]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/clang/lib/AST/DeclCXX.cpp
Merge ^/head r357368 through r357388.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / clang / lib / AST / DeclCXX.cpp
1 //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the C++ related Decl classes.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTUnresolvedSet.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/DeclarationName.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/LambdaCapture.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/ODRHash.h"
28 #include "clang/AST/Type.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/AST/UnresolvedSet.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/IdentifierTable.h"
33 #include "clang/Basic/LLVM.h"
34 #include "clang/Basic/LangOptions.h"
35 #include "clang/Basic/OperatorKinds.h"
36 #include "clang/Basic/PartialDiagnostic.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "llvm/ADT/None.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstddef>
49 #include <cstdint>
50
51 using namespace clang;
52
53 //===----------------------------------------------------------------------===//
54 // Decl Allocation/Deallocation Method Implementations
55 //===----------------------------------------------------------------------===//
56
57 void AccessSpecDecl::anchor() {}
58
59 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
60   return new (C, ID) AccessSpecDecl(EmptyShell());
61 }
62
63 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
64   ExternalASTSource *Source = C.getExternalSource();
65   assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
66   assert(Source && "getFromExternalSource with no external source");
67
68   for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
69     I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
70         reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
71   Impl.Decls.setLazy(false);
72 }
73
74 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
75     : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
76       Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
77       Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true),
78       HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false),
79       HasPrivateFields(false), HasProtectedFields(false),
80       HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false),
81       HasOnlyCMembers(true), HasInClassInitializer(false),
82       HasUninitializedReferenceMember(false), HasUninitializedFields(false),
83       HasInheritedConstructor(false), HasInheritedAssignment(false),
84       NeedOverloadResolutionForCopyConstructor(false),
85       NeedOverloadResolutionForMoveConstructor(false),
86       NeedOverloadResolutionForMoveAssignment(false),
87       NeedOverloadResolutionForDestructor(false),
88       DefaultedCopyConstructorIsDeleted(false),
89       DefaultedMoveConstructorIsDeleted(false),
90       DefaultedMoveAssignmentIsDeleted(false),
91       DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All),
92       HasTrivialSpecialMembersForCall(SMF_All),
93       DeclaredNonTrivialSpecialMembers(0),
94       DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true),
95       HasConstexprNonCopyMoveConstructor(false),
96       HasDefaultedDefaultConstructor(false),
97       DefaultedDefaultConstructorIsConstexpr(true),
98       HasConstexprDefaultConstructor(false),
99       DefaultedDestructorIsConstexpr(true),
100       HasNonLiteralTypeFieldsOrBases(false),
101       UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
102       ImplicitCopyConstructorCanHaveConstParamForVBase(true),
103       ImplicitCopyConstructorCanHaveConstParamForNonVBase(true),
104       ImplicitCopyAssignmentHasConstParam(true),
105       HasDeclaredCopyConstructorWithConstParam(false),
106       HasDeclaredCopyAssignmentWithConstParam(false), IsLambda(false),
107       IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false),
108       HasODRHash(false), Definition(D) {}
109
110 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
111   return Bases.get(Definition->getASTContext().getExternalSource());
112 }
113
114 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
115   return VBases.get(Definition->getASTContext().getExternalSource());
116 }
117
118 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
119                              DeclContext *DC, SourceLocation StartLoc,
120                              SourceLocation IdLoc, IdentifierInfo *Id,
121                              CXXRecordDecl *PrevDecl)
122     : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
123       DefinitionData(PrevDecl ? PrevDecl->DefinitionData
124                               : nullptr) {}
125
126 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
127                                      DeclContext *DC, SourceLocation StartLoc,
128                                      SourceLocation IdLoc, IdentifierInfo *Id,
129                                      CXXRecordDecl *PrevDecl,
130                                      bool DelayTypeCreation) {
131   auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id,
132                                       PrevDecl);
133   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
134
135   // FIXME: DelayTypeCreation seems like such a hack
136   if (!DelayTypeCreation)
137     C.getTypeDeclType(R, PrevDecl);
138   return R;
139 }
140
141 CXXRecordDecl *
142 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
143                             TypeSourceInfo *Info, SourceLocation Loc,
144                             bool Dependent, bool IsGeneric,
145                             LambdaCaptureDefault CaptureDefault) {
146   auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
147                                       nullptr, nullptr);
148   R->setBeingDefined(true);
149   R->DefinitionData =
150       new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric,
151                                           CaptureDefault);
152   R->setMayHaveOutOfDateDef(false);
153   R->setImplicit(true);
154   C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
155   return R;
156 }
157
158 CXXRecordDecl *
159 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
160   auto *R = new (C, ID) CXXRecordDecl(
161       CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
162       nullptr, nullptr);
163   R->setMayHaveOutOfDateDef(false);
164   return R;
165 }
166
167 /// Determine whether a class has a repeated base class. This is intended for
168 /// use when determining if a class is standard-layout, so makes no attempt to
169 /// handle virtual bases.
170 static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) {
171   llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes;
172   SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD};
173   while (!WorkList.empty()) {
174     const CXXRecordDecl *RD = WorkList.pop_back_val();
175     for (const CXXBaseSpecifier &BaseSpec : RD->bases()) {
176       if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) {
177         if (!SeenBaseTypes.insert(B).second)
178           return true;
179         WorkList.push_back(B);
180       }
181     }
182   }
183   return false;
184 }
185
186 void
187 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
188                         unsigned NumBases) {
189   ASTContext &C = getASTContext();
190
191   if (!data().Bases.isOffset() && data().NumBases > 0)
192     C.Deallocate(data().getBases());
193
194   if (NumBases) {
195     if (!C.getLangOpts().CPlusPlus17) {
196       // C++ [dcl.init.aggr]p1:
197       //   An aggregate is [...] a class with [...] no base classes [...].
198       data().Aggregate = false;
199     }
200
201     // C++ [class]p4:
202     //   A POD-struct is an aggregate class...
203     data().PlainOldData = false;
204   }
205
206   // The set of seen virtual base types.
207   llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
208
209   // The virtual bases of this class.
210   SmallVector<const CXXBaseSpecifier *, 8> VBases;
211
212   data().Bases = new(C) CXXBaseSpecifier [NumBases];
213   data().NumBases = NumBases;
214   for (unsigned i = 0; i < NumBases; ++i) {
215     data().getBases()[i] = *Bases[i];
216     // Keep track of inherited vbases for this base class.
217     const CXXBaseSpecifier *Base = Bases[i];
218     QualType BaseType = Base->getType();
219     // Skip dependent types; we can't do any checking on them now.
220     if (BaseType->isDependentType())
221       continue;
222     auto *BaseClassDecl =
223         cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
224
225     // C++2a [class]p7:
226     //   A standard-layout class is a class that:
227     //    [...]
228     //    -- has all non-static data members and bit-fields in the class and
229     //       its base classes first declared in the same class
230     if (BaseClassDecl->data().HasBasesWithFields ||
231         !BaseClassDecl->field_empty()) {
232       if (data().HasBasesWithFields)
233         // Two bases have members or bit-fields: not standard-layout.
234         data().IsStandardLayout = false;
235       data().HasBasesWithFields = true;
236     }
237
238     // C++11 [class]p7:
239     //   A standard-layout class is a class that:
240     //     -- [...] has [...] at most one base class with non-static data
241     //        members
242     if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers ||
243         BaseClassDecl->hasDirectFields()) {
244       if (data().HasBasesWithNonStaticDataMembers)
245         data().IsCXX11StandardLayout = false;
246       data().HasBasesWithNonStaticDataMembers = true;
247     }
248
249     if (!BaseClassDecl->isEmpty()) {
250       // C++14 [meta.unary.prop]p4:
251       //   T is a class type [...] with [...] no base class B for which
252       //   is_empty<B>::value is false.
253       data().Empty = false;
254     }
255
256     // C++1z [dcl.init.agg]p1:
257     //   An aggregate is a class with [...] no private or protected base classes
258     if (Base->getAccessSpecifier() != AS_public)
259       data().Aggregate = false;
260
261     // C++ [class.virtual]p1:
262     //   A class that declares or inherits a virtual function is called a
263     //   polymorphic class.
264     if (BaseClassDecl->isPolymorphic()) {
265       data().Polymorphic = true;
266
267       //   An aggregate is a class with [...] no virtual functions.
268       data().Aggregate = false;
269     }
270
271     // C++0x [class]p7:
272     //   A standard-layout class is a class that: [...]
273     //    -- has no non-standard-layout base classes
274     if (!BaseClassDecl->isStandardLayout())
275       data().IsStandardLayout = false;
276     if (!BaseClassDecl->isCXX11StandardLayout())
277       data().IsCXX11StandardLayout = false;
278
279     // Record if this base is the first non-literal field or base.
280     if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
281       data().HasNonLiteralTypeFieldsOrBases = true;
282
283     // Now go through all virtual bases of this base and add them.
284     for (const auto &VBase : BaseClassDecl->vbases()) {
285       // Add this base if it's not already in the list.
286       if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
287         VBases.push_back(&VBase);
288
289         // C++11 [class.copy]p8:
290         //   The implicitly-declared copy constructor for a class X will have
291         //   the form 'X::X(const X&)' if each [...] virtual base class B of X
292         //   has a copy constructor whose first parameter is of type
293         //   'const B&' or 'const volatile B&' [...]
294         if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
295           if (!VBaseDecl->hasCopyConstructorWithConstParam())
296             data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
297
298         // C++1z [dcl.init.agg]p1:
299         //   An aggregate is a class with [...] no virtual base classes
300         data().Aggregate = false;
301       }
302     }
303
304     if (Base->isVirtual()) {
305       // Add this base if it's not already in the list.
306       if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
307         VBases.push_back(Base);
308
309       // C++14 [meta.unary.prop] is_empty:
310       //   T is a class type, but not a union type, with ... no virtual base
311       //   classes
312       data().Empty = false;
313
314       // C++1z [dcl.init.agg]p1:
315       //   An aggregate is a class with [...] no virtual base classes
316       data().Aggregate = false;
317
318       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
319       //   A [default constructor, copy/move constructor, or copy/move assignment
320       //   operator for a class X] is trivial [...] if:
321       //    -- class X has [...] no virtual base classes
322       data().HasTrivialSpecialMembers &= SMF_Destructor;
323       data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
324
325       // C++0x [class]p7:
326       //   A standard-layout class is a class that: [...]
327       //    -- has [...] no virtual base classes
328       data().IsStandardLayout = false;
329       data().IsCXX11StandardLayout = false;
330
331       // C++20 [dcl.constexpr]p3:
332       //   In the definition of a constexpr function [...]
333       //    -- if the function is a constructor or destructor,
334       //       its class shall not have any virtual base classes
335       data().DefaultedDefaultConstructorIsConstexpr = false;
336       data().DefaultedDestructorIsConstexpr = false;
337
338       // C++1z [class.copy]p8:
339       //   The implicitly-declared copy constructor for a class X will have
340       //   the form 'X::X(const X&)' if each potentially constructed subobject
341       //   has a copy constructor whose first parameter is of type
342       //   'const B&' or 'const volatile B&' [...]
343       if (!BaseClassDecl->hasCopyConstructorWithConstParam())
344         data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
345     } else {
346       // C++ [class.ctor]p5:
347       //   A default constructor is trivial [...] if:
348       //    -- all the direct base classes of its class have trivial default
349       //       constructors.
350       if (!BaseClassDecl->hasTrivialDefaultConstructor())
351         data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
352
353       // C++0x [class.copy]p13:
354       //   A copy/move constructor for class X is trivial if [...]
355       //    [...]
356       //    -- the constructor selected to copy/move each direct base class
357       //       subobject is trivial, and
358       if (!BaseClassDecl->hasTrivialCopyConstructor())
359         data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
360
361       if (!BaseClassDecl->hasTrivialCopyConstructorForCall())
362         data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
363
364       // If the base class doesn't have a simple move constructor, we'll eagerly
365       // declare it and perform overload resolution to determine which function
366       // it actually calls. If it does have a simple move constructor, this
367       // check is correct.
368       if (!BaseClassDecl->hasTrivialMoveConstructor())
369         data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
370
371       if (!BaseClassDecl->hasTrivialMoveConstructorForCall())
372         data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
373
374       // C++0x [class.copy]p27:
375       //   A copy/move assignment operator for class X is trivial if [...]
376       //    [...]
377       //    -- the assignment operator selected to copy/move each direct base
378       //       class subobject is trivial, and
379       if (!BaseClassDecl->hasTrivialCopyAssignment())
380         data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
381       // If the base class doesn't have a simple move assignment, we'll eagerly
382       // declare it and perform overload resolution to determine which function
383       // it actually calls. If it does have a simple move assignment, this
384       // check is correct.
385       if (!BaseClassDecl->hasTrivialMoveAssignment())
386         data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
387
388       // C++11 [class.ctor]p6:
389       //   If that user-written default constructor would satisfy the
390       //   requirements of a constexpr constructor, the implicitly-defined
391       //   default constructor is constexpr.
392       if (!BaseClassDecl->hasConstexprDefaultConstructor())
393         data().DefaultedDefaultConstructorIsConstexpr = false;
394
395       // C++1z [class.copy]p8:
396       //   The implicitly-declared copy constructor for a class X will have
397       //   the form 'X::X(const X&)' if each potentially constructed subobject
398       //   has a copy constructor whose first parameter is of type
399       //   'const B&' or 'const volatile B&' [...]
400       if (!BaseClassDecl->hasCopyConstructorWithConstParam())
401         data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
402     }
403
404     // C++ [class.ctor]p3:
405     //   A destructor is trivial if all the direct base classes of its class
406     //   have trivial destructors.
