]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/clang/lib/AST/ItaniumMangle.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / clang / lib / AST / ItaniumMangle.cpp
1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements C++ name mangling according to the Itanium C++ ABI,
10 // which is used in GCC 3.2 and newer (and many compilers that are
11 // ABI-compatible with GCC):
12 //
13 //   http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
14 //
15 //===----------------------------------------------------------------------===//
16 #include "clang/AST/Mangle.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclOpenMP.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/ABI.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34
35 using namespace clang;
36
37 namespace {
38
39 /// Retrieve the declaration context that should be used when mangling the given
40 /// declaration.
41 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
42   // The ABI assumes that lambda closure types that occur within
43   // default arguments live in the context of the function. However, due to
44   // the way in which Clang parses and creates function declarations, this is
45   // not the case: the lambda closure type ends up living in the context
46   // where the function itself resides, because the function declaration itself
47   // had not yet been created. Fix the context here.
48   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
49     if (RD->isLambda())
50       if (ParmVarDecl *ContextParam
51             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
52         return ContextParam->getDeclContext();
53   }
54
55   // Perform the same check for block literals.
56   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
57     if (ParmVarDecl *ContextParam
58           = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
59       return ContextParam->getDeclContext();
60   }
61
62   const DeclContext *DC = D->getDeclContext();
63   if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
64       isa<OMPDeclareMapperDecl>(DC)) {
65     return getEffectiveDeclContext(cast<Decl>(DC));
66   }
67
68   if (const auto *VD = dyn_cast<VarDecl>(D))
69     if (VD->isExternC())
70       return VD->getASTContext().getTranslationUnitDecl();
71
72   if (const auto *FD = dyn_cast<FunctionDecl>(D))
73     if (FD->isExternC())
74       return FD->getASTContext().getTranslationUnitDecl();
75
76   return DC->getRedeclContext();
77 }
78
79 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
80   return getEffectiveDeclContext(cast<Decl>(DC));
81 }
82
83 static bool isLocalContainerContext(const DeclContext *DC) {
84   return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
85 }
86
87 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
88   const DeclContext *DC = getEffectiveDeclContext(D);
89   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
90     if (isLocalContainerContext(DC))
91       return dyn_cast<RecordDecl>(D);
92     D = cast<Decl>(DC);
93     DC = getEffectiveDeclContext(D);
94   }
95   return nullptr;
96 }
97
98 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
99   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
100     return ftd->getTemplatedDecl();
101
102   return fn;
103 }
104
105 static const NamedDecl *getStructor(const NamedDecl *decl) {
106   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
107   return (fn ? getStructor(fn) : decl);
108 }
109
110 static bool isLambda(const NamedDecl *ND) {
111   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
112   if (!Record)
113     return false;
114
115   return Record->isLambda();
116 }
117
118 static const unsigned UnknownArity = ~0U;
119
120 class ItaniumMangleContextImpl : public ItaniumMangleContext {
121   typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
122   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
123   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
124
125 public:
126   explicit ItaniumMangleContextImpl(ASTContext &Context,
127                                     DiagnosticsEngine &Diags)
128       : ItaniumMangleContext(Context, Diags) {}
129
130   /// @name Mangler Entry Points
131   /// @{
132
133   bool shouldMangleCXXName(const NamedDecl *D) override;
134   bool shouldMangleStringLiteral(const StringLiteral *) override {
135     return false;
136   }
137   void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
138   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
139                    raw_ostream &) override;
140   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
141                           const ThisAdjustment &ThisAdjustment,
142                           raw_ostream &) override;
143   void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
144                                 raw_ostream &) override;
145   void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
146   void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
147   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
148                            const CXXRecordDecl *Type, raw_ostream &) override;
149   void mangleCXXRTTI(QualType T, raw_ostream &) override;
150   void mangleCXXRTTIName(QualType T, raw_ostream &) override;
151   void mangleTypeName(QualType T, raw_ostream &) override;
152   void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
153                      raw_ostream &) override;
154   void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
155                      raw_ostream &) override;
156
157   void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
158   void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
159   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
160   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
161   void mangleDynamicAtExitDestructor(const VarDecl *D,
162                                      raw_ostream &Out) override;
163   void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
164                                  raw_ostream &Out) override;
165   void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
166                              raw_ostream &Out) override;
167   void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
168   void mangleItaniumThreadLocalWrapper(const VarDecl *D,
169                                        raw_ostream &) override;
170
171   void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
172
173   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
174     // Lambda closure types are already numbered.
175     if (isLambda(ND))
176       return false;
177
178     // Anonymous tags are already numbered.
179     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
180       if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
181         return false;
182     }
183
184     // Use the canonical number for externally visible decls.
185     if (ND->isExternallyVisible()) {
186       unsigned discriminator = getASTContext().getManglingNumber(ND);
187       if (discriminator == 1)
188         return false;
189       disc = discriminator - 2;
190       return true;
191     }
192
193     // Make up a reasonable number for internal decls.
194     unsigned &discriminator = Uniquifier[ND];
195     if (!discriminator) {
196       const DeclContext *DC = getEffectiveDeclContext(ND);
197       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
198     }
199     if (discriminator == 1)
200       return false;
201     disc = discriminator-2;
202     return true;
203   }
204   /// @}
205 };
206
207 /// Manage the mangling of a single name.
208 class CXXNameMangler {
209   ItaniumMangleContextImpl &Context;
210   raw_ostream &Out;
211   bool NullOut = false;
212   /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
213   /// This mode is used when mangler creates another mangler recursively to
214   /// calculate ABI tags for the function return value or the variable type.
215   /// Also it is required to avoid infinite recursion in some cases.
216   bool DisableDerivedAbiTags = false;
217
218   /// The "structor" is the top-level declaration being mangled, if
219   /// that's not a template specialization; otherwise it's the pattern
220   /// for that specialization.
221   const NamedDecl *Structor;
222   unsigned StructorType;
223
224   /// The next substitution sequence number.
225   unsigned SeqID;
226
227   class FunctionTypeDepthState {
228     unsigned Bits;
229
230     enum { InResultTypeMask = 1 };
231
232   public:
233     FunctionTypeDepthState() : Bits(0) {}
234
235     /// The number of function types we're inside.
236     unsigned getDepth() const {
237       return Bits >> 1;
238     }
239
240     /// True if we're in the return type of the innermost function type.
241     bool isInResultType() const {
242       return Bits & InResultTypeMask;
243     }
244
245     FunctionTypeDepthState push() {
246       FunctionTypeDepthState tmp = *this;
247       Bits = (Bits & ~InResultTypeMask) + 2;
248       return tmp;
249     }
250
251     void enterResultType() {
252       Bits |= InResultTypeMask;
253     }
254
255     void leaveResultType() {
256       Bits &= ~InResultTypeMask;
257     }
258
259     void pop(FunctionTypeDepthState saved) {
260       assert(getDepth() == saved.getDepth() + 1);
261       Bits = saved.Bits;
262     }
263
264   } FunctionTypeDepth;
265
266   // abi_tag is a gcc attribute, taking one or more strings called "tags".
267   // The goal is to annotate against which version of a library an object was
268   // built and to be able to provide backwards compatibility ("dual abi").
269   // For more information see docs/ItaniumMangleAbiTags.rst.
270   typedef SmallVector<StringRef, 4> AbiTagList;
271
272   // State to gather all implicit and explicit tags used in a mangled name.
273   // Must always have an instance of this while emitting any name to keep
274   // track.
275   class AbiTagState final {
276   public:
277     explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
278       Parent = LinkHead;
279       LinkHead = this;
280     }
281
282     // No copy, no move.
283     AbiTagState(const AbiTagState &) = delete;
284     AbiTagState &operator=(const AbiTagState &) = delete;
285
286     ~AbiTagState() { pop(); }
287
288     void write(raw_ostream &Out, const NamedDecl *ND,
289                const AbiTagList *AdditionalAbiTags) {
290       ND = cast<NamedDecl>(ND->getCanonicalDecl());
291       if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
292         assert(
293             !AdditionalAbiTags &&
294             "only function and variables need a list of additional abi tags");
295         if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
296           if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
297             UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
298                                AbiTag->tags().end());
299           }
300           // Don't emit abi tags for namespaces.
301           return;
302         }
303       }
304
305       AbiTagList TagList;
306       if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
307         UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
308                            AbiTag->tags().end());
309         TagList.insert(TagList.end(), AbiTag->tags().begin(),
310                        AbiTag->tags().end());
311       }
312
313       if (AdditionalAbiTags) {
314         UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
315                            AdditionalAbiTags->end());
316         TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
317                        AdditionalAbiTags->end());
318       }
319
320       llvm::sort(TagList);
321       TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
322
323       writeSortedUniqueAbiTags(Out, TagList);
324     }
325
326     const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
327     void setUsedAbiTags(const AbiTagList &AbiTags) {
328       UsedAbiTags = AbiTags;
329     }
330
331     const AbiTagList &getEmittedAbiTags() const {
332       return EmittedAbiTags;
333     }
334
335     const AbiTagList &getSortedUniqueUsedAbiTags() {
336       llvm::sort(UsedAbiTags);
337       UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
338                         UsedAbiTags.end());
339       return UsedAbiTags;
340     }
341
342   private:
343     //! All abi tags used implicitly or explicitly.
344     AbiTagList UsedAbiTags;
345     //! All explicit abi tags (i.e. not from namespace).
346     AbiTagList EmittedAbiTags;
347
348     AbiTagState *&LinkHead;
349     AbiTagState *Parent = nullptr;
350
351     void pop() {
352       assert(LinkHead == this &&
353              "abi tag link head must point to us on destruction");
354       if (Parent) {
355         Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
356                                    UsedAbiTags.begin(), UsedAbiTags.end());
357         Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
358                                       EmittedAbiTags.begin(),
359                                       EmittedAbiTags.end());
360       }
361       LinkHead = Parent;
362     }
363
364     void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
365       for (const auto &Tag : AbiTags) {
366         EmittedAbiTags.push_back(Tag);
367         Out << "B";
368         Out << Tag.size();
369         Out << Tag;
370       }
371     }
372   };
373
374   AbiTagState *AbiTags = nullptr;
375   AbiTagState AbiTagsRoot;
376
377   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
378   llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
379
380   ASTContext &getASTContext() const { return Context.getASTContext(); }
381
382 public:
383   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
384                  const NamedDecl *D = nullptr, bool NullOut_ = false)
385     : Context(C), Out(Out_), NullOut(NullOut_),  Structor(getStructor(D)),
386       StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
387     // These can't be mangled without a ctor type or dtor type.
388     assert(!D || (!isa<CXXDestructorDecl>(D) &&
389                   !isa<CXXConstructorDecl>(D)));
390   }
391   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
392                  const CXXConstructorDecl *D, CXXCtorType Type)
393     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
394       SeqID(0), AbiTagsRoot(AbiTags) { }
395   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
396                  const CXXDestructorDecl *D, CXXDtorType Type)
397     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
398       SeqID(0), AbiTagsRoot(AbiTags) { }
399
400   CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
401       : Context(Outer.Context), Out(Out_), NullOut(false),
402         Structor(Outer.Structor), StructorType(Outer.StructorType),
403         SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
404         AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
405
406   CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
407       : Context(Outer.Context), Out(Out_), NullOut(true),
408         Structor(Outer.Structor), StructorType(Outer.StructorType),
409         SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
410         AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
411
412   raw_ostream &getStream() { return Out; }
413
414   void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
415   static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
416
417   void mangle(const NamedDecl *D);
418   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
419   void mangleNumber(const llvm::APSInt &I);
420   void mangleNumber(int64_t Number);
421   void mangleFloat(const llvm::APFloat &F);
422   void mangleFunctionEncoding(const FunctionDecl *FD);
423   void mangleSeqID(unsigned SeqID);
424   void mangleName(const NamedDecl *ND);
425   void mangleType(QualType T);
426   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
427
428 private:
429
430   bool mangleSubstitution(const NamedDecl *ND);
431   bool mangleSubstitution(QualType T);
432   bool mangleSubstitution(TemplateName Template);
433   bool mangleSubstitution(uintptr_t Ptr);
434
435   void mangleExistingSubstitution(TemplateName name);
436
437   bool mangleStandardSubstitution(const NamedDecl *ND);
438
439   void addSubstitution(const NamedDecl *ND) {
440     ND = cast<NamedDecl>(ND->getCanonicalDecl());
441
442     addSubstitution(reinterpret_cast<uintptr_t>(ND));
443   }
444   void addSubstitution(QualType T);
445   void addSubstitution(TemplateName Template);
446   void addSubstitution(uintptr_t Ptr);
447   // Destructive copy substitutions from other mangler.
448   void extendSubstitutions(CXXNameMangler* Other);
449
450   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
451                               bool recursive = false);
452   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
453                             DeclarationName name,
454                             const TemplateArgumentLoc *TemplateArgs,
455                             unsigned NumTemplateArgs,
456                             unsigned KnownArity = UnknownArity);
457
458   void mangleFunctionEncodingBareType(const FunctionDecl *FD);
459
460   void mangleNameWithAbiTags(const NamedDecl *ND,
461                              const AbiTagList *AdditionalAbiTags);
462   void mangleModuleName(const Module *M);
463   void mangleModuleNamePrefix(StringRef Name);
464   void mangleTemplateName(const TemplateDecl *TD,
465                           const TemplateArgument *TemplateArgs,
466                           unsigned NumTemplateArgs);
467   void mangleUnqualifiedName(const NamedDecl *ND,
468                              const AbiTagList *AdditionalAbiTags) {
469     mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity,
470                           AdditionalAbiTags);
471   }
472   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
473                              unsigned KnownArity,
474                              const AbiTagList *AdditionalAbiTags);
475   void mangleUnscopedName(const NamedDecl *ND,
476                           const AbiTagList *AdditionalAbiTags);
477   void mangleUnscopedTemplateName(const TemplateDecl *ND,
478                                   const AbiTagList *AdditionalAbiTags);
479   void mangleUnscopedTemplateName(TemplateName,
480                                   const AbiTagList *AdditionalAbiTags);
481   void mangleSourceName(const IdentifierInfo *II);
482   void mangleRegCallName(const IdentifierInfo *II);
483   void mangleSourceNameWithAbiTags(
484       const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
485   void mangleLocalName(const Decl *D,
486                        const AbiTagList *AdditionalAbiTags);
487   void mangleBlockForPrefix(const BlockDecl *Block);
488   void mangleUnqualifiedBlock(const BlockDecl *Block);
489   void mangleTemplateParamDecl(const NamedDecl *Decl);
490   void mangleLambda(const CXXRecordDecl *Lambda);
491   void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
492                         const AbiTagList *AdditionalAbiTags,
493                         bool NoFunction=false);
494   void mangleNestedName(const TemplateDecl *TD,
495                         const TemplateArgument *TemplateArgs,
496                         unsigned NumTemplateArgs);
497   void manglePrefix(NestedNameSpecifier *qualifier);
498   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
499   void manglePrefix(QualType type);
500   void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
501   void mangleTemplatePrefix(TemplateName Template);
502   bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
503                                       StringRef Prefix = "");
504   void mangleOperatorName(DeclarationName Name, unsigned Arity);
505   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
506   void mangleVendorQualifier(StringRef qualifier);
507   void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
508   void mangleRefQualifier(RefQualifierKind RefQualifier);
509
510   void mangleObjCMethodName(const ObjCMethodDecl *MD);
511
512   // Declare manglers for every type class.
