUnion())
645         IsFirstField = false;
646     }
647   }
648
649   return false;
650 }
651
652 bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const {
653   assert(isLambda() && "not a lambda");
654
655   // C++2a [expr.prim.lambda.capture]p11:
656   //   The closure type associated with a lambda-expression has no default
657   //   constructor if the lambda-expression has a lambda-capture and a
658   //   defaulted default constructor otherwise. It has a deleted copy
659   //   assignment operator if the lambda-expression has a lambda-capture and
660   //   defaulted copy and move assignment operators otherwise.
661   //
662   // C++17 [expr.prim.lambda]p21:
663   //   The closure type associated with a lambda-expression has no default
664   //   constructor and a deleted copy assignment operator.
665   if (getLambdaCaptureDefault() != LCD_None || 
666       getLambdaData().NumCaptures != 0)
667     return false;
668   return getASTContext().getLangOpts().CPlusPlus2a;
669 }
670
671 void CXXRecordDecl::addedMember(Decl *D) {
672   if (!D->isImplicit() &&
673       !isa<FieldDecl>(D) &&
674       !isa<IndirectFieldDecl>(D) &&
675       (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
676         cast<TagDecl>(D)->getTagKind() == TTK_Interface))
677     data().HasOnlyCMembers = false;
678
679   // Ignore friends and invalid declarations.
680   if (D->getFriendObjectKind() || D->isInvalidDecl())
681     return;
682
683   auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
684   if (FunTmpl)
685     D = FunTmpl->getTemplatedDecl();
686
687   // FIXME: Pass NamedDecl* to addedMember?
688   Decl *DUnderlying = D;
689   if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) {
690     DUnderlying = ND->getUnderlyingDecl();
691     if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying))
692       DUnderlying = UnderlyingFunTmpl->getTemplatedDecl();
693   }
694
695   if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
696     if (Method->isVirtual()) {
697       // C++ [dcl.init.aggr]p1:
698       //   An aggregate is an array or a class with [...] no virtual functions.
699       data().Aggregate = false;
700
701       // C++ [class]p4:
702       //   A POD-struct is an aggregate class...
703       data().PlainOldData = false;
704
705       // C++14 [meta.unary.prop]p4:
706       //   T is a class type [...] with [...] no virtual member functions...
707       data().Empty = false;
708
709       // C++ [class.virtual]p1:
710       //   A class that declares or inherits a virtual function is called a
711       //   polymorphic class.
712       data().Polymorphic = true;
713
714       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
715       //   A [default constructor, copy/move constructor, or copy/move
716       //   assignment operator for a class X] is trivial [...] if:
717       //    -- class X has no virtual functions [...]
718       data().HasTrivialSpecialMembers &= SMF_Destructor;
719       data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
720
721       // C++0x [class]p7:
722       //   A standard-layout class is a class that: [...]
723       //    -- has no virtual functions
724       data().IsStandardLayout = false;
725       data().IsCXX11StandardLayout = false;
726     }
727   }
728
729   // Notify the listener if an implicit member was added after the definition
730   // was completed.
731   if (!isBeingDefined() && D->isImplicit())
732     if (ASTMutationListener *L = getASTMutationListener())
733       L->AddedCXXImplicitMember(data().Definition, D);
734
735   // The kind of special member this declaration is, if any.
736   unsigned SMKind = 0;
737
738   // Handle constructors.
739   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
740     if (!Constructor->isImplicit()) {
741       // Note that we have a user-declared constructor.
742       data().UserDeclaredConstructor = true;
743
744       // C++ [class]p4:
745       //   A POD-struct is an aggregate class [...]
746       // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
747       // type is technically an aggregate in C++0x since it wouldn't be in 03.
748       data().PlainOldData = false;
749     }
750
751     if (Constructor->isDefaultConstructor()) {
752       SMKind |= SMF_DefaultConstructor;
753
754       if (Constructor->isUserProvided())
755         data().UserProvidedDefaultConstructor = true;
756       if (Constructor->isConstexpr())
757         data().HasConstexprDefaultConstructor = true;
758       if (Constructor->isDefaulted())
759         data().HasDefaultedDefaultConstructor = true;
760     }
761
762     if (!FunTmpl) {
763       unsigned Quals;
764       if (Constructor->isCopyConstructor(Quals)) {
765         SMKind |= SMF_CopyConstructor;
766
767         if (Quals & Qualifiers::Const)
768           data().HasDeclaredCopyConstructorWithConstParam = true;
769       } else if (Constructor->isMoveConstructor())
770         SMKind |= SMF_MoveConstructor;
771     }
772
773     // C++11 [dcl.init.aggr]p1: DR1518
774     //   An aggregate is an array or a class with no user-provided [or]
775     //   explicit [...] constructors
776     // C++20 [dcl.init.aggr]p1:
777     //   An aggregate is an array or a class with no user-declared [...]
778     //   constructors
779     if (getASTContext().getLangOpts().CPlusPlus2a
780             ? !Constructor->isImplicit()
781             : (Constructor->isUserProvided() || Constructor->isExplicit()))
782       data().Aggregate = false;
783   }
784
785   // Handle constructors, including those inherited from base classes.
786   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) {
787     // Record if we see any constexpr constructors which are neither copy
788     // nor move constructors.
789     // C++1z [basic.types]p10:
790     //   [...] has at least one constexpr constructor or constructor template
791     //   (possibly inherited from a base class) that is not a copy or move
792     //   constructor [...]
793     if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
794       data().HasConstexprNonCopyMoveConstructor = true;
795   }
796
797   // Handle destructors.
798   if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
799     SMKind |= SMF_Destructor;
800
801     if (DD->isUserProvided())
802       data().HasIrrelevantDestructor = false;
803     // If the destructor is explicitly defaulted and not trivial or not public
804     // or if the destructor is deleted, we clear HasIrrelevantDestructor in
805     // finishedDefaultedOrDeletedMember.
806
807     // C++11 [class.dtor]p5:
808     //   A destructor is trivial if [...] the destructor is not virtual.
809     if (DD->isVirtual()) {
810       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
811       data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
812     }
813   }
814
815   // Handle member functions.
816   if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
817     if (Method->isCopyAssignmentOperator()) {
818       SMKind |= SMF_CopyAssignment;
819
820       const auto *ParamTy =
821           Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
822       if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
823         data().HasDeclaredCopyAssignmentWithConstParam = true;
824     }
825
826     if (Method->isMoveAssignmentOperator())
827       SMKind |= SMF_MoveAssignment;
828
829     // Keep the list of conversion functions up-to-date.
830     if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) {
831       // FIXME: We use the 'unsafe' accessor for the access specifier here,
832       // because Sema may not have set it yet. That's really just a misdesign
833       // in Sema. However, LLDB *will* have set the access specifier correctly,
834       // and adds declarations after the class is technically completed,
835       // so completeDefinition()'s overriding of the access specifiers doesn't
836       // work.
837       AccessSpecifier AS = Conversion->getAccessUnsafe();
838
839       if (Conversion->getPrimaryTemplate()) {
840         // We don't record specializations.
841       } else {
842         ASTContext &Ctx = getASTContext();
843         ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
844         NamedDecl *Primary =
845             FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
846         if (Primary->getPreviousDecl())
847           Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
848                               Primary, AS);
849         else
850           Conversions.addDecl(Ctx, Primary, AS);
851       }
852     }
853
854     if (SMKind) {
855       // If this is the first declaration of a special member, we no longer have
856       // an implicit trivial special member.
857       data().HasTrivialSpecialMembers &=
858           data().DeclaredSpecialMembers | ~SMKind;
859       data().HasTrivialSpecialMembersForCall &=
860           data().DeclaredSpecialMembers | ~SMKind;
861
862       if (!Method->isImplicit() && !Method->isUserProvided()) {
863         // This method is user-declared but not user-provided. We can't work out
864         // whether it's trivial yet (not until we get to the end of the class).
865         // We'll handle this method in finishedDefaultedOrDeletedMember.
866       } else if (Method->isTrivial()) {
867         data().HasTrivialSpecialMembers |= SMKind;
868         data().HasTrivialSpecialMembersForCall |= SMKind;
869       } else if (Method->isTrivialForCall()) {
870         data().HasTrivialSpecialMembersForCall |= SMKind;
871         data().DeclaredNonTrivialSpecialMembers |= SMKind;
872       } else {
873         data().DeclaredNonTrivialSpecialMembers |= SMKind;
874         // If this is a user-provided function, do not set
875         // DeclaredNonTrivialSpecialMembersForCall here since we don't know
876         // yet whether the method would be considered non-trivial for the
877         // purpose of calls (attribute "trivial_abi" can be dropped from the
878         // class later, which can change the special method's triviality).
879         if (!Method->isUserProvided())
880           data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
881       }
882
883       // Note when we have declared a declared special member, and suppress the
884       // implicit declaration of this special member.
885       data().DeclaredSpecialMembers |= SMKind;
886
887       if (!Method->isImplicit()) {
888         data().UserDeclaredSpecialMembers |= SMKind;
889
890         // C++03 [class]p4:
891         //   A POD-struct is an aggregate class that has [...] no user-defined
892         //   copy assignment operator and no user-defined destructor.
893         //
894         // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
895         // aggregates could not have any constructors, clear it even for an
896         // explicitly defaulted or deleted constructor.
897         // type is technically an aggregate in C++0x since it wouldn't be in 03.
898         //
899         // Also, a user-declared move assignment operator makes a class non-POD.
900         // This is an extension in C++03.
901         data().PlainOldData = false;
902       }
903     }
904
905     return;
906   }
907
908   // Handle non-static data members.
909   if (const auto *Field = dyn_cast<FieldDecl>(D)) {
910     ASTContext &Context = getASTContext();
911
912     // C++2a [class]p7:
913     //   A standard-layout class is a class that:
914     //    [...]
915     //    -- has all non-static data members and bit-fields in the class and
916     //       its base classes first declared in the same class
917     if (data().HasBasesWithFields)
918       data().IsStandardLayout = false;
919
920     // C++ [class.bit]p2:
921     //   A declaration for a bit-field that omits the identifier declares an
922     //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
923     //   initialized.
924     if (Field->isUnnamedBitfield()) {
925       // C++ [meta.unary.prop]p4: [LWG2358]
926       //   T is a class type [...] with [...] no unnamed bit-fields of non-zero
927       //   length
928       if (data().Empty && !Field->isZeroLengthBitField(Context) &&
929           Context.getLangOpts().getClangABICompat() >
930               LangOptions::ClangABI::Ver6)
931         data().Empty = false;
932       return;
933     }
934
935     // C++11 [class]p7:
936     //   A standard-layout class is a class that:
937     //    -- either has no non-static data members in the most derived class
938     //       [...] or has no base classes with non-static data members
939     if (data().HasBasesWithNonStaticDataMembers)
940       data().IsCXX11StandardLayout = false;
941
942     // C++ [dcl.init.aggr]p1:
943     //   An aggregate is an array or a class (clause 9) with [...] no
944     //   private or protected non-static data members (clause 11).