407     if (!BaseClassDecl->hasTrivialDestructor())
408       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
409
410     if (!BaseClassDecl->hasTrivialDestructorForCall())
411       data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
412
413     if (!BaseClassDecl->hasIrrelevantDestructor())
414       data().HasIrrelevantDestructor = false;
415
416     // C++11 [class.copy]p18:
417     //   The implicitly-declared copy assignment operator for a class X will
418     //   have the form 'X& X::operator=(const X&)' if each direct base class B
419     //   of X has a copy assignment operator whose parameter is of type 'const
420     //   B&', 'const volatile B&', or 'B' [...]
421     if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
422       data().ImplicitCopyAssignmentHasConstParam = false;
423
424     // A class has an Objective-C object member if... or any of its bases
425     // has an Objective-C object member.
426     if (BaseClassDecl->hasObjectMember())
427       setHasObjectMember(true);
428
429     if (BaseClassDecl->hasVolatileMember())
430       setHasVolatileMember(true);
431
432     if (BaseClassDecl->getArgPassingRestrictions() ==
433         RecordDecl::APK_CanNeverPassInRegs)
434       setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
435
436     // Keep track of the presence of mutable fields.
437     if (BaseClassDecl->hasMutableFields()) {
438       data().HasMutableFields = true;
439       data().NeedOverloadResolutionForCopyConstructor = true;
440     }
441
442     if (BaseClassDecl->hasUninitializedReferenceMember())
443       data().HasUninitializedReferenceMember = true;
444
445     if (!BaseClassDecl->allowConstDefaultInit())
446       data().HasUninitializedFields = true;
447
448     addedClassSubobject(BaseClassDecl);
449   }
450
451   // C++2a [class]p7:
452   //   A class S is a standard-layout class if it:
453   //     -- has at most one base class subobject of any given type
454   //
455   // Note that we only need to check this for classes with more than one base
456   // class. If there's only one base class, and it's standard layout, then
457   // we know there are no repeated base classes.
458   if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this))
459     data().IsStandardLayout = false;
460
461   if (VBases.empty()) {
462     data().IsParsingBaseSpecifiers = false;
463     return;
464   }
465
466   // Create base specifier for any direct or indirect virtual bases.
467   data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
468   data().NumVBases = VBases.size();
469   for (int I = 0, E = VBases.size(); I != E; ++I) {
470     QualType Type = VBases[I]->getType();
471     if (!Type->isDependentType())
472       addedClassSubobject(Type->getAsCXXRecordDecl());
473     data().getVBases()[I] = *VBases[I];
474   }
475
476   data().IsParsingBaseSpecifiers = false;
477 }
478
479 unsigned CXXRecordDecl::getODRHash() const {
480   assert(hasDefinition() && "ODRHash only for records with definitions");
481
482   // Previously calculated hash is stored in DefinitionData.
483   if (DefinitionData->HasODRHash)
484     return DefinitionData->ODRHash;
485
486   // Only calculate hash on first call of getODRHash per record.
487   ODRHash Hash;
488   Hash.AddCXXRecordDecl(getDefinition());
489   DefinitionData->HasODRHash = true;
490   DefinitionData->ODRHash = Hash.CalculateHash();
491
492   return DefinitionData->ODRHash;
493 }
494
495 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
496   // C++11 [class.copy]p11:
497   //   A defaulted copy/move constructor for a class X is defined as
498   //   deleted if X has:
499   //    -- a direct or virtual base class B that cannot be copied/moved [...]
500   //    -- a non-static data member of class type M (or array thereof)
501   //       that cannot be copied or moved [...]
502   if (!Subobj->hasSimpleCopyConstructor())
503     data().NeedOverloadResolutionForCopyConstructor = true;
504   if (!Subobj->hasSimpleMoveConstructor())
505     data().NeedOverloadResolutionForMoveConstructor = true;
506
507   // C++11 [class.copy]p23:
508   //   A defaulted copy/move assignment operator for a class X is defined as
509   //   deleted if X has:
510   //    -- a direct or virtual base class B that cannot be copied/moved [...]
511   //    -- a non-static data member of class type M (or array thereof)
512   //        that cannot be copied or moved [...]
513   if (!Subobj->hasSimpleMoveAssignment())
514     data().NeedOverloadResolutionForMoveAssignment = true;
515
516   // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
517   //   A defaulted [ctor or dtor] for a class X is defined as
518   //   deleted if X has:
519   //    -- any direct or virtual base class [...] has a type with a destructor
520   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
521   //    -- any non-static data member has a type with a destructor
522   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
523   if (!Subobj->hasSimpleDestructor()) {
524     data().NeedOverloadResolutionForCopyConstructor = true;
525     data().NeedOverloadResolutionForMoveConstructor = true;
526     data().NeedOverloadResolutionForDestructor = true;
527   }
528
529   // C++2a [dcl.constexpr]p4:
530   //   The definition of a constexpr destructor [shall] satisfy the
531   //   following requirement:
532   //   -- for every subobject of class type or (possibly multi-dimensional)
533   //      array thereof, that class type shall have a constexpr destructor
534   if (!Subobj->hasConstexprDestructor())
535     data().DefaultedDestructorIsConstexpr = false;
536 }
537
538 bool CXXRecordDecl::hasConstexprDestructor() const {
539   auto *Dtor = getDestructor();
540   return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr();
541 }
542
543 bool CXXRecordDecl::hasAnyDependentBases() const {
544   if (!isDependentContext())
545     return false;
546
547   return !forallBases([](const CXXRecordDecl *) { return true; });
548 }
549
550 bool CXXRecordDecl::isTriviallyCopyable() const {
551   // C++0x [class]p5:
552   //   A trivially copyable class is a class that:
553   //   -- has no non-trivial copy constructors,
554   if (hasNonTrivialCopyConstructor()) return false;
555   //   -- has no non-trivial move constructors,
556   if (hasNonTrivialMoveConstructor()) return false;
557   //   -- has no non-trivial copy assignment operators,
558   if (hasNonTrivialCopyAssignment()) return false;
559   //   -- has no non-trivial move assignment operators, and
560   if (hasNonTrivialMoveAssignment()) return false;
561   //   -- has a trivial destructor.
562   if (!hasTrivialDestructor()) return false;
563
564   return true;
565 }
566
567 void CXXRecordDecl::markedVirtualFunctionPure() {
568   // C++ [class.abstract]p2:
569   //   A class is abstract if it has at least one pure virtual function.
570   data().Abstract = true;
571 }
572
573 bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType(
574     ASTContext &Ctx, const CXXRecordDecl *XFirst) {
575   if (!getNumBases())
576     return false;
577
578   llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases;
579   llvm::SmallPtrSet<const CXXRecordDecl*, 8> M;
580   SmallVector<const CXXRecordDecl*, 8> WorkList;
581
582   // Visit a type that we have determined is an element of M(S).
583   auto Visit = [&](const CXXRecordDecl *RD) -> bool {
584     RD = RD->getCanonicalDecl();
585
586     // C++2a [class]p8:
587     //   A class S is a standard-layout class if it [...] has no element of the
588     //   set M(S) of types as a base class.
589     //
590     // If we find a subobject of an empty type, it might also be a base class,
591     // so we'll need to walk the base classes to check.
592     if (!RD->data().HasBasesWithFields) {
593       // Walk the bases the first time, stopping if we find the type. Build a
594       // set of them so we don't need to walk them again.
595       if (Bases.empty()) {
596         bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool {
597           Base = Base->getCanonicalDecl();
598           if (RD == Base)
599             return false;
600           Bases.insert(Base);
601           return true;
602         });
603         if (RDIsBase)
604           return true;
605       } else {
606         if (Bases.count(RD))
607           return true;
608       }
609     }
610
611     if (M.insert(RD).second)
612       WorkList.push_back(RD);
613     return false;
614   };
615
616   if (Visit(XFirst))
617     return true;
618
619   while (!WorkList.empty()) {
620     const CXXRecordDecl *X = WorkList.pop_back_val();
621
622     // FIXME: We don't check the bases of X. That matches the standard, but
623     // that sure looks like a wording bug.
624
625     //   -- If X is a non-union class type with a non-static data member
626     //      [recurse to each field] that is either of zero size or is the
627     //      first non-static data member of X
628     //   -- If X is a union type, [recurse to union members]
629     bool IsFirstField = true;
630     for (auto *FD : X->fields()) {
631       // FIXME: Should we really care about the type of the first non-static
632       // data member of a non-union if there are preceding unnamed bit-fields?
633       if (FD->isUnnamedBitfield())
634         continue;
635
636       if (!IsFirstField && !FD->isZeroSize(Ctx))
637         continue;
638
639       //   -- If X is n array type, [visit the element type]
640       QualType T = Ctx.getBaseElementType(FD->getType());
641       if (auto *RD = T->getAsCXXRecordDecl())
642         if (Visit(RD))
643           return true;
644
645       if (!X->isUnion())
646         IsFirstField = false;
647     }
648   }
649
650   return false;
651 }
652
653 bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const {
654   assert(isLambda() && "not a lambda");
655
656   // C++2a [expr.prim.lambda.capture]p11:
657   //   The closure type associated with a lambda-expression has no default
658   //   constructor if the lambda-expression has a lambda-capture and a
659   //   defaulted default constructor otherwise. It has a deleted copy
660   //   assignment operator if the lambda-expression has a lambda-capture and
661   //   defaulted copy and move assignment operators otherwise.
662   //
663   // C++17 [expr.prim.lambda]p21:
664   //   The closure type associated with a lambda-expression has no default
665   //   constructor and a deleted copy assignment operator.
666   if (getLambdaCaptureDefault() != LCD_None || 
667       getLambdaData().NumCaptures != 0)
668     return false;
669   return getASTContext().getLangOpts().CPlusPlus2a;
670 }
671
672 void CXXRecordDecl::addedMember(Decl *D) {
673   if (!D->isImplicit() &&
674       !isa<FieldDecl>(D) &&
675       !isa<IndirectFieldDecl>(D) &&
676       (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
677         cast<TagDecl>(D)->getTagKind() == TTK_Interface))
678     data().HasOnlyCMembers = false;
679
680   // Ignore friends and invalid declarations.
681   if (D->getFriendObjectKind() || D->isInvalidDecl())
682     return;
683
684   auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
685   if (FunTmpl)
686     D = FunTmpl->getTemplatedDecl();
687
688   // FIXME: Pass NamedDecl* to addedMember?
689   Decl *DUnderlying = D;
690   if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) {
691     DUnderlying = ND->getUnderlyingDecl();
692     if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying))
693       DUnderlying = UnderlyingFunTmpl->getTemplatedDecl();
694   }
695
696   if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
697     if (Method->isVirtual()) {
698       // C++ [dcl.init.aggr]p1:
699       //   An aggregate is an array or a class with [...] no virtual functions.
700       data().Aggregate = false;
701
702       // C++ [class]p4:
703       //   A POD-struct is an aggregate class...
704       data().PlainOldData = false;
705
706       // C++14 [meta.unary.prop]p4:
707       //   T is a class type [...] with [...] no virtual member functions...
708       data().Empty = false;
709
710       // C++ [class.virtual]p1:
711       //   A class that declares or inherits a virtual function is called a
712       //   polymorphic class.
713       data().Polymorphic = true;
714
715       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
716       //   A [default constructor, copy/move constructor, or copy/move
717       //   assignment operator for a class X] is trivial [...] if:
718       //    -- class X has no virtual functions [...]
719       data().HasTrivialSpecialMembers &= SMF_Destructor;
720       data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
721
722       // C++0x [class]p7:
723       //   A standard-layout class is a class that: [...]
724       //    -- has no virtual functions
725       data().IsStandardLayout = false;
726       data().IsCXX11StandardLayout = false;
727     }
728   }
729
730   // Notify the listener if an implicit member was added after the definition
731   // was completed.
732   if (!isBeingDefined() && D->isImplicit())
733     if (ASTMutationListener *L = getASTMutationListener())
734       L->AddedCXXImplicitMember(data().Definition, D);
735
736   // The kind of special member this declaration is, if any.
737   unsigned SMKind = 0;
738
739   // Handle constructors.
740   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
741     if (Constructor->isInheritingConstructor()) {
742       // Ignore constructor shadow declarations. They are lazily created and
743       // so shouldn't affect any properties of the class.
744     } else {
745       if (!Constructor->isImplicit()) {
746         // Note that we have a user-declared constructor.
747         data().UserDeclaredConstructor = true;
748
749         // C++ [class]p4:
750         //   A POD-struct is an aggregate class [...]
751         // Since the POD bit is meant to be C++03 POD-ness, clear it even if
752         // the type is technically an aggregate in C++0x since it wouldn't be
753         // in 03.
754         data().PlainOldData = false;
755       }
756
757       if (Constructor->isDefaultConstructor()) {
758         SMKind |= SMF_DefaultConstructor;
759
760         if (Constructor->isUserProvided())
761           data().UserProvidedDefaultConstructor = true;
762         if (Constructor->isConstexpr())
763           data().HasConstexprDefaultConstructor = true;
764         if (Constructor->isDefaulted())
765           data().HasDefaultedDefaultConstructor = true;
766       }
767
768       if (!FunTmpl) {
769         unsigned Quals;
770         if (Constructor->isCopyConstructor(Quals)) {
771           SMKind |= SMF_CopyConstructor;
772
773           if (Quals & Qualifiers::Const)
774             data().HasDeclaredCopyConstructorWithConstParam = true;
775         } else if (Constructor->isMoveConstructor())
776           SMKind |= SMF_MoveConstructor;
777       }
778
779       // C++11 [dcl.init.aggr]p1: DR1518
780       //   An aggregate is an array or a class with no user-provided [or]
781       //   explicit [...] constructors
782       // C++20 [dcl.init.aggr]p1:
783       //   An aggregate is an array or a class with no user-declared [...]
784       //   constructors
785       if (getASTContext().getLangOpts().CPlusPlus2a
786               ? !Constructor->isImplicit()
787               : (Constructor->isUserProvided() || Constructor->isExplicit()))
788         data().Aggregate = false;
789     }
790   }
791
792   // Handle constructors, including those inherited from base classes.