513 #define ABSTRACT_TYPE(CLASS, PARENT)
514 #define NON_CANONICAL_TYPE(CLASS, PARENT)
515 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
516 #include "clang/AST/TypeNodes.def"
517
518   void mangleType(const TagType*);
519   void mangleType(TemplateName);
520   static StringRef getCallingConvQualifierName(CallingConv CC);
521   void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
522   void mangleExtFunctionInfo(const FunctionType *T);
523   void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
524                               const FunctionDecl *FD = nullptr);
525   void mangleNeonVectorType(const VectorType *T);
526   void mangleNeonVectorType(const DependentVectorType *T);
527   void mangleAArch64NeonVectorType(const VectorType *T);
528   void mangleAArch64NeonVectorType(const DependentVectorType *T);
529
530   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
531   void mangleMemberExprBase(const Expr *base, bool isArrow);
532   void mangleMemberExpr(const Expr *base, bool isArrow,
533                         NestedNameSpecifier *qualifier,
534                         NamedDecl *firstQualifierLookup,
535                         DeclarationName name,
536                         const TemplateArgumentLoc *TemplateArgs,
537                         unsigned NumTemplateArgs,
538                         unsigned knownArity);
539   void mangleCastExpression(const Expr *E, StringRef CastEncoding);
540   void mangleInitListElements(const InitListExpr *InitList);
541   void mangleDeclRefExpr(const NamedDecl *D);
542   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
543   void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
544   void mangleCXXDtorType(CXXDtorType T);
545
546   void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
547                           unsigned NumTemplateArgs);
548   void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
549                           unsigned NumTemplateArgs);
550   void mangleTemplateArgs(const TemplateArgumentList &AL);
551   void mangleTemplateArg(TemplateArgument A);
552
553   void mangleTemplateParameter(unsigned Index);
554
555   void mangleFunctionParam(const ParmVarDecl *parm);
556
557   void writeAbiTags(const NamedDecl *ND,
558                     const AbiTagList *AdditionalAbiTags);
559
560   // Returns sorted unique list of ABI tags.
561   AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
562   // Returns sorted unique list of ABI tags.
563   AbiTagList makeVariableTypeTags(const VarDecl *VD);
564 };
565
566 }
567
568 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
569   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
570   if (FD) {
571     LanguageLinkage L = FD->getLanguageLinkage();
572     // Overloadable functions need mangling.
573     if (FD->hasAttr<OverloadableAttr>())
574       return true;
575
576     // "main" is not mangled.
577     if (FD->isMain())
578       return false;
579
580     // The Windows ABI expects that we would never mangle "typical"
581     // user-defined entry points regardless of visibility or freestanding-ness.
582     //
583     // N.B. This is distinct from asking about "main".  "main" has a lot of
584     // special rules associated with it in the standard while these
585     // user-defined entry points are outside of the purview of the standard.
586     // For example, there can be only one definition for "main" in a standards
587     // compliant program; however nothing forbids the existence of wmain and
588     // WinMain in the same translation unit.
589     if (FD->isMSVCRTEntryPoint())
590       return false;
591
592     // C++ functions and those whose names are not a simple identifier need
593     // mangling.
594     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
595       return true;
596
597     // C functions are not mangled.
598     if (L == CLanguageLinkage)
599       return false;
600   }
601
602   // Otherwise, no mangling is done outside C++ mode.
603   if (!getASTContext().getLangOpts().CPlusPlus)
604     return false;
605
606   const VarDecl *VD = dyn_cast<VarDecl>(D);
607   if (VD && !isa<DecompositionDecl>(D)) {
608     // C variables are not mangled.
609     if (VD->isExternC())
610       return false;
611
612     // Variables at global scope with non-internal linkage are not mangled
613     const DeclContext *DC = getEffectiveDeclContext(D);
614     // Check for extern variable declared locally.
615     if (DC->isFunctionOrMethod() && D->hasLinkage())
616       while (!DC->isNamespace() && !DC->isTranslationUnit())
617         DC = getEffectiveParentContext(DC);
618     if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
619         !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
620         !isa<VarTemplateSpecializationDecl>(D))
621       return false;
622   }
623
624   return true;
625 }
626
627 void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
628                                   const AbiTagList *AdditionalAbiTags) {
629   assert(AbiTags && "require AbiTagState");
630   AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
631 }
632
633 void CXXNameMangler::mangleSourceNameWithAbiTags(
634     const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
635   mangleSourceName(ND->getIdentifier());
636   writeAbiTags(ND, AdditionalAbiTags);
637 }
638
639 void CXXNameMangler::mangle(const NamedDecl *D) {
640   // <mangled-name> ::= _Z <encoding>
641   //            ::= <data name>
642   //            ::= <special-name>
643   Out << "_Z";
644   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
645     mangleFunctionEncoding(FD);
646   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
647     mangleName(VD);
648   else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
649     mangleName(IFD->getAnonField());
650   else
651     mangleName(cast<FieldDecl>(D));
652 }
653
654 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
655   // <encoding> ::= <function name> <bare-function-type>
656
657   // Don't mangle in the type if this isn't a decl we should typically mangle.
658   if (!Context.shouldMangleDeclName(FD)) {
659     mangleName(FD);
660     return;
661   }
662
663   AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
664   if (ReturnTypeAbiTags.empty()) {
665     // There are no tags for return type, the simplest case.
666     mangleName(FD);
667     mangleFunctionEncodingBareType(FD);
668     return;
669   }
670
671   // Mangle function name and encoding to temporary buffer.
672   // We have to output name and encoding to the same mangler to get the same
673   // substitution as it will be in final mangling.
674   SmallString<256> FunctionEncodingBuf;
675   llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
676   CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
677   // Output name of the function.
678   FunctionEncodingMangler.disableDerivedAbiTags();
679   FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
680
681   // Remember length of the function name in the buffer.
682   size_t EncodingPositionStart = FunctionEncodingStream.str().size();
683   FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
684
685   // Get tags from return type that are not present in function name or
686   // encoding.
687   const AbiTagList &UsedAbiTags =
688       FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
689   AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
690   AdditionalAbiTags.erase(
691       std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
692                           UsedAbiTags.begin(), UsedAbiTags.end(),
693                           AdditionalAbiTags.begin()),
694       AdditionalAbiTags.end());
695
696   // Output name with implicit tags and function encoding from temporary buffer.
697   mangleNameWithAbiTags(FD, &AdditionalAbiTags);
698   Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
699
700   // Function encoding could create new substitutions so we have to add
701   // temp mangled substitutions to main mangler.
702   extendSubstitutions(&FunctionEncodingMangler);
703 }
704
705 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
706   if (FD->hasAttr<EnableIfAttr>()) {
707     FunctionTypeDepthState Saved = FunctionTypeDepth.push();
708     Out << "Ua9enable_ifI";
709     for (AttrVec::const_iterator I = FD->getAttrs().begin(),
710                                  E = FD->getAttrs().end();
711          I != E; ++I) {
712       EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
713       if (!EIA)
714         continue;
715       Out << 'X';
716       mangleExpression(EIA->getCond());
717       Out << 'E';
718     }
719     Out << 'E';
720     FunctionTypeDepth.pop(Saved);
721   }
722
723   // When mangling an inheriting constructor, the bare function type used is
724   // that of the inherited constructor.
725   if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
726     if (auto Inherited = CD->getInheritedConstructor())
727       FD = Inherited.getConstructor();
728
729   // Whether the mangling of a function type includes the return type depends on
730   // the context and the nature of the function. The rules for deciding whether
731   // the return type is included are:
732   //
733   //   1. Template functions (names or types) have return types encoded, with
734   //   the exceptions listed below.
735   //   2. Function types not appearing as part of a function name mangling,
736   //   e.g. parameters, pointer types, etc., have return type encoded, with the
737   //   exceptions listed below.
738   //   3. Non-template function names do not have return types encoded.
739   //
740   // The exceptions mentioned in (1) and (2) above, for which the return type is
741   // never included, are
742   //   1. Constructors.
743   //   2. Destructors.
744   //   3. Conversion operator functions, e.g. operator int.
745   bool MangleReturnType = false;
746   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
747     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
748           isa<CXXConversionDecl>(FD)))
749       MangleReturnType = true;
750
751     // Mangle the type of the primary template.
752     FD = PrimaryTemplate->getTemplatedDecl();
753   }
754
755   mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
756                          MangleReturnType, FD);
757 }
758
759 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
760   while (isa<LinkageSpecDecl>(DC)) {
761     DC = getEffectiveParentContext(DC);
762   }
763
764   return DC;
765 }
766
767 /// Return whether a given namespace is the 'std' namespace.
768 static bool isStd(const NamespaceDecl *NS) {
769   if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
770                                 ->isTranslationUnit())
771     return false;
772
773   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
774   return II && II->isStr("std");
775 }
776
777 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
778 // namespace.
779 static bool isStdNamespace(const DeclContext *DC) {
780   if (!DC->isNamespace())
781     return false;
782
783   return isStd(cast<NamespaceDecl>(DC));
784 }
785
786 static const TemplateDecl *
787 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
788   // Check if we have a function template.
789   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
790     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
791       TemplateArgs = FD->getTemplateSpecializationArgs();
792       return TD;
793     }
794   }
795
796   // Check if we have a class template.
797   if (const ClassTemplateSpecializationDecl *Spec =
798         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
799     TemplateArgs = &Spec->getTemplateArgs();
800     return Spec->getSpecializedTemplate();
801   }
802
803   // Check if we have a variable template.
804   if (const VarTemplateSpecializationDecl *Spec =
805           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
806     TemplateArgs = &Spec->getTemplateArgs();
807     return Spec->getSpecializedTemplate();
808   }
809
810   return nullptr;
811 }
812
813 void CXXNameMangler::mangleName(const NamedDecl *ND) {
814   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
815     // Variables should have implicit tags from its type.
816     AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
817     if (VariableTypeAbiTags.empty()) {
818       // Simple case no variable type tags.
819       mangleNameWithAbiTags(VD, nullptr);
820       return;
821     }
822
823     // Mangle variable name to null stream to collect tags.
824     llvm::raw_null_ostream NullOutStream;
825     CXXNameMangler VariableNameMangler(*this, NullOutStream);
826     VariableNameMangler.disableDerivedAbiTags();
827     VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
828
829     // Get tags from variable type that are not present in its name.
830     const AbiTagList &UsedAbiTags =
831         VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
832     AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
833     AdditionalAbiTags.erase(
834         std::set_difference(VariableTypeAbiTags.begin(),
835                             VariableTypeAbiTags.end(), UsedAbiTags.begin(),
836                             UsedAbiTags.end(), AdditionalAbiTags.begin()),
837         AdditionalAbiTags.end());
838
839     // Output name with implicit tags.
840     mangleNameWithAbiTags(VD, &AdditionalAbiTags);
841   } else {
842     mangleNameWithAbiTags(ND, nullptr);
843   }
844 }
845
846 void CXXNameMangler::mangleNameWithAbiTags(const NamedDecl *ND,
847                                            const AbiTagList *AdditionalAbiTags) {
848   //  <name> ::= [<module-name>] <nested-name>
849   //         ::= [<module-name>] <unscoped-name>
850   //         ::= [<module-name>] <unscoped-template-name> <template-args>
851   //         ::= <local-name>
852   //
853   const DeclContext *DC = getEffectiveDeclContext(ND);
854
855   // If this is an extern variable declared locally, the relevant DeclContext
856   // is that of the containing namespace, or the translation unit.
857   // FIXME: This is a hack; extern variables declared locally should have
858   // a proper semantic declaration context!
859   if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
860     while (!DC->isNamespace() && !DC->isTranslationUnit())
861       DC = getEffectiveParentContext(DC);
862   else if (GetLocalClassDecl(ND)) {
863     mangleLocalName(ND, AdditionalAbiTags);
864     return;
865   }
866
867   DC = IgnoreLinkageSpecDecls(DC);
868
869   if (isLocalContainerContext(DC)) {
870     mangleLocalName(ND, AdditionalAbiTags);
871     return;
872   }
873
874   // Do not mangle the owning module for an external linkage declaration.
875   // This enables backwards-compatibility with non-modular code, and is
876   // a valid choice since conflicts are not permitted by C++ Modules TS
877   // [basic.def.odr]/6.2.
878   if (!ND->hasExternalFormalLinkage())
879     if (Module *M = ND->getOwningModuleForLinkage())
880       mangleModuleName(M);
881
882   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
883     // Check if we have a template.
884     const TemplateArgumentList *TemplateArgs = nullptr;
885     if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
886       mangleUnscopedTemplateName(TD, AdditionalAbiTags);
887       mangleTemplateArgs(*TemplateArgs);
888       return;
889     }
890
891     mangleUnscopedName(ND, AdditionalAbiTags);
892     return;
893   }
894
895   mangleNestedName(ND, DC, AdditionalAbiTags);
896 }
897
898 void CXXNameMangler::mangleModuleName(const Module *M) {
899   // Implement the C++ Modules TS name mangling proposal; see
900   //     https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
901   //
902   //   <module-name> ::= W <unscoped-name>+ E
903   //                 ::= W <module-subst> <unscoped-name>* E
904   Out << 'W';
905   mangleModuleNamePrefix(M->Name);
906   Out << 'E';
907 }
908
909 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
910   //  <module-subst> ::= _ <seq-id>          # 0 < seq-id < 10
911   //                 ::= W <seq-id - 10> _   # otherwise
912   auto It = ModuleSubstitutions.find(Name);
913   if (It != ModuleSubstitutions.end()) {
914     if (It->second < 10)
915       Out << '_' << static_cast<char>('0' + It->second);
916     else
917       Out << 'W' << (It->second - 10) << '_';
918     return;
919   }
920
921   // FIXME: Preserve hierarchy in module names rather than flattening
922   // them to strings; use Module*s as substitution keys.
923   auto Parts = Name.rsplit('.');
924   if (Parts.second.empty())
925     Parts.second = Parts.first;
926   else
927     mangleModuleNamePrefix(Parts.first);
928
929   Out << Parts.second.size() << Parts.second;
930   ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
931 }
932
933 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
934                                         const TemplateArgument *TemplateArgs,
935                                         unsigned NumTemplateArgs) {
936   const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
937
938   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
939     mangleUnscopedTemplateName(TD, nullptr);
940     mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
941   } else {
942     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
943   }
944 }
945
946 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND,
947                                         const AbiTagList *AdditionalAbiTags) {
948   //  <unscoped-name> ::= <unqualified-name>
949   //                  ::= St <unqualified-name>   # ::std::
950
951   if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
952     Out << "St";
953
954   mangleUnqualifiedName(ND, AdditionalAbiTags);
955 }
956
957 void CXXNameMangler::mangleUnscopedTemplateName(
958     const TemplateDecl *ND, const AbiTagList *AdditionalAbiTags) {
959   //     <unscoped-template-name> ::= <unscoped-name>
960   //                              ::= <substitution>
961   if (mangleSubstitution(ND))
962     return;
963
964   // <template-template-param> ::= <template-param>
965   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
966     assert(!AdditionalAbiTags &&
967            "template template param cannot have abi tags");
968     mangleTemplateParameter(TTP->getIndex());
969   } else if (isa<BuiltinTemplateDecl>(ND)) {
970     mangleUnscopedName(ND, AdditionalAbiTags);
971   } else {
972     mangleUnscopedName(ND->getTemplatedDecl(), AdditionalAbiTags);
973   }
974
975   addSubstitution(ND);
976 }
977
978 void CXXNameMangler::mangleUnscopedTemplateName(
979     TemplateName Template, const AbiTagList *AdditionalAbiTags) {
980   //     <unscoped-template-name> ::= <unscoped-name>
981   //                              ::= <substitution>
982   if (TemplateDecl *TD = Template.getAsTemplateDecl())
983     return mangleUnscopedTemplateName(TD, AdditionalAbiTags);
984
985   if (mangleSubstitution(Template))
986     return;
987
988   assert(!AdditionalAbiTags &&
989          "dependent template name cannot have abi tags");
990
991   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
992   assert(Dependent && "Not a dependent template name?");
993   if (const IdentifierInfo *Id = Dependent->getIdentifier())
994     mangleSourceName(Id);
995   else
996     mangleOperatorName(Dependent->getOperator(), UnknownArity);
997
998   addSubstitution(Template);
999 }
1000
1001 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1002   // ABI:
1003   //   Floating-point literals are encoded using a fixed-length
1004   //   lowercase hexadecimal string corresponding to the internal
1005   //   representation (IEEE on Itanium), high-order bytes first,
1006   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1007   //   on Itanium.