945     //
946     // A POD must be an aggregate.
947     if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
948       data().Aggregate = false;
949       data().PlainOldData = false;
950     }
951
952     // Track whether this is the first field. We use this when checking
953     // whether the class is standard-layout below.
954     bool IsFirstField = !data().HasPrivateFields &&
955                         !data().HasProtectedFields && !data().HasPublicFields;
956
957     // C++0x [class]p7:
958     //   A standard-layout class is a class that:
959     //    [...]
960     //    -- has the same access control for all non-static data members,
961     switch (D->getAccess()) {
962     case AS_private:    data().HasPrivateFields = true;   break;
963     case AS_protected:  data().HasProtectedFields = true; break;
964     case AS_public:     data().HasPublicFields = true;    break;
965     case AS_none:       llvm_unreachable("Invalid access specifier");
966     };
967     if ((data().HasPrivateFields + data().HasProtectedFields +
968          data().HasPublicFields) > 1) {
969       data().IsStandardLayout = false;
970       data().IsCXX11StandardLayout = false;
971     }
972
973     // Keep track of the presence of mutable fields.
974     if (Field->isMutable()) {
975       data().HasMutableFields = true;
976       data().NeedOverloadResolutionForCopyConstructor = true;
977     }
978
979     // C++11 [class.union]p8, DR1460:
980     //   If X is a union, a non-static data member of X that is not an anonymous
981     //   union is a variant member of X.
982     if (isUnion() && !Field->isAnonymousStructOrUnion())
983       data().HasVariantMembers = true;
984
985     // C++0x [class]p9:
986     //   A POD struct is a class that is both a trivial class and a
987     //   standard-layout class, and has no non-static data members of type
988     //   non-POD struct, non-POD union (or array of such types).
989     //
990     // Automatic Reference Counting: the presence of a member of Objective-C pointer type
991     // that does not explicitly have no lifetime makes the class a non-POD.
992     QualType T = Context.getBaseElementType(Field->getType());
993     if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
994       if (T.hasNonTrivialObjCLifetime()) {
995         // Objective-C Automatic Reference Counting:
996         //   If a class has a non-static data member of Objective-C pointer
997         //   type (or array thereof), it is a non-POD type and its
998         //   default constructor (if any), copy constructor, move constructor,
999         //   copy assignment operator, move assignment operator, and destructor are
1000         //   non-trivial.
1001         setHasObjectMember(true);
1002         struct DefinitionData &Data = data();
1003         Data.PlainOldData = false;
1004         Data.HasTrivialSpecialMembers = 0;
1005
1006         // __strong or __weak fields do not make special functions non-trivial
1007         // for the purpose of calls.
1008         Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime();
1009         if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak)
1010           data().HasTrivialSpecialMembersForCall = 0;
1011
1012         // Structs with __weak fields should never be passed directly.
1013         if (LT == Qualifiers::OCL_Weak)
1014           setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
1015
1016         Data.HasIrrelevantDestructor = false;
1017
1018         if (isUnion()) {
1019           data().DefaultedCopyConstructorIsDeleted = true;
1020           data().DefaultedMoveConstructorIsDeleted = true;
1021           data().DefaultedMoveAssignmentIsDeleted = true;
1022           data().DefaultedDestructorIsDeleted = true;
1023           data().NeedOverloadResolutionForCopyConstructor = true;
1024           data().NeedOverloadResolutionForMoveConstructor = true;
1025           data().NeedOverloadResolutionForMoveAssignment = true;
1026           data().NeedOverloadResolutionForDestructor = true;
1027         }
1028       } else if (!Context.getLangOpts().ObjCAutoRefCount) {
1029         setHasObjectMember(true);
1030       }
1031     } else if (!T.isCXX98PODType(Context))
1032       data().PlainOldData = false;
1033
1034     if (T->isReferenceType()) {
1035       if (!Field->hasInClassInitializer())
1036         data().HasUninitializedReferenceMember = true;
1037
1038       // C++0x [class]p7:
1039       //   A standard-layout class is a class that:
1040       //    -- has no non-static data members of type [...] reference,
1041       data().IsStandardLayout = false;
1042       data().IsCXX11StandardLayout = false;
1043
1044       // C++1z [class.copy.ctor]p10:
1045       //   A defaulted copy constructor for a class X is defined as deleted if X has:
1046       //    -- a non-static data member of rvalue reference type
1047       if (T->isRValueReferenceType())
1048         data().DefaultedCopyConstructorIsDeleted = true;
1049     }
1050
1051     if (!Field->hasInClassInitializer() && !Field->isMutable()) {
1052       if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) {
1053         if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit())
1054           data().HasUninitializedFields = true;
1055       } else {
1056         data().HasUninitializedFields = true;
1057       }
1058     }
1059
1060     // Record if this field is the first non-literal or volatile field or base.
1061     if (!T->isLiteralType(Context) || T.isVolatileQualified())
1062       data().HasNonLiteralTypeFieldsOrBases = true;
1063
1064     if (Field->hasInClassInitializer() ||
1065         (Field->isAnonymousStructOrUnion() &&
1066          Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
1067       data().HasInClassInitializer = true;
1068
1069       // C++11 [class]p5:
1070       //   A default constructor is trivial if [...] no non-static data member
1071       //   of its class has a brace-or-equal-initializer.
1072       data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1073
1074       // C++11 [dcl.init.aggr]p1:
1075       //   An aggregate is a [...] class with [...] no
1076       //   brace-or-equal-initializers for non-static data members.
1077       //
1078       // This rule was removed in C++14.
1079       if (!getASTContext().getLangOpts().CPlusPlus14)
1080         data().Aggregate = false;
1081
1082       // C++11 [class]p10:
1083       //   A POD struct is [...] a trivial class.
1084       data().PlainOldData = false;
1085     }
1086
1087     // C++11 [class.copy]p23:
1088     //   A defaulted copy/move assignment operator for a class X is defined
1089     //   as deleted if X has:
1090     //    -- a non-static data member of reference type
1091     if (T->isReferenceType())
1092       data().DefaultedMoveAssignmentIsDeleted = true;
1093
1094     // Bitfields of length 0 are also zero-sized, but we already bailed out for
1095     // those because they are always unnamed.
1096     bool IsZeroSize = Field->isZeroSize(Context);
1097
1098     if (const auto *RecordTy = T->getAs<RecordType>()) {
1099       auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
1100       if (FieldRec->getDefinition()) {
1101         addedClassSubobject(FieldRec);
1102
1103         // We may need to perform overload resolution to determine whether a
1104         // field can be moved if it's const or volatile qualified.
1105         if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
1106           // We need to care about 'const' for the copy constructor because an
1107           // implicit copy constructor might be declared with a non-const
1108           // parameter.
1109           data().NeedOverloadResolutionForCopyConstructor = true;
1110           data().NeedOverloadResolutionForMoveConstructor = true;
1111           data().NeedOverloadResolutionForMoveAssignment = true;
1112         }
1113
1114         // C++11 [class.ctor]p5, C++11 [class.copy]p11:
1115         //   A defaulted [special member] for a class X is defined as
1116         //   deleted if:
1117         //    -- X is a union-like class that has a variant member with a
1118         //       non-trivial [corresponding special member]
1119         if (isUnion()) {
1120           if (FieldRec->hasNonTrivialCopyConstructor())
1121             data().DefaultedCopyConstructorIsDeleted = true;
1122           if (FieldRec->hasNonTrivialMoveConstructor())
1123             data().DefaultedMoveConstructorIsDeleted = true;
1124           if (FieldRec->hasNonTrivialMoveAssignment())
1125             data().DefaultedMoveAssignmentIsDeleted = true;
1126           if (FieldRec->hasNonTrivialDestructor())
1127             data().DefaultedDestructorIsDeleted = true;
1128         }
1129
1130         // For an anonymous union member, our overload resolution will perform
1131         // overload resolution for its members.
1132         if (Field->isAnonymousStructOrUnion()) {
1133           data().NeedOverloadResolutionForCopyConstructor |=
1134               FieldRec->data().NeedOverloadResolutionForCopyConstructor;
1135           data().NeedOverloadResolutionForMoveConstructor |=
1136               FieldRec->data().NeedOverloadResolutionForMoveConstructor;
1137           data().NeedOverloadResolutionForMoveAssignment |=
1138               FieldRec->data().NeedOverloadResolutionForMoveAssignment;
1139           data().NeedOverloadResolutionForDestructor |=
1140               FieldRec->data().NeedOverloadResolutionForDestructor;
1141         }
1142
1143         // C++0x [class.ctor]p5:
1144         //   A default constructor is trivial [...] if:
1145         //    -- for all the non-static data members of its class that are of
1146         //       class type (or array thereof), each such class has a trivial
1147         //       default constructor.
1148         if (!FieldRec->hasTrivialDefaultConstructor())
1149           data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1150
1151         // C++0x [class.copy]p13:
1152         //   A copy/move constructor for class X is trivial if [...]
1153         //    [...]
1154         //    -- for each non-static data member of X that is of class type (or
1155         //       an array thereof), the constructor selected to copy/move that
1156         //       member is trivial;
1157         if (!FieldRec->hasTrivialCopyConstructor())
1158           data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
1159
1160         if (!FieldRec->hasTrivialCopyConstructorForCall())
1161           data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
1162
1163         // If the field doesn't have a simple move constructor, we'll eagerly
1164         // declare the move constructor for this class and we'll decide whether
1165         // it's trivial then.
1166         if (!FieldRec->hasTrivialMoveConstructor())
1167           data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
1168
1169         if (!FieldRec->hasTrivialMoveConstructorForCall())
1170           data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
1171
1172         // C++0x [class.copy]p27:
1173         //   A copy/move assignment operator for class X is trivial if [...]
1174         //    [...]
1175         //    -- for each non-static data member of X that is of class type (or
1176         //       an array thereof), the assignment operator selected to
1177         //       copy/move that member is trivial;
1178         if (!FieldRec->hasTrivialCopyAssignment())
1179           data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
1180         // If the field doesn't have a simple move assignment, we'll eagerly
1181         // declare the move assignment for this class and we'll decide whether
1182         // it's trivial then.
1183         if (!FieldRec->hasTrivialMoveAssignment())
1184           data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
1185
1186         if (!FieldRec->hasTrivialDestructor())
1187           data().HasTrivialSpecialMembers &= ~SMF_Destructor;
1188         if (!FieldRec->hasTrivialDestructorForCall())
1189           data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
1190         if (!FieldRec->hasIrrelevantDestructor())
1191           data().HasIrrelevantDestructor = false;
1192         if (FieldRec->hasObjectMember())
1193           setHasObjectMember(true);
1194         if (FieldRec->hasVolatileMember())
1195           setHasVolatileMember(true);
1196         if (FieldRec->getArgPassingRestrictions() ==
1197             RecordDecl::APK_CanNeverPassInRegs)
1198           setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
1199
1200         // C++0x [class]p7:
1201         //   A standard-layout class is a class that:
1202         //    -- has no non-static data members of type non-standard-layout
1203         //       class (or array of such types) [...]