793   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) {
794     // Record if we see any constexpr constructors which are neither copy
795     // nor move constructors.
796     // C++1z [basic.types]p10:
797     //   [...] has at least one constexpr constructor or constructor template
798     //   (possibly inherited from a base class) that is not a copy or move
799     //   constructor [...]
800     if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
801       data().HasConstexprNonCopyMoveConstructor = true;
802   }
803
804   // Handle destructors.
805   if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
806     SMKind |= SMF_Destructor;
807
808     if (DD->isUserProvided())
809       data().HasIrrelevantDestructor = false;
810     // If the destructor is explicitly defaulted and not trivial or not public
811     // or if the destructor is deleted, we clear HasIrrelevantDestructor in
812     // finishedDefaultedOrDeletedMember.
813
814     // C++11 [class.dtor]p5:
815     //   A destructor is trivial if [...] the destructor is not virtual.
816     if (DD->isVirtual()) {
817       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
818       data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
819     }
820   }
821
822   // Handle member functions.
823   if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
824     if (Method->isCopyAssignmentOperator()) {
825       SMKind |= SMF_CopyAssignment;
826
827       const auto *ParamTy =
828           Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
829       if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
830         data().HasDeclaredCopyAssignmentWithConstParam = true;
831     }
832
833     if (Method->isMoveAssignmentOperator())
834       SMKind |= SMF_MoveAssignment;
835
836     // Keep the list of conversion functions up-to-date.
837     if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) {
838       // FIXME: We use the 'unsafe' accessor for the access specifier here,
839       // because Sema may not have set it yet. That's really just a misdesign
840       // in Sema. However, LLDB *will* have set the access specifier correctly,
841       // and adds declarations after the class is technically completed,
842       // so completeDefinition()'s overriding of the access specifiers doesn't
843       // work.
844       AccessSpecifier AS = Conversion->getAccessUnsafe();
845
846       if (Conversion->getPrimaryTemplate()) {
847         // We don't record specializations.
848       } else {
849         ASTContext &Ctx = getASTContext();
850         ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
851         NamedDecl *Primary =
852             FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
853         if (Primary->getPreviousDecl())
854           Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
855                               Primary, AS);
856         else
857           Conversions.addDecl(Ctx, Primary, AS);
858       }
859     }
860
861     if (SMKind) {
862       // If this is the first declaration of a special member, we no longer have
863       // an implicit trivial special member.
864       data().HasTrivialSpecialMembers &=
865           data().DeclaredSpecialMembers | ~SMKind;
866       data().HasTrivialSpecialMembersForCall &=
867           data().DeclaredSpecialMembers | ~SMKind;
868
869       if (!Method->isImplicit() && !Method->isUserProvided()) {
870         // This method is user-declared but not user-provided. We can't work out
871         // whether it's trivial yet (not until we get to the end of the class).
872         // We'll handle this method in finishedDefaultedOrDeletedMember.
873       } else if (Method->isTrivial()) {
874         data().HasTrivialSpecialMembers |= SMKind;
875         data().HasTrivialSpecialMembersForCall |= SMKind;
876       } else if (Method->isTrivialForCall()) {
877         data().HasTrivialSpecialMembersForCall |= SMKind;
878         data().DeclaredNonTrivialSpecialMembers |= SMKind;
879       } else {
880         data().DeclaredNonTrivialSpecialMembers |= SMKind;
881         // If this is a user-provided function, do not set
882         // DeclaredNonTrivialSpecialMembersForCall here since we don't know
883         // yet whether the method would be considered non-trivial for the
884         // purpose of calls (attribute "trivial_abi" can be dropped from the
885         // class later, which can change the special method's triviality).
886         if (!Method->isUserProvided())
887           data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
888       }
889
890       // Note when we have declared a declared special member, and suppress the
891       // implicit declaration of this special member.
892       data().DeclaredSpecialMembers |= SMKind;
893
894       if (!Method->isImplicit()) {
895         data().UserDeclaredSpecialMembers |= SMKind;
896
897         // C++03 [class]p4:
898         //   A POD-struct is an aggregate class that has [...] no user-defined
899         //   copy assignment operator and no user-defined destructor.
900         //
901         // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
902         // aggregates could not have any constructors, clear it even for an
903         // explicitly defaulted or deleted constructor.
904         // type is technically an aggregate in C++0x since it wouldn't be in 03.
905         //
906         // Also, a user-declared move assignment operator makes a class non-POD.
907         // This is an extension in C++03.
908         data().PlainOldData = false;
909       }
910     }
911
912     return;
913   }
914
915   // Handle non-static data members.
916   if (const auto *Field = dyn_cast<FieldDecl>(D)) {
917     ASTContext &Context = getASTContext();
918
919     // C++2a [class]p7:
920     //   A standard-layout class is a class that:
921     //    [...]
922     //    -- has all non-static data members and bit-fields in the class and
923     //       its base classes first declared in the same class
924     if (data().HasBasesWithFields)
925       data().IsStandardLayout = false;
926
927     // C++ [class.bit]p2:
928     //   A declaration for a bit-field that omits the identifier declares an
929     //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
930     //   initialized.
931     if (Field->isUnnamedBitfield()) {
932       // C++ [meta.unary.prop]p4: [LWG2358]
933       //   T is a class type [...] with [...] no unnamed bit-fields of non-zero
934       //   length
935       if (data().Empty && !Field->isZeroLengthBitField(Context) &&
936           Context.getLangOpts().getClangABICompat() >
937               LangOptions::ClangABI::Ver6)
938         data().Empty = false;
939       return;
940     }
941
942     // C++11 [class]p7:
943     //   A standard-layout class is a class that:
944     //    -- either has no non-static data members in the most derived class
945     //       [...] or has no base classes with non-static data members
946     if (data().HasBasesWithNonStaticDataMembers)
947       data().IsCXX11StandardLayout = false;
948
949     // C++ [dcl.init.aggr]p1:
950     //   An aggregate is an array or a class (clause 9) with [...] no
951     //   private or protected non-static data members (clause 11).
952     //
953     // A POD must be an aggregate.
954     if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
955       data().Aggregate = false;
956       data().PlainOldData = false;
957     }
958
959     // Track whether this is the first field. We use this when checking
960     // whether the class is standard-layout below.
961     bool IsFirstField = !data().HasPrivateFields &&
962                         !data().HasProtectedFields && !data().HasPublicFields;
963
964     // C++0x [class]p7:
965     //   A standard-layout class is a class that:
966     //    [...]
967     //    -- has the same access control for all non-static data members,
968     switch (D->getAccess()) {
969     case AS_private:    data().HasPrivateFields = true;   break;
970     case AS_protected:  data().HasProtectedFields = true; break;
971     case AS_public:     data().HasPublicFields = true;    break;
972     case AS_none:       llvm_unreachable("Invalid access specifier");
973     };
974     if ((data().HasPrivateFields + data().HasProtectedFields +
975          data().HasPublicFields) > 1) {
976       data().IsStandardLayout = false;
977       data().IsCXX11StandardLayout = false;
978     }
979
980     // Keep track of the presence of mutable fields.
981     if (Field->isMutable()) {
982       data().HasMutableFields = true;
983       data().NeedOverloadResolutionForCopyConstructor = true;
984     }
985
986     // C++11 [class.union]p8, DR1460:
987     //   If X is a union, a non-static data member of X that is not an anonymous
988     //   union is a variant member of X.
989     if (isUnion() && !Field->isAnonymousStructOrUnion())
990       data().HasVariantMembers = true;
991
992     // C++0x [class]p9:
993     //   A POD struct is a class that is both a trivial class and a
994     //   standard-layout class, and has no non-static data members of type
995     //   non-POD struct, non-POD union (or array of such types).
996     //
997     // Automatic Reference Counting: the presence of a member of Objective-C pointer type
998     // that does not explicitly have no lifetime makes the class a non-POD.
999     QualType T = Context.getBaseElementType(Field->getType());
1000     if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
1001       if (T.hasNonTrivialObjCLifetime()) {
1002         // Objective-C Automatic Reference Counting:
1003         //   If a class has a non-static data member of Objective-C pointer
1004         //   type (or array thereof), it is a non-POD type and its
1005         //   default constructor (if any), copy constructor, move constructor,
1006         //   copy assignment operator, move assignment operator, and destructor are
1007         //   non-trivial.
1008         setHasObjectMember(true);
1009         struct DefinitionData &Data = data();
1010         Data.PlainOldData = false;
1011         Data.HasTrivialSpecialMembers = 0;
1012
1013         // __strong or __weak fields do not make special functions non-trivial
1014         // for the purpose of calls.
1015         Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime();
1016         if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak)
1017           data().HasTrivialSpecialMembersForCall = 0;
1018
1019         // Structs with __weak fields should never be passed directly.
1020         if (LT == Qualifiers::OCL_Weak)
1021           setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
1022
1023         Data.HasIrrelevantDestructor = false;
1024
1025         if (isUnion()) {
1026           data().DefaultedCopyConstructorIsDeleted = true;
1027           data().DefaultedMoveConstructorIsDeleted = true;
1028           data().DefaultedMoveAssignmentIsDeleted = true;
1029           data().DefaultedDestructorIsDeleted = true;
1030           data().NeedOverloadResolutionForCopyConstructor = true;
1031           data().NeedOverloadResolutionForMoveConstructor = true;
1032           data().NeedOverloadResolutionForMoveAssignment = true;
1033           data().NeedOverloadResolutionForDestructor = true;
1034         }
1035       } else if (!Context.getLangOpts().ObjCAutoRefCount) {
1036         setHasObjectMember(true);
1037       }
1038     } else if (!T.isCXX98PODType(Context))
1039       data().PlainOldData = false;
1040
1041     if (T->isReferenceType()) {
1042       if (!Field->hasInClassInitializer())
1043         data().HasUninitializedReferenceMember = true;
1044
1045       // C++0x [class]p7:
1046       //   A standard-layout class is a class that:
1047       //    -- has no non-static data members of type [...] reference,
1048       data().IsStandardLayout = false;
1049       data().IsCXX11StandardLayout = false;
1050
1051       // C++1z [class.copy.ctor]p10:
1052       //   A defaulted copy constructor for a class X is defined as deleted if X has:
1053       //    -- a non-static data member of rvalue reference type
1054       if (T->isRValueReferenceType())
1055         data().DefaultedCopyConstructorIsDeleted = true;
1056     }
1057
1058     if (!Field->hasInClassInitializer() && !Field->isMutable()) {
1059       if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) {
1060         if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit())
1061           data().HasUninitializedFields = true;
1062       } else {
1063         data().HasUninitializedFields = true;
1064       }
1065     }
1066
1067     // Record if this field is the first non-literal or volatile field or base.
1068     if (!T->isLiteralType(Context) || T.isVolatileQualified())
1069       data().HasNonLiteralTypeFieldsOrBases = true;
1070
1071     if (Field->hasInClassInitializer() ||
1072         (Field->isAnonymousStructOrUnion() &&
1073          Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
1074       data().HasInClassInitializer = true;
1075
1076       // C++11 [class]p5:
1077       //   A default constructor is trivial if [...] no non-static data member
1078       //   of its class has a brace-or-equal-initializer.
1079       data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1080
1081       // C++11 [dcl.init.aggr]p1:
1082       //   An aggregate is a [...] class with [...] no
1083       //   brace-or-equal-initializers for non-static data members.
1084       //
1085       // This rule was removed in C++14.
1086       if (!getASTContext().getLangOpts().CPlusPlus14)
1087         data().Aggregate = false;
1088
1089       // C++11 [class]p10:
1090       //   A POD struct is [...] a trivial class.
1091       data().PlainOldData = false;
1092     }
1093
1094     // C++11 [class.copy]p23:
1095     //   A defaulted copy/move assignment operator for a class X is defined
1096     //   as deleted if X has:
1097     //    -- a non-static data member of reference type
1098     if (T->isReferenceType())
1099       data().DefaultedMoveAssignmentIsDeleted = true;
1100
1101     // Bitfields of length 0 are also zero-sized, but we already bailed out for
1102     // those because they are always unnamed.
1103     bool IsZeroSize = Field->isZeroSize(Context);
1104
1105     if (const auto *RecordTy = T->getAs<RecordType>()) {
1106       auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
1107       if (FieldRec->getDefinition()) {
1108         addedClassSubobject(FieldRec);
1109
1110         // We may need to perform overload resolution to determine whether a
1111         // field can be moved if it's const or volatile qualified.
1112         if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
1113           // We need to care about 'const' for the copy constructor because an
1114           // implicit copy constructor might be declared with a non-const
1115           // parameter.
1116           data().NeedOverloadResolutionForCopyConstructor = true;
1117           data().NeedOverloadResolutionForMoveConstructor = true;
1118           data().NeedOverloadResolutionForMoveAssignment = true;
1119         }
1120
1121         // C++11 [class.ctor]p5, C++11 [class.copy]p11:
1122         //   A defaulted [special member] for a class X is defined as
1123         //   deleted if:
1124         //    -- X is a union-like class that has a variant member with a
1125         //       non-trivial [corresponding special member]
1126         if (isUnion()) {
1127           if (FieldRec->hasNonTrivialCopyConstructor())
1128             data().DefaultedCopyConstructorIsDeleted = true;
1129           if (FieldRec->hasNonTrivialMoveConstructor())
1130             data().DefaultedMoveConstructorIsDeleted = true;
1131           if (FieldRec->hasNonTrivialMoveAssignment())
1132             data().DefaultedMoveAssignmentIsDeleted = true;
1133           if (FieldRec->hasNonTrivialDestructor())
1134             data().DefaultedDestructorIsDeleted = true;
1135         }
1136
1137         // For an anonymous union member, our overload resolution will perform
1138         // overload resolution for its members.