1008   // The 'without leading zeroes' thing seems to be an editorial
1009   // mistake; see the discussion on cxx-abi-dev beginning on
1010   // 2012-01-16.
1011
1012   // Our requirements here are just barely weird enough to justify
1013   // using a custom algorithm instead of post-processing APInt::toString().
1014
1015   llvm::APInt valueBits = f.bitcastToAPInt();
1016   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1017   assert(numCharacters != 0);
1018
1019   // Allocate a buffer of the right number of characters.
1020   SmallVector<char, 20> buffer(numCharacters);
1021
1022   // Fill the buffer left-to-right.
1023   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1024     // The bit-index of the next hex digit.
1025     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1026
1027     // Project out 4 bits starting at 'digitIndex'.
1028     uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1029     hexDigit >>= (digitBitIndex % 64);
1030     hexDigit &= 0xF;
1031
1032     // Map that over to a lowercase hex digit.
1033     static const char charForHex[16] = {
1034       '0', '1', '2', '3', '4', '5', '6', '7',
1035       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1036     };
1037     buffer[stringIndex] = charForHex[hexDigit];
1038   }
1039
1040   Out.write(buffer.data(), numCharacters);
1041 }
1042
1043 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1044   if (Value.isSigned() && Value.isNegative()) {
1045     Out << 'n';
1046     Value.abs().print(Out, /*signed*/ false);
1047   } else {
1048     Value.print(Out, /*signed*/ false);
1049   }
1050 }
1051
1052 void CXXNameMangler::mangleNumber(int64_t Number) {
1053   //  <number> ::= [n] <non-negative decimal integer>
1054   if (Number < 0) {
1055     Out << 'n';
1056     Number = -Number;
1057   }
1058
1059   Out << Number;
1060 }
1061
1062 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1063   //  <call-offset>  ::= h <nv-offset> _
1064   //                 ::= v <v-offset> _
1065   //  <nv-offset>    ::= <offset number>        # non-virtual base override
1066   //  <v-offset>     ::= <offset number> _ <virtual offset number>
1067   //                      # virtual base override, with vcall offset
1068   if (!Virtual) {
1069     Out << 'h';
1070     mangleNumber(NonVirtual);
1071     Out << '_';
1072     return;
1073   }
1074
1075   Out << 'v';
1076   mangleNumber(NonVirtual);
1077   Out << '_';
1078   mangleNumber(Virtual);
1079   Out << '_';
1080 }
1081
1082 void CXXNameMangler::manglePrefix(QualType type) {
1083   if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1084     if (!mangleSubstitution(QualType(TST, 0))) {
1085       mangleTemplatePrefix(TST->getTemplateName());
1086
1087       // FIXME: GCC does not appear to mangle the template arguments when
1088       // the template in question is a dependent template name. Should we
1089       // emulate that badness?
1090       mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1091       addSubstitution(QualType(TST, 0));
1092     }
1093   } else if (const auto *DTST =
1094                  type->getAs<DependentTemplateSpecializationType>()) {
1095     if (!mangleSubstitution(QualType(DTST, 0))) {
1096       TemplateName Template = getASTContext().getDependentTemplateName(
1097           DTST->getQualifier(), DTST->getIdentifier());
1098       mangleTemplatePrefix(Template);
1099
1100       // FIXME: GCC does not appear to mangle the template arguments when
1101       // the template in question is a dependent template name. Should we
1102       // emulate that badness?
1103       mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1104       addSubstitution(QualType(DTST, 0));
1105     }
1106   } else {
1107     // We use the QualType mangle type variant here because it handles
1108     // substitutions.
1109     mangleType(type);
1110   }
1111 }
1112
1113 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1114 ///
1115 /// \param recursive - true if this is being called recursively,
1116 ///   i.e. if there is more prefix "to the right".
1117 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1118                                             bool recursive) {
1119
1120   // x, ::x
1121   // <unresolved-name> ::= [gs] <base-unresolved-name>
1122
1123   // T::x / decltype(p)::x
1124   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1125
1126   // T::N::x /decltype(p)::N::x
1127   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1128   //                       <base-unresolved-name>
1129
1130   // A::x, N::y, A<T>::z; "gs" means leading "::"
1131   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1132   //                       <base-unresolved-name>
1133
1134   switch (qualifier->getKind()) {
1135   case NestedNameSpecifier::Global:
1136     Out << "gs";
1137
1138     // We want an 'sr' unless this is the entire NNS.
1139     if (recursive)
1140       Out << "sr";
1141
1142     // We never want an 'E' here.
1143     return;
1144
1145   case NestedNameSpecifier::Super:
1146     llvm_unreachable("Can't mangle __super specifier");
1147
1148   case NestedNameSpecifier::Namespace:
1149     if (qualifier->getPrefix())
1150       mangleUnresolvedPrefix(qualifier->getPrefix(),
1151                              /*recursive*/ true);
1152     else
1153       Out << "sr";
1154     mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1155     break;
1156   case NestedNameSpecifier::NamespaceAlias:
1157     if (qualifier->getPrefix())
1158       mangleUnresolvedPrefix(qualifier->getPrefix(),
1159                              /*recursive*/ true);
1160     else
1161       Out << "sr";
1162     mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1163     break;
1164
1165   case NestedNameSpecifier::TypeSpec:
1166   case NestedNameSpecifier::TypeSpecWithTemplate: {
1167     const Type *type = qualifier->getAsType();
1168
1169     // We only want to use an unresolved-type encoding if this is one of:
1170     //   - a decltype
1171     //   - a template type parameter
1172     //   - a template template parameter with arguments
1173     // In all of these cases, we should have no prefix.
1174     if (qualifier->getPrefix()) {
1175       mangleUnresolvedPrefix(qualifier->getPrefix(),
1176                              /*recursive*/ true);
1177     } else {
1178       // Otherwise, all the cases want this.
1179       Out << "sr";
1180     }
1181
1182     if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1183       return;
1184
1185     break;
1186   }
1187
1188   case NestedNameSpecifier::Identifier:
1189     // Member expressions can have these without prefixes.
1190     if (qualifier->getPrefix())
1191       mangleUnresolvedPrefix(qualifier->getPrefix(),
1192                              /*recursive*/ true);
1193     else
1194       Out << "sr";
1195
1196     mangleSourceName(qualifier->getAsIdentifier());
1197     // An Identifier has no type information, so we can't emit abi tags for it.
1198     break;
1199   }
1200
1201   // If this was the innermost part of the NNS, and we fell out to
1202   // here, append an 'E'.
1203   if (!recursive)
1204     Out << 'E';
1205 }
1206
1207 /// Mangle an unresolved-name, which is generally used for names which
1208 /// weren't resolved to specific entities.
1209 void CXXNameMangler::mangleUnresolvedName(
1210     NestedNameSpecifier *qualifier, DeclarationName name,
1211     const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1212     unsigned knownArity) {
1213   if (qualifier) mangleUnresolvedPrefix(qualifier);
1214   switch (name.getNameKind()) {
1215     // <base-unresolved-name> ::= <simple-id>
1216     case DeclarationName::Identifier:
1217       mangleSourceName(name.getAsIdentifierInfo());
1218       break;
1219     // <base-unresolved-name> ::= dn <destructor-name>
1220     case DeclarationName::CXXDestructorName:
1221       Out << "dn";
1222       mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1223       break;
1224     // <base-unresolved-name> ::= on <operator-name>
1225     case DeclarationName::CXXConversionFunctionName:
1226     case DeclarationName::CXXLiteralOperatorName:
1227     case DeclarationName::CXXOperatorName:
1228       Out << "on";
1229       mangleOperatorName(name, knownArity);
1230       break;
1231     case DeclarationName::CXXConstructorName:
1232       llvm_unreachable("Can't mangle a constructor name!");
1233     case DeclarationName::CXXUsingDirective:
1234       llvm_unreachable("Can't mangle a using directive name!");
1235     case DeclarationName::CXXDeductionGuideName:
1236       llvm_unreachable("Can't mangle a deduction guide name!");
1237     case DeclarationName::ObjCMultiArgSelector:
1238     case DeclarationName::ObjCOneArgSelector:
1239     case DeclarationName::ObjCZeroArgSelector:
1240       llvm_unreachable("Can't mangle Objective-C selector names here!");
1241   }
1242
1243   // The <simple-id> and on <operator-name> productions end in an optional
1244   // <template-args>.
1245   if (TemplateArgs)
1246     mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1247 }
1248
1249 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1250                                            DeclarationName Name,
1251                                            unsigned KnownArity,
1252                                            const AbiTagList *AdditionalAbiTags) {
1253   unsigned Arity = KnownArity;
1254   //  <unqualified-name> ::= <operator-name>
1255   //                     ::= <ctor-dtor-name>
1256   //                     ::= <source-name>
1257   switch (Name.getNameKind()) {
1258   case DeclarationName::Identifier: {
1259     const IdentifierInfo *II = Name.getAsIdentifierInfo();
1260
1261     // We mangle decomposition declarations as the names of their bindings.
1262     if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1263       // FIXME: Non-standard mangling for decomposition declarations:
1264       //
1265       //  <unqualified-name> ::= DC <source-name>* E
1266       //
1267       // These can never be referenced across translation units, so we do
1268       // not need a cross-vendor mangling for anything other than demanglers.
1269       // Proposed on cxx-abi-dev on 2016-08-12
1270       Out << "DC";
1271       for (auto *BD : DD->bindings())
1272         mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1273       Out << 'E';
1274       writeAbiTags(ND, AdditionalAbiTags);
1275       break;
1276     }
1277
1278     if (II) {
1279       // Match GCC's naming convention for internal linkage symbols, for
1280       // symbols that are not actually visible outside of this TU. GCC
1281       // distinguishes between internal and external linkage symbols in
1282       // its mangling, to support cases like this that were valid C++ prior
1283       // to DR426:
1284       //
1285       //   void test() { extern void foo(); }
1286       //   static void foo();
1287       //
1288       // Don't bother with the L marker for names in anonymous namespaces; the
1289       // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1290       // matches GCC anyway, because GCC does not treat anonymous namespaces as
1291       // implying internal linkage.
1292       if (ND && ND->getFormalLinkage() == InternalLinkage &&
1293           !ND->isExternallyVisible() &&
1294           getEffectiveDeclContext(ND)->isFileContext() &&
1295           !ND->isInAnonymousNamespace())
1296         Out << 'L';
1297
1298       auto *FD = dyn_cast<FunctionDecl>(ND);
1299       bool IsRegCall = FD &&
1300                        FD->getType()->castAs<FunctionType>()->getCallConv() ==
1301                            clang::CC_X86RegCall;
1302       if (IsRegCall)
1303         mangleRegCallName(II);
1304       else
1305         mangleSourceName(II);
1306
1307       writeAbiTags(ND, AdditionalAbiTags);
1308       break;
1309     }
1310
1311     // Otherwise, an anonymous entity.  We must have a declaration.
1312     assert(ND && "mangling empty name without declaration");
1313
1314     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1315       if (NS->isAnonymousNamespace()) {
1316         // This is how gcc mangles these names.
1317         Out << "12_GLOBAL__N_1";
1318         break;
1319       }
1320     }
1321
1322     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1323       // We must have an anonymous union or struct declaration.
1324       const RecordDecl *RD = VD->getType()->getAs<RecordType>()->getDecl();
1325
1326       // Itanium C++ ABI 5.1.2:
1327       //
1328       //   For the purposes of mangling, the name of an anonymous union is
1329       //   considered to be the name of the first named data member found by a
1330       //   pre-order, depth-first, declaration-order walk of the data members of
1331       //   the anonymous union. If there is no such data member (i.e., if all of
1332       //   the data members in the union are unnamed), then there is no way for
1333       //   a program to refer to the anonymous union, and there is therefore no
1334       //   need to mangle its name.
1335       assert(RD->isAnonymousStructOrUnion()
1336              && "Expected anonymous struct or union!");
1337       const FieldDecl *FD = RD->findFirstNamedDataMember();
1338
1339       // It's actually possible for various reasons for us to get here
1340       // with an empty anonymous struct / union.  Fortunately, it
1341       // doesn't really matter what name we generate.
1342       if (!FD) break;
1343       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1344
1345       mangleSourceName(FD->getIdentifier());
1346       // Not emitting abi tags: internal name anyway.
1347       break;
1348     }
1349
1350     // Class extensions have no name as a category, and it's possible
1351     // for them to be the semantic parent of certain declarations
1352     // (primarily, tag decls defined within declarations).  Such
1353     // declarations will always have internal linkage, so the name
1354     // doesn't really matter, but we shouldn't crash on them.  For
1355     // safety, just handle all ObjC containers here.
1356     if (isa<ObjCContainerDecl>(ND))
1357       break;
1358
1359     // We must have an anonymous struct.
1360     const TagDecl *TD = cast<TagDecl>(ND);
1361     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1362       assert(TD->getDeclContext() == D->getDeclContext() &&
1363              "Typedef should not be in another decl context!");
1364       assert(D->getDeclName().getAsIdentifierInfo() &&
1365              "Typedef was not named!");
1366       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1367       assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1368       // Explicit abi tags are still possible; take from underlying type, not
1369       // from typedef.
1370       writeAbiTags(TD, nullptr);
1371       break;
1372     }
1373
1374     // <unnamed-type-name> ::= <closure-type-name>
1375     //
1376     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1377     // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
1378     //     # Parameter types or 'v' for 'void'.
1379     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1380       if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1381         assert(!AdditionalAbiTags &&
1382                "Lambda type cannot have additional abi tags");
1383         mangleLambda(Record);
1384         break;
1385       }
1386     }
1387
1388     if (TD->isExternallyVisible()) {
1389       unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1390       Out << "Ut";
1391       if (UnnamedMangle > 1)
1392         Out << UnnamedMangle - 2;
1393       Out << '_';
1394       writeAbiTags(TD, AdditionalAbiTags);
1395       break;
1396     }
1397
1398     // Get a unique id for the anonymous struct. If it is not a real output
1399     // ID doesn't matter so use fake one.
1400     unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1401
1402     // Mangle it as a source name in the form
1403     // [n] $_<id>
1404     // where n is the length of the string.