1204         if (!FieldRec->isStandardLayout())
1205           data().IsStandardLayout = false;
1206         if (!FieldRec->isCXX11StandardLayout())
1207           data().IsCXX11StandardLayout = false;
1208
1209         // C++2a [class]p7:
1210         //   A standard-layout class is a class that:
1211         //    [...]
1212         //    -- has no element of the set M(S) of types as a base class.
1213         if (data().IsStandardLayout &&
1214             (isUnion() || IsFirstField || IsZeroSize) &&
1215             hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec))
1216           data().IsStandardLayout = false;
1217
1218         // C++11 [class]p7:
1219         //   A standard-layout class is a class that:
1220         //    -- has no base classes of the same type as the first non-static
1221         //       data member
1222         if (data().IsCXX11StandardLayout && IsFirstField) {
1223           // FIXME: We should check all base classes here, not just direct
1224           // base classes.
1225           for (const auto &BI : bases()) {
1226             if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
1227               data().IsCXX11StandardLayout = false;
1228               break;
1229             }
1230           }
1231         }
1232
1233         // Keep track of the presence of mutable fields.
1234         if (FieldRec->hasMutableFields()) {
1235           data().HasMutableFields = true;
1236           data().NeedOverloadResolutionForCopyConstructor = true;
1237         }
1238
1239         // C++11 [class.copy]p13:
1240         //   If the implicitly-defined constructor would satisfy the
1241         //   requirements of a constexpr constructor, the implicitly-defined
1242         //   constructor is constexpr.
1243         // C++11 [dcl.constexpr]p4:
1244         //    -- every constructor involved in initializing non-static data
1245         //       members [...] shall be a constexpr constructor
1246         if (!Field->hasInClassInitializer() &&
1247             !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
1248           // The standard requires any in-class initializer to be a constant
1249           // expression. We consider this to be a defect.
1250           data().DefaultedDefaultConstructorIsConstexpr = false;
1251
1252         // C++11 [class.copy]p8:
1253         //   The implicitly-declared copy constructor for a class X will have
1254         //   the form 'X::X(const X&)' if each potentially constructed subobject
1255         //   of a class type M (or array thereof) has a copy constructor whose
1256         //   first parameter is of type 'const M&' or 'const volatile M&'.
1257         if (!FieldRec->hasCopyConstructorWithConstParam())
1258           data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
1259
1260         // C++11 [class.copy]p18:
1261         //   The implicitly-declared copy assignment oeprator for a class X will
1262         //   have the form 'X& X::operator=(const X&)' if [...] for all the
1263         //   non-static data members of X that are of a class type M (or array
1264         //   thereof), each such class type has a copy assignment operator whose
1265         //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
1266         if (!FieldRec->hasCopyAssignmentWithConstParam())
1267           data().ImplicitCopyAssignmentHasConstParam = false;
1268
1269         if (FieldRec->hasUninitializedReferenceMember() &&
1270             !Field->hasInClassInitializer())
1271           data().HasUninitializedReferenceMember = true;
1272
1273         // C++11 [class.union]p8, DR1460:
1274         //   a non-static data member of an anonymous union that is a member of
1275         //   X is also a variant member of X.
1276         if (FieldRec->hasVariantMembers() &&
1277             Field->isAnonymousStructOrUnion())
1278           data().HasVariantMembers = true;
1279       }
1280     } else {
1281       // Base element type of field is a non-class type.
1282       if (!T->isLiteralType(Context) ||
1283           (!Field->hasInClassInitializer() && !isUnion() &&
1284            !Context.getLangOpts().CPlusPlus2a))
1285         data().DefaultedDefaultConstructorIsConstexpr = false;
1286
1287       // C++11 [class.copy]p23:
1288       //   A defaulted copy/move assignment operator for a class X is defined
1289       //   as deleted if X has:
1290       //    -- a non-static data member of const non-class type (or array
1291       //       thereof)
1292       if (T.isConstQualified())
1293         data().DefaultedMoveAssignmentIsDeleted = true;
1294     }
1295
1296     // C++14 [meta.unary.prop]p4:
1297     //   T is a class type [...] with [...] no non-static data members other
1298     //   than subobjects of zero size
1299     if (data().Empty && !IsZeroSize)
1300       data().Empty = false;
1301   }
1302
1303   // Handle using declarations of conversion functions.
1304   if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) {
1305     if (Shadow->getDeclName().getNameKind()
1306           == DeclarationName::CXXConversionFunctionName) {
1307       ASTContext &Ctx = getASTContext();
1308       data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
1309     }
1310   }
1311
1312   if (const auto *Using = dyn_cast<UsingDecl>(D)) {
1313     if (Using->getDeclName().getNameKind() ==
1314         DeclarationName::CXXConstructorName) {
1315       data().HasInheritedConstructor = true;
1316       // C++1z [dcl.init.aggr]p1:
1317       //  An aggregate is [...] a class [...] with no inherited constructors
1318       data().Aggregate = false;
1319     }
1320
1321     if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal)
1322       data().HasInheritedAssignment = true;
1323   }
1324 }
1325
1326 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
1327   assert(!D->isImplicit() && !D->isUserProvided());
1328
1329   // The kind of special member this declaration is, if any.
1330   unsigned SMKind = 0;
1331
1332   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1333     if (Constructor->isDefaultConstructor()) {
1334       SMKind |= SMF_DefaultConstructor;
1335       if (Constructor->isConstexpr())
1336         data().HasConstexprDefaultConstructor = true;
1337     }
1338     if (Constructor->isCopyConstructor())
1339       SMKind |= SMF_CopyConstructor;
1340     else if (Constructor->isMoveConstructor())
1341       SMKind |= SMF_MoveConstructor;
1342     else if (Constructor->isConstexpr())
1343       // We may now know that the constructor is constexpr.
1344       data().HasConstexprNonCopyMoveConstructor = true;
1345   } else if (isa<CXXDestructorDecl>(D)) {
1346     SMKind |= SMF_Destructor;
1347     if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
1348       data().HasIrrelevantDestructor = false;
1349   } else if (D->isCopyAssignmentOperator())
1350     SMKind |= SMF_CopyAssignment;
1351   else if (D->isMoveAssignmentOperator())
1352     SMKind |= SMF_MoveAssignment;
1353
1354   // Update which trivial / non-trivial special members we have.
1355   // addedMember will have skipped this step for this member.
1356   if (D->isTrivial())
1357     data().HasTrivialSpecialMembers |= SMKind;
1358   else
1359     data().DeclaredNonTrivialSpecialMembers |= SMKind;
1360 }
1361
1362 void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) {
1363   unsigned SMKind = 0;
1364
1365   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1366     if (Constructor->isCopyConstructor())
1367       SMKind = SMF_CopyConstructor;
1368     else if (Constructor->isMoveConstructor())
1369       SMKind = SMF_MoveConstructor;
1370   } else if (isa<CXXDestructorDecl>(D))
1371     SMKind = SMF_Destructor;
1372
1373   if (D->isTrivialForCall())
1374     data().HasTrivialSpecialMembersForCall |= SMKind;
1375   else
1376     data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
1377 }
1378
1379 bool CXXRecordDecl::isCLike() const {
1380   if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
1381       !TemplateOrInstantiation.isNull())
1382     return false;
1383   if (!hasDefinition())
1384     return true;
1385
1386   return isPOD() && data().HasOnlyCMembers;
1387 }
1388
1389 bool CXXRecordDecl::isGenericLambda() const {
1390   if (!isLambda()) return false;
1391   return getLambdaData().IsGenericLambda;
1392 }
1393
1394 #ifndef NDEBUG
1395 static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) {
1396   for (auto *D : R)
1397     if (!declaresSameEntity(D, R.front()))
1398       return false;
1399   return true;
1400 }
1401 #endif
1402
1403 static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) {
1404   if (!RD.isLambda()) return nullptr;
1405   DeclarationName Name =
1406     RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1407   DeclContext::lookup_result Calls = RD.lookup(Name);
1408
1409   assert(!Calls.empty() && "Missing lambda call operator!");
1410   assert(allLookupResultsAreTheSame(Calls) &&
1411          "More than one lambda call operator!");
1412   return Calls.front();
1413 }
1414
1415 FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const {
1416   NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1417   return  dyn_cast_or_null<FunctionTemplateDecl>(CallOp);
1418 }
1419
1420 CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const {
1421   NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1422
1423   if (CallOp == nullptr)
1424     return nullptr;
1425
1426   if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp))
1427     return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
1428
1429   return cast<CXXMethodDecl>(CallOp);
1430 }
1431
1432 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
1433   if (!isLambda()) return nullptr;
1434   DeclarationName Name =
1435     &getASTContext().Idents.get(getLambdaStaticInvokerName());
1436   DeclContext::lookup_result Invoker = lookup(Name);
1437   if (Invoker.empty()) return nullptr;
1438   assert(allLookupResultsAreTheSame(Invoker) &&
1439          "More than one static invoker operator!");
1440   NamedDecl *InvokerFun = Invoker.front();
1441   if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(InvokerFun))
1442     return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
1443
1444   return cast<CXXMethodDecl>(InvokerFun);
1445 }
1446
1447 void CXXRecordDecl::getCaptureFields(
1448        llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1449        FieldDecl *&ThisCapture) const {
1450   Captures.clear();
1451   ThisCapture = nullptr;
1452
1453   LambdaDefinitionData &Lambda = getLambdaData();
1454   RecordDecl::field_iterator Field = field_begin();
1455   for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
1456        C != CEnd; ++C, ++Field) {
1457     if (C->capturesThis())
1458       ThisCapture = *Field;
1459     else if (C->capturesVariable())
1460       Captures[C->getCapturedVar()] = *Field;
1461   }
1462   assert(Field == field_end());
1463 }
1464
1465 TemplateParameterList *
1466 CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1467   if (!isGenericLambda()) return nullptr;
1468   CXXMethodDecl *CallOp = getLambdaCallOperator();
1469   if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
1470     return Tmpl->getTemplateParameters();
1471   return nullptr;
1472 }
1473
1474 ArrayRef<NamedDecl *>
1475 CXXRecordDecl::getLambdaExplicitTemplateParameters() const {
1476   TemplateParameterList *List = getGenericLambdaTemplateParameterList();
1477   if (!List)
1478     return {};
1479
1480   assert(std::is_partitioned(List->begin(), List->end(),
1481                              [](const NamedDecl *D) { return !D->isImplicit(); })
1482          && "Explicit template params should be ordered before implicit ones");
1483
1484   const auto ExplicitEnd = llvm::partition_point(
1485       *List, [](const NamedDecl *D) { return !D->isImplicit(); });
1486   return llvm::makeArrayRef(List->begin(), ExplicitEnd);
1487 }
1488
1489 Decl *CXXRecordDecl::getLambdaContextDecl() const {
1490   assert(isLambda() && "Not a lambda closure type!");
1491   ExternalASTSource *Source = getParentASTContext().getExternalSource();
1492   return getLambdaData().ContextDecl.get(Source);
1493 }
1494
1495 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1496   QualType T =
1497       cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
1498           ->getConversionType();
1499   return Context.getCanonicalType(T);
1500 }
1501
1502 /// Collect the visible conversions of a base class.