1139         if (Field->isAnonymousStructOrUnion()) {
1140           data().NeedOverloadResolutionForCopyConstructor |=
1141               FieldRec->data().NeedOverloadResolutionForCopyConstructor;
1142           data().NeedOverloadResolutionForMoveConstructor |=
1143               FieldRec->data().NeedOverloadResolutionForMoveConstructor;
1144           data().NeedOverloadResolutionForMoveAssignment |=
1145               FieldRec->data().NeedOverloadResolutionForMoveAssignment;
1146           data().NeedOverloadResolutionForDestructor |=
1147               FieldRec->data().NeedOverloadResolutionForDestructor;
1148         }
1149
1150         // C++0x [class.ctor]p5:
1151         //   A default constructor is trivial [...] if:
1152         //    -- for all the non-static data members of its class that are of
1153         //       class type (or array thereof), each such class has a trivial
1154         //       default constructor.
1155         if (!FieldRec->hasTrivialDefaultConstructor())
1156           data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1157
1158         // C++0x [class.copy]p13:
1159         //   A copy/move constructor for class X is trivial if [...]
1160         //    [...]
1161         //    -- for each non-static data member of X that is of class type (or
1162         //       an array thereof), the constructor selected to copy/move that
1163         //       member is trivial;
1164         if (!FieldRec->hasTrivialCopyConstructor())
1165           data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
1166
1167         if (!FieldRec->hasTrivialCopyConstructorForCall())
1168           data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
1169
1170         // If the field doesn't have a simple move constructor, we'll eagerly
1171         // declare the move constructor for this class and we'll decide whether
1172         // it's trivial then.
1173         if (!FieldRec->hasTrivialMoveConstructor())
1174           data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
1175
1176         if (!FieldRec->hasTrivialMoveConstructorForCall())
1177           data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
1178
1179         // C++0x [class.copy]p27:
1180         //   A copy/move assignment operator for class X is trivial if [...]
1181         //    [...]
1182         //    -- for each non-static data member of X that is of class type (or
1183         //       an array thereof), the assignment operator selected to
1184         //       copy/move that member is trivial;
1185         if (!FieldRec->hasTrivialCopyAssignment())
1186           data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
1187         // If the field doesn't have a simple move assignment, we'll eagerly
1188         // declare the move assignment for this class and we'll decide whether
1189         // it's trivial then.
1190         if (!FieldRec->hasTrivialMoveAssignment())
1191           data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
1192
1193         if (!FieldRec->hasTrivialDestructor())
1194           data().HasTrivialSpecialMembers &= ~SMF_Destructor;
1195         if (!FieldRec->hasTrivialDestructorForCall())
1196           data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
1197         if (!FieldRec->hasIrrelevantDestructor())
1198           data().HasIrrelevantDestructor = false;
1199         if (FieldRec->hasObjectMember())
1200           setHasObjectMember(true);
1201         if (FieldRec->hasVolatileMember())
1202           setHasVolatileMember(true);
1203         if (FieldRec->getArgPassingRestrictions() ==
1204             RecordDecl::APK_CanNeverPassInRegs)
1205           setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
1206
1207         // C++0x [class]p7:
1208         //   A standard-layout class is a class that:
1209         //    -- has no non-static data members of type non-standard-layout
1210         //       class (or array of such types) [...]
1211         if (!FieldRec->isStandardLayout())
1212           data().IsStandardLayout = false;
1213         if (!FieldRec->isCXX11StandardLayout())
1214           data().IsCXX11StandardLayout = false;
1215
1216         // C++2a [class]p7:
1217         //   A standard-layout class is a class that:
1218         //    [...]
1219         //    -- has no element of the set M(S) of types as a base class.
1220         if (data().IsStandardLayout &&
1221             (isUnion() || IsFirstField || IsZeroSize) &&
1222             hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec))
1223           data().IsStandardLayout = false;
1224
1225         // C++11 [class]p7:
1226         //   A standard-layout class is a class that:
1227         //    -- has no base classes of the same type as the first non-static
1228         //       data member
1229         if (data().IsCXX11StandardLayout && IsFirstField) {
1230           // FIXME: We should check all base classes here, not just direct
1231           // base classes.
1232           for (const auto &BI : bases()) {
1233             if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
1234               data().IsCXX11StandardLayout = false;
1235               break;
1236             }
1237           }
1238         }
1239
1240         // Keep track of the presence of mutable fields.
1241         if (FieldRec->hasMutableFields()) {
1242           data().HasMutableFields = true;
1243           data().NeedOverloadResolutionForCopyConstructor = true;
1244         }
1245
1246         // C++11 [class.copy]p13:
1247         //   If the implicitly-defined constructor would satisfy the
1248         //   requirements of a constexpr constructor, the implicitly-defined
1249         //   constructor is constexpr.
1250         // C++11 [dcl.constexpr]p4:
1251         //    -- every constructor involved in initializing non-static data
1252         //       members [...] shall be a constexpr constructor
1253         if (!Field->hasInClassInitializer() &&
1254             !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
1255           // The standard requires any in-class initializer to be a constant
1256           // expression. We consider this to be a defect.
1257           data().DefaultedDefaultConstructorIsConstexpr = false;
1258
1259         // C++11 [class.copy]p8:
1260         //   The implicitly-declared copy constructor for a class X will have
1261         //   the form 'X::X(const X&)' if each potentially constructed subobject
1262         //   of a class type M (or array thereof) has a copy constructor whose
1263         //   first parameter is of type 'const M&' or 'const volatile M&'.
1264         if (!FieldRec->hasCopyConstructorWithConstParam())
1265           data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
1266
1267         // C++11 [class.copy]p18:
1268         //   The implicitly-declared copy assignment oeprator for a class X will
1269         //   have the form 'X& X::operator=(const X&)' if [...] for all the
1270         //   non-static data members of X that are of a class type M (or array
1271         //   thereof), each such class type has a copy assignment operator whose
1272         //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
1273         if (!FieldRec->hasCopyAssignmentWithConstParam())
1274           data().ImplicitCopyAssignmentHasConstParam = false;
1275
1276         if (FieldRec->hasUninitializedReferenceMember() &&
1277             !Field->hasInClassInitializer())
1278           data().HasUninitializedReferenceMember = true;
1279
1280         // C++11 [class.union]p8, DR1460:
1281         //   a non-static data member of an anonymous union that is a member of
1282         //   X is also a variant member of X.
1283         if (FieldRec->hasVariantMembers() &&
1284             Field->isAnonymousStructOrUnion())
1285           data().HasVariantMembers = true;
1286       }
1287     } else {
1288       // Base element type of field is a non-class type.
1289       if (!T->isLiteralType(Context) ||
1290           (!Field->hasInClassInitializer() && !isUnion() &&
1291            !Context.getLangOpts().CPlusPlus2a))
1292         data().DefaultedDefaultConstructorIsConstexpr = false;
1293
1294       // C++11 [class.copy]p23:
1295       //   A defaulted copy/move assignment operator for a class X is defined
1296       //   as deleted if X has:
1297       //    -- a non-static data member of const non-class type (or array
1298       //       thereof)
1299       if (T.isConstQualified())
1300         data().DefaultedMoveAssignmentIsDeleted = true;
1301     }
1302
1303     // C++14 [meta.unary.prop]p4:
1304     //   T is a class type [...] with [...] no non-static data members other
1305     //   than subobjects of zero size
1306     if (data().Empty && !IsZeroSize)
1307       data().Empty = false;
1308   }
1309
1310   // Handle using declarations of conversion functions.
1311   if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) {
1312     if (Shadow->getDeclName().getNameKind()
1313           == DeclarationName::CXXConversionFunctionName) {
1314       ASTContext &Ctx = getASTContext();
1315       data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
1316     }
1317   }
1318
1319   if (const auto *Using = dyn_cast<UsingDecl>(D)) {
1320     if (Using->getDeclName().getNameKind() ==
1321         DeclarationName::CXXConstructorName) {
1322       data().HasInheritedConstructor = true;
1323       // C++1z [dcl.init.aggr]p1:
1324       //  An aggregate is [...] a class [...] with no inherited constructors
1325       data().Aggregate = false;
1326     }
1327
1328     if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal)
1329       data().HasInheritedAssignment = true;
1330   }
1331 }
1332
1333 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
1334   assert(!D->isImplicit() && !D->isUserProvided());
1335
1336   // The kind of special member this declaration is, if any.
1337   unsigned SMKind = 0;
1338
1339   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1340     if (Constructor->isDefaultConstructor()) {
1341       SMKind |= SMF_DefaultConstructor;
1342       if (Constructor->isConstexpr())
1343         data().HasConstexprDefaultConstructor = true;
1344     }
1345     if (Constructor->isCopyConstructor())
1346       SMKind |= SMF_CopyConstructor;
1347     else if (Constructor->isMoveConstructor())
1348       SMKind |= SMF_MoveConstructor;
1349     else if (Constructor->isConstexpr())
1350       // We may now know that the constructor is constexpr.
1351       data().HasConstexprNonCopyMoveConstructor = true;
1352   } else if (isa<CXXDestructorDecl>(D)) {
1353     SMKind |= SMF_Destructor;
1354     if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
1355       data().HasIrrelevantDestructor = false;
1356   } else if (D->isCopyAssignmentOperator())
1357     SMKind |= SMF_CopyAssignment;
1358   else if (D->isMoveAssignmentOperator())
1359     SMKind |= SMF_MoveAssignment;
1360
1361   // Update which trivial / non-trivial special members we have.
1362   // addedMember will have skipped this step for this member.
1363   if (D->isTrivial())
1364     data().HasTrivialSpecialMembers |= SMKind;
1365   else
1366     data().DeclaredNonTrivialSpecialMembers |= SMKind;
1367 }
1368
1369 void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) {
1370   unsigned SMKind = 0;
1371
1372   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1373     if (Constructor->isCopyConstructor())
1374       SMKind = SMF_CopyConstructor;
1375     else if (Constructor->isMoveConstructor())
1376       SMKind = SMF_MoveConstructor;
1377   } else if (isa<CXXDestructorDecl>(D))
1378     SMKind = SMF_Destructor;
1379
1380   if (D->isTrivialForCall())
1381     data().HasTrivialSpecialMembersForCall |= SMKind;
1382   else
1383     data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
1384 }
1385
1386 bool CXXRecordDecl::isCLike() const {
1387   if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
1388       !TemplateOrInstantiation.isNull())
1389     return false;
1390   if (!hasDefinition())
1391     return true;
1392
1393   return isPOD() && data().HasOnlyCMembers;
1394 }
1395
1396 bool CXXRecordDecl::isGenericLambda() const {
1397   if (!isLambda()) return false;
1398   return getLambdaData().IsGenericLambda;
1399 }
1400
1401 #ifndef NDEBUG
1402 static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) {
1403   for (auto *D : R)
1404     if (!declaresSameEntity(D, R.front()))
1405       return false;
1406   return true;
1407 }
1408 #endif
1409
1410 static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) {
1411   if (!RD.isLambda()) return nullptr;
1412   DeclarationName Name =
1413     RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1414   DeclContext::lookup_result Calls = RD.lookup(Name);
1415
1416   assert(!Calls.empty() && "Missing lambda call operator!");
1417   assert(allLookupResultsAreTheSame(Calls) &&
1418          "More than one lambda call operator!");
1419   return Calls.front();
1420 }
1421
1422 FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const {
1423   NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1424   return  dyn_cast_or_null<FunctionTemplateDecl>(CallOp);
1425 }
1426
1427 CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const {
1428   NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1429
1430   if (CallOp == nullptr)
1431     return nullptr;
1432
1433   if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp))
1434     return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
1435
1436   return cast<CXXMethodDecl>(CallOp);
1437 }
1438
1439 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
1440   if (!isLambda()) return nullptr;
1441   DeclarationName Name =
1442     &getASTContext().Idents.get(getLambdaStaticInvokerName());
1443   DeclContext::lookup_result Invoker = lookup(Name);
1444   if (Invoker.empty()) return nullptr;
1445   assert(allLookupResultsAreTheSame(Invoker) &&
1446          "More than one static invoker operator!");
1447   NamedDecl *InvokerFun = Invoker.front();
1448   if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(InvokerFun))
1449     return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
1450
1451   return cast<CXXMethodDecl>(InvokerFun);
1452 }
1453
1454 void CXXRecordDecl::getCaptureFields(
1455        llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1456        FieldDecl *&ThisCapture) const {
1457   Captures.clear();
1458   ThisCapture = nullptr;
1459
1460   LambdaDefinitionData &Lambda = getLambdaData();
1461   RecordDecl::field_iterator Field = field_begin();
1462   for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
1463        C != CEnd; ++C, ++Field) {
1464     if (C->capturesThis())
1465       ThisCapture = *Field;
1466     else if (C->capturesVariable())
1467       Captures[C->getCapturedVar()] = *Field;
1468   }
1469   assert(Field == field_end());
1470 }
1471
1472 TemplateParameterList *
1473 CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1474   if (!isGenericLambda()) return nullptr;
1475   CXXMethodDecl *CallOp = getLambdaCallOperator();
1476   if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
1477     return Tmpl->getTemplateParameters();
1478   return nullptr;
1479 }
1480
1481 ArrayRef<NamedDecl *>
1482 CXXRecordDecl::getLambdaExplicitTemplateParameters() const {
1483   TemplateParameterList *List = getGenericLambdaTemplateParameterList();
1484   if (!List)
1485     return {};
1486
1487   assert(std::is_partitioned(List->begin(), List->end(),
1488                              [](const NamedDecl *D) { return !D->isImplicit(); })
1489          && "Explicit template params should be ordered before implicit ones");
1490
1491   const auto ExplicitEnd = llvm::partition_point(
1492       *List, [](const NamedDecl *D) { return !D->isImplicit(); });
1493   return llvm::makeArrayRef(List->begin(), ExplicitEnd);
1494 }
1495
1496 Decl *CXXRecordDecl::getLambdaContextDecl() const {
1497   assert(isLambda() && "Not a lambda closure type!");
1498   ExternalASTSource *Source = getParentASTContext().getExternalSource();
1499   return getLambdaData().ContextDecl.get(Source);
1500 }
1501
1502 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1503   QualType T =
1504       cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
1505           ->getConversionType();
1506   return Context.getCanonicalType(T);
1507 }
1508
1509 /// Collect the visible conversions of a base class.