1405     SmallString<8> Str;
1406     Str += "$_";
1407     Str += llvm::utostr(AnonStructId);
1408
1409     Out << Str.size();
1410     Out << Str;
1411     break;
1412   }
1413
1414   case DeclarationName::ObjCZeroArgSelector:
1415   case DeclarationName::ObjCOneArgSelector:
1416   case DeclarationName::ObjCMultiArgSelector:
1417     llvm_unreachable("Can't mangle Objective-C selector names here!");
1418
1419   case DeclarationName::CXXConstructorName: {
1420     const CXXRecordDecl *InheritedFrom = nullptr;
1421     const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1422     if (auto Inherited =
1423             cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1424       InheritedFrom = Inherited.getConstructor()->getParent();
1425       InheritedTemplateArgs =
1426           Inherited.getConstructor()->getTemplateSpecializationArgs();
1427     }
1428
1429     if (ND == Structor)
1430       // If the named decl is the C++ constructor we're mangling, use the type
1431       // we were given.
1432       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1433     else
1434       // Otherwise, use the complete constructor name. This is relevant if a
1435       // class with a constructor is declared within a constructor.
1436       mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1437
1438     // FIXME: The template arguments are part of the enclosing prefix or
1439     // nested-name, but it's more convenient to mangle them here.
1440     if (InheritedTemplateArgs)
1441       mangleTemplateArgs(*InheritedTemplateArgs);
1442
1443     writeAbiTags(ND, AdditionalAbiTags);
1444     break;
1445   }
1446
1447   case DeclarationName::CXXDestructorName:
1448     if (ND == Structor)
1449       // If the named decl is the C++ destructor we're mangling, use the type we
1450       // were given.
1451       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1452     else
1453       // Otherwise, use the complete destructor name. This is relevant if a
1454       // class with a destructor is declared within a destructor.
1455       mangleCXXDtorType(Dtor_Complete);
1456     writeAbiTags(ND, AdditionalAbiTags);
1457     break;
1458
1459   case DeclarationName::CXXOperatorName:
1460     if (ND && Arity == UnknownArity) {
1461       Arity = cast<FunctionDecl>(ND)->getNumParams();
1462
1463       // If we have a member function, we need to include the 'this' pointer.
1464       if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1465         if (!MD->isStatic())
1466           Arity++;
1467     }
1468     LLVM_FALLTHROUGH;
1469   case DeclarationName::CXXConversionFunctionName:
1470   case DeclarationName::CXXLiteralOperatorName:
1471     mangleOperatorName(Name, Arity);
1472     writeAbiTags(ND, AdditionalAbiTags);
1473     break;
1474
1475   case DeclarationName::CXXDeductionGuideName:
1476     llvm_unreachable("Can't mangle a deduction guide name!");
1477
1478   case DeclarationName::CXXUsingDirective:
1479     llvm_unreachable("Can't mangle a using directive name!");
1480   }
1481 }
1482
1483 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1484   // <source-name> ::= <positive length number> __regcall3__ <identifier>
1485   // <number> ::= [n] <non-negative decimal integer>
1486   // <identifier> ::= <unqualified source code identifier>
1487   Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1488       << II->getName();
1489 }
1490
1491 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1492   // <source-name> ::= <positive length number> <identifier>
1493   // <number> ::= [n] <non-negative decimal integer>
1494   // <identifier> ::= <unqualified source code identifier>
1495   Out << II->getLength() << II->getName();
1496 }
1497
1498 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1499                                       const DeclContext *DC,
1500                                       const AbiTagList *AdditionalAbiTags,
1501                                       bool NoFunction) {
1502   // <nested-name>
1503   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1504   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1505   //       <template-args> E
1506
1507   Out << 'N';
1508   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1509     Qualifiers MethodQuals = Method->getMethodQualifiers();
1510     // We do not consider restrict a distinguishing attribute for overloading
1511     // purposes so we must not mangle it.
1512     MethodQuals.removeRestrict();
1513     mangleQualifiers(MethodQuals);
1514     mangleRefQualifier(Method->getRefQualifier());
1515   }
1516
1517   // Check if we have a template.
1518   const TemplateArgumentList *TemplateArgs = nullptr;
1519   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1520     mangleTemplatePrefix(TD, NoFunction);
1521     mangleTemplateArgs(*TemplateArgs);
1522   }
1523   else {
1524     manglePrefix(DC, NoFunction);
1525     mangleUnqualifiedName(ND, AdditionalAbiTags);
1526   }
1527
1528   Out << 'E';
1529 }
1530 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1531                                       const TemplateArgument *TemplateArgs,
1532                                       unsigned NumTemplateArgs) {
1533   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1534
1535   Out << 'N';
1536
1537   mangleTemplatePrefix(TD);
1538   mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1539
1540   Out << 'E';
1541 }
1542
1543 void CXXNameMangler::mangleLocalName(const Decl *D,
1544                                      const AbiTagList *AdditionalAbiTags) {
1545   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1546   //              := Z <function encoding> E s [<discriminator>]
1547   // <local-name> := Z <function encoding> E d [ <parameter number> ]
1548   //                 _ <entity name>
1549   // <discriminator> := _ <non-negative number>
1550   assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1551   const RecordDecl *RD = GetLocalClassDecl(D);
1552   const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1553
1554   Out << 'Z';
1555
1556   {
1557     AbiTagState LocalAbiTags(AbiTags);
1558
1559     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1560       mangleObjCMethodName(MD);
1561     else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1562       mangleBlockForPrefix(BD);
1563     else
1564       mangleFunctionEncoding(cast<FunctionDecl>(DC));
1565
1566     // Implicit ABI tags (from namespace) are not available in the following
1567     // entity; reset to actually emitted tags, which are available.
1568     LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1569   }
1570
1571   Out << 'E';
1572
1573   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1574   // be a bug that is fixed in trunk.
1575
1576   if (RD) {
1577     // The parameter number is omitted for the last parameter, 0 for the
1578     // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1579     // <entity name> will of course contain a <closure-type-name>: Its
1580     // numbering will be local to the particular argument in which it appears
1581     // -- other default arguments do not affect its encoding.
1582     const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1583     if (CXXRD && CXXRD->isLambda()) {
1584       if (const ParmVarDecl *Parm
1585               = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1586         if (const FunctionDecl *Func
1587               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1588           Out << 'd';
1589           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1590           if (Num > 1)
1591             mangleNumber(Num - 2);
1592           Out << '_';
1593         }
1594       }
1595     }
1596
1597     // Mangle the name relative to the closest enclosing function.
1598     // equality ok because RD derived from ND above
1599     if (D == RD)  {
1600       mangleUnqualifiedName(RD, AdditionalAbiTags);
1601     } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1602       manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1603       assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1604       mangleUnqualifiedBlock(BD);
1605     } else {
1606       const NamedDecl *ND = cast<NamedDecl>(D);
1607       mangleNestedName(ND, getEffectiveDeclContext(ND), AdditionalAbiTags,
1608                        true /*NoFunction*/);
1609     }
1610   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1611     // Mangle a block in a default parameter; see above explanation for
1612     // lambdas.
1613     if (const ParmVarDecl *Parm
1614             = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1615       if (const FunctionDecl *Func
1616             = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1617         Out << 'd';
1618         unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1619         if (Num > 1)
1620           mangleNumber(Num - 2);
1621         Out << '_';
1622       }
1623     }
1624
1625     assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1626     mangleUnqualifiedBlock(BD);
1627   } else {
1628     mangleUnqualifiedName(cast<NamedDecl>(D), AdditionalAbiTags);
1629   }
1630
1631   if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1632     unsigned disc;
1633     if (Context.getNextDiscriminator(ND, disc)) {
1634       if (disc < 10)
1635         Out << '_' << disc;
1636       else
1637         Out << "__" << disc << '_';
1638     }
1639   }
1640 }
1641
1642 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1643   if (GetLocalClassDecl(Block)) {
1644     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1645     return;
1646   }
1647   const DeclContext *DC = getEffectiveDeclContext(Block);
1648   if (isLocalContainerContext(DC)) {
1649     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1650     return;
1651   }
1652   manglePrefix(getEffectiveDeclContext(Block));
1653   mangleUnqualifiedBlock(Block);
1654 }
1655
1656 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1657   if (Decl *Context = Block->getBlockManglingContextDecl()) {
1658     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1659         Context->getDeclContext()->isRecord()) {
1660       const auto *ND = cast<NamedDecl>(Context);
1661       if (ND->getIdentifier()) {
1662         mangleSourceNameWithAbiTags(ND);
1663         Out << 'M';
1664       }
1665     }
1666   }
1667
1668   // If we have a block mangling number, use it.
1669   unsigned Number = Block->getBlockManglingNumber();
1670   // Otherwise, just make up a number. It doesn't matter what it is because
1671   // the symbol in question isn't externally visible.
1672   if (!Number)
1673     Number = Context.getBlockId(Block, false);
1674   else {
1675     // Stored mangling numbers are 1-based.
1676     --Number;
1677   }
1678   Out << "Ub";
1679   if (Number > 0)
1680     Out << Number - 1;
1681   Out << '_';
1682 }
1683
1684 // <template-param-decl>
1685 //   ::= Ty                              # template type parameter
1686 //   ::= Tn <type>                       # template non-type parameter
1687 //   ::= Tt <template-param-decl>* E     # template template parameter
1688 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
1689   if (isa<TemplateTypeParmDecl>(Decl)) {
1690     Out << "Ty";
1691   } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
1692     Out << "Tn";
1693     mangleType(Tn->getType());
1694   } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
1695     Out << "Tt";
1696     for (auto *Param : *Tt->getTemplateParameters())
1697       mangleTemplateParamDecl(Param);
1698     Out << "E";
1699   }
1700 }
1701
1702 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1703   // If the context of a closure type is an initializer for a class member
1704   // (static or nonstatic), it is encoded in a qualified name with a final
1705   // <prefix> of the form:
1706   //
1707   //   <data-member-prefix> := <member source-name> M
1708   //
1709   // Technically, the data-member-prefix is part of the <prefix>. However,
1710   // since a closure type will always be mangled with a prefix, it's easier
1711   // to emit that last part of the prefix here.
1712   if (Decl *Context = Lambda->getLambdaContextDecl()) {
1713     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1714         !isa<ParmVarDecl>(Context)) {
1715       // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a
1716       // reasonable mangling here.
1717       if (const IdentifierInfo *Name
1718             = cast<NamedDecl>(Context)->getIdentifier()) {
1719         mangleSourceName(Name);
1720         const TemplateArgumentList *TemplateArgs = nullptr;
1721         if (isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1722           mangleTemplateArgs(*TemplateArgs);
1723         Out << 'M';
1724       }
1725     }
1726   }
1727
1728   Out << "Ul";
1729   for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
1730     mangleTemplateParamDecl(D);
1731   const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1732                                    getAs<FunctionProtoType>();
1733   mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1734                          Lambda->getLambdaStaticInvoker());
1735   Out << "E";
1736
1737   // The number is omitted for the first closure type with a given
1738   // <lambda-sig> in a given context; it is n-2 for the nth closure type
1739   // (in lexical order) with that same <lambda-sig> and context.
1740   //
1741   // The AST keeps track of the number for us.
1742   unsigned Number = Lambda->getLambdaManglingNumber();
1743   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1744   if (Number > 1)
1745     mangleNumber(Number - 2);
1746   Out << '_';
1747 }
1748
1749 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1750   switch (qualifier->getKind()) {
1751   case NestedNameSpecifier::Global:
1752     // nothing
1753     return;
1754
1755   case NestedNameSpecifier::Super:
1756     llvm_unreachable("Can't mangle __super specifier");
1757
1758   case NestedNameSpecifier::Namespace:
1759     mangleName(qualifier->getAsNamespace());
1760     return;
1761
1762   case NestedNameSpecifier::NamespaceAlias:
1763     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1764     return;
1765
1766   case NestedNameSpecifier::TypeSpec:
1767   case NestedNameSpecifier::TypeSpecWithTemplate:
1768     manglePrefix(QualType(qualifier->getAsType(), 0));
1769     return;
1770
1771   case NestedNameSpecifier::Identifier:
1772     // Member expressions can have these without prefixes, but that
1773     // should end up in mangleUnresolvedPrefix instead.
1774     assert(qualifier->getPrefix());
1775     manglePrefix(qualifier->getPrefix());
1776
1777     mangleSourceName(qualifier->getAsIdentifier());
1778     return;
1779   }
1780
1781   llvm_unreachable("unexpected nested name specifier");
1782 }
1783
1784 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1785   //  <prefix> ::= <prefix> <unqualified-name>
1786   //           ::= <template-prefix> <template-args>
1787   //           ::= <template-param>
1788   //           ::= # empty
1789   //           ::= <substitution>
1790
1791   DC = IgnoreLinkageSpecDecls(DC);
1792
1793   if (DC->isTranslationUnit())
1794     return;
1795
1796   if (NoFunction && isLocalContainerContext(DC))
1797     return;
1798
1799   assert(!isLocalContainerContext(DC));
1800
1801   const NamedDecl *ND = cast<NamedDecl>(DC);
1802   if (mangleSubstitution(ND))
1803     return;
1804
1805   // Check if we have a template.
1806   const TemplateArgumentList *TemplateArgs = nullptr;
1807   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1808     mangleTemplatePrefix(TD);
1809     mangleTemplateArgs(*TemplateArgs);
1810   } else {
1811     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1812     mangleUnqualifiedName(ND, nullptr);
1813   }
1814
1815   addSubstitution(ND);
1816 }
1817
1818 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1819   // <template-prefix> ::= <prefix> <template unqualified-name>
1820   //                   ::= <template-param>
1821   //                   ::= <substitution>
1822   if (TemplateDecl *TD = Template.getAsTemplateDecl())
1823     return mangleTemplatePrefix(TD);
1824
1825   if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1826     manglePrefix(Qualified->getQualifier());
1827
1828   if (OverloadedTemplateStorage *Overloaded
1829                                       = Template.getAsOverloadedTemplate()) {
1830     mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1831                           UnknownArity, nullptr);
1832     return;
1833   }
1834
1835   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1836   assert(Dependent && "Unknown template name kind?");
1837   if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1838     manglePrefix(Qualifier);
1839   mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr);
1840 }
1841
1842 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1843                                           bool NoFunction) {
1844   // <template-prefix> ::= <prefix> <template unqualified-name>
1845   //                   ::= <template-param>
1846   //                   ::= <substitution>
1847   // <template-template-param> ::= <template-param>
1848   //                               <substitution>
1849
1850   if (mangleSubstitution(ND))
1851     return;
1852
1853   // <template-template-param> ::= <template-param>
1854   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1855     mangleTemplateParameter(TTP->getIndex());
1856   } else {
1857     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1858     if (isa<BuiltinTemplateDecl>(ND))
1859       mangleUnqualifiedName(ND, nullptr);
1860     else
1861       mangleUnqualifiedName(ND->getTemplatedDecl(), nullptr);
1862   }
1863
1864   addSubstitution(ND);
1865 }
1866
1867 /// Mangles a template name under the production <type>.  Required for
1868 /// template template arguments.