1503 ///
1504 /// \param Record a base class of the class we're considering
1505 /// \param InVirtual whether this base class is a virtual base (or a base
1506 ///   of a virtual base)
1507 /// \param Access the access along the inheritance path to this base
1508 /// \param ParentHiddenTypes the conversions provided by the inheritors
1509 ///   of this base
1510 /// \param Output the set to which to add conversions from non-virtual bases
1511 /// \param VOutput the set to which to add conversions from virtual bases
1512 /// \param HiddenVBaseCs the set of conversions which were hidden in a
1513 ///   virtual base along some inheritance path
1514 static void CollectVisibleConversions(ASTContext &Context,
1515                                       CXXRecordDecl *Record,
1516                                       bool InVirtual,
1517                                       AccessSpecifier Access,
1518                   const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1519                                       ASTUnresolvedSet &Output,
1520                                       UnresolvedSetImpl &VOutput,
1521                            llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
1522   // The set of types which have conversions in this class or its
1523   // subclasses.  As an optimization, we don't copy the derived set
1524   // unless it might change.
1525   const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1526   llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1527
1528   // Collect the direct conversions and figure out which conversions
1529   // will be hidden in the subclasses.
1530   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1531   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1532   if (ConvI != ConvE) {
1533     HiddenTypesBuffer = ParentHiddenTypes;
1534     HiddenTypes = &HiddenTypesBuffer;
1535
1536     for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
1537       CanQualType ConvType(GetConversionType(Context, I.getDecl()));
1538       bool Hidden = ParentHiddenTypes.count(ConvType);
1539       if (!Hidden)
1540         HiddenTypesBuffer.insert(ConvType);
1541
1542       // If this conversion is hidden and we're in a virtual base,
1543       // remember that it's hidden along some inheritance path.
1544       if (Hidden && InVirtual)
1545         HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1546
1547       // If this conversion isn't hidden, add it to the appropriate output.
1548       else if (!Hidden) {
1549         AccessSpecifier IAccess
1550           = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1551
1552         if (InVirtual)
1553           VOutput.addDecl(I.getDecl(), IAccess);
1554         else
1555           Output.addDecl(Context, I.getDecl(), IAccess);
1556       }
1557     }
1558   }
1559
1560   // Collect information recursively from any base classes.
1561   for (const auto &I : Record->bases()) {
1562     const RecordType *RT = I.getType()->getAs<RecordType>();
1563     if (!RT) continue;
1564
1565     AccessSpecifier BaseAccess
1566       = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
1567     bool BaseInVirtual = InVirtual || I.isVirtual();
1568
1569     auto *Base = cast<CXXRecordDecl>(RT->getDecl());
1570     CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1571                               *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1572   }
1573 }
1574
1575 /// Collect the visible conversions of a class.
1576 ///
1577 /// This would be extremely straightforward if it weren't for virtual
1578 /// bases.  It might be worth special-casing that, really.
1579 static void CollectVisibleConversions(ASTContext &Context,
1580                                       CXXRecordDecl *Record,
1581                                       ASTUnresolvedSet &Output) {
1582   // The collection of all conversions in virtual bases that we've
1583   // found.  These will be added to the output as long as they don't
1584   // appear in the hidden-conversions set.
1585   UnresolvedSet<8> VBaseCs;
1586
1587   // The set of conversions in virtual bases that we've determined to
1588   // be hidden.
1589   llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1590
1591   // The set of types hidden by classes derived from this one.
1592   llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1593
1594   // Go ahead and collect the direct conversions and add them to the
1595   // hidden-types set.
1596   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1597   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1598   Output.append(Context, ConvI, ConvE);
1599   for (; ConvI != ConvE; ++ConvI)
1600     HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1601
1602   // Recursively collect conversions from base classes.
1603   for (const auto &I : Record->bases()) {
1604     const RecordType *RT = I.getType()->getAs<RecordType>();
1605     if (!RT) continue;
1606
1607     CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1608                               I.isVirtual(), I.getAccessSpecifier(),
1609                               HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1610   }
1611
1612   // Add any unhidden conversions provided by virtual bases.
1613   for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1614          I != E; ++I) {
1615     if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1616       Output.addDecl(Context, I.getDecl(), I.getAccess());
1617   }
1618 }
1619
1620 /// getVisibleConversionFunctions - get all conversion functions visible
1621 /// in current class; including conversion function templates.
1622 llvm::iterator_range<CXXRecordDecl::conversion_iterator>
1623 CXXRecordDecl::getVisibleConversionFunctions() {
1624   ASTContext &Ctx = getASTContext();
1625
1626   ASTUnresolvedSet *Set;
1627   if (bases_begin() == bases_end()) {
1628     // If root class, all conversions are visible.
1629     Set = &data().Conversions.get(Ctx);
1630   } else {
1631     Set = &data().VisibleConversions.get(Ctx);
1632     // If visible conversion list is not evaluated, evaluate it.
1633     if (!data().ComputedVisibleConversions) {
1634       CollectVisibleConversions(Ctx, this, *Set);
1635       data().ComputedVisibleConversions = true;
1636     }
1637   }
1638   return llvm::make_range(Set->begin(), Set->end());
1639 }
1640
1641 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1642   // This operation is O(N) but extremely rare.  Sema only uses it to
1643   // remove UsingShadowDecls in a class that were followed by a direct
1644   // declaration, e.g.:
1645   //   class A : B {
1646   //     using B::operator int;
1647   //     operator int();
1648   //   };
1649   // This is uncommon by itself and even more uncommon in conjunction
1650   // with sufficiently large numbers of directly-declared conversions
1651   // that asymptotic behavior matters.
1652
1653   ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
1654   for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1655     if (Convs[I].getDecl() == ConvDecl) {
1656       Convs.erase(I);
1657       assert(llvm::find(Convs, ConvDecl) == Convs.end() &&
1658              "conversion was found multiple times in unresolved set");
1659       return;
1660     }
1661   }
1662
1663   llvm_unreachable("conversion not found in set!");
1664 }
1665
1666 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1667   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1668     return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1669
1670   return nullptr;
1671 }
1672
1673 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
1674   return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1675 }
1676
1677 void
1678 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1679                                              TemplateSpecializationKind TSK) {
1680   assert(TemplateOrInstantiation.isNull() &&
1681          "Previous template or instantiation?");
1682   assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
1683   TemplateOrInstantiation
1684     = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1685 }
1686
1687 ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const {
1688   return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>();
1689 }
1690
1691 void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) {
1692   TemplateOrInstantiation = Template;
1693 }
1694
1695 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1696   if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this))
1697     return Spec->getSpecializationKind();
1698
1699   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1700     return MSInfo->getTemplateSpecializationKind();
1701
1702   return TSK_Undeclared;
1703 }
1704
1705 void
1706 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1707   if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1708     Spec->setSpecializationKind(TSK);
1709     return;
1710   }
1711
1712   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1713     MSInfo->setTemplateSpecializationKind(TSK);
1714     return;
1715   }
1716
1717   llvm_unreachable("Not a class template or member class specialization");
1718 }
1719
1720 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
1721   auto GetDefinitionOrSelf =
1722       [](const CXXRecordDecl *D) -> const CXXRecordDecl * {
1723     if (auto *Def = D->getDefinition())
1724       return Def;
1725     return D;
1726   };
1727
1728   // If it's a class template specialization, find the template or partial
1729   // specialization from which it was instantiated.
1730   if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1731     auto From = TD->getInstantiatedFrom();
1732     if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
1733       while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
1734         if (NewCTD->isMemberSpecialization())
1735           break;
1736         CTD = NewCTD;
1737       }
1738       return GetDefinitionOrSelf(CTD->getTemplatedDecl());
1739     }
1740     if (auto *CTPSD =
1741             From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
1742       while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
1743         if (NewCTPSD->isMemberSpecialization())
1744           break;
1745         CTPSD = NewCTPSD;
1746       }
1747       return GetDefinitionOrSelf(CTPSD);
1748     }
1749   }
1750
1751   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1752     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
1753       const CXXRecordDecl *RD = this;
1754       while (auto *NewRD = RD->getInstantiatedFromMemberClass())
1755         RD = NewRD;
1756       return GetDefinitionOrSelf(RD);
1757     }
1758   }
1759
1760   assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
1761          "couldn't find pattern for class template instantiation");
1762   return nullptr;
1763 }
1764
1765 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1766   ASTContext &Context = getASTContext();
1767   QualType ClassType = Context.getTypeDeclType(this);
1768
1769   DeclarationName Name
1770     = Context.DeclarationNames.getCXXDestructorName(
1771                                           Context.getCanonicalType(ClassType));
1772
1773   DeclContext::lookup_result R = lookup(Name);
1774
1775   return R.empty() ? nullptr : dyn_cast<CXXDestructorDecl>(R.front());
1776 }
1777
1778 bool CXXRecordDecl::isAnyDestructorNoReturn() const {
1779   // Destructor is noreturn.
1780   if (const CXXDestructorDecl *Destructor = getDestructor())
1781     if (Destructor->isNoReturn())
1782       return true;
1783
1784   // Check base classes destructor for noreturn.
1785   for (const auto &Base : bases())
1786     if (const CXXRecordDecl *RD = Base.getType()->getAsCXXRecordDecl())
1787       if (RD->isAnyDestructorNoReturn())
1788         return true;
1789
1790   // Check fields for noreturn.
1791   for (const auto *Field : fields())
1792     if (const CXXRecordDecl *RD =
1793             Field->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
1794       if (RD->isAnyDestructorNoReturn())
1795         return true;
1796
1797   // All destructors are not noreturn.
1798   return false;
1799 }
1800
1801 static bool isDeclContextInNamespace(const DeclContext *DC) {
1802   while (!DC->isTranslationUnit()) {
1803     if (DC->isNamespace())
1804       return true;
1805     DC = DC->getParent();
1806   }
1807   return false;
1808 }
1809
1810 bool CXXRecordDecl::isInterfaceLike() const {
1811   assert(hasDefinition() && "checking for interface-like without a definition");
1812   // All __interfaces are inheritently interface-like.
1813   if (isInterface())
1814     return true;
1815
1816   // Interface-like types cannot have a user declared constructor, destructor,
1817   // friends, VBases, conversion functions, or fields.  Additionally, lambdas
1818   // cannot be interface types.