1510 ///
1511 /// \param Record a base class of the class we're considering
1512 /// \param InVirtual whether this base class is a virtual base (or a base
1513 ///   of a virtual base)
1514 /// \param Access the access along the inheritance path to this base
1515 /// \param ParentHiddenTypes the conversions provided by the inheritors
1516 ///   of this base
1517 /// \param Output the set to which to add conversions from non-virtual bases
1518 /// \param VOutput the set to which to add conversions from virtual bases
1519 /// \param HiddenVBaseCs the set of conversions which were hidden in a
1520 ///   virtual base along some inheritance path
1521 static void CollectVisibleConversions(
1522     ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual,
1523     AccessSpecifier Access,
1524     const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1525     ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput,
1526     llvm::SmallPtrSet<NamedDecl *, 8> &HiddenVBaseCs) {
1527   // The set of types which have conversions in this class or its
1528   // subclasses.  As an optimization, we don't copy the derived set
1529   // unless it might change.
1530   const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1531   llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1532
1533   // Collect the direct conversions and figure out which conversions
1534   // will be hidden in the subclasses.
1535   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1536   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1537   if (ConvI != ConvE) {
1538     HiddenTypesBuffer = ParentHiddenTypes;
1539     HiddenTypes = &HiddenTypesBuffer;
1540
1541     for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
1542       CanQualType ConvType(GetConversionType(Context, I.getDecl()));
1543       bool Hidden = ParentHiddenTypes.count(ConvType);
1544       if (!Hidden)
1545         HiddenTypesBuffer.insert(ConvType);
1546
1547       // If this conversion is hidden and we're in a virtual base,
1548       // remember that it's hidden along some inheritance path.
1549       if (Hidden && InVirtual)
1550         HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1551
1552       // If this conversion isn't hidden, add it to the appropriate output.
1553       else if (!Hidden) {
1554         AccessSpecifier IAccess
1555           = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1556
1557         if (InVirtual)
1558           VOutput.addDecl(I.getDecl(), IAccess);
1559         else
1560           Output.addDecl(Context, I.getDecl(), IAccess);
1561       }
1562     }
1563   }
1564
1565   // Collect information recursively from any base classes.
1566   for (const auto &I : Record->bases()) {
1567     const auto *RT = I.getType()->getAs<RecordType>();
1568     if (!RT) continue;
1569
1570     AccessSpecifier BaseAccess
1571       = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
1572     bool BaseInVirtual = InVirtual || I.isVirtual();
1573
1574     auto *Base = cast<CXXRecordDecl>(RT->getDecl());
1575     CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1576                               *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1577   }
1578 }
1579
1580 /// Collect the visible conversions of a class.
1581 ///
1582 /// This would be extremely straightforward if it weren't for virtual
1583 /// bases.  It might be worth special-casing that, really.
1584 static void CollectVisibleConversions(ASTContext &Context,
1585                                       const CXXRecordDecl *Record,
1586                                       ASTUnresolvedSet &Output) {
1587   // The collection of all conversions in virtual bases that we've
1588   // found.  These will be added to the output as long as they don't
1589   // appear in the hidden-conversions set.
1590   UnresolvedSet<8> VBaseCs;
1591
1592   // The set of conversions in virtual bases that we've determined to
1593   // be hidden.
1594   llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1595
1596   // The set of types hidden by classes derived from this one.
1597   llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1598
1599   // Go ahead and collect the direct conversions and add them to the
1600   // hidden-types set.
1601   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1602   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1603   Output.append(Context, ConvI, ConvE);
1604   for (; ConvI != ConvE; ++ConvI)
1605     HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1606
1607   // Recursively collect conversions from base classes.
1608   for (const auto &I : Record->bases()) {
1609     const auto *RT = I.getType()->getAs<RecordType>();
1610     if (!RT) continue;
1611
1612     CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1613                               I.isVirtual(), I.getAccessSpecifier(),
1614                               HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1615   }
1616
1617   // Add any unhidden conversions provided by virtual bases.
1618   for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1619          I != E; ++I) {
1620     if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1621       Output.addDecl(Context, I.getDecl(), I.getAccess());
1622   }
1623 }
1624
1625 /// getVisibleConversionFunctions - get all conversion functions visible
1626 /// in current class; including conversion function templates.
1627 llvm::iterator_range<CXXRecordDecl::conversion_iterator>
1628 CXXRecordDecl::getVisibleConversionFunctions() const {
1629   ASTContext &Ctx = getASTContext();
1630
1631   ASTUnresolvedSet *Set;
1632   if (bases_begin() == bases_end()) {
1633     // If root class, all conversions are visible.
1634     Set = &data().Conversions.get(Ctx);
1635   } else {
1636     Set = &data().VisibleConversions.get(Ctx);
1637     // If visible conversion list is not evaluated, evaluate it.
1638     if (!data().ComputedVisibleConversions) {
1639       CollectVisibleConversions(Ctx, this, *Set);
1640       data().ComputedVisibleConversions = true;
1641     }
1642   }
1643   return llvm::make_range(Set->begin(), Set->end());
1644 }
1645
1646 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1647   // This operation is O(N) but extremely rare.  Sema only uses it to
1648   // remove UsingShadowDecls in a class that were followed by a direct
1649   // declaration, e.g.:
1650   //   class A : B {
1651   //     using B::operator int;
1652   //     operator int();
1653   //   };
1654   // This is uncommon by itself and even more uncommon in conjunction
1655   // with sufficiently large numbers of directly-declared conversions
1656   // that asymptotic behavior matters.
1657
1658   ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
1659   for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1660     if (Convs[I].getDecl() == ConvDecl) {
1661       Convs.erase(I);
1662       assert(llvm::find(Convs, ConvDecl) == Convs.end() &&
1663              "conversion was found multiple times in unresolved set");
1664       return;
1665     }
1666   }
1667
1668   llvm_unreachable("conversion not found in set!");
1669 }
1670
1671 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1672   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1673     return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1674
1675   return nullptr;
1676 }
1677
1678 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
1679   return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1680 }
1681
1682 void
1683 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1684                                              TemplateSpecializationKind TSK) {
1685   assert(TemplateOrInstantiation.isNull() &&
1686          "Previous template or instantiation?");
1687   assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
1688   TemplateOrInstantiation
1689     = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1690 }
1691
1692 ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const {
1693   return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>();
1694 }
1695
1696 void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) {
1697   TemplateOrInstantiation = Template;
1698 }
1699
1700 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1701   if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this))
1702     return Spec->getSpecializationKind();
1703
1704   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1705     return MSInfo->getTemplateSpecializationKind();
1706
1707   return TSK_Undeclared;
1708 }
1709
1710 void
1711 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1712   if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1713     Spec->setSpecializationKind(TSK);
1714     return;
1715   }
1716
1717   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1718     MSInfo->setTemplateSpecializationKind(TSK);
1719     return;
1720   }
1721
1722   llvm_unreachable("Not a class template or member class specialization");
1723 }
1724
1725 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
1726   auto GetDefinitionOrSelf =
1727       [](const CXXRecordDecl *D) -> const CXXRecordDecl * {
1728     if (auto *Def = D->getDefinition())
1729       return Def;
1730     return D;
1731   };
1732
1733   // If it's a class template specialization, find the template or partial
1734   // specialization from which it was instantiated.
1735   if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1736     auto From = TD->getInstantiatedFrom();
1737     if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
1738       while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
1739         if (NewCTD->isMemberSpecialization())
1740           break;
1741         CTD = NewCTD;
1742       }
1743       return GetDefinitionOrSelf(CTD->getTemplatedDecl());
1744     }
1745     if (auto *CTPSD =
1746             From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
1747       while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
1748         if (NewCTPSD->isMemberSpecialization())
1749           break;
1750         CTPSD = NewCTPSD;
1751       }
1752       return GetDefinitionOrSelf(CTPSD);
1753     }
1754   }
1755
1756   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1757     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
1758       const CXXRecordDecl *RD = this;
1759       while (auto *NewRD = RD->getInstantiatedFromMemberClass())
1760         RD = NewRD;
1761       return GetDefinitionOrSelf(RD);
1762     }
1763   }
1764
1765   assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
1766          "couldn't find pattern for class template instantiation");
1767   return nullptr;
1768 }
1769
1770 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1771   ASTContext &Context = getASTContext();
1772   QualType ClassType = Context.getTypeDeclType(this);
1773
1774   DeclarationName Name
1775     = Context.DeclarationNames.getCXXDestructorName(
1776                                           Context.getCanonicalType(ClassType));
1777
1778   DeclContext::lookup_result R = lookup(Name);
1779
1780   return R.empty() ? nullptr : dyn_cast<CXXDestructorDecl>(R.front());
1781 }
1782
1783 bool CXXRecordDecl::isAnyDestructorNoReturn() const {
1784   // Destructor is noreturn.
1785   if (const CXXDestructorDecl *Destructor = getDestructor())
1786     if (Destructor->isNoReturn())
1787       return true;
1788
1789   // Check base classes destructor for noreturn.
1790   for (const auto &Base : bases())
1791     if (const CXXRecordDecl *RD = Base.getType()->getAsCXXRecordDecl())
1792       if (RD->isAnyDestructorNoReturn())
1793         return true;
1794
1795   // Check fields for noreturn.
1796   for (const auto *Field : fields())
1797     if (const CXXRecordDecl *RD =
1798             Field->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
1799       if (RD->isAnyDestructorNoReturn())
1800         return true;
1801
1802   // All destructors are not noreturn.
1803   return false;
1804 }
1805
1806 static bool isDeclContextInNamespace(const DeclContext *DC) {
1807   while (!DC->isTranslationUnit()) {
1808     if (DC->isNamespace())
1809       return true;
1810     DC = DC->getParent();
1811   }
1812   return false;
1813 }
1814
1815 bool CXXRecordDecl::isInterfaceLike() const {
1816   assert(hasDefinition() && "checking for interface-like without a definition");
1817   // All __interfaces are inheritently interface-like.
1818   if (isInterface())
1819     return true;
1820
1821   // Interface-like types cannot have a user declared constructor, destructor,
1822   // friends, VBases, conversion functions, or fields.  Additionally, lambdas
1823   // cannot be interface types.
1824   if (isLambda() || hasUserDeclaredConstructor() ||
1825       hasUserDeclaredDestructor() || !field_empty() || hasFriends() ||
1826       getNumVBases() > 0 || conversion_end() - conversion_begin() > 0)
1827     return false;
1828
1829   // No interface-like type can have a method with a definition.
1830   for (const auto *const Method : methods())
1831     if (Method->isDefined() && !Method->isImplicit())
1832       return false;
1833
1834   // Check "Special" types.
1835   const auto *Uuid = getAttr<UuidAttr>();
1836   // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an
1837   // extern C++ block directly in the TU.  These are only valid if in one
1838   // of these two situations.
1839   if (Uuid && isStruct() && !getDeclContext()->isExternCContext() &&
1840       !isDeclContextInNamespace(getDeclContext()) &&
1841       ((getName() == "IUnknown" &&
1842         Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") ||
1843        (getName() == "IDispatch" &&
1844         Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) {
1845     if (getNumBases() > 0)
1846       return false;
1847     return true;
1848   }
1849
1850   // FIXME: Any access specifiers is supposed to make this no longer interface
1851   // like.
1852
1853   // If this isn't a 'special' type, it must have a single interface-like base.
1854   if (getNumBases() != 1)
1855     return false;
1856
1857   const auto BaseSpec = *bases_begin();
1858   if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public)
1859     return false;
1860   const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
1861   if (Base->isInterface() || !Base->isInterfaceLike())
1862     return false;
1863   return true;
1864 }
1865
1866 void CXXRecordDecl::completeDefinition() {
1867   completeDefinition(nullptr);
1868 }
1869
1870 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
1871   RecordDecl::completeDefinition();
1872
1873   // If the class may be abstract (but hasn't been marked as such), check for
1874   // any pure final overriders.
1875   if (mayBeAbstract()) {
1876     CXXFinalOverriderMap MyFinalOverriders;
1877     if (!FinalOverriders) {
1878       getFinalOverriders(MyFinalOverriders);
1879       FinalOverriders = &MyFinalOverriders;
1880     }
1881
1882     bool Done = false;
1883     for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
1884                                      MEnd = FinalOverriders->end();
1885          M != MEnd && !Done; ++M) {
1886       for (OverridingMethods::iterator SO = M->second.begin(),
1887                                     SOEnd = M->second.end();
1888            SO != SOEnd && !Done; ++SO) {
1889         assert(SO->second.size() > 0 &&
1890                "All virtual functions have overriding virtual functions");
1891
1892         // C++ [class.abstract]p4:
1893         //   A class is abstract if it contains or inherits at least one
1894         //   pure virtual function for which the final overrider is pure
1895         //   virtual.
1896         if (SO->second.front().Method->isPure()) {
1897           data().Abstract = true;
1898           Done = true;
1899           break;
1900         }
1901       }
1902     }
1903   }
1904
1905   // Set access bits correctly on the directly-declared conversions.