1869 ///   <type> ::= <class-enum-type>
1870 ///          ::= <template-param>
1871 ///          ::= <substitution>
1872 void CXXNameMangler::mangleType(TemplateName TN) {
1873   if (mangleSubstitution(TN))
1874     return;
1875
1876   TemplateDecl *TD = nullptr;
1877
1878   switch (TN.getKind()) {
1879   case TemplateName::QualifiedTemplate:
1880     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1881     goto HaveDecl;
1882
1883   case TemplateName::Template:
1884     TD = TN.getAsTemplateDecl();
1885     goto HaveDecl;
1886
1887   HaveDecl:
1888     if (isa<TemplateTemplateParmDecl>(TD))
1889       mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1890     else
1891       mangleName(TD);
1892     break;
1893
1894   case TemplateName::OverloadedTemplate:
1895   case TemplateName::AssumedTemplate:
1896     llvm_unreachable("can't mangle an overloaded template name as a <type>");
1897
1898   case TemplateName::DependentTemplate: {
1899     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1900     assert(Dependent->isIdentifier());
1901
1902     // <class-enum-type> ::= <name>
1903     // <name> ::= <nested-name>
1904     mangleUnresolvedPrefix(Dependent->getQualifier());
1905     mangleSourceName(Dependent->getIdentifier());
1906     break;
1907   }
1908
1909   case TemplateName::SubstTemplateTemplateParm: {
1910     // Substituted template parameters are mangled as the substituted
1911     // template.  This will check for the substitution twice, which is
1912     // fine, but we have to return early so that we don't try to *add*
1913     // the substitution twice.
1914     SubstTemplateTemplateParmStorage *subst
1915       = TN.getAsSubstTemplateTemplateParm();
1916     mangleType(subst->getReplacement());
1917     return;
1918   }
1919
1920   case TemplateName::SubstTemplateTemplateParmPack: {
1921     // FIXME: not clear how to mangle this!
1922     // template <template <class> class T...> class A {
1923     //   template <template <class> class U...> void foo(B<T,U> x...);
1924     // };
1925     Out << "_SUBSTPACK_";
1926     break;
1927   }
1928   }
1929
1930   addSubstitution(TN);
1931 }
1932
1933 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
1934                                                     StringRef Prefix) {
1935   // Only certain other types are valid as prefixes;  enumerate them.
1936   switch (Ty->getTypeClass()) {
1937   case Type::Builtin:
1938   case Type::Complex:
1939   case Type::Adjusted:
1940   case Type::Decayed:
1941   case Type::Pointer:
1942   case Type::BlockPointer:
1943   case Type::LValueReference:
1944   case Type::RValueReference:
1945   case Type::MemberPointer:
1946   case Type::ConstantArray:
1947   case Type::IncompleteArray:
1948   case Type::VariableArray:
1949   case Type::DependentSizedArray:
1950   case Type::DependentAddressSpace:
1951   case Type::DependentVector:
1952   case Type::DependentSizedExtVector:
1953   case Type::Vector:
1954   case Type::ExtVector:
1955   case Type::FunctionProto:
1956   case Type::FunctionNoProto:
1957   case Type::Paren:
1958   case Type::Attributed:
1959   case Type::Auto:
1960   case Type::DeducedTemplateSpecialization:
1961   case Type::PackExpansion:
1962   case Type::ObjCObject:
1963   case Type::ObjCInterface:
1964   case Type::ObjCObjectPointer:
1965   case Type::ObjCTypeParam:
1966   case Type::Atomic:
1967   case Type::Pipe:
1968   case Type::MacroQualified:
1969     llvm_unreachable("type is illegal as a nested name specifier");
1970
1971   case Type::SubstTemplateTypeParmPack:
1972     // FIXME: not clear how to mangle this!
1973     // template <class T...> class A {
1974     //   template <class U...> void foo(decltype(T::foo(U())) x...);
1975     // };
1976     Out << "_SUBSTPACK_";
1977     break;
1978
1979   // <unresolved-type> ::= <template-param>
1980   //                   ::= <decltype>
1981   //                   ::= <template-template-param> <template-args>
1982   // (this last is not official yet)
1983   case Type::TypeOfExpr:
1984   case Type::TypeOf:
1985   case Type::Decltype:
1986   case Type::TemplateTypeParm:
1987   case Type::UnaryTransform:
1988   case Type::SubstTemplateTypeParm:
1989   unresolvedType:
1990     // Some callers want a prefix before the mangled type.
1991     Out << Prefix;
1992
1993     // This seems to do everything we want.  It's not really
1994     // sanctioned for a substituted template parameter, though.
1995     mangleType(Ty);
1996
1997     // We never want to print 'E' directly after an unresolved-type,
1998     // so we return directly.
1999     return true;
2000
2001   case Type::Typedef:
2002     mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
2003     break;
2004
2005   case Type::UnresolvedUsing:
2006     mangleSourceNameWithAbiTags(
2007         cast<UnresolvedUsingType>(Ty)->getDecl());
2008     break;
2009
2010   case Type::Enum:
2011   case Type::Record:
2012     mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
2013     break;
2014
2015   case Type::TemplateSpecialization: {
2016     const TemplateSpecializationType *TST =
2017         cast<TemplateSpecializationType>(Ty);
2018     TemplateName TN = TST->getTemplateName();
2019     switch (TN.getKind()) {
2020     case TemplateName::Template:
2021     case TemplateName::QualifiedTemplate: {
2022       TemplateDecl *TD = TN.getAsTemplateDecl();
2023
2024       // If the base is a template template parameter, this is an
2025       // unresolved type.
2026       assert(TD && "no template for template specialization type");
2027       if (isa<TemplateTemplateParmDecl>(TD))
2028         goto unresolvedType;
2029
2030       mangleSourceNameWithAbiTags(TD);
2031       break;
2032     }
2033
2034     case TemplateName::OverloadedTemplate:
2035     case TemplateName::AssumedTemplate:
2036     case TemplateName::DependentTemplate:
2037       llvm_unreachable("invalid base for a template specialization type");
2038
2039     case TemplateName::SubstTemplateTemplateParm: {
2040       SubstTemplateTemplateParmStorage *subst =
2041           TN.getAsSubstTemplateTemplateParm();
2042       mangleExistingSubstitution(subst->getReplacement());
2043       break;
2044     }
2045
2046     case TemplateName::SubstTemplateTemplateParmPack: {
2047       // FIXME: not clear how to mangle this!
2048       // template <template <class U> class T...> class A {
2049       //   template <class U...> void foo(decltype(T<U>::foo) x...);
2050       // };
2051       Out << "_SUBSTPACK_";
2052       break;
2053     }
2054     }
2055
2056     mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
2057     break;
2058   }
2059
2060   case Type::InjectedClassName:
2061     mangleSourceNameWithAbiTags(
2062         cast<InjectedClassNameType>(Ty)->getDecl());
2063     break;
2064
2065   case Type::DependentName:
2066     mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2067     break;
2068
2069   case Type::DependentTemplateSpecialization: {
2070     const DependentTemplateSpecializationType *DTST =
2071         cast<DependentTemplateSpecializationType>(Ty);
2072     mangleSourceName(DTST->getIdentifier());
2073     mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
2074     break;
2075   }
2076
2077   case Type::Elaborated:
2078     return mangleUnresolvedTypeOrSimpleId(
2079         cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2080   }
2081
2082   return false;
2083 }
2084
2085 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2086   switch (Name.getNameKind()) {
2087   case DeclarationName::CXXConstructorName:
2088   case DeclarationName::CXXDestructorName:
2089   case DeclarationName::CXXDeductionGuideName:
2090   case DeclarationName::CXXUsingDirective:
2091   case DeclarationName::Identifier:
2092   case DeclarationName::ObjCMultiArgSelector:
2093   case DeclarationName::ObjCOneArgSelector:
2094   case DeclarationName::ObjCZeroArgSelector:
2095     llvm_unreachable("Not an operator name");
2096
2097   case DeclarationName::CXXConversionFunctionName:
2098     // <operator-name> ::= cv <type>    # (cast)
2099     Out << "cv";
2100     mangleType(Name.getCXXNameType());
2101     break;
2102
2103   case DeclarationName::CXXLiteralOperatorName:
2104     Out << "li";
2105     mangleSourceName(Name.getCXXLiteralIdentifier());
2106     return;
2107
2108   case DeclarationName::CXXOperatorName:
2109     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2110     break;
2111   }
2112 }
2113
2114 void
2115 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2116   switch (OO) {
2117   // <operator-name> ::= nw     # new
2118   case OO_New: Out << "nw"; break;
2119   //              ::= na        # new[]
2120   case OO_Array_New: Out << "na"; break;
2121   //              ::= dl        # delete
2122   case OO_Delete: Out << "dl"; break;
2123   //              ::= da        # delete[]
2124   case OO_Array_Delete: Out << "da"; break;
2125   //              ::= ps        # + (unary)
2126   //              ::= pl        # + (binary or unknown)
2127   case OO_Plus:
2128     Out << (Arity == 1? "ps" : "pl"); break;
2129   //              ::= ng        # - (unary)
2130   //              ::= mi        # - (binary or unknown)
2131   case OO_Minus:
2132     Out << (Arity == 1? "ng" : "mi"); break;
2133   //              ::= ad        # & (unary)
2134   //              ::= an        # & (binary or unknown)
2135   case OO_Amp:
2136     Out << (Arity == 1? "ad" : "an"); break;
2137   //              ::= de        # * (unary)
2138   //              ::= ml        # * (binary or unknown)
2139   case OO_Star:
2140     // Use binary when unknown.
2141     Out << (Arity == 1? "de" : "ml"); break;
2142   //              ::= co        # ~
2143   case OO_Tilde: Out << "co"; break;
2144   //              ::= dv        # /
2145   case OO_Slash: Out << "dv"; break;
2146   //              ::= rm        # %
2147   case OO_Percent: Out << "rm"; break;
2148   //              ::= or        # |
2149   case OO_Pipe: Out << "or"; break;
2150   //              ::= eo        # ^
2151   case OO_Caret: Out << "eo"; break;
2152   //              ::= aS        # =
2153   case OO_Equal: Out << "aS"; break;
2154   //              ::= pL        # +=
2155   case OO_PlusEqual: Out << "pL"; break;
2156   //              ::= mI        # -=
2157   case OO_MinusEqual: Out << "mI"; break;
2158   //              ::= mL        # *=
2159   case OO_StarEqual: Out << "mL"; break;
2160   //              ::= dV        # /=
2161   case OO_SlashEqual: Out << "dV"; break;
2162   //              ::= rM        # %=
2163   case OO_PercentEqual: Out << "rM"; break;
2164   //              ::= aN        # &=
2165   case OO_AmpEqual: Out << "aN"; break;
2166   //              ::= oR        # |=
2167   case OO_PipeEqual: Out << "oR"; break;
2168   //              ::= eO        # ^=
2169   case OO_CaretEqual: Out << "eO"; break;
2170   //              ::= ls        # <<
2171   case OO_LessLess: Out << "ls"; break;
2172   //              ::= rs        # >>
2173   case OO_GreaterGreater: Out << "rs"; break;
2174   //              ::= lS        # <<=
2175   case OO_LessLessEqual: Out << "lS"; break;
2176   //              ::= rS        # >>=
2177   case OO_GreaterGreaterEqual: Out << "rS"; break;
2178   //              ::= eq        # ==
2179   case OO_EqualEqual: Out << "eq"; break;
2180   //              ::= ne        # !=
2181   case OO_ExclaimEqual: Out << "ne"; break;
2182   //              ::= lt        # <
2183   case OO_Less: Out << "lt"; break;
2184   //              ::= gt        # >
2185   case OO_Greater: Out << "gt"; break;
2186   //              ::= le        # <=
2187   case OO_LessEqual: Out << "le"; break;
2188   //              ::= ge        # >=
2189   case OO_GreaterEqual: Out << "ge"; break;
2190   //              ::= nt        # !
2191   case OO_Exclaim: Out << "nt"; break;
2192   //              ::= aa        # &&
2193   case OO_AmpAmp: Out << "aa"; break;
2194   //              ::= oo        # ||
2195   case OO_PipePipe: Out << "oo"; break;
2196   //              ::= pp        # ++
2197   case OO_PlusPlus: Out << "pp"; break;
2198   //              ::= mm        # --
2199   case OO_MinusMinus: Out << "mm"; break;
2200   //              ::= cm        # ,
2201   case OO_Comma: Out << "cm"; break;
2202   //              ::= pm        # ->*
2203   case OO_ArrowStar: Out << "pm"; break;
2204   //              ::= pt        # ->
2205   case OO_Arrow: Out << "pt"; break;
2206   //              ::= cl        # ()
2207   case OO_Call: Out << "cl"; break;
2208   //              ::= ix        # []
2209   case OO_Subscript: Out << "ix"; break;
2210
2211   //              ::= qu        # ?
2212   // The conditional operator can't be overloaded, but we still handle it when
2213   // mangling expressions.
2214   case OO_Conditional: Out << "qu"; break;
2215   // Proposal on cxx-abi-dev, 2015-10-21.
2216   //              ::= aw        # co_await
2217   case OO_Coawait: Out << "aw"; break;
2218   // Proposed in cxx-abi github issue 43.
2219   //              ::= ss        # <=>
2220   case OO_Spaceship: Out << "ss"; break;
2221
2222   case OO_None:
2223   case NUM_OVERLOADED_OPERATORS:
2224     llvm_unreachable("Not an overloaded operator");
2225   }
2226 }
2227
2228 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2229   // Vendor qualifiers come first and if they are order-insensitive they must
2230   // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2231
2232   // <type> ::= U <addrspace-expr>
2233   if (DAST) {
2234     Out << "U2ASI";
2235     mangleExpression(DAST->getAddrSpaceExpr());
2236     Out << "E";
2237   }
2238
2239   // Address space qualifiers start with an ordinary letter.
2240   if (Quals.hasAddressSpace()) {
2241     // Address space extension:
2242     //
2243     //   <type> ::= U <target-addrspace>
2244     //   <type> ::= U <OpenCL-addrspace>
2245     //   <type> ::= U <CUDA-addrspace>
2246
2247     SmallString<64> ASString;
2248     LangAS AS = Quals.getAddressSpace();
2249
2250     if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2251       //  <target-addrspace> ::= "AS" <address-space-number>
2252       unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2253       if (TargetAS != 0)
2254         ASString = "AS" + llvm::utostr(TargetAS);
2255     } else {
2256       switch (AS) {
2257       default: llvm_unreachable("Not a language specific address space");
2258       //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2259       //                                "private"| "generic" ]
2260       case LangAS::opencl_global:   ASString = "CLglobal";   break;
2261       case LangAS::opencl_local:    ASString = "CLlocal";    break;
2262       case LangAS::opencl_constant: ASString = "CLconstant"; break;
2263       case LangAS::opencl_private:  ASString = "CLprivate";  break;
2264       case LangAS::opencl_generic:  ASString = "CLgeneric";  break;
2265       //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2266       case LangAS::cuda_device:     ASString = "CUdevice";   break;
2267       case LangAS::cuda_constant:   ASString = "CUconstant"; break;
2268       case LangAS::cuda_shared:     ASString = "CUshared";   break;
2269       }
2270     }
2271     if (!ASString.empty())
2272       mangleVendorQualifier(ASString);
2273   }
2274
2275   // The ARC ownership qualifiers start with underscores.
2276   // Objective-C ARC Extension:
2277   //
2278   //   <type> ::= U "__strong"
2279   //   <type> ::= U "__weak"
2280   //   <type> ::= U "__autoreleasing"
2281   //
2282   // Note: we emit __weak first to preserve the order as
2283   // required by the Itanium ABI.
2284   if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2285     mangleVendorQualifier("__weak");
2286
2287   // __unaligned (from -fms-extensions)
2288   if (Quals.hasUnaligned())
2289     mangleVendorQualifier("__unaligned");
2290
2291   // Remaining ARC ownership qualifiers.