1819   if (isLambda() || hasUserDeclaredConstructor() ||
1820       hasUserDeclaredDestructor() || !field_empty() || hasFriends() ||
1821       getNumVBases() > 0 || conversion_end() - conversion_begin() > 0)
1822     return false;
1823
1824   // No interface-like type can have a method with a definition.
1825   for (const auto *const Method : methods())
1826     if (Method->isDefined() && !Method->isImplicit())
1827       return false;
1828
1829   // Check "Special" types.
1830   const auto *Uuid = getAttr<UuidAttr>();
1831   // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an
1832   // extern C++ block directly in the TU.  These are only valid if in one
1833   // of these two situations.
1834   if (Uuid && isStruct() && !getDeclContext()->isExternCContext() &&
1835       !isDeclContextInNamespace(getDeclContext()) &&
1836       ((getName() == "IUnknown" &&
1837         Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") ||
1838        (getName() == "IDispatch" &&
1839         Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) {
1840     if (getNumBases() > 0)
1841       return false;
1842     return true;
1843   }
1844
1845   // FIXME: Any access specifiers is supposed to make this no longer interface
1846   // like.
1847
1848   // If this isn't a 'special' type, it must have a single interface-like base.
1849   if (getNumBases() != 1)
1850     return false;
1851
1852   const auto BaseSpec = *bases_begin();
1853   if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public)
1854     return false;
1855   const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
1856   if (Base->isInterface() || !Base->isInterfaceLike())
1857     return false;
1858   return true;
1859 }
1860
1861 void CXXRecordDecl::completeDefinition() {
1862   completeDefinition(nullptr);
1863 }
1864
1865 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
1866   RecordDecl::completeDefinition();
1867
1868   // If the class may be abstract (but hasn't been marked as such), check for
1869   // any pure final overriders.
1870   if (mayBeAbstract()) {
1871     CXXFinalOverriderMap MyFinalOverriders;
1872     if (!FinalOverriders) {
1873       getFinalOverriders(MyFinalOverriders);
1874       FinalOverriders = &MyFinalOverriders;
1875     }
1876
1877     bool Done = false;
1878     for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
1879                                      MEnd = FinalOverriders->end();
1880          M != MEnd && !Done; ++M) {
1881       for (OverridingMethods::iterator SO = M->second.begin(),
1882                                     SOEnd = M->second.end();
1883            SO != SOEnd && !Done; ++SO) {
1884         assert(SO->second.size() > 0 &&
1885                "All virtual functions have overriding virtual functions");
1886
1887         // C++ [class.abstract]p4:
1888         //   A class is abstract if it contains or inherits at least one
1889         //   pure virtual function for which the final overrider is pure
1890         //   virtual.
1891         if (SO->second.front().Method->isPure()) {
1892           data().Abstract = true;
1893           Done = true;
1894           break;
1895         }
1896       }
1897     }
1898   }
1899
1900   // Set access bits correctly on the directly-declared conversions.
1901   for (conversion_iterator I = conversion_begin(), E = conversion_end();
1902        I != E; ++I)
1903     I.setAccess((*I)->getAccess());
1904 }
1905
1906 bool CXXRecordDecl::mayBeAbstract() const {
1907   if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
1908       isDependentContext())
1909     return false;
1910
1911   for (const auto &B : bases()) {
1912     const auto *BaseDecl =
1913         cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
1914     if (BaseDecl->isAbstract())
1915       return true;
1916   }
1917
1918   return false;
1919 }
1920
1921 void CXXDeductionGuideDecl::anchor() {}
1922
1923 bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const {
1924   if ((getKind() != Other.getKind() ||
1925        getKind() == ExplicitSpecKind::Unresolved)) {
1926     if (getKind() == ExplicitSpecKind::Unresolved &&
1927         Other.getKind() == ExplicitSpecKind::Unresolved) {
1928       ODRHash SelfHash, OtherHash;
1929       SelfHash.AddStmt(getExpr());
1930       OtherHash.AddStmt(Other.getExpr());
1931       return SelfHash.CalculateHash() == OtherHash.CalculateHash();
1932     } else
1933       return false;
1934   }
1935   return true;
1936 }
1937
1938 ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) {
1939   switch (Function->getDeclKind()) {
1940   case Decl::Kind::CXXConstructor:
1941     return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier();
1942   case Decl::Kind::CXXConversion:
1943     return cast<CXXConversionDecl>(Function)->getExplicitSpecifier();
1944   case Decl::Kind::CXXDeductionGuide:
1945     return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier();
1946   default:
1947     return {};
1948   }
1949 }
1950
1951 CXXDeductionGuideDecl *CXXDeductionGuideDecl::Create(
1952     ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1953     ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T,
1954     TypeSourceInfo *TInfo, SourceLocation EndLocation) {
1955   return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T,
1956                                            TInfo, EndLocation);
1957 }
1958
1959 CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C,
1960                                                                  unsigned ID) {
1961   return new (C, ID) CXXDeductionGuideDecl(
1962       C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(),
1963       QualType(), nullptr, SourceLocation());
1964 }
1965
1966 void CXXMethodDecl::anchor() {}
1967
1968 bool CXXMethodDecl::isStatic() const {
1969   const CXXMethodDecl *MD = getCanonicalDecl();
1970
1971   if (MD->getStorageClass() == SC_Static)
1972     return true;
1973
1974   OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
1975   return isStaticOverloadedOperator(OOK);
1976 }
1977
1978 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
1979                                  const CXXMethodDecl *BaseMD) {
1980   for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) {
1981     if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
1982       return true;
1983     if (recursivelyOverrides(MD, BaseMD))
1984       return true;
1985   }
1986   return false;
1987 }
1988
1989 CXXMethodDecl *
1990 CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
1991                                                      bool MayBeBase) {
1992   if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
1993     return this;
1994
1995   // Lookup doesn't work for destructors, so handle them separately.
1996   if (isa<CXXDestructorDecl>(this)) {
1997     CXXMethodDecl *MD = RD->getDestructor();
1998     if (MD) {
1999       if (recursivelyOverrides(MD, this))
2000         return MD;
2001       if (MayBeBase && recursivelyOverrides(this, MD))
2002         return MD;
2003     }
2004     return nullptr;
2005   }
2006
2007   for (auto *ND : RD->lookup(getDeclName())) {
2008     auto *MD = dyn_cast<CXXMethodDecl>(ND);
2009     if (!MD)
2010       continue;
2011     if (recursivelyOverrides(MD, this))
2012       return MD;
2013     if (MayBeBase && recursivelyOverrides(this, MD))
2014       return MD;
2015   }
2016
2017   return nullptr;
2018 }
2019
2020 CXXMethodDecl *
2021 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2022                                              bool MayBeBase) {
2023   if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase))
2024     return MD;
2025
2026   for (const auto &I : RD->bases()) {
2027     const RecordType *RT = I.getType()->getAs<RecordType>();
2028     if (!RT)
2029       continue;
2030     const auto *Base = cast<CXXRecordDecl>(RT->getDecl());
2031     CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
2032     if (T)
2033       return T;
2034   }
2035
2036   return nullptr;
2037 }
2038
2039 CXXMethodDecl *CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
2040                                      SourceLocation StartLoc,
2041                                      const DeclarationNameInfo &NameInfo,
2042                                      QualType T, TypeSourceInfo *TInfo,
2043                                      StorageClass SC, bool isInline,
2044                                      ConstexprSpecKind ConstexprKind,
2045                                      SourceLocation EndLocation) {
2046   return new (C, RD)
2047       CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC,
2048                     isInline, ConstexprKind, EndLocation);
2049 }
2050
2051 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2052   return new (C, ID) CXXMethodDecl(
2053       CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(),
2054       QualType(), nullptr, SC_None, false, CSK_unspecified, SourceLocation());
2055 }
2056
2057 CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base,
2058                                                      bool IsAppleKext) {
2059   assert(isVirtual() && "this method is expected to be virtual");
2060
2061   // When building with -fapple-kext, all calls must go through the vtable since
2062   // the kernel linker can do runtime patching of vtables.
2063   if (IsAppleKext)
2064     return nullptr;
2065
2066   // If the member function is marked 'final', we know that it can't be
2067   // overridden and can therefore devirtualize it unless it's pure virtual.
2068   if (hasAttr<FinalAttr>())
2069     return isPure() ? nullptr : this;
2070
2071   // If Base is unknown, we cannot devirtualize.
2072   if (!Base)
2073     return nullptr;
2074
2075   // If the base expression (after skipping derived-to-base conversions) is a
2076   // class prvalue, then we can devirtualize.
2077   Base = Base->getBestDynamicClassTypeExpr();
2078   if (Base->isRValue() && Base->getType()->isRecordType())
2079     return this;
2080
2081   // If we don't even know what we would call, we can't devirtualize.
2082   const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
2083   if (!BestDynamicDecl)
2084     return nullptr;
2085
2086   // There may be a method corresponding to MD in a derived class.
2087   CXXMethodDecl *DevirtualizedMethod =
2088       getCorrespondingMethodInClass(BestDynamicDecl);
2089
2090   // If that method is pure virtual, we can't devirtualize. If this code is
2091   // reached, the result would be UB, not a direct call to the derived class
2092   // function, and we can't assume the derived class function is defined.
2093   if (DevirtualizedMethod->isPure())
2094     return nullptr;
2095
2096   // If that method is marked final, we can devirtualize it.
2097   if (DevirtualizedMethod->hasAttr<FinalAttr>())
2098     return DevirtualizedMethod;
2099
2100   // Similarly, if the class itself or its destructor is marked 'final',
2101   // the class can't be derived from and we can therefore devirtualize the 
2102   // member function call.
2103   if (BestDynamicDecl->hasAttr<FinalAttr>())
2104     return DevirtualizedMethod;
2105   if (const auto *dtor = BestDynamicDecl->getDestructor()) {
2106     if (dtor->hasAttr<FinalAttr>())
2107       return DevirtualizedMethod;
2108   }
2109
2110   if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
2111     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2112       if (VD->getType()->isRecordType())
2113         // This is a record decl. We know the type and can devirtualize it.
2114         return DevirtualizedMethod;
2115
2116     return nullptr;
2117   }
2118
2119   // We can devirtualize calls on an object accessed by a class member access
2120   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2121   // a derived class object constructed in the same location.
2122   if (const auto *ME = dyn_cast<MemberExpr>(Base)) {
2123     const ValueDecl *VD = ME->getMemberDecl();
2124     return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr;
2125   }
2126
2127   // Likewise for calls on an object accessed by a (non-reference) pointer to
2128   // member access.
2129   if (auto *BO = dyn_cast<BinaryOperator>(Base)) {
2130     if (BO->isPtrMemOp()) {
2131       auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>();
2132       if (MPT->getPointeeType()->isRecordType())
2133         return DevirtualizedMethod;
2134     }
2135   }
2136
2137   // We can't devirtualize the call.