1906   for (conversion_iterator I = conversion_begin(), E = conversion_end();
1907        I != E; ++I)
1908     I.setAccess((*I)->getAccess());
1909 }
1910
1911 bool CXXRecordDecl::mayBeAbstract() const {
1912   if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
1913       isDependentContext())
1914     return false;
1915
1916   for (const auto &B : bases()) {
1917     const auto *BaseDecl =
1918         cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
1919     if (BaseDecl->isAbstract())
1920       return true;
1921   }
1922
1923   return false;
1924 }
1925
1926 void CXXDeductionGuideDecl::anchor() {}
1927
1928 bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const {
1929   if ((getKind() != Other.getKind() ||
1930        getKind() == ExplicitSpecKind::Unresolved)) {
1931     if (getKind() == ExplicitSpecKind::Unresolved &&
1932         Other.getKind() == ExplicitSpecKind::Unresolved) {
1933       ODRHash SelfHash, OtherHash;
1934       SelfHash.AddStmt(getExpr());
1935       OtherHash.AddStmt(Other.getExpr());
1936       return SelfHash.CalculateHash() == OtherHash.CalculateHash();
1937     } else
1938       return false;
1939   }
1940   return true;
1941 }
1942
1943 ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) {
1944   switch (Function->getDeclKind()) {
1945   case Decl::Kind::CXXConstructor:
1946     return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier();
1947   case Decl::Kind::CXXConversion:
1948     return cast<CXXConversionDecl>(Function)->getExplicitSpecifier();
1949   case Decl::Kind::CXXDeductionGuide:
1950     return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier();
1951   default:
1952     return {};
1953   }
1954 }
1955
1956 CXXDeductionGuideDecl *CXXDeductionGuideDecl::Create(
1957     ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1958     ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T,
1959     TypeSourceInfo *TInfo, SourceLocation EndLocation) {
1960   return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T,
1961                                            TInfo, EndLocation);
1962 }
1963
1964 CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C,
1965                                                                  unsigned ID) {
1966   return new (C, ID) CXXDeductionGuideDecl(
1967       C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(),
1968       QualType(), nullptr, SourceLocation());
1969 }
1970
1971 RequiresExprBodyDecl *RequiresExprBodyDecl::Create(
1972     ASTContext &C, DeclContext *DC, SourceLocation StartLoc) {
1973   return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc);
1974 }
1975
1976 RequiresExprBodyDecl *RequiresExprBodyDecl::CreateDeserialized(ASTContext &C,
1977                                                                unsigned ID) {
1978   return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation());
1979 }
1980
1981 void CXXMethodDecl::anchor() {}
1982
1983 bool CXXMethodDecl::isStatic() const {
1984   const CXXMethodDecl *MD = getCanonicalDecl();
1985
1986   if (MD->getStorageClass() == SC_Static)
1987     return true;
1988
1989   OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
1990   return isStaticOverloadedOperator(OOK);
1991 }
1992
1993 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
1994                                  const CXXMethodDecl *BaseMD) {
1995   for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) {
1996     if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
1997       return true;
1998     if (recursivelyOverrides(MD, BaseMD))
1999       return true;
2000   }
2001   return false;
2002 }
2003
2004 CXXMethodDecl *
2005 CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2006                                                      bool MayBeBase) {
2007   if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
2008     return this;
2009
2010   // Lookup doesn't work for destructors, so handle them separately.
2011   if (isa<CXXDestructorDecl>(this)) {
2012     CXXMethodDecl *MD = RD->getDestructor();
2013     if (MD) {
2014       if (recursivelyOverrides(MD, this))
2015         return MD;
2016       if (MayBeBase && recursivelyOverrides(this, MD))
2017         return MD;
2018     }
2019     return nullptr;
2020   }
2021
2022   for (auto *ND : RD->lookup(getDeclName())) {
2023     auto *MD = dyn_cast<CXXMethodDecl>(ND);
2024     if (!MD)
2025       continue;
2026     if (recursivelyOverrides(MD, this))
2027       return MD;
2028     if (MayBeBase && recursivelyOverrides(this, MD))
2029       return MD;
2030   }
2031
2032   return nullptr;
2033 }
2034
2035 CXXMethodDecl *
2036 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2037                                              bool MayBeBase) {
2038   if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase))
2039     return MD;
2040
2041   for (const auto &I : RD->bases()) {
2042     const RecordType *RT = I.getType()->getAs<RecordType>();
2043     if (!RT)
2044       continue;
2045     const auto *Base = cast<CXXRecordDecl>(RT->getDecl());
2046     CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
2047     if (T)
2048       return T;
2049   }
2050
2051   return nullptr;
2052 }
2053
2054 CXXMethodDecl *CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
2055                                      SourceLocation StartLoc,
2056                                      const DeclarationNameInfo &NameInfo,
2057                                      QualType T, TypeSourceInfo *TInfo,
2058                                      StorageClass SC, bool isInline,
2059                                      ConstexprSpecKind ConstexprKind,
2060                                      SourceLocation EndLocation,
2061                                      Expr *TrailingRequiresClause) {
2062   return new (C, RD)
2063       CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC,
2064                     isInline, ConstexprKind, EndLocation,
2065                     TrailingRequiresClause);
2066 }
2067
2068 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2069   return new (C, ID) CXXMethodDecl(
2070       CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(),
2071       QualType(), nullptr, SC_None, false, CSK_unspecified, SourceLocation(),
2072       nullptr);
2073 }
2074
2075 CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base,
2076                                                      bool IsAppleKext) {
2077   assert(isVirtual() && "this method is expected to be virtual");
2078
2079   // When building with -fapple-kext, all calls must go through the vtable since
2080   // the kernel linker can do runtime patching of vtables.
2081   if (IsAppleKext)
2082     return nullptr;
2083
2084   // If the member function is marked 'final', we know that it can't be
2085   // overridden and can therefore devirtualize it unless it's pure virtual.
2086   if (hasAttr<FinalAttr>())
2087     return isPure() ? nullptr : this;
2088
2089   // If Base is unknown, we cannot devirtualize.
2090   if (!Base)
2091     return nullptr;
2092
2093   // If the base expression (after skipping derived-to-base conversions) is a
2094   // class prvalue, then we can devirtualize.
2095   Base = Base->getBestDynamicClassTypeExpr();
2096   if (Base->isRValue() && Base->getType()->isRecordType())
2097     return this;
2098
2099   // If we don't even know what we would call, we can't devirtualize.
2100   const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
2101   if (!BestDynamicDecl)
2102     return nullptr;
2103
2104   // There may be a method corresponding to MD in a derived class.
2105   CXXMethodDecl *DevirtualizedMethod =
2106       getCorrespondingMethodInClass(BestDynamicDecl);
2107
2108   // If that method is pure virtual, we can't devirtualize. If this code is
2109   // reached, the result would be UB, not a direct call to the derived class
2110   // function, and we can't assume the derived class function is defined.
2111   if (DevirtualizedMethod->isPure())
2112     return nullptr;
2113
2114   // If that method is marked final, we can devirtualize it.
2115   if (DevirtualizedMethod->hasAttr<FinalAttr>())
2116     return DevirtualizedMethod;
2117
2118   // Similarly, if the class itself or its destructor is marked 'final',
2119   // the class can't be derived from and we can therefore devirtualize the 
2120   // member function call.
2121   if (BestDynamicDecl->hasAttr<FinalAttr>())
2122     return DevirtualizedMethod;
2123   if (const auto *dtor = BestDynamicDecl->getDestructor()) {
2124     if (dtor->hasAttr<FinalAttr>())
2125       return DevirtualizedMethod;
2126   }
2127
2128   if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
2129     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2130       if (VD->getType()->isRecordType())
2131         // This is a record decl. We know the type and can devirtualize it.
2132         return DevirtualizedMethod;
2133
2134     return nullptr;
2135   }
2136
2137   // We can devirtualize calls on an object accessed by a class member access
2138   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2139   // a derived class object constructed in the same location.
2140   if (const auto *ME = dyn_cast<MemberExpr>(Base)) {
2141     const ValueDecl *VD = ME->getMemberDecl();
2142     return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr;
2143   }
2144
2145   // Likewise for calls on an object accessed by a (non-reference) pointer to
2146   // member access.
2147   if (auto *BO = dyn_cast<BinaryOperator>(Base)) {
2148     if (BO->isPtrMemOp()) {
2149       auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>();
2150       if (MPT->getPointeeType()->isRecordType())
2151         return DevirtualizedMethod;
2152     }
2153   }
2154
2155   // We can't devirtualize the call.
2156   return nullptr;
2157 }
2158
2159 bool CXXMethodDecl::isUsualDeallocationFunction(
2160     SmallVectorImpl<const FunctionDecl *> &PreventedBy) const {
2161   assert(PreventedBy.empty() && "PreventedBy is expected to be empty");
2162   if (getOverloadedOperator() != OO_Delete &&
2163       getOverloadedOperator() != OO_Array_Delete)
2164     return false;
2165
2166   // C++ [basic.stc.dynamic.deallocation]p2:
2167   //   A template instance is never a usual deallocation function,
2168   //   regardless of its signature.
2169   if (getPrimaryTemplate())
2170     return false;
2171
2172   // C++ [basic.stc.dynamic.deallocation]p2:
2173   //   If a class T has a member deallocation function named operator delete
2174   //   with exactly one parameter, then that function is a usual (non-placement)
2175   //   deallocation function. [...]
2176   if (getNumParams() == 1)
2177     return true;
2178   unsigned UsualParams = 1;
2179
2180   // C++ P0722:
2181   //   A destroying operator delete is a usual deallocation function if
2182   //   removing the std::destroying_delete_t parameter and changing the
2183   //   first parameter type from T* to void* results in the signature of
2184   //   a usual deallocation function.
2185   if (isDestroyingOperatorDelete())
2186     ++UsualParams;
2187
2188   // C++ <=14 [basic.stc.dynamic.deallocation]p2:
2189   //   [...] If class T does not declare such an operator delete but does
2190   //   declare a member deallocation function named operator delete with
2191   //   exactly two parameters, the second of which has type std::size_t (18.1),
2192   //   then this function is a usual deallocation function.
2193   //
2194   // C++17 says a usual deallocation function is one with the signature
2195   //   (void* [, size_t] [, std::align_val_t] [, ...])
2196   // and all such functions are usual deallocation functions. It's not clear
2197   // that allowing varargs functions was intentional.
2198   ASTContext &Context = getASTContext();
2199   if (UsualParams < getNumParams() &&
2200       Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(),
2201                                      Context.getSizeType()))
2202     ++UsualParams;
2203
2204   if (UsualParams < getNumParams() &&
2205       getParamDecl(UsualParams)->getType()->isAlignValT())
2206     ++UsualParams;
2207
2208   if (UsualParams != getNumParams())
2209     return false;
2210
2211   // In C++17 onwards, all potential usual deallocation functions are actual
2212   // usual deallocation functions. Honor this behavior when post-C++14
2213   // deallocation functions are offered as extensions too.
2214   // FIXME(EricWF): Destrying Delete should be a language option. How do we
2215   // handle when destroying delete is used prior to C++17?
2216   if (Context.getLangOpts().CPlusPlus17 ||
2217       Context.getLangOpts().AlignedAllocation ||
2218       isDestroyingOperatorDelete())
2219     return true;
2220
2221   // This function is a usual deallocation function if there are no
2222   // single-parameter deallocation functions of the same kind.
2223   DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
2224   bool Result = true;
2225   for (const auto *D : R) {
2226     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2227       if (FD->getNumParams() == 1) {
2228         PreventedBy.push_back(FD);
2229         Result = false;
2230       }
2231     }
2232   }
2233   return Result;
2234 }
2235
2236 bool CXXMethodDecl::isCopyAssignmentOperator() const {
2237   // C++0x [class.copy]p17:
2238   //  A user-declared copy assignment operator X::operator= is a non-static
2239   //  non-template member function of class X with exactly one parameter of
2240   //  type X, X&, const X&, volatile X& or const volatile X&.
2241   if (/*operator=*/getOverloadedOperator() != OO_Equal ||
2242       /*non-static*/ isStatic() ||
2243       /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2244       getNumParams() != 1)
2245     return false;
2246
2247   QualType ParamType = getParamDecl(0)->getType();
2248   if (const auto *Ref = ParamType->getAs<LValueReferenceType>())
2249     ParamType = Ref->getPointeeType();
2250
2251   ASTContext &Context = getASTContext();
2252   QualType ClassType
2253     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2254   return Context.hasSameUnqualifiedType(ClassType, ParamType);
2255 }
2256
2257 bool CXXMethodDecl::isMoveAssignmentOperator() const {
2258   // C++0x [class.copy]p19:
2259   //  A user-declared move assignment operator X::operator= is a non-static
2260   //  non-template member function of class X with exactly one parameter of type
2261   //  X&&, const X&&, volatile X&&, or const volatile X&&.
2262   if (getOverloadedOperator() != OO_Equal || isStatic() ||
2263       getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2264       getNumParams() != 1)
2265     return false;
2266
2267   QualType ParamType = getParamDecl(0)->getType();
2268   if (!isa<RValueReferenceType>(ParamType))
2269     return false;
2270   ParamType = ParamType->getPointeeType();
2271
2272   ASTContext &Context = getASTContext();
2273   QualType ClassType
2274     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2275   return Context.hasSameUnqualifiedType(ClassType, ParamType);
2276 }
2277
2278 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
2279   assert(MD->isCanonicalDecl() && "Method is not canonical!");
2280   assert(!MD->getParent()->isDependentContext() &&
2281          "Can't add an overridden method to a class template!");
2282   assert(MD->isVirtual() && "Method is not virtual!");
2283
2284   getASTContext().addOverriddenMethod(this, MD);
2285 }
2286
2287 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
2288   if (isa<CXXConstructorDecl>(this)) return nullptr;
2289   return getASTContext().overridden_methods_begin(this);
2290 }
2291
2292 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
2293   if (isa<CXXConstructorDecl>(this)) return nullptr;
2294   return getASTContext().overridden_methods_end(this);
2295 }
2296
2297 unsigned CXXMethodDecl::size_overridden_methods() const {
2298   if (isa<CXXConstructorDecl>(this)) return 0;
2299   return getASTContext().overridden_methods_size(this);
2300 }
2301
2302 CXXMethodDecl::overridden_method_range
2303 CXXMethodDecl::overridden_methods() const {
2304   if (isa<CXXConstructorDecl>(this))
2305     return overridden_method_range(nullptr, nullptr);
2306   return getASTContext().overridden_methods(this);
2307 }
2308
2309 static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT,
2310                                   const CXXRecordDecl *Decl) {
2311   QualType ClassTy = C.getTypeDeclType(Decl);
2312   return C.getQualifiedType(ClassTy, FPT->getMethodQuals());
2313 }
2314
2315 QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT,
2316                                     const CXXRecordDecl *Decl) {
2317   ASTContext &C = Decl->getASTContext();
2318   QualType ObjectTy = ::getThisObjectType(C, FPT, Decl);
2319   return C.getPointerType(ObjectTy);
2320 }
2321
2322 QualType CXXMethodDecl::getThisObjectType(const FunctionProtoType *FPT,
2323                                           const CXXRecordDecl *Decl) {
2324   ASTContext &C = Decl->getASTContext();
2325   return ::getThisObjectType(C, FPT, Decl);
2326 }
2327
2328 QualType CXXMethodDecl::getThisType() const {
2329   // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
2330   // If the member function is declared const, the type of this is const X*,
2331   // if the member function is declared volatile, the type of this is
2332   // volatile X*, and if the member function is declared const volatile,
2333   // the type of this is const volatile X*.