2292   switch (Quals.getObjCLifetime()) {
2293   case Qualifiers::OCL_None:
2294     break;
2295
2296   case Qualifiers::OCL_Weak:
2297     // Do nothing as we already handled this case above.
2298     break;
2299
2300   case Qualifiers::OCL_Strong:
2301     mangleVendorQualifier("__strong");
2302     break;
2303
2304   case Qualifiers::OCL_Autoreleasing:
2305     mangleVendorQualifier("__autoreleasing");
2306     break;
2307
2308   case Qualifiers::OCL_ExplicitNone:
2309     // The __unsafe_unretained qualifier is *not* mangled, so that
2310     // __unsafe_unretained types in ARC produce the same manglings as the
2311     // equivalent (but, naturally, unqualified) types in non-ARC, providing
2312     // better ABI compatibility.
2313     //
2314     // It's safe to do this because unqualified 'id' won't show up
2315     // in any type signatures that need to be mangled.
2316     break;
2317   }
2318
2319   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
2320   if (Quals.hasRestrict())
2321     Out << 'r';
2322   if (Quals.hasVolatile())
2323     Out << 'V';
2324   if (Quals.hasConst())
2325     Out << 'K';
2326 }
2327
2328 void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2329   Out << 'U' << name.size() << name;
2330 }
2331
2332 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2333   // <ref-qualifier> ::= R                # lvalue reference
2334   //                 ::= O                # rvalue-reference
2335   switch (RefQualifier) {
2336   case RQ_None:
2337     break;
2338
2339   case RQ_LValue:
2340     Out << 'R';
2341     break;
2342
2343   case RQ_RValue:
2344     Out << 'O';
2345     break;
2346   }
2347 }
2348
2349 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2350   Context.mangleObjCMethodName(MD, Out);
2351 }
2352
2353 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2354                                 ASTContext &Ctx) {
2355   if (Quals)
2356     return true;
2357   if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2358     return true;
2359   if (Ty->isOpenCLSpecificType())
2360     return true;
2361   if (Ty->isBuiltinType())
2362     return false;
2363   // Through to Clang 6.0, we accidentally treated undeduced auto types as
2364   // substitution candidates.
2365   if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2366       isa<AutoType>(Ty))
2367     return false;
2368   return true;
2369 }
2370
2371 void CXXNameMangler::mangleType(QualType T) {
2372   // If our type is instantiation-dependent but not dependent, we mangle
2373   // it as it was written in the source, removing any top-level sugar.
2374   // Otherwise, use the canonical type.
2375   //
2376   // FIXME: This is an approximation of the instantiation-dependent name
2377   // mangling rules, since we should really be using the type as written and
2378   // augmented via semantic analysis (i.e., with implicit conversions and
2379   // default template arguments) for any instantiation-dependent type.
2380   // Unfortunately, that requires several changes to our AST:
2381   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
2382   //     uniqued, so that we can handle substitutions properly
2383   //   - Default template arguments will need to be represented in the
2384   //     TemplateSpecializationType, since they need to be mangled even though
2385   //     they aren't written.
2386   //   - Conversions on non-type template arguments need to be expressed, since
2387   //     they can affect the mangling of sizeof/alignof.
2388   //
2389   // FIXME: This is wrong when mapping to the canonical type for a dependent
2390   // type discards instantiation-dependent portions of the type, such as for:
2391   //
2392   //   template<typename T, int N> void f(T (&)[sizeof(N)]);
2393   //   template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2394   //
2395   // It's also wrong in the opposite direction when instantiation-dependent,
2396   // canonically-equivalent types differ in some irrelevant portion of inner
2397   // type sugar. In such cases, we fail to form correct substitutions, eg:
2398   //
2399   //   template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2400   //
2401   // We should instead canonicalize the non-instantiation-dependent parts,
2402   // regardless of whether the type as a whole is dependent or instantiation
2403   // dependent.
2404   if (!T->isInstantiationDependentType() || T->isDependentType())
2405     T = T.getCanonicalType();
2406   else {
2407     // Desugar any types that are purely sugar.
2408     do {
2409       // Don't desugar through template specialization types that aren't
2410       // type aliases. We need to mangle the template arguments as written.
2411       if (const TemplateSpecializationType *TST
2412                                       = dyn_cast<TemplateSpecializationType>(T))
2413         if (!TST->isTypeAlias())
2414           break;
2415
2416       QualType Desugared
2417         = T.getSingleStepDesugaredType(Context.getASTContext());
2418       if (Desugared == T)
2419         break;
2420
2421       T = Desugared;
2422     } while (true);
2423   }
2424   SplitQualType split = T.split();
2425   Qualifiers quals = split.Quals;
2426   const Type *ty = split.Ty;
2427
2428   bool isSubstitutable =
2429     isTypeSubstitutable(quals, ty, Context.getASTContext());
2430   if (isSubstitutable && mangleSubstitution(T))
2431     return;
2432
2433   // If we're mangling a qualified array type, push the qualifiers to
2434   // the element type.
2435   if (quals && isa<ArrayType>(T)) {
2436     ty = Context.getASTContext().getAsArrayType(T);
2437     quals = Qualifiers();
2438
2439     // Note that we don't update T: we want to add the
2440     // substitution at the original type.
2441   }
2442
2443   if (quals || ty->isDependentAddressSpaceType()) {
2444     if (const DependentAddressSpaceType *DAST =
2445         dyn_cast<DependentAddressSpaceType>(ty)) {
2446       SplitQualType splitDAST = DAST->getPointeeType().split();
2447       mangleQualifiers(splitDAST.Quals, DAST);
2448       mangleType(QualType(splitDAST.Ty, 0));
2449     } else {
2450       mangleQualifiers(quals);
2451
2452       // Recurse:  even if the qualified type isn't yet substitutable,
2453       // the unqualified type might be.
2454       mangleType(QualType(ty, 0));
2455     }
2456   } else {
2457     switch (ty->getTypeClass()) {
2458 #define ABSTRACT_TYPE(CLASS, PARENT)
2459 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2460     case Type::CLASS: \
2461       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2462       return;
2463 #define TYPE(CLASS, PARENT) \
2464     case Type::CLASS: \
2465       mangleType(static_cast<const CLASS##Type*>(ty)); \
2466       break;
2467 #include "clang/AST/TypeNodes.def"
2468     }
2469   }
2470
2471   // Add the substitution.
2472   if (isSubstitutable)
2473     addSubstitution(T);
2474 }
2475
2476 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2477   if (!mangleStandardSubstitution(ND))
2478     mangleName(ND);
2479 }
2480
2481 void CXXNameMangler::mangleType(const BuiltinType *T) {
2482   //  <type>         ::= <builtin-type>
2483   //  <builtin-type> ::= v  # void
2484   //                 ::= w  # wchar_t
2485   //                 ::= b  # bool
2486   //                 ::= c  # char
2487   //                 ::= a  # signed char
2488   //                 ::= h  # unsigned char
2489   //                 ::= s  # short
2490   //                 ::= t  # unsigned short
2491   //                 ::= i  # int
2492   //                 ::= j  # unsigned int
2493   //                 ::= l  # long
2494   //                 ::= m  # unsigned long
2495   //                 ::= x  # long long, __int64
2496   //                 ::= y  # unsigned long long, __int64
2497   //                 ::= n  # __int128
2498   //                 ::= o  # unsigned __int128
2499   //                 ::= f  # float
2500   //                 ::= d  # double
2501   //                 ::= e  # long double, __float80
2502   //                 ::= g  # __float128
2503   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
2504   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
2505   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
2506   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
2507   //                 ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2508   //                 ::= Di # char32_t
2509   //                 ::= Ds # char16_t
2510   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2511   //                 ::= u <source-name>    # vendor extended type
2512   std::string type_name;
2513   switch (T->getKind()) {
2514   case BuiltinType::Void:
2515     Out << 'v';
2516     break;
2517   case BuiltinType::Bool:
2518     Out << 'b';
2519     break;
2520   case BuiltinType::Char_U:
2521   case BuiltinType::Char_S:
2522     Out << 'c';
2523     break;
2524   case BuiltinType::UChar:
2525     Out << 'h';
2526     break;
2527   case BuiltinType::UShort:
2528     Out << 't';
2529     break;
2530   case BuiltinType::UInt:
2531     Out << 'j';
2532     break;
2533   case BuiltinType::ULong:
2534     Out << 'm';
2535     break;
2536   case BuiltinType::ULongLong:
2537     Out << 'y';
2538     break;
2539   case BuiltinType::UInt128:
2540     Out << 'o';
2541     break;
2542   case BuiltinType::SChar:
2543     Out << 'a';
2544     break;
2545   case BuiltinType::WChar_S:
2546   case BuiltinType::WChar_U:
2547     Out << 'w';
2548     break;
2549   case BuiltinType::Char8:
2550     Out << "Du";
2551     break;
2552   case BuiltinType::Char16:
2553     Out << "Ds";
2554     break;
2555   case BuiltinType::Char32:
2556     Out << "Di";
2557     break;
2558   case BuiltinType::Short:
2559     Out << 's';
2560     break;
2561   case BuiltinType::Int:
2562     Out << 'i';
2563     break;
2564   case BuiltinType::Long:
2565     Out << 'l';
2566     break;
2567   case BuiltinType::LongLong:
2568     Out << 'x';
2569     break;
2570   case BuiltinType::Int128:
2571     Out << 'n';
2572     break;
2573   case BuiltinType::Float16:
2574     Out << "DF16_";
2575     break;
2576   case BuiltinType::ShortAccum:
2577   case BuiltinType::Accum:
2578   case BuiltinType::LongAccum:
2579   case BuiltinType::UShortAccum:
2580   case BuiltinType::UAccum:
2581   case BuiltinType::ULongAccum:
2582   case BuiltinType::ShortFract:
2583   case BuiltinType::Fract:
2584   case BuiltinType::LongFract:
2585   case BuiltinType::UShortFract:
2586   case BuiltinType::UFract:
2587   case BuiltinType::ULongFract:
2588   case BuiltinType::SatShortAccum:
2589   case BuiltinType::SatAccum:
2590   case BuiltinType::SatLongAccum:
2591   case BuiltinType::SatUShortAccum:
2592   case BuiltinType::SatUAccum:
2593   case BuiltinType::SatULongAccum:
2594   case BuiltinType::SatShortFract:
2595   case BuiltinType::SatFract:
2596   case BuiltinType::SatLongFract:
2597   case BuiltinType::SatUShortFract:
2598   case BuiltinType::SatUFract:
2599   case BuiltinType::SatULongFract:
2600     llvm_unreachable("Fixed point types are disabled for c++");
2601   case BuiltinType::Half:
2602     Out << "Dh";
2603     break;
2604   case BuiltinType::Float:
2605     Out << 'f';
2606     break;
2607   case BuiltinType::Double:
2608     Out << 'd';
2609     break;
2610   case BuiltinType::LongDouble: {
2611     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2612                                    getASTContext().getLangOpts().OpenMPIsDevice
2613                                ? getASTContext().getAuxTargetInfo()
2614                                : &getASTContext().getTargetInfo();
2615     Out << TI->getLongDoubleMangling();
2616     break;
2617   }
2618   case BuiltinType::Float128: {
2619     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2620                                    getASTContext().getLangOpts().OpenMPIsDevice
2621                                ? getASTContext().getAuxTargetInfo()
2622                                : &getASTContext().getTargetInfo();
2623     Out << TI->getFloat128Mangling();
2624     break;
2625   }
2626   case BuiltinType::NullPtr:
2627     Out << "Dn";
2628     break;
2629
2630 #define BUILTIN_TYPE(Id, SingletonId)
2631 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2632   case BuiltinType::Id:
2633 #include "clang/AST/BuiltinTypes.def"
2634   case BuiltinType::Dependent:
2635     if (!NullOut)
2636       llvm_unreachable("mangling a placeholder type");
2637     break;
2638   case BuiltinType::ObjCId:
2639     Out << "11objc_object";
2640     break;
2641   case BuiltinType::ObjCClass:
2642     Out << "10objc_class";
2643     break;
2644   case BuiltinType::ObjCSel:
2645     Out << "13objc_selector";
2646     break;
2647 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2648   case BuiltinType::Id: \
2649     type_name = "ocl_" #ImgType "_" #Suffix; \
2650     Out << type_name.size() << type_name; \
2651     break;
2652 #include "clang/Basic/OpenCLImageTypes.def"
2653   case BuiltinType::OCLSampler:
2654     Out << "11ocl_sampler";
2655     break;
2656   case BuiltinType::OCLEvent:
2657     Out << "9ocl_event";
2658     break;
2659   case BuiltinType::OCLClkEvent:
2660     Out << "12ocl_clkevent";
2661     break;
2662   case BuiltinType::OCLQueue:
2663     Out << "9ocl_queue";
2664     break;
2665   case BuiltinType::OCLReserveID:
2666     Out << "13ocl_reserveid";
2667     break;
2668 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2669   case BuiltinType::Id: \
2670     type_name = "ocl_" #ExtType; \
2671     Out << type_name.size() << type_name; \
2672     break;
2673 #include "clang/Basic/OpenCLExtensionTypes.def"
2674   }
2675 }
2676
2677 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
2678   switch (CC) {
2679   case CC_C:
2680     return "";
2681
2682   case CC_X86VectorCall:
2683   case CC_X86Pascal:
2684   case CC_X86RegCall:
2685   case CC_AAPCS:
2686   case CC_AAPCS_VFP:
2687   case CC_AArch64VectorCall:
2688   case CC_IntelOclBicc:
2689   case CC_SpirFunction:
2690   case CC_OpenCLKernel:
2691   case CC_PreserveMost:
2692   case CC_PreserveAll:
2693     // FIXME: we should be mangling all of the above.
2694     return "";
2695
2696   case CC_X86ThisCall:
2697     // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
2698     // used explicitly. At this point, we don't have that much information in
2699     // the AST, since clang tends to bake the convention into the canonical
2700     // function type. thiscall only rarely used explicitly, so don't mangle it
2701     // for now.
2702     return "";
2703
2704   case CC_X86StdCall:
2705     return "stdcall";
2706   case CC_X86FastCall:
2707     return "fastcall";
2708   case CC_X86_64SysV:
2709     return "sysv_abi";
2710   case CC_Win64:
2711     return "ms_abi";
2712   case CC_Swift:
2713     return "swiftcall";
2714   }
2715   llvm_unreachable("bad calling convention");
2716 }
2717
2718 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
2719   // Fast path.
2720   if (T->getExtInfo() == FunctionType::ExtInfo())
2721     return;
2722
2723   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2724   // This will get more complicated in the future if we mangle other
2725   // things here; but for now, since we mangle ns_returns_retained as
2726   // a qualifier on the result type, we can get away with this:
2727   StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
2728   if (!CCQualifier.empty())
2729     mangleVendorQualifier(CCQualifier);
2730
2731   // FIXME: regparm
2732   // FIXME: noreturn
2733 }
2734
2735 void
2736 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
2737   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2738
2739   // Note that these are *not* substitution candidates.  Demanglers might
2740   // have trouble with this if the parameter type is fully substituted.
2741
2742   switch (PI.getABI()) {
2743   case ParameterABI::Ordinary:
2744     break;
2745
2746   // All of these start with "swift", so they come before "ns_consumed".