2138   return nullptr;
2139 }
2140
2141 bool CXXMethodDecl::isUsualDeallocationFunction(
2142     SmallVectorImpl<const FunctionDecl *> &PreventedBy) const {
2143   assert(PreventedBy.empty() && "PreventedBy is expected to be empty");
2144   if (getOverloadedOperator() != OO_Delete &&
2145       getOverloadedOperator() != OO_Array_Delete)
2146     return false;
2147
2148   // C++ [basic.stc.dynamic.deallocation]p2:
2149   //   A template instance is never a usual deallocation function,
2150   //   regardless of its signature.
2151   if (getPrimaryTemplate())
2152     return false;
2153
2154   // C++ [basic.stc.dynamic.deallocation]p2:
2155   //   If a class T has a member deallocation function named operator delete
2156   //   with exactly one parameter, then that function is a usual (non-placement)
2157   //   deallocation function. [...]
2158   if (getNumParams() == 1)
2159     return true;
2160   unsigned UsualParams = 1;
2161
2162   // C++ P0722:
2163   //   A destroying operator delete is a usual deallocation function if
2164   //   removing the std::destroying_delete_t parameter and changing the
2165   //   first parameter type from T* to void* results in the signature of
2166   //   a usual deallocation function.
2167   if (isDestroyingOperatorDelete())
2168     ++UsualParams;
2169
2170   // C++ <=14 [basic.stc.dynamic.deallocation]p2:
2171   //   [...] If class T does not declare such an operator delete but does
2172   //   declare a member deallocation function named operator delete with
2173   //   exactly two parameters, the second of which has type std::size_t (18.1),
2174   //   then this function is a usual deallocation function.
2175   //
2176   // C++17 says a usual deallocation function is one with the signature
2177   //   (void* [, size_t] [, std::align_val_t] [, ...])
2178   // and all such functions are usual deallocation functions. It's not clear
2179   // that allowing varargs functions was intentional.
2180   ASTContext &Context = getASTContext();
2181   if (UsualParams < getNumParams() &&
2182       Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(),
2183                                      Context.getSizeType()))
2184     ++UsualParams;
2185
2186   if (UsualParams < getNumParams() &&
2187       getParamDecl(UsualParams)->getType()->isAlignValT())
2188     ++UsualParams;
2189
2190   if (UsualParams != getNumParams())
2191     return false;
2192
2193   // In C++17 onwards, all potential usual deallocation functions are actual
2194   // usual deallocation functions. Honor this behavior when post-C++14
2195   // deallocation functions are offered as extensions too.
2196   // FIXME(EricWF): Destrying Delete should be a language option. How do we
2197   // handle when destroying delete is used prior to C++17?
2198   if (Context.getLangOpts().CPlusPlus17 ||
2199       Context.getLangOpts().AlignedAllocation ||
2200       isDestroyingOperatorDelete())
2201     return true;
2202
2203   // This function is a usual deallocation function if there are no
2204   // single-parameter deallocation functions of the same kind.
2205   DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
2206   bool Result = true;
2207   for (const auto *D : R) {
2208     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2209       if (FD->getNumParams() == 1) {
2210         PreventedBy.push_back(FD);
2211         Result = false;
2212       }
2213     }
2214   }
2215   return Result;
2216 }
2217
2218 bool CXXMethodDecl::isCopyAssignmentOperator() const {
2219   // C++0x [class.copy]p17:
2220   //  A user-declared copy assignment operator X::operator= is a non-static
2221   //  non-template member function of class X with exactly one parameter of
2222   //  type X, X&, const X&, volatile X& or const volatile X&.
2223   if (/*operator=*/getOverloadedOperator() != OO_Equal ||
2224       /*non-static*/ isStatic() ||
2225       /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2226       getNumParams() != 1)
2227     return false;
2228
2229   QualType ParamType = getParamDecl(0)->getType();
2230   if (const auto *Ref = ParamType->getAs<LValueReferenceType>())
2231     ParamType = Ref->getPointeeType();
2232
2233   ASTContext &Context = getASTContext();
2234   QualType ClassType
2235     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2236   return Context.hasSameUnqualifiedType(ClassType, ParamType);
2237 }
2238
2239 bool CXXMethodDecl::isMoveAssignmentOperator() const {
2240   // C++0x [class.copy]p19:
2241   //  A user-declared move assignment operator X::operator= is a non-static
2242   //  non-template member function of class X with exactly one parameter of type
2243   //  X&&, const X&&, volatile X&&, or const volatile X&&.
2244   if (getOverloadedOperator() != OO_Equal || isStatic() ||
2245       getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2246       getNumParams() != 1)
2247     return false;
2248
2249   QualType ParamType = getParamDecl(0)->getType();
2250   if (!isa<RValueReferenceType>(ParamType))
2251     return false;
2252   ParamType = ParamType->getPointeeType();
2253
2254   ASTContext &Context = getASTContext();
2255   QualType ClassType
2256     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2257   return Context.hasSameUnqualifiedType(ClassType, ParamType);
2258 }
2259
2260 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
2261   assert(MD->isCanonicalDecl() && "Method is not canonical!");
2262   assert(!MD->getParent()->isDependentContext() &&
2263          "Can't add an overridden method to a class template!");
2264   assert(MD->isVirtual() && "Method is not virtual!");
2265
2266   getASTContext().addOverriddenMethod(this, MD);
2267 }
2268
2269 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
2270   if (isa<CXXConstructorDecl>(this)) return nullptr;
2271   return getASTContext().overridden_methods_begin(this);
2272 }
2273
2274 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
2275   if (isa<CXXConstructorDecl>(this)) return nullptr;
2276   return getASTContext().overridden_methods_end(this);
2277 }
2278
2279 unsigned CXXMethodDecl::size_overridden_methods() const {
2280   if (isa<CXXConstructorDecl>(this)) return 0;
2281   return getASTContext().overridden_methods_size(this);
2282 }
2283
2284 CXXMethodDecl::overridden_method_range
2285 CXXMethodDecl::overridden_methods() const {
2286   if (isa<CXXConstructorDecl>(this))
2287     return overridden_method_range(nullptr, nullptr);
2288   return getASTContext().overridden_methods(this);
2289 }
2290
2291 static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT,
2292                                   const CXXRecordDecl *Decl) {
2293   QualType ClassTy = C.getTypeDeclType(Decl);
2294   return C.getQualifiedType(ClassTy, FPT->getMethodQuals());
2295 }
2296
2297 QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT,
2298                                     const CXXRecordDecl *Decl) {
2299   ASTContext &C = Decl->getASTContext();
2300   QualType ObjectTy = ::getThisObjectType(C, FPT, Decl);
2301   return C.getPointerType(ObjectTy);
2302 }
2303
2304 QualType CXXMethodDecl::getThisObjectType(const FunctionProtoType *FPT,
2305                                           const CXXRecordDecl *Decl) {
2306   ASTContext &C = Decl->getASTContext();
2307   return ::getThisObjectType(C, FPT, Decl);
2308 }
2309
2310 QualType CXXMethodDecl::getThisType() const {
2311   // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
2312   // If the member function is declared const, the type of this is const X*,
2313   // if the member function is declared volatile, the type of this is
2314   // volatile X*, and if the member function is declared const volatile,
2315   // the type of this is const volatile X*.
2316   assert(isInstance() && "No 'this' for static methods!");
2317
2318   return CXXMethodDecl::getThisType(getType()->getAs<FunctionProtoType>(),
2319                                     getParent());
2320 }
2321
2322 QualType CXXMethodDecl::getThisObjectType() const {
2323   // Ditto getThisType.
2324   assert(isInstance() && "No 'this' for static methods!");
2325
2326   return CXXMethodDecl::getThisObjectType(getType()->getAs<FunctionProtoType>(),
2327                                           getParent());
2328 }
2329
2330 bool CXXMethodDecl::hasInlineBody() const {
2331   // If this function is a template instantiation, look at the template from
2332   // which it was instantiated.
2333   const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
2334   if (!CheckFn)
2335     CheckFn = this;
2336
2337   const FunctionDecl *fn;
2338   return CheckFn->isDefined(fn) && !fn->isOutOfLine() &&
2339          (fn->doesThisDeclarationHaveABody() || fn->willHaveBody());
2340 }
2341
2342 bool CXXMethodDecl::isLambdaStaticInvoker() const {
2343   const CXXRecordDecl *P = getParent();
2344   if (P->isLambda()) {
2345     if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) {
2346       if (StaticInvoker == this) return true;
2347       if (P->isGenericLambda() && this->isFunctionTemplateSpecialization())
2348         return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl();
2349     }
2350   }
2351   return false;
2352 }
2353
2354 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2355                                        TypeSourceInfo *TInfo, bool IsVirtual,
2356                                        SourceLocation L, Expr *Init,
2357                                        SourceLocation R,
2358                                        SourceLocation EllipsisLoc)
2359     : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
2360       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
2361       IsWritten(false), SourceOrder(0) {}
2362
2363 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2364                                        FieldDecl *Member,
2365                                        SourceLocation MemberLoc,
2366                                        SourceLocation L, Expr *Init,
2367                                        SourceLocation R)
2368     : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
2369       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2370       IsWritten(false), SourceOrder(0) {}
2371
2372 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2373                                        IndirectFieldDecl *Member,
2374                                        SourceLocation MemberLoc,
2375                                        SourceLocation L, Expr *Init,
2376                                        SourceLocation R)
2377     : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
2378       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2379       IsWritten(false), SourceOrder(0) {}
2380
2381 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2382                                        TypeSourceInfo *TInfo,
2383                                        SourceLocation L, Expr *Init,
2384                                        SourceLocation R)
2385     : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R),
2386       IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {}
2387
2388 int64_t CXXCtorInitializer::getID(const ASTContext &Context) const {
2389   return Context.getAllocator()
2390                 .identifyKnownAlignedObject<CXXCtorInitializer>(this);
2391 }
2392
2393 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
2394   if (isBaseInitializer())
2395     return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
2396   else
2397     return {};
2398 }
2399
2400 const Type *CXXCtorInitializer::getBaseClass() const {
2401   if (isBaseInitializer())
2402     return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
2403   else
2404     return nullptr;
2405 }
2406
2407 SourceLocation CXXCtorInitializer::getSourceLocation() const {
2408   if (isInClassMemberInitializer())
2409     return getAnyMember()->getLocation();
2410
2411   if (isAnyMemberInitializer())
2412     return getMemberLocation();
2413
2414   if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>())
2415     return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
2416
2417   return {};
2418 }
2419
2420 SourceRange CXXCtorInitializer::getSourceRange() const {
2421   if (isInClassMemberInitializer()) {
2422     FieldDecl *D = getAnyMember();
2423     if (Expr *I = D->getInClassInitializer())
2424       return I->getSourceRange();
2425     return {};
2426   }
2427
2428   return SourceRange(getSourceLocation(), getRParenLoc());
2429 }
2430
2431 CXXConstructorDecl::CXXConstructorDecl(
2432     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2433     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2434     ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared,
2435     ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited)
2436     : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo,
2437                     SC_None, isInline, ConstexprKind, SourceLocation()) {
2438   setNumCtorInitializers(0);
2439   setInheritingConstructor(static_cast<bool>(Inherited));
2440   setImplicit(isImplicitlyDeclared);
2441   CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0;
2442   if (Inherited)
2443     *getTrailingObjects<InheritedConstructor>() = Inherited;
2444   setExplicitSpecifier(ES);
2445 }
2446
2447 void CXXConstructorDecl::anchor() {}
2448
2449 CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C,
2450                                                            unsigned ID,
2451                                                            uint64_t AllocKind) {
2452   bool hasTraillingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit);
2453   bool isInheritingConstructor =
2454       static_cast<bool>(AllocKind & TAKInheritsConstructor);
2455   unsigned Extra =
2456       additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2457           isInheritingConstructor, hasTraillingExplicit);
2458   auto *Result = new (C, ID, Extra)
2459       CXXConstructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
2460                          QualType(), nullptr, ExplicitSpecifier(), false, false,
2461                          CSK_unspecified, InheritedConstructor());
2462   Result->setInheritingConstructor(isInheritingConstructor);
2463   Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier =
2464       hasTraillingExplicit;
2465   Result->setExplicitSpecifier(ExplicitSpecifier());
2466   return Result;
2467 }
2468
2469 CXXConstructorDecl *CXXConstructorDecl::Create(
2470     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2471     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2472     ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared,
2473     ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited) {
2474   assert(NameInfo.getName().getNameKind()
2475          == DeclarationName::CXXConstructorName &&
2476          "Name must refer to a constructor");
2477   unsigned Extra =
2478       additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2479           Inherited ? 1 : 0, ES.getExpr() ? 1 : 0);
2480   return new (C, RD, Extra)
2481       CXXConstructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, ES, isInline,
2482                          isImplicitlyDeclared, ConstexprKind, Inherited);
2483 }
2484
2485 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
2486   return CtorInitializers.get(getASTContext().getExternalSource());
2487 }
2488
2489 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
2490   assert(isDelegatingConstructor() && "Not a delegating constructor!");
2491   Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
2492   if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
2493     return Construct->getConstructor();
2494
2495   return nullptr;
2496 }
2497
2498 bool CXXConstructorDecl::isDefaultConstructor() const {
2499   // C++ [class.ctor]p5:
2500   //   A default constructor for a class X is a constructor of class
2501   //   X that can be called without an argument.