2334   assert(isInstance() && "No 'this' for static methods!");
2335
2336   return CXXMethodDecl::getThisType(getType()->getAs<FunctionProtoType>(),
2337                                     getParent());
2338 }
2339
2340 QualType CXXMethodDecl::getThisObjectType() const {
2341   // Ditto getThisType.
2342   assert(isInstance() && "No 'this' for static methods!");
2343
2344   return CXXMethodDecl::getThisObjectType(getType()->getAs<FunctionProtoType>(),
2345                                           getParent());
2346 }
2347
2348 bool CXXMethodDecl::hasInlineBody() const {
2349   // If this function is a template instantiation, look at the template from
2350   // which it was instantiated.
2351   const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
2352   if (!CheckFn)
2353     CheckFn = this;
2354
2355   const FunctionDecl *fn;
2356   return CheckFn->isDefined(fn) && !fn->isOutOfLine() &&
2357          (fn->doesThisDeclarationHaveABody() || fn->willHaveBody());
2358 }
2359
2360 bool CXXMethodDecl::isLambdaStaticInvoker() const {
2361   const CXXRecordDecl *P = getParent();
2362   if (P->isLambda()) {
2363     if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) {
2364       if (StaticInvoker == this) return true;
2365       if (P->isGenericLambda() && this->isFunctionTemplateSpecialization())
2366         return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl();
2367     }
2368   }
2369   return false;
2370 }
2371
2372 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2373                                        TypeSourceInfo *TInfo, bool IsVirtual,
2374                                        SourceLocation L, Expr *Init,
2375                                        SourceLocation R,
2376                                        SourceLocation EllipsisLoc)
2377     : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
2378       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
2379       IsWritten(false), SourceOrder(0) {}
2380
2381 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2382                                        FieldDecl *Member,
2383                                        SourceLocation MemberLoc,
2384                                        SourceLocation L, Expr *Init,
2385                                        SourceLocation R)
2386     : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
2387       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2388       IsWritten(false), SourceOrder(0) {}
2389
2390 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2391                                        IndirectFieldDecl *Member,
2392                                        SourceLocation MemberLoc,
2393                                        SourceLocation L, Expr *Init,
2394                                        SourceLocation R)
2395     : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
2396       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2397       IsWritten(false), SourceOrder(0) {}
2398
2399 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2400                                        TypeSourceInfo *TInfo,
2401                                        SourceLocation L, Expr *Init,
2402                                        SourceLocation R)
2403     : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R),
2404       IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {}
2405
2406 int64_t CXXCtorInitializer::getID(const ASTContext &Context) const {
2407   return Context.getAllocator()
2408                 .identifyKnownAlignedObject<CXXCtorInitializer>(this);
2409 }
2410
2411 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
2412   if (isBaseInitializer())
2413     return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
2414   else
2415     return {};
2416 }
2417
2418 const Type *CXXCtorInitializer::getBaseClass() const {
2419   if (isBaseInitializer())
2420     return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
2421   else
2422     return nullptr;
2423 }
2424
2425 SourceLocation CXXCtorInitializer::getSourceLocation() const {
2426   if (isInClassMemberInitializer())
2427     return getAnyMember()->getLocation();
2428
2429   if (isAnyMemberInitializer())
2430     return getMemberLocation();
2431
2432   if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>())
2433     return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
2434
2435   return {};
2436 }
2437
2438 SourceRange CXXCtorInitializer::getSourceRange() const {
2439   if (isInClassMemberInitializer()) {
2440     FieldDecl *D = getAnyMember();
2441     if (Expr *I = D->getInClassInitializer())
2442       return I->getSourceRange();
2443     return {};
2444   }
2445
2446   return SourceRange(getSourceLocation(), getRParenLoc());
2447 }
2448
2449 CXXConstructorDecl::CXXConstructorDecl(
2450     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2451     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2452     ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared,
2453     ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited,
2454     Expr *TrailingRequiresClause)
2455     : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo,
2456                     SC_None, isInline, ConstexprKind, SourceLocation(),
2457                     TrailingRequiresClause) {
2458   setNumCtorInitializers(0);
2459   setInheritingConstructor(static_cast<bool>(Inherited));
2460   setImplicit(isImplicitlyDeclared);
2461   CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0;
2462   if (Inherited)
2463     *getTrailingObjects<InheritedConstructor>() = Inherited;
2464   setExplicitSpecifier(ES);
2465 }
2466
2467 void CXXConstructorDecl::anchor() {}
2468
2469 CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C,
2470                                                            unsigned ID,
2471                                                            uint64_t AllocKind) {
2472   bool hasTraillingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit);
2473   bool isInheritingConstructor =
2474       static_cast<bool>(AllocKind & TAKInheritsConstructor);
2475   unsigned Extra =
2476       additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2477           isInheritingConstructor, hasTraillingExplicit);
2478   auto *Result = new (C, ID, Extra)
2479       CXXConstructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
2480                          QualType(), nullptr, ExplicitSpecifier(), false, false,
2481                          CSK_unspecified, InheritedConstructor(), nullptr);
2482   Result->setInheritingConstructor(isInheritingConstructor);
2483   Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier =
2484       hasTraillingExplicit;
2485   Result->setExplicitSpecifier(ExplicitSpecifier());
2486   return Result;
2487 }
2488
2489 CXXConstructorDecl *CXXConstructorDecl::Create(
2490     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2491     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2492     ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared,
2493     ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited,
2494     Expr *TrailingRequiresClause) {
2495   assert(NameInfo.getName().getNameKind()
2496          == DeclarationName::CXXConstructorName &&
2497          "Name must refer to a constructor");
2498   unsigned Extra =
2499       additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2500           Inherited ? 1 : 0, ES.getExpr() ? 1 : 0);
2501   return new (C, RD, Extra)
2502       CXXConstructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, ES, isInline,
2503                          isImplicitlyDeclared, ConstexprKind, Inherited,
2504                          TrailingRequiresClause);
2505 }
2506
2507 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
2508   return CtorInitializers.get(getASTContext().getExternalSource());
2509 }
2510
2511 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
2512   assert(isDelegatingConstructor() && "Not a delegating constructor!");
2513   Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
2514   if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
2515     return Construct->getConstructor();
2516
2517   return nullptr;
2518 }
2519
2520 bool CXXConstructorDecl::isDefaultConstructor() const {
2521   // C++ [class.ctor]p5:
2522   //   A default constructor for a class X is a constructor of class
2523   //   X that can be called without an argument.
2524   return (getNumParams() == 0) ||
2525          (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
2526 }
2527
2528 bool
2529 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
2530   return isCopyOrMoveConstructor(TypeQuals) &&
2531          getParamDecl(0)->getType()->isLValueReferenceType();
2532 }
2533
2534 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
2535   return isCopyOrMoveConstructor(TypeQuals) &&
2536     getParamDecl(0)->getType()->isRValueReferenceType();
2537 }
2538
2539 /// Determine whether this is a copy or move constructor.
2540 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
2541   // C++ [class.copy]p2:
2542   //   A non-template constructor for class X is a copy constructor
2543   //   if its first parameter is of type X&, const X&, volatile X& or
2544   //   const volatile X&, and either there are no other parameters
2545   //   or else all other parameters have default arguments (8.3.6).
2546   // C++0x [class.copy]p3:
2547   //   A non-template constructor for class X is a move constructor if its
2548   //   first parameter is of type X&&, const X&&, volatile X&&, or
2549   //   const volatile X&&, and either there are no other parameters or else
2550   //   all other parameters have default arguments.
2551   if ((getNumParams() < 1) ||
2552       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
2553       (getPrimaryTemplate() != nullptr) ||
2554       (getDescribedFunctionTemplate() != nullptr))
2555     return false;
2556
2557   const ParmVarDecl *Param = getParamDecl(0);
2558
2559   // Do we have a reference type?
2560   const auto *ParamRefType = Param->getType()->getAs<ReferenceType>();
2561   if (!ParamRefType)
2562     return false;
2563
2564   // Is it a reference to our class type?
2565   ASTContext &Context = getASTContext();
2566
2567   CanQualType PointeeType
2568     = Context.getCanonicalType(ParamRefType->getPointeeType());
2569   CanQualType ClassTy
2570     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2571   if (PointeeType.getUnqualifiedType() != ClassTy)
2572     return false;
2573
2574   // FIXME: other qualifiers?
2575
2576   // We have a copy or move constructor.
2577   TypeQuals = PointeeType.getCVRQualifiers();
2578   return true;
2579 }
2580
2581 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
2582   // C++ [class.conv.ctor]p1:
2583   //   A constructor declared without the function-specifier explicit
2584   //   that can be called with a single parameter specifies a
2585   //   conversion from the type of its first parameter to the type of
2586   //   its class. Such a constructor is called a converting
2587   //   constructor.
2588   if (isExplicit() && !AllowExplicit)
2589     return false;
2590
2591   return (getNumParams() == 0 &&
2592           getType()->castAs<FunctionProtoType>()->isVariadic()) ||
2593          (getNumParams() == 1) ||
2594          (getNumParams() > 1 &&
2595           (getParamDecl(1)->hasDefaultArg() ||
2596            getParamDecl(1)->isParameterPack()));
2597 }
2598
2599 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
2600   if ((getNumParams() < 1) ||
2601       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
2602       (getDescribedFunctionTemplate() != nullptr))
2603     return false;
2604
2605   const ParmVarDecl *Param = getParamDecl(0);
2606
2607   ASTContext &Context = getASTContext();
2608   CanQualType ParamType = Context.getCanonicalType(Param->getType());
2609
2610   // Is it the same as our class type?
2611   CanQualType ClassTy
2612     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2613   if (ParamType.getUnqualifiedType() != ClassTy)
2614     return false;
2615
2616   return true;
2617 }
2618
2619 void CXXDestructorDecl::anchor() {}
2620
2621 CXXDestructorDecl *
2622 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2623   return new (C, ID)
2624       CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
2625                         QualType(), nullptr, false, false, CSK_unspecified,
2626                         nullptr);
2627 }
2628
2629 CXXDestructorDecl *CXXDestructorDecl::Create(
2630     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2631     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2632     bool isInline, bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2633     Expr *TrailingRequiresClause) {
2634   assert(NameInfo.getName().getNameKind()
2635          == DeclarationName::CXXDestructorName &&
2636          "Name must refer to a destructor");
2637   return new (C, RD)
2638       CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline,
2639                         isImplicitlyDeclared, ConstexprKind,
2640                         TrailingRequiresClause);
2641 }
2642
2643 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) {
2644   auto *First = cast<CXXDestructorDecl>(getFirstDecl());
2645   if (OD && !First->OperatorDelete) {
2646     First->OperatorDelete = OD;
2647     First->OperatorDeleteThisArg = ThisArg;
2648     if (auto *L = getASTMutationListener())
2649       L->ResolvedOperatorDelete(First, OD, ThisArg);
2650   }
2651 }
2652
2653 void CXXConversionDecl::anchor() {}
2654
2655 CXXConversionDecl *
2656 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2657   return new (C, ID) CXXConversionDecl(
2658       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2659       false, ExplicitSpecifier(), CSK_unspecified, SourceLocation(), nullptr);
2660 }
2661
2662 CXXConversionDecl *CXXConversionDecl::Create(
2663     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2664     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2665     bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind,
2666     SourceLocation EndLocation, Expr *TrailingRequiresClause) {
2667   assert(NameInfo.getName().getNameKind()
2668          == DeclarationName::CXXConversionFunctionName &&
2669          "Name must refer to a conversion function");
2670   return new (C, RD)
2671       CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline, ES,
2672                         ConstexprKind, EndLocation, TrailingRequiresClause);
2673 }
2674
2675 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
2676   return isImplicit() && getParent()->isLambda() &&
2677          getConversionType()->isBlockPointerType();
2678 }
2679
2680 LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2681                                  SourceLocation LangLoc, LanguageIDs lang,
2682                                  bool HasBraces)
2683     : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
2684       ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) {
2685   setLanguage(lang);
2686   LinkageSpecDeclBits.HasBraces = HasBraces;
2687 }
2688
2689 void LinkageSpecDecl::anchor() {}
2690
2691 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
2692                                          DeclContext *DC,
2693                                          SourceLocation ExternLoc,
2694                                          SourceLocation LangLoc,
2695                                          LanguageIDs Lang,
2696                                          bool HasBraces) {
2697   return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
2698 }
2699
2700 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
2701                                                      unsigned ID) {
2702   return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
2703                                      SourceLocation(), lang_c, false);
2704 }
2705
2706 void UsingDirectiveDecl::anchor() {}
2707
2708 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
2709                                                SourceLocation L,
2710                                                SourceLocation NamespaceLoc,
2711                                            NestedNameSpecifierLoc QualifierLoc,
2712                                                SourceLocation IdentLoc,
2713                                                NamedDecl *Used,
2714                                                DeclContext *CommonAncestor) {
2715   if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used))
2716     Used = NS->getOriginalNamespace();
2717   return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
2718                                         IdentLoc, Used, CommonAncestor);
2719 }
2720
2721 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
2722                                                            unsigned ID) {
2723   return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
2724                                         SourceLocation(),
2725                                         NestedNameSpecifierLoc(),
2726                                         SourceLocation(), nullptr, nullptr);
2727 }
2728
2729 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
2730   if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
2731     return NA->getNamespace();
2732   return cast_or_null<NamespaceDecl>(NominatedNamespace);
2733 }
2734
2735 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
2736                              SourceLocation StartLoc, SourceLocation IdLoc,
2737                              IdentifierInfo *Id, NamespaceDecl *PrevDecl)
2738     : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
2739       redeclarable_base(C), LocStart(StartLoc),
2740       AnonOrFirstNamespaceAndInline(nullptr, Inline) {
2741   setPreviousDecl(PrevDecl);
2742
2743   if (PrevDecl)
2744     AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
2745 }
2746
2747 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
2748                                      bool Inline, SourceLocation StartLoc,
2749                                      SourceLocation IdLoc, IdentifierInfo *Id,
2750                                      NamespaceDecl *PrevDecl) {
2751   return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id,
2752                                    PrevDecl);
2753 }
2754
2755 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2756   return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
2757                                    SourceLocation(), nullptr, nullptr);
2758 }
2759
2760 NamespaceDecl *NamespaceDecl::getOriginalNamespace() {
2761   if (isFirstDecl())
2762     return this;
2763
2764   return AnonOrFirstNamespaceAndInline.getPointer();
2765 }
2766
2767 const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const {
2768   if (isFirstDecl())
2769     return this;
2770
2771   return AnonOrFirstNamespaceAndInline.getPointer();
2772 }
2773
2774 bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); }
2775
2776 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
2777   return getNextRedeclaration();
2778 }
2779
2780 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
2781   return getPreviousDecl();
2782 }
2783
2784 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
2785   return getMostRecentDecl();
2786 }
2787
2788 void NamespaceAliasDecl::anchor() {}
2789
2790 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
2791   return getNextRedeclaration();
2792 }
2793
2794 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
2795   return getPreviousDecl();
2796 }
2797
2798 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
2799   return getMostRecentDecl();
2800 }
2801
2802 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
2803                                                SourceLocation UsingLoc,
2804                                                SourceLocation AliasLoc,
2805                                                IdentifierInfo *Alias,
2806                                            NestedNameSpecifierLoc QualifierLoc,
2807                                                SourceLocation IdentLoc,
2808                                                NamedDecl *Namespace) {
2809   // FIXME: Preserve the aliased namespace as written.