2747   case ParameterABI::SwiftContext:
2748   case ParameterABI::SwiftErrorResult:
2749   case ParameterABI::SwiftIndirectResult:
2750     mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
2751     break;
2752   }
2753
2754   if (PI.isConsumed())
2755     mangleVendorQualifier("ns_consumed");
2756
2757   if (PI.isNoEscape())
2758     mangleVendorQualifier("noescape");
2759 }
2760
2761 // <type>          ::= <function-type>
2762 // <function-type> ::= [<CV-qualifiers>] F [Y]
2763 //                      <bare-function-type> [<ref-qualifier>] E
2764 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2765   mangleExtFunctionInfo(T);
2766
2767   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
2768   // e.g. "const" in "int (A::*)() const".
2769   mangleQualifiers(T->getMethodQuals());
2770
2771   // Mangle instantiation-dependent exception-specification, if present,
2772   // per cxx-abi-dev proposal on 2016-10-11.
2773   if (T->hasInstantiationDependentExceptionSpec()) {
2774     if (isComputedNoexcept(T->getExceptionSpecType())) {
2775       Out << "DO";
2776       mangleExpression(T->getNoexceptExpr());
2777       Out << "E";
2778     } else {
2779       assert(T->getExceptionSpecType() == EST_Dynamic);
2780       Out << "Dw";
2781       for (auto ExceptTy : T->exceptions())
2782         mangleType(ExceptTy);
2783       Out << "E";
2784     }
2785   } else if (T->isNothrow()) {
2786     Out << "Do";
2787   }
2788
2789   Out << 'F';
2790
2791   // FIXME: We don't have enough information in the AST to produce the 'Y'
2792   // encoding for extern "C" function types.
2793   mangleBareFunctionType(T, /*MangleReturnType=*/true);
2794
2795   // Mangle the ref-qualifier, if present.
2796   mangleRefQualifier(T->getRefQualifier());
2797
2798   Out << 'E';
2799 }
2800
2801 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2802   // Function types without prototypes can arise when mangling a function type
2803   // within an overloadable function in C. We mangle these as the absence of any
2804   // parameter types (not even an empty parameter list).
2805   Out << 'F';
2806
2807   FunctionTypeDepthState saved = FunctionTypeDepth.push();
2808
2809   FunctionTypeDepth.enterResultType();
2810   mangleType(T->getReturnType());
2811   FunctionTypeDepth.leaveResultType();
2812
2813   FunctionTypeDepth.pop(saved);
2814   Out << 'E';
2815 }
2816
2817 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
2818                                             bool MangleReturnType,
2819                                             const FunctionDecl *FD) {
2820   // Record that we're in a function type.  See mangleFunctionParam
2821   // for details on what we're trying to achieve here.
2822   FunctionTypeDepthState saved = FunctionTypeDepth.push();
2823
2824   // <bare-function-type> ::= <signature type>+
2825   if (MangleReturnType) {
2826     FunctionTypeDepth.enterResultType();
2827
2828     // Mangle ns_returns_retained as an order-sensitive qualifier here.
2829     if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
2830       mangleVendorQualifier("ns_returns_retained");
2831
2832     // Mangle the return type without any direct ARC ownership qualifiers.
2833     QualType ReturnTy = Proto->getReturnType();
2834     if (ReturnTy.getObjCLifetime()) {
2835       auto SplitReturnTy = ReturnTy.split();
2836       SplitReturnTy.Quals.removeObjCLifetime();
2837       ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
2838     }
2839     mangleType(ReturnTy);
2840
2841     FunctionTypeDepth.leaveResultType();
2842   }
2843
2844   if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2845     //   <builtin-type> ::= v   # void
2846     Out << 'v';
2847
2848     FunctionTypeDepth.pop(saved);
2849     return;
2850   }
2851
2852   assert(!FD || FD->getNumParams() == Proto->getNumParams());
2853   for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2854     // Mangle extended parameter info as order-sensitive qualifiers here.
2855     if (Proto->hasExtParameterInfos() && FD == nullptr) {
2856       mangleExtParameterInfo(Proto->getExtParameterInfo(I));
2857     }
2858
2859     // Mangle the type.
2860     QualType ParamTy = Proto->getParamType(I);
2861     mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
2862
2863     if (FD) {
2864       if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
2865         // Attr can only take 1 character, so we can hardcode the length below.
2866         assert(Attr->getType() <= 9 && Attr->getType() >= 0);
2867         if (Attr->isDynamic())
2868           Out << "U25pass_dynamic_object_size" << Attr->getType();
2869         else
2870           Out << "U17pass_object_size" << Attr->getType();
2871       }
2872     }
2873   }
2874
2875   FunctionTypeDepth.pop(saved);
2876
2877   // <builtin-type>      ::= z  # ellipsis
2878   if (Proto->isVariadic())
2879     Out << 'z';
2880 }
2881
2882 // <type>            ::= <class-enum-type>
2883 // <class-enum-type> ::= <name>
2884 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2885   mangleName(T->getDecl());
2886 }
2887
2888 // <type>            ::= <class-enum-type>
2889 // <class-enum-type> ::= <name>
2890 void CXXNameMangler::mangleType(const EnumType *T) {
2891   mangleType(static_cast<const TagType*>(T));
2892 }
2893 void CXXNameMangler::mangleType(const RecordType *T) {
2894   mangleType(static_cast<const TagType*>(T));
2895 }
2896 void CXXNameMangler::mangleType(const TagType *T) {
2897   mangleName(T->getDecl());
2898 }
2899
2900 // <type>       ::= <array-type>
2901 // <array-type> ::= A <positive dimension number> _ <element type>
2902 //              ::= A [<dimension expression>] _ <element type>
2903 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2904   Out << 'A' << T->getSize() << '_';
2905   mangleType(T->getElementType());
2906 }
2907 void CXXNameMangler::mangleType(const VariableArrayType *T) {
2908   Out << 'A';
2909   // decayed vla types (size 0) will just be skipped.
2910   if (T->getSizeExpr())
2911     mangleExpression(T->getSizeExpr());
2912   Out << '_';
2913   mangleType(T->getElementType());
2914 }
2915 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2916   Out << 'A';
2917   mangleExpression(T->getSizeExpr());
2918   Out << '_';
2919   mangleType(T->getElementType());
2920 }
2921 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2922   Out << "A_";
2923   mangleType(T->getElementType());
2924 }
2925
2926 // <type>                   ::= <pointer-to-member-type>
2927 // <pointer-to-member-type> ::= M <class type> <member type>
2928 void CXXNameMangler::mangleType(const MemberPointerType *T) {
2929   Out << 'M';
2930   mangleType(QualType(T->getClass(), 0));
2931   QualType PointeeType = T->getPointeeType();
2932   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2933     mangleType(FPT);
2934
2935     // Itanium C++ ABI 5.1.8:
2936     //
2937     //   The type of a non-static member function is considered to be different,
2938     //   for the purposes of substitution, from the type of a namespace-scope or
2939     //   static member function whose type appears similar. The types of two
2940     //   non-static member functions are considered to be different, for the
2941     //   purposes of substitution, if the functions are members of different
2942     //   classes. In other words, for the purposes of substitution, the class of
2943     //   which the function is a member is considered part of the type of
2944     //   function.
2945
2946     // Given that we already substitute member function pointers as a
2947     // whole, the net effect of this rule is just to unconditionally
2948     // suppress substitution on the function type in a member pointer.
2949     // We increment the SeqID here to emulate adding an entry to the
2950     // substitution table.
2951     ++SeqID;
2952   } else
2953     mangleType(PointeeType);
2954 }
2955
2956 // <type>           ::= <template-param>
2957 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2958   mangleTemplateParameter(T->getIndex());
2959 }
2960
2961 // <type>           ::= <template-param>
2962 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2963   // FIXME: not clear how to mangle this!
2964   // template <class T...> class A {
2965   //   template <class U...> void foo(T(*)(U) x...);
2966   // };
2967   Out << "_SUBSTPACK_";
2968 }
2969
2970 // <type> ::= P <type>   # pointer-to
2971 void CXXNameMangler::mangleType(const PointerType *T) {
2972   Out << 'P';
2973   mangleType(T->getPointeeType());
2974 }
2975 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2976   Out << 'P';
2977   mangleType(T->getPointeeType());
2978 }
2979
2980 // <type> ::= R <type>   # reference-to
2981 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2982   Out << 'R';
2983   mangleType(T->getPointeeType());
2984 }
2985
2986 // <type> ::= O <type>   # rvalue reference-to (C++0x)
2987 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2988   Out << 'O';
2989   mangleType(T->getPointeeType());
2990 }
2991
2992 // <type> ::= C <type>   # complex pair (C 2000)
2993 void CXXNameMangler::mangleType(const ComplexType *T) {
2994   Out << 'C';
2995   mangleType(T->getElementType());
2996 }
2997
2998 // ARM's ABI for Neon vector types specifies that they should be mangled as
2999 // if they are structs (to match ARM's initial implementation).  The
3000 // vector type must be one of the special types predefined by ARM.
3001 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
3002   QualType EltType = T->getElementType();
3003   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3004   const char *EltName = nullptr;
3005   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3006     switch (cast<BuiltinType>(EltType)->getKind()) {
3007     case BuiltinType::SChar:
3008     case BuiltinType::UChar:
3009       EltName = "poly8_t";
3010       break;
3011     case BuiltinType::Short:
3012     case BuiltinType::UShort:
3013       EltName = "poly16_t";
3014       break;
3015     case BuiltinType::ULongLong:
3016       EltName = "poly64_t";
3017       break;
3018     default: llvm_unreachable("unexpected Neon polynomial vector element type");
3019     }
3020   } else {
3021     switch (cast<BuiltinType>(EltType)->getKind()) {
3022     case BuiltinType::SChar:     EltName = "int8_t"; break;
3023     case BuiltinType::UChar:     EltName = "uint8_t"; break;
3024     case BuiltinType::Short:     EltName = "int16_t"; break;
3025     case BuiltinType::UShort:    EltName = "uint16_t"; break;
3026     case BuiltinType::Int:       EltName = "int32_t"; break;
3027     case BuiltinType::UInt:      EltName = "uint32_t"; break;
3028     case BuiltinType::LongLong:  EltName = "int64_t"; break;
3029     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
3030     case BuiltinType::Double:    EltName = "float64_t"; break;
3031     case BuiltinType::Float:     EltName = "float32_t"; break;
3032     case BuiltinType::Half:      EltName = "float16_t";break;
3033     default:
3034       llvm_unreachable("unexpected Neon vector element type");
3035     }
3036   }
3037   const char *BaseName = nullptr;
3038   unsigned BitSize = (T->getNumElements() *
3039                       getASTContext().getTypeSize(EltType));
3040   if (BitSize == 64)
3041     BaseName = "__simd64_";
3042   else {
3043     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3044     BaseName = "__simd128_";
3045   }
3046   Out << strlen(BaseName) + strlen(EltName);
3047   Out << BaseName << EltName;
3048 }
3049
3050 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3051   DiagnosticsEngine &Diags = Context.getDiags();
3052   unsigned DiagID = Diags.getCustomDiagID(
3053       DiagnosticsEngine::Error,
3054       "cannot mangle this dependent neon vector type yet");
3055   Diags.Report(T->getAttributeLoc(), DiagID);
3056 }
3057
3058 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3059   switch (EltType->getKind()) {
3060   case BuiltinType::SChar:
3061     return "Int8";
3062   case BuiltinType::Short:
3063     return "Int16";
3064   case BuiltinType::Int:
3065     return "Int32";
3066   case BuiltinType::Long:
3067   case BuiltinType::LongLong:
3068     return "Int64";
3069   case BuiltinType::UChar:
3070     return "Uint8";
3071   case BuiltinType::UShort:
3072     return "Uint16";
3073   case BuiltinType::UInt:
3074     return "Uint32";
3075   case BuiltinType::ULong:
3076   case BuiltinType::ULongLong:
3077     return "Uint64";
3078   case BuiltinType::Half:
3079     return "Float16";
3080   case BuiltinType::Float:
3081     return "Float32";
3082   case BuiltinType::Double:
3083     return "Float64";
3084   default:
3085     llvm_unreachable("Unexpected vector element base type");
3086   }
3087 }
3088
3089 // AArch64's ABI for Neon vector types specifies that they should be mangled as
3090 // the equivalent internal name. The vector type must be one of the special
3091 // types predefined by ARM.
3092 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3093   QualType EltType = T->getElementType();
3094   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3095   unsigned BitSize =
3096       (T->getNumElements() * getASTContext().getTypeSize(EltType));
3097   (void)BitSize; // Silence warning.
3098
3099   assert((BitSize == 64 || BitSize == 128) &&
3100          "Neon vector type not 64 or 128 bits");
3101
3102   StringRef EltName;
3103   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3104     switch (cast<BuiltinType>(EltType)->getKind()) {
3105     case BuiltinType::UChar:
3106       EltName = "Poly8";
3107       break;
3108     case BuiltinType::UShort:
3109       EltName = "Poly16";
3110       break;
3111     case BuiltinType::ULong:
3112     case BuiltinType::ULongLong:
3113       EltName = "Poly64";
3114       break;
3115     default:
3116       llvm_unreachable("unexpected Neon polynomial vector element type");
3117     }
3118   } else
3119     EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3120
3121   std::string TypeName =
3122       ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3123   Out << TypeName.length() << TypeName;
3124 }
3125 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3126   DiagnosticsEngine &Diags = Context.getDiags();
3127   unsigned DiagID = Diags.getCustomDiagID(
3128       DiagnosticsEngine::Error,
3129       "cannot mangle this dependent neon vector type yet");
3130   Diags.Report(T->getAttributeLoc(), DiagID);
3131 }
3132
3133 // GNU extension: vector types
3134 // <type>                  ::= <vector-type>
3135 // <vector-type>           ::= Dv <positive dimension number> _
3136 //                                    <extended element type>
3137 //                         ::= Dv [<dimension expression>] _ <element type>
3138 // <extended element type> ::= <element type>
3139 //                         ::= p # AltiVec vector pixel
3140 //                         ::= b # Altivec vector bool
3141 void CXXNameMangler::mangleType(const VectorType *T) {
3142   if ((T->getVectorKind() == VectorType::NeonVector ||
3143        T->getVectorKind() == VectorType::NeonPolyVector)) {
3144     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3145     llvm::Triple::ArchType Arch =
3146         getASTContext().getTargetInfo().getTriple().getArch();
3147     if ((Arch == llvm::Triple::aarch64 ||
3148          Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3149       mangleAArch64NeonVectorType(T);
3150     else
3151       mangleNeonVectorType(T);
3152     return;
3153   }
3154   Out << "Dv" << T->getNumElements() << '_';
3155   if (T->getVectorKind() == VectorType::AltiVecPixel)
3156     Out << 'p';
3157   else if (T->getVectorKind() == VectorType::AltiVecBool)
3158     Out << 'b';
3159   else
3160     mangleType(T->getElementType());
3161 }
3162
3163 void CXXNameMangler::mangleType(const DependentVectorType *T) {
3164   if ((T->getVectorKind() == VectorType::NeonVector ||
3165        T->getVectorKind() == VectorType::NeonPolyVector)) {
3166     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3167     llvm::Triple::ArchType Arch =
3168         getASTContext().getTargetInfo().getTriple().getArch();
3169     if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
3170         !Target.isOSDarwin())
3171       mangleAArch64NeonVectorType(T);
3172     else
3173       mangleNeonVectorType(T);
3174     return;
3175   }
3176
3177   Out << "Dv";
3178   mangleExpression(T->getSizeExpr());
3179   Out << '_';
3180   if (T->getVectorKind() == VectorType::AltiVecPixel)
3181     Out << 'p';
3182   else if (T->getVectorKind() == VectorType::AltiVecBool)
3183     Out << 'b';
3184   else
3185     mangleType(T->getElementType());
3186 }
3187
3188 void CXXNameMangler::mangleType(const ExtVectorType *T) {
3189   mangleType(static_cast<const VectorType*>(T));
3190 }
3191 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3192   Out << "Dv";
3193   mangleExpression(T->getSizeExpr());
3194   Out << '_';
3195   mangleType(T->getElementType());
3196 }
3197
3198 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3199   SplitQualType split = T->getPointeeType().split();
3200   mangleQualifiers(split.Quals, T);
3201   mangleType(QualType(split.Ty, 0));
3202 }
3203
3204 void CXXNameMangler::mangleType(const PackExpansionType *T) {
3205   // <type>  ::= Dp <type>          # pack expansion (C++0x)
3206   Out << "Dp";
3207   mangleType(T->getPattern());
3208 }
3209
3210 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3211   mangleSourceName(T->getDecl()->getIdentifier());
3212 }
3213
3214 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3215   // Treat __kindof as a vendor extended type qualifier.