2502   return (getNumParams() == 0) ||
2503          (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
2504 }
2505
2506 bool
2507 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
2508   return isCopyOrMoveConstructor(TypeQuals) &&
2509          getParamDecl(0)->getType()->isLValueReferenceType();
2510 }
2511
2512 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
2513   return isCopyOrMoveConstructor(TypeQuals) &&
2514     getParamDecl(0)->getType()->isRValueReferenceType();
2515 }
2516
2517 /// Determine whether this is a copy or move constructor.
2518 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
2519   // C++ [class.copy]p2:
2520   //   A non-template constructor for class X is a copy constructor
2521   //   if its first parameter is of type X&, const X&, volatile X& or
2522   //   const volatile X&, and either there are no other parameters
2523   //   or else all other parameters have default arguments (8.3.6).
2524   // C++0x [class.copy]p3:
2525   //   A non-template constructor for class X is a move constructor if its
2526   //   first parameter is of type X&&, const X&&, volatile X&&, or
2527   //   const volatile X&&, and either there are no other parameters or else
2528   //   all other parameters have default arguments.
2529   if ((getNumParams() < 1) ||
2530       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
2531       (getPrimaryTemplate() != nullptr) ||
2532       (getDescribedFunctionTemplate() != nullptr))
2533     return false;
2534
2535   const ParmVarDecl *Param = getParamDecl(0);
2536
2537   // Do we have a reference type?
2538   const auto *ParamRefType = Param->getType()->getAs<ReferenceType>();
2539   if (!ParamRefType)
2540     return false;
2541
2542   // Is it a reference to our class type?
2543   ASTContext &Context = getASTContext();
2544
2545   CanQualType PointeeType
2546     = Context.getCanonicalType(ParamRefType->getPointeeType());
2547   CanQualType ClassTy
2548     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2549   if (PointeeType.getUnqualifiedType() != ClassTy)
2550     return false;
2551
2552   // FIXME: other qualifiers?
2553
2554   // We have a copy or move constructor.
2555   TypeQuals = PointeeType.getCVRQualifiers();
2556   return true;
2557 }
2558
2559 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
2560   // C++ [class.conv.ctor]p1:
2561   //   A constructor declared without the function-specifier explicit
2562   //   that can be called with a single parameter specifies a
2563   //   conversion from the type of its first parameter to the type of
2564   //   its class. Such a constructor is called a converting
2565   //   constructor.
2566   if (isExplicit() && !AllowExplicit)
2567     return false;
2568
2569   return (getNumParams() == 0 &&
2570           getType()->castAs<FunctionProtoType>()->isVariadic()) ||
2571          (getNumParams() == 1) ||
2572          (getNumParams() > 1 &&
2573           (getParamDecl(1)->hasDefaultArg() ||
2574            getParamDecl(1)->isParameterPack()));
2575 }
2576
2577 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
2578   if ((getNumParams() < 1) ||
2579       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
2580       (getDescribedFunctionTemplate() != nullptr))
2581     return false;
2582
2583   const ParmVarDecl *Param = getParamDecl(0);
2584
2585   ASTContext &Context = getASTContext();
2586   CanQualType ParamType = Context.getCanonicalType(Param->getType());
2587
2588   // Is it the same as our class type?
2589   CanQualType ClassTy
2590     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2591   if (ParamType.getUnqualifiedType() != ClassTy)
2592     return false;
2593
2594   return true;
2595 }
2596
2597 void CXXDestructorDecl::anchor() {}
2598
2599 CXXDestructorDecl *
2600 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2601   return new (C, ID)
2602       CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
2603                         QualType(), nullptr, false, false, CSK_unspecified);
2604 }
2605
2606 CXXDestructorDecl *CXXDestructorDecl::Create(
2607     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2608     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2609     bool isInline, bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind) {
2610   assert(NameInfo.getName().getNameKind()
2611          == DeclarationName::CXXDestructorName &&
2612          "Name must refer to a destructor");
2613   return new (C, RD)
2614       CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline,
2615                         isImplicitlyDeclared, ConstexprKind);
2616 }
2617
2618 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) {
2619   auto *First = cast<CXXDestructorDecl>(getFirstDecl());
2620   if (OD && !First->OperatorDelete) {
2621     First->OperatorDelete = OD;
2622     First->OperatorDeleteThisArg = ThisArg;
2623     if (auto *L = getASTMutationListener())
2624       L->ResolvedOperatorDelete(First, OD, ThisArg);
2625   }
2626 }
2627
2628 void CXXConversionDecl::anchor() {}
2629
2630 CXXConversionDecl *
2631 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2632   return new (C, ID) CXXConversionDecl(
2633       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2634       false, ExplicitSpecifier(), CSK_unspecified, SourceLocation());
2635 }
2636
2637 CXXConversionDecl *CXXConversionDecl::Create(
2638     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2639     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2640     bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind,
2641     SourceLocation EndLocation) {
2642   assert(NameInfo.getName().getNameKind()
2643          == DeclarationName::CXXConversionFunctionName &&
2644          "Name must refer to a conversion function");
2645   return new (C, RD)
2646       CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline, ES,
2647                         ConstexprKind, EndLocation);
2648 }
2649
2650 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
2651   return isImplicit() && getParent()->isLambda() &&
2652          getConversionType()->isBlockPointerType();
2653 }
2654
2655 LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2656                                  SourceLocation LangLoc, LanguageIDs lang,
2657                                  bool HasBraces)
2658     : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
2659       ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) {
2660   setLanguage(lang);
2661   LinkageSpecDeclBits.HasBraces = HasBraces;
2662 }
2663
2664 void LinkageSpecDecl::anchor() {}
2665
2666 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
2667                                          DeclContext *DC,
2668                                          SourceLocation ExternLoc,
2669                                          SourceLocation LangLoc,
2670                                          LanguageIDs Lang,
2671                                          bool HasBraces) {
2672   return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
2673 }
2674
2675 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
2676                                                      unsigned ID) {
2677   return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
2678                                      SourceLocation(), lang_c, false);
2679 }
2680
2681 void UsingDirectiveDecl::anchor() {}
2682
2683 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
2684                                                SourceLocation L,
2685                                                SourceLocation NamespaceLoc,
2686                                            NestedNameSpecifierLoc QualifierLoc,
2687                                                SourceLocation IdentLoc,
2688                                                NamedDecl *Used,
2689                                                DeclContext *CommonAncestor) {
2690   if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used))
2691     Used = NS->getOriginalNamespace();
2692   return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
2693                                         IdentLoc, Used, CommonAncestor);
2694 }
2695
2696 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
2697                                                            unsigned ID) {
2698   return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
2699                                         SourceLocation(),
2700                                         NestedNameSpecifierLoc(),
2701                                         SourceLocation(), nullptr, nullptr);
2702 }
2703
2704 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
2705   if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
2706     return NA->getNamespace();
2707   return cast_or_null<NamespaceDecl>(NominatedNamespace);
2708 }
2709
2710 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
2711                              SourceLocation StartLoc, SourceLocation IdLoc,
2712                              IdentifierInfo *Id, NamespaceDecl *PrevDecl)
2713     : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
2714       redeclarable_base(C), LocStart(StartLoc),
2715       AnonOrFirstNamespaceAndInline(nullptr, Inline) {
2716   setPreviousDecl(PrevDecl);
2717
2718   if (PrevDecl)
2719     AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
2720 }
2721
2722 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
2723                                      bool Inline, SourceLocation StartLoc,
2724                                      SourceLocation IdLoc, IdentifierInfo *Id,
2725                                      NamespaceDecl *PrevDecl) {
2726   return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id,
2727                                    PrevDecl);
2728 }
2729
2730 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2731   return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
2732                                    SourceLocation(), nullptr, nullptr);
2733 }
2734
2735 NamespaceDecl *NamespaceDecl::getOriginalNamespace() {
2736   if (isFirstDecl())
2737     return this;
2738
2739   return AnonOrFirstNamespaceAndInline.getPointer();
2740 }
2741
2742 const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const {
2743   if (isFirstDecl())
2744     return this;
2745
2746   return AnonOrFirstNamespaceAndInline.getPointer();
2747 }
2748
2749 bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); }
2750
2751 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
2752   return getNextRedeclaration();
2753 }
2754
2755 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
2756   return getPreviousDecl();
2757 }
2758
2759 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
2760   return getMostRecentDecl();
2761 }
2762
2763 void NamespaceAliasDecl::anchor() {}
2764
2765 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
2766   return getNextRedeclaration();
2767 }
2768
2769 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
2770   return getPreviousDecl();
2771 }
2772
2773 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
2774   return getMostRecentDecl();
2775 }
2776
2777 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
2778                                                SourceLocation UsingLoc,
2779                                                SourceLocation AliasLoc,
2780                                                IdentifierInfo *Alias,
2781                                            NestedNameSpecifierLoc QualifierLoc,
2782                                                SourceLocation IdentLoc,
2783                                                NamedDecl *Namespace) {
2784   // FIXME: Preserve the aliased namespace as written.