2810   if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
2811     Namespace = NS->getOriginalNamespace();
2812   return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
2813                                         QualifierLoc, IdentLoc, Namespace);
2814 }
2815
2816 NamespaceAliasDecl *
2817 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2818   return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
2819                                         SourceLocation(), nullptr,
2820                                         NestedNameSpecifierLoc(),
2821                                         SourceLocation(), nullptr);
2822 }
2823
2824 void LifetimeExtendedTemporaryDecl::anchor() {}
2825
2826 /// Retrieve the storage duration for the materialized temporary.
2827 StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const {
2828   const ValueDecl *ExtendingDecl = getExtendingDecl();
2829   if (!ExtendingDecl)
2830     return SD_FullExpression;
2831   // FIXME: This is not necessarily correct for a temporary materialized
2832   // within a default initializer.
2833   if (isa<FieldDecl>(ExtendingDecl))
2834     return SD_Automatic;
2835   // FIXME: This only works because storage class specifiers are not allowed
2836   // on decomposition declarations.
2837   if (isa<BindingDecl>(ExtendingDecl))
2838     return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic
2839                                                                  : SD_Static;
2840   return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
2841 }
2842
2843 APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const {
2844   assert(getStorageDuration() == SD_Static &&
2845          "don't need to cache the computed value for this temporary");
2846   if (MayCreate && !Value) {
2847     Value = (new (getASTContext()) APValue);
2848     getASTContext().addDestruction(Value);
2849   }
2850   assert(Value && "may not be null");
2851   return Value;
2852 }
2853
2854 void UsingShadowDecl::anchor() {}
2855
2856 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC,
2857                                  SourceLocation Loc, UsingDecl *Using,
2858                                  NamedDecl *Target)
2859     : NamedDecl(K, DC, Loc, Using ? Using->getDeclName() : DeclarationName()),
2860       redeclarable_base(C), UsingOrNextShadow(cast<NamedDecl>(Using)) {
2861   if (Target)
2862     setTargetDecl(Target);
2863   setImplicit();
2864 }
2865
2866 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty)
2867     : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()),
2868       redeclarable_base(C) {}
2869
2870 UsingShadowDecl *
2871 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2872   return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell());
2873 }
2874
2875 UsingDecl *UsingShadowDecl::getUsingDecl() const {
2876   const UsingShadowDecl *Shadow = this;
2877   while (const auto *NextShadow =
2878              dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
2879     Shadow = NextShadow;
2880   return cast<UsingDecl>(Shadow->UsingOrNextShadow);
2881 }
2882
2883 void ConstructorUsingShadowDecl::anchor() {}
2884
2885 ConstructorUsingShadowDecl *
2886 ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC,
2887                                    SourceLocation Loc, UsingDecl *Using,
2888                                    NamedDecl *Target, bool IsVirtual) {
2889   return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target,
2890                                                 IsVirtual);
2891 }
2892
2893 ConstructorUsingShadowDecl *
2894 ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2895   return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell());
2896 }
2897
2898 CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const {
2899   return getUsingDecl()->getQualifier()->getAsRecordDecl();
2900 }
2901
2902 void UsingDecl::anchor() {}
2903
2904 void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
2905   assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
2906          "declaration already in set");
2907   assert(S->getUsingDecl() == this);
2908
2909   if (FirstUsingShadow.getPointer())
2910     S->UsingOrNextShadow = FirstUsingShadow.getPointer();
2911   FirstUsingShadow.setPointer(S);
2912 }
2913
2914 void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
2915   assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
2916          "declaration not in set");
2917   assert(S->getUsingDecl() == this);
2918
2919   // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
2920
2921   if (FirstUsingShadow.getPointer() == S) {
2922     FirstUsingShadow.setPointer(
2923       dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
2924     S->UsingOrNextShadow = this;
2925     return;
2926   }
2927
2928   UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
2929   while (Prev->UsingOrNextShadow != S)
2930     Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
2931   Prev->UsingOrNextShadow = S->UsingOrNextShadow;
2932   S->UsingOrNextShadow = this;
2933 }
2934
2935 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
2936                              NestedNameSpecifierLoc QualifierLoc,
2937                              const DeclarationNameInfo &NameInfo,
2938                              bool HasTypename) {
2939   return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
2940 }
2941
2942 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2943   return new (C, ID) UsingDecl(nullptr, SourceLocation(),
2944                                NestedNameSpecifierLoc(), DeclarationNameInfo(),
2945                                false);
2946 }
2947
2948 SourceRange UsingDecl::getSourceRange() const {
2949   SourceLocation Begin = isAccessDeclaration()
2950     ? getQualifierLoc().getBeginLoc() : UsingLocation;
2951   return SourceRange(Begin, getNameInfo().getEndLoc());
2952 }
2953
2954 void UsingPackDecl::anchor() {}
2955
2956 UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC,
2957                                      NamedDecl *InstantiatedFrom,
2958                                      ArrayRef<NamedDecl *> UsingDecls) {
2959   size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size());
2960   return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls);
2961 }
2962
2963 UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID,
2964                                                  unsigned NumExpansions) {
2965   size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions);
2966   auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, None);
2967   Result->NumExpansions = NumExpansions;
2968   auto *Trail = Result->getTrailingObjects<NamedDecl *>();
2969   for (unsigned I = 0; I != NumExpansions; ++I)
2970     new (Trail + I) NamedDecl*(nullptr);
2971   return Result;
2972 }
2973
2974 void UnresolvedUsingValueDecl::anchor() {}
2975
2976 UnresolvedUsingValueDecl *
2977 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
2978                                  SourceLocation UsingLoc,
2979                                  NestedNameSpecifierLoc QualifierLoc,
2980                                  const DeclarationNameInfo &NameInfo,
2981                                  SourceLocation EllipsisLoc) {
2982   return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
2983                                               QualifierLoc, NameInfo,
2984                                               EllipsisLoc);
2985 }
2986
2987 UnresolvedUsingValueDecl *
2988 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2989   return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
2990                                               SourceLocation(),
2991                                               NestedNameSpecifierLoc(),
2992                                               DeclarationNameInfo(),
2993                                               SourceLocation());
2994 }
2995
2996 SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
2997   SourceLocation Begin = isAccessDeclaration()
2998     ? getQualifierLoc().getBeginLoc() : UsingLocation;
2999   return SourceRange(Begin, getNameInfo().getEndLoc());
3000 }
3001
3002 void UnresolvedUsingTypenameDecl::anchor() {}
3003
3004 UnresolvedUsingTypenameDecl *
3005 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
3006                                     SourceLocation UsingLoc,
3007                                     SourceLocation TypenameLoc,
3008                                     NestedNameSpecifierLoc QualifierLoc,
3009                                     SourceLocation TargetNameLoc,
3010                                     DeclarationName TargetName,
3011                                     SourceLocation EllipsisLoc) {
3012   return new (C, DC) UnresolvedUsingTypenameDecl(
3013       DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
3014       TargetName.getAsIdentifierInfo(), EllipsisLoc);
3015 }
3016
3017 UnresolvedUsingTypenameDecl *
3018 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3019   return new (C, ID) UnresolvedUsingTypenameDecl(
3020       nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
3021       SourceLocation(), nullptr, SourceLocation());
3022 }
3023
3024 void StaticAssertDecl::anchor() {}
3025
3026 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
3027                                            SourceLocation StaticAssertLoc,
3028                                            Expr *AssertExpr,
3029                                            StringLiteral *Message,
3030                                            SourceLocation RParenLoc,
3031                                            bool Failed) {
3032   return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
3033                                       RParenLoc, Failed);
3034 }
3035
3036 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
3037                                                        unsigned ID) {
3038   return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
3039                                       nullptr, SourceLocation(), false);
3040 }
3041
3042 void BindingDecl::anchor() {}
3043
3044 BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC,
3045                                  SourceLocation IdLoc, IdentifierInfo *Id) {
3046   return new (C, DC) BindingDecl(DC, IdLoc, Id);
3047 }
3048
3049 BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3050   return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr);
3051 }
3052
3053 ValueDecl *BindingDecl::getDecomposedDecl() const {
3054   ExternalASTSource *Source =
3055       Decomp.isOffset() ? getASTContext().getExternalSource() : nullptr;
3056   return cast_or_null<ValueDecl>(Decomp.get(Source));
3057 }
3058
3059 VarDecl *BindingDecl::getHoldingVar() const {
3060   Expr *B = getBinding();
3061   if (!B)
3062     return nullptr;
3063   auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit());
3064   if (!DRE)
3065     return nullptr;
3066
3067   auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
3068   assert(VD->isImplicit() && "holding var for binding decl not implicit");
3069   return VD;
3070 }
3071
3072 void DecompositionDecl::anchor() {}
3073
3074 DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC,
3075                                              SourceLocation StartLoc,
3076                                              SourceLocation LSquareLoc,
3077                                              QualType T, TypeSourceInfo *TInfo,
3078                                              StorageClass SC,
3079                                              ArrayRef<BindingDecl *> Bindings) {
3080   size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size());
3081   return new (C, DC, Extra)
3082       DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings);
3083 }
3084
3085 DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C,
3086                                                          unsigned ID,
3087                                                          unsigned NumBindings) {
3088   size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings);
3089   auto *Result = new (C, ID, Extra)
3090       DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(),
3091                         QualType(), nullptr, StorageClass(), None);
3092   // Set up and clean out the bindings array.
3093   Result->NumBindings = NumBindings;
3094   auto *Trail = Result->getTrailingObjects<BindingDecl *>();
3095   for (unsigned I = 0; I != NumBindings; ++I)
3096     new (Trail + I) BindingDecl*(nullptr);
3097   return Result;
3098 }
3099
3100 void DecompositionDecl::printName(llvm::raw_ostream &os) const {
3101   os << '[';
3102   bool Comma = false;
3103   for (const auto *B : bindings()) {
3104     if (Comma)
3105       os << ", ";
3106     B->printName(os);
3107     Comma = true;
3108   }
3109   os << ']';
3110 }
3111
3112 void MSPropertyDecl::anchor() {}
3113
3114 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
3115                                        SourceLocation L, DeclarationName N,
3116                                        QualType T, TypeSourceInfo *TInfo,
3117                                        SourceLocation StartL,
3118                                        IdentifierInfo *Getter,
3119                                        IdentifierInfo *Setter) {
3120   return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
3121 }
3122
3123 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
3124                                                    unsigned ID) {
3125   return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
3126                                     DeclarationName(), QualType(), nullptr,
3127                                     SourceLocation(), nullptr, nullptr);
3128 }
3129
3130 static const char *getAccessName(AccessSpecifier AS) {
3131   switch (AS) {
3132     case AS_none:
3133       llvm_unreachable("Invalid access specifier!");
3134     case AS_public:
3135       return "public";
3136     case AS_private:
3137       return "private";
3138     case AS_protected:
3139       return "protected";
3140   }
3141   llvm_unreachable("Invalid access specifier!");
3142 }
3143
3144 const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
3145                                            AccessSpecifier AS) {
3146   return DB << getAccessName(AS);
3147 }
3148
3149 const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
3150                                            AccessSpecifier AS) {
3151   return DB << getAccessName(AS);
3152 }