2785   if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
2786     Namespace = NS->getOriginalNamespace();
2787   return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
2788                                         QualifierLoc, IdentLoc, Namespace);
2789 }
2790
2791 NamespaceAliasDecl *
2792 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2793   return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
2794                                         SourceLocation(), nullptr,
2795                                         NestedNameSpecifierLoc(),
2796                                         SourceLocation(), nullptr);
2797 }
2798
2799 void UsingShadowDecl::anchor() {}
2800
2801 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC,
2802                                  SourceLocation Loc, UsingDecl *Using,
2803                                  NamedDecl *Target)
2804     : NamedDecl(K, DC, Loc, Using ? Using->getDeclName() : DeclarationName()),
2805       redeclarable_base(C), UsingOrNextShadow(cast<NamedDecl>(Using)) {
2806   if (Target)
2807     setTargetDecl(Target);
2808   setImplicit();
2809 }
2810
2811 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty)
2812     : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()),
2813       redeclarable_base(C) {}
2814
2815 UsingShadowDecl *
2816 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2817   return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell());
2818 }
2819
2820 UsingDecl *UsingShadowDecl::getUsingDecl() const {
2821   const UsingShadowDecl *Shadow = this;
2822   while (const auto *NextShadow =
2823              dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
2824     Shadow = NextShadow;
2825   return cast<UsingDecl>(Shadow->UsingOrNextShadow);
2826 }
2827
2828 void ConstructorUsingShadowDecl::anchor() {}
2829
2830 ConstructorUsingShadowDecl *
2831 ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC,
2832                                    SourceLocation Loc, UsingDecl *Using,
2833                                    NamedDecl *Target, bool IsVirtual) {
2834   return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target,
2835                                                 IsVirtual);
2836 }
2837
2838 ConstructorUsingShadowDecl *
2839 ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2840   return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell());
2841 }
2842
2843 CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const {
2844   return getUsingDecl()->getQualifier()->getAsRecordDecl();
2845 }
2846
2847 void UsingDecl::anchor() {}
2848
2849 void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
2850   assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
2851          "declaration already in set");
2852   assert(S->getUsingDecl() == this);
2853
2854   if (FirstUsingShadow.getPointer())
2855     S->UsingOrNextShadow = FirstUsingShadow.getPointer();
2856   FirstUsingShadow.setPointer(S);
2857 }
2858
2859 void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
2860   assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
2861          "declaration not in set");
2862   assert(S->getUsingDecl() == this);
2863
2864   // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
2865
2866   if (FirstUsingShadow.getPointer() == S) {
2867     FirstUsingShadow.setPointer(
2868       dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
2869     S->UsingOrNextShadow = this;
2870     return;
2871   }
2872
2873   UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
2874   while (Prev->UsingOrNextShadow != S)
2875     Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
2876   Prev->UsingOrNextShadow = S->UsingOrNextShadow;
2877   S->UsingOrNextShadow = this;
2878 }
2879
2880 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
2881                              NestedNameSpecifierLoc QualifierLoc,
2882                              const DeclarationNameInfo &NameInfo,
2883                              bool HasTypename) {
2884   return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
2885 }
2886
2887 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2888   return new (C, ID) UsingDecl(nullptr, SourceLocation(),
2889                                NestedNameSpecifierLoc(), DeclarationNameInfo(),
2890                                false);
2891 }
2892
2893 SourceRange UsingDecl::getSourceRange() const {
2894   SourceLocation Begin = isAccessDeclaration()
2895     ? getQualifierLoc().getBeginLoc() : UsingLocation;
2896   return SourceRange(Begin, getNameInfo().getEndLoc());
2897 }
2898
2899 void UsingPackDecl::anchor() {}
2900
2901 UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC,
2902                                      NamedDecl *InstantiatedFrom,
2903                                      ArrayRef<NamedDecl *> UsingDecls) {
2904   size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size());
2905   return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls);
2906 }
2907
2908 UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID,
2909                                                  unsigned NumExpansions) {
2910   size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions);
2911   auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, None);
2912   Result->NumExpansions = NumExpansions;
2913   auto *Trail = Result->getTrailingObjects<NamedDecl *>();
2914   for (unsigned I = 0; I != NumExpansions; ++I)
2915     new (Trail + I) NamedDecl*(nullptr);
2916   return Result;
2917 }
2918
2919 void UnresolvedUsingValueDecl::anchor() {}
2920
2921 UnresolvedUsingValueDecl *
2922 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
2923                                  SourceLocation UsingLoc,
2924                                  NestedNameSpecifierLoc QualifierLoc,
2925                                  const DeclarationNameInfo &NameInfo,
2926                                  SourceLocation EllipsisLoc) {
2927   return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
2928                                               QualifierLoc, NameInfo,
2929                                               EllipsisLoc);
2930 }
2931
2932 UnresolvedUsingValueDecl *
2933 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2934   return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
2935                                               SourceLocation(),
2936                                               NestedNameSpecifierLoc(),
2937                                               DeclarationNameInfo(),
2938                                               SourceLocation());
2939 }
2940
2941 SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
2942   SourceLocation Begin = isAccessDeclaration()
2943     ? getQualifierLoc().getBeginLoc() : UsingLocation;
2944   return SourceRange(Begin, getNameInfo().getEndLoc());
2945 }
2946
2947 void UnresolvedUsingTypenameDecl::anchor() {}
2948
2949 UnresolvedUsingTypenameDecl *
2950 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
2951                                     SourceLocation UsingLoc,
2952                                     SourceLocation TypenameLoc,
2953                                     NestedNameSpecifierLoc QualifierLoc,
2954                                     SourceLocation TargetNameLoc,
2955                                     DeclarationName TargetName,
2956                                     SourceLocation EllipsisLoc) {
2957   return new (C, DC) UnresolvedUsingTypenameDecl(
2958       DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
2959       TargetName.getAsIdentifierInfo(), EllipsisLoc);
2960 }
2961
2962 UnresolvedUsingTypenameDecl *
2963 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2964   return new (C, ID) UnresolvedUsingTypenameDecl(
2965       nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
2966       SourceLocation(), nullptr, SourceLocation());
2967 }
2968
2969 void StaticAssertDecl::anchor() {}
2970
2971 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
2972                                            SourceLocation StaticAssertLoc,
2973                                            Expr *AssertExpr,
2974                                            StringLiteral *Message,
2975                                            SourceLocation RParenLoc,
2976                                            bool Failed) {
2977   return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
2978                                       RParenLoc, Failed);
2979 }
2980
2981 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
2982                                                        unsigned ID) {
2983   return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
2984                                       nullptr, SourceLocation(), false);
2985 }
2986
2987 void BindingDecl::anchor() {}
2988
2989 BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC,
2990                                  SourceLocation IdLoc, IdentifierInfo *Id) {
2991   return new (C, DC) BindingDecl(DC, IdLoc, Id);
2992 }
2993
2994 BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2995   return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr);
2996 }
2997
2998 ValueDecl *BindingDecl::getDecomposedDecl() const {
2999   ExternalASTSource *Source =
3000       Decomp.isOffset() ? getASTContext().getExternalSource() : nullptr;
3001   return cast_or_null<ValueDecl>(Decomp.get(Source));
3002 }
3003
3004 VarDecl *BindingDecl::getHoldingVar() const {
3005   Expr *B = getBinding();
3006   if (!B)
3007     return nullptr;
3008   auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit());
3009   if (!DRE)
3010     return nullptr;
3011
3012   auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
3013   assert(VD->isImplicit() && "holding var for binding decl not implicit");
3014   return VD;
3015 }
3016
3017 void DecompositionDecl::anchor() {}
3018
3019 DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC,
3020                                              SourceLocation StartLoc,
3021                                              SourceLocation LSquareLoc,
3022                                              QualType T, TypeSourceInfo *TInfo,
3023                                              StorageClass SC,
3024                                              ArrayRef<BindingDecl *> Bindings) {
3025   size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size());
3026   return new (C, DC, Extra)
3027       DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings);
3028 }
3029
3030 DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C,
3031                                                          unsigned ID,
3032                                                          unsigned NumBindings) {
3033   size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings);
3034   auto *Result = new (C, ID, Extra)
3035       DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(),
3036                         QualType(), nullptr, StorageClass(), None);
3037   // Set up and clean out the bindings array.
3038   Result->NumBindings = NumBindings;
3039   auto *Trail = Result->getTrailingObjects<BindingDecl *>();
3040   for (unsigned I = 0; I != NumBindings; ++I)
3041     new (Trail + I) BindingDecl*(nullptr);
3042   return Result;
3043 }
3044
3045 void DecompositionDecl::printName(llvm::raw_ostream &os) const {
3046   os << '[';
3047   bool Comma = false;
3048   for (const auto *B : bindings()) {
3049     if (Comma)
3050       os << ", ";
3051     B->printName(os);
3052     Comma = true;
3053   }
3054   os << ']';
3055 }
3056
3057 void MSPropertyDecl::anchor() {}
3058
3059 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
3060                                        SourceLocation L, DeclarationName N,
3061                                        QualType T, TypeSourceInfo *TInfo,
3062                                        SourceLocation StartL,
3063                                        IdentifierInfo *Getter,
3064                                        IdentifierInfo *Setter) {
3065   return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
3066 }
3067
3068 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
3069                                                    unsigned ID) {
3070   return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
3071                                     DeclarationName(), QualType(), nullptr,
3072                                     SourceLocation(), nullptr, nullptr);
3073 }
3074
3075 static const char *getAccessName(AccessSpecifier AS) {
3076   switch (AS) {
3077     case AS_none:
3078       llvm_unreachable("Invalid access specifier!");
3079     case AS_public:
3080       return "public";
3081     case AS_private:
3082       return "private";
3083     case AS_protected:
3084       return "protected";
3085   }
3086   llvm_unreachable("Invalid access specifier!");
3087 }
3088
3089 const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
3090                                            AccessSpecifier AS) {
3091   return DB << getAccessName(AS);
3092 }
3093
3094 const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
3095                                            AccessSpecifier AS) {
3096   return DB << getAccessName(AS);
3097 }