3216   if (T->isKindOfType())
3217     Out << "U8__kindof";
3218
3219   if (!T->qual_empty()) {
3220     // Mangle protocol qualifiers.
3221     SmallString<64> QualStr;
3222     llvm::raw_svector_ostream QualOS(QualStr);
3223     QualOS << "objcproto";
3224     for (const auto *I : T->quals()) {
3225       StringRef name = I->getName();
3226       QualOS << name.size() << name;
3227     }
3228     Out << 'U' << QualStr.size() << QualStr;
3229   }
3230
3231   mangleType(T->getBaseType());
3232
3233   if (T->isSpecialized()) {
3234     // Mangle type arguments as I <type>+ E
3235     Out << 'I';
3236     for (auto typeArg : T->getTypeArgs())
3237       mangleType(typeArg);
3238     Out << 'E';
3239   }
3240 }
3241
3242 void CXXNameMangler::mangleType(const BlockPointerType *T) {
3243   Out << "U13block_pointer";
3244   mangleType(T->getPointeeType());
3245 }
3246
3247 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3248   // Mangle injected class name types as if the user had written the
3249   // specialization out fully.  It may not actually be possible to see
3250   // this mangling, though.
3251   mangleType(T->getInjectedSpecializationType());
3252 }
3253
3254 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3255   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3256     mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3257   } else {
3258     if (mangleSubstitution(QualType(T, 0)))
3259       return;
3260
3261     mangleTemplatePrefix(T->getTemplateName());
3262
3263     // FIXME: GCC does not appear to mangle the template arguments when
3264     // the template in question is a dependent template name. Should we
3265     // emulate that badness?
3266     mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3267     addSubstitution(QualType(T, 0));
3268   }
3269 }
3270
3271 void CXXNameMangler::mangleType(const DependentNameType *T) {
3272   // Proposal by cxx-abi-dev, 2014-03-26
3273   // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
3274   //                                 # dependent elaborated type specifier using
3275   //                                 # 'typename'
3276   //                   ::= Ts <name> # dependent elaborated type specifier using
3277   //                                 # 'struct' or 'class'
3278   //                   ::= Tu <name> # dependent elaborated type specifier using
3279   //                                 # 'union'
3280   //                   ::= Te <name> # dependent elaborated type specifier using
3281   //                                 # 'enum'
3282   switch (T->getKeyword()) {
3283     case ETK_None:
3284     case ETK_Typename:
3285       break;
3286     case ETK_Struct:
3287     case ETK_Class:
3288     case ETK_Interface:
3289       Out << "Ts";
3290       break;
3291     case ETK_Union:
3292       Out << "Tu";
3293       break;
3294     case ETK_Enum:
3295       Out << "Te";
3296       break;
3297   }
3298   // Typename types are always nested
3299   Out << 'N';
3300   manglePrefix(T->getQualifier());
3301   mangleSourceName(T->getIdentifier());
3302   Out << 'E';
3303 }
3304
3305 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3306   // Dependently-scoped template types are nested if they have a prefix.
3307   Out << 'N';
3308
3309   // TODO: avoid making this TemplateName.
3310   TemplateName Prefix =
3311     getASTContext().getDependentTemplateName(T->getQualifier(),
3312                                              T->getIdentifier());
3313   mangleTemplatePrefix(Prefix);
3314
3315   // FIXME: GCC does not appear to mangle the template arguments when
3316   // the template in question is a dependent template name. Should we
3317   // emulate that badness?
3318   mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3319   Out << 'E';
3320 }
3321
3322 void CXXNameMangler::mangleType(const TypeOfType *T) {
3323   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3324   // "extension with parameters" mangling.
3325   Out << "u6typeof";
3326 }
3327
3328 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3329   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3330   // "extension with parameters" mangling.
3331   Out << "u6typeof";
3332 }
3333
3334 void CXXNameMangler::mangleType(const DecltypeType *T) {
3335   Expr *E = T->getUnderlyingExpr();
3336
3337   // type ::= Dt <expression> E  # decltype of an id-expression
3338   //                             #   or class member access
3339   //      ::= DT <expression> E  # decltype of an expression
3340
3341   // This purports to be an exhaustive list of id-expressions and
3342   // class member accesses.  Note that we do not ignore parentheses;
3343   // parentheses change the semantics of decltype for these
3344   // expressions (and cause the mangler to use the other form).
3345   if (isa<DeclRefExpr>(E) ||
3346       isa<MemberExpr>(E) ||
3347       isa<UnresolvedLookupExpr>(E) ||
3348       isa<DependentScopeDeclRefExpr>(E) ||
3349       isa<CXXDependentScopeMemberExpr>(E) ||
3350       isa<UnresolvedMemberExpr>(E))
3351     Out << "Dt";
3352   else
3353     Out << "DT";
3354   mangleExpression(E);
3355   Out << 'E';
3356 }
3357
3358 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3359   // If this is dependent, we need to record that. If not, we simply
3360   // mangle it as the underlying type since they are equivalent.
3361   if (T->isDependentType()) {
3362     Out << 'U';
3363
3364     switch (T->getUTTKind()) {
3365       case UnaryTransformType::EnumUnderlyingType:
3366         Out << "3eut";
3367         break;
3368     }
3369   }
3370
3371   mangleType(T->getBaseType());
3372 }
3373
3374 void CXXNameMangler::mangleType(const AutoType *T) {
3375   assert(T->getDeducedType().isNull() &&
3376          "Deduced AutoType shouldn't be handled here!");
3377   assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3378          "shouldn't need to mangle __auto_type!");
3379   // <builtin-type> ::= Da # auto
3380   //                ::= Dc # decltype(auto)
3381   Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3382 }
3383
3384 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
3385   // FIXME: This is not the right mangling. We also need to include a scope
3386   // here in some cases.
3387   QualType D = T->getDeducedType();
3388   if (D.isNull())
3389     mangleUnscopedTemplateName(T->getTemplateName(), nullptr);
3390   else
3391     mangleType(D);
3392 }
3393
3394 void CXXNameMangler::mangleType(const AtomicType *T) {
3395   // <type> ::= U <source-name> <type>  # vendor extended type qualifier
3396   // (Until there's a standardized mangling...)
3397   Out << "U7_Atomic";
3398   mangleType(T->getValueType());
3399 }
3400
3401 void CXXNameMangler::mangleType(const PipeType *T) {
3402   // Pipe type mangling rules are described in SPIR 2.0 specification
3403   // A.1 Data types and A.3 Summary of changes
3404   // <type> ::= 8ocl_pipe
3405   Out << "8ocl_pipe";
3406 }
3407
3408 void CXXNameMangler::mangleIntegerLiteral(QualType T,
3409                                           const llvm::APSInt &Value) {
3410   //  <expr-primary> ::= L <type> <value number> E # integer literal
3411   Out << 'L';
3412
3413   mangleType(T);
3414   if (T->isBooleanType()) {
3415     // Boolean values are encoded as 0/1.
3416     Out << (Value.getBoolValue() ? '1' : '0');
3417   } else {
3418     mangleNumber(Value);
3419   }
3420   Out << 'E';
3421
3422 }
3423
3424 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
3425   // Ignore member expressions involving anonymous unions.
3426   while (const auto *RT = Base->getType()->getAs<RecordType>()) {
3427     if (!RT->getDecl()->isAnonymousStructOrUnion())
3428       break;
3429     const auto *ME = dyn_cast<MemberExpr>(Base);
3430     if (!ME)
3431       break;
3432     Base = ME->getBase();
3433     IsArrow = ME->isArrow();
3434   }
3435
3436   if (Base->isImplicitCXXThis()) {
3437     // Note: GCC mangles member expressions to the implicit 'this' as
3438     // *this., whereas we represent them as this->. The Itanium C++ ABI
3439     // does not specify anything here, so we follow GCC.
3440     Out << "dtdefpT";
3441   } else {
3442     Out << (IsArrow ? "pt" : "dt");
3443     mangleExpression(Base);
3444   }
3445 }
3446
3447 /// Mangles a member expression.
3448 void CXXNameMangler::mangleMemberExpr(const Expr *base,
3449                                       bool isArrow,
3450                                       NestedNameSpecifier *qualifier,
3451                                       NamedDecl *firstQualifierLookup,
3452                                       DeclarationName member,
3453                                       const TemplateArgumentLoc *TemplateArgs,
3454                                       unsigned NumTemplateArgs,
3455                                       unsigned arity) {
3456   // <expression> ::= dt <expression> <unresolved-name>
3457   //              ::= pt <expression> <unresolved-name>
3458   if (base)
3459     mangleMemberExprBase(base, isArrow);
3460   mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
3461 }
3462
3463 /// Look at the callee of the given call expression and determine if
3464 /// it's a parenthesized id-expression which would have triggered ADL
3465 /// otherwise.
3466 static bool isParenthesizedADLCallee(const CallExpr *call) {
3467   const Expr *callee = call->getCallee();
3468   const Expr *fn = callee->IgnoreParens();
3469
3470   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
3471   // too, but for those to appear in the callee, it would have to be
3472   // parenthesized.
3473   if (callee == fn) return false;
3474
3475   // Must be an unresolved lookup.
3476   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
3477   if (!lookup) return false;
3478
3479   assert(!lookup->requiresADL());
3480
3481   // Must be an unqualified lookup.
3482   if (lookup->getQualifier()) return false;
3483
3484   // Must not have found a class member.  Note that if one is a class
3485   // member, they're all class members.
3486   if (lookup->getNumDecls() > 0 &&
3487       (*lookup->decls_begin())->isCXXClassMember())
3488     return false;
3489
3490   // Otherwise, ADL would have been triggered.
3491   return true;
3492 }
3493
3494 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
3495   const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
3496   Out << CastEncoding;
3497   mangleType(ECE->getType());
3498   mangleExpression(ECE->getSubExpr());
3499 }
3500
3501 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
3502   if (auto *Syntactic = InitList->getSyntacticForm())
3503     InitList = Syntactic;
3504   for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
3505     mangleExpression(InitList->getInit(i));
3506 }
3507
3508 void CXXNameMangler::mangleDeclRefExpr(const NamedDecl *D) {
3509   switch (D->getKind()) {
3510   default:
3511     //  <expr-primary> ::= L <mangled-name> E # external name
3512     Out << 'L';
3513     mangle(D);
3514     Out << 'E';
3515     break;
3516
3517   case Decl::ParmVar:
3518     mangleFunctionParam(cast<ParmVarDecl>(D));
3519     break;
3520
3521   case Decl::EnumConstant: {
3522     const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3523     mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3524     break;
3525   }
3526
3527   case Decl::NonTypeTemplateParm:
3528     const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3529     mangleTemplateParameter(PD->getIndex());
3530     break;
3531   }
3532 }
3533
3534 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
3535   // <expression> ::= <unary operator-name> <expression>
3536   //              ::= <binary operator-name> <expression> <expression>
3537   //              ::= <trinary operator-name> <expression> <expression> <expression>
3538   //              ::= cv <type> expression           # conversion with one argument
3539   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
3540   //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
3541   //              ::= sc <type> <expression>         # static_cast<type> (expression)
3542   //              ::= cc <type> <expression>         # const_cast<type> (expression)
3543   //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
3544   //              ::= st <type>                      # sizeof (a type)
3545   //              ::= at <type>                      # alignof (a type)
3546   //              ::= <template-param>
3547   //              ::= <function-param>
3548   //              ::= sr <type> <unqualified-name>                   # dependent name
3549   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
3550   //              ::= ds <expression> <expression>                   # expr.*expr
3551   //              ::= sZ <template-param>                            # size of a parameter pack
3552   //              ::= sZ <function-param>    # size of a function parameter pack
3553   //              ::= <expr-primary>
3554   // <expr-primary> ::= L <type> <value number> E    # integer literal
3555   //                ::= L <type <value float> E      # floating literal
3556   //                ::= L <mangled-name> E           # external name
3557   //                ::= fpT                          # 'this' expression
3558   QualType ImplicitlyConvertedToType;
3559
3560 recurse:
3561   switch (E->getStmtClass()) {
3562   case Expr::NoStmtClass:
3563 #define ABSTRACT_STMT(Type)
3564 #define EXPR(Type, Base)
3565 #define STMT(Type, Base) \
3566   case Expr::Type##Class:
3567 #include "clang/AST/StmtNodes.inc"
3568     // fallthrough
3569
3570   // These all can only appear in local or variable-initialization
3571   // contexts and so should never appear in a mangling.
3572   case Expr::AddrLabelExprClass:
3573   case Expr::DesignatedInitUpdateExprClass:
3574   case Expr::ImplicitValueInitExprClass:
3575   case Expr::ArrayInitLoopExprClass:
3576   case Expr::ArrayInitIndexExprClass:
3577   case Expr::NoInitExprClass:
3578   case Expr::ParenListExprClass:
3579   case Expr::LambdaExprClass:
3580   case Expr::MSPropertyRefExprClass:
3581   case Expr::MSPropertySubscriptExprClass:
3582   case Expr::TypoExprClass:  // This should no longer exist in the AST by now.
3583   case Expr::OMPArraySectionExprClass:
3584   case Expr::CXXInheritedCtorInitExprClass:
3585     llvm_unreachable("unexpected statement kind");
3586
3587   case Expr::ConstantExprClass:
3588     E = cast<ConstantExpr>(E)->getSubExpr();
3589     goto recurse;
3590
3591   // FIXME: invent manglings for all these.
3592   case Expr::BlockExprClass:
3593   case Expr::ChooseExprClass:
3594   case Expr::CompoundLiteralExprClass:
3595   case Expr::ExtVectorElementExprClass:
3596   case Expr::GenericSelectionExprClass:
3597   case Expr::ObjCEncodeExprClass:
3598   case Expr::ObjCIsaExprClass:
3599   case Expr::ObjCIvarRefExprClass:
3600   case Expr::ObjCMessageExprClass:
3601   case Expr::ObjCPropertyRefExprClass:
3602   case Expr::ObjCProtocolExprClass:
3603   case Expr::ObjCSelectorExprClass:
3604   case Expr::ObjCStringLiteralClass:
3605   case Expr::ObjCBoxedExprClass:
3606   case Expr::ObjCArrayLiteralClass:
3607   case Expr::ObjCDictionaryLiteralClass:
3608   case Expr::ObjCSubscriptRefExprClass:
3609   case Expr::ObjCIndirectCopyRestoreExprClass:
3610   case Expr::ObjCAvailabilityCheckExprClass:
3611   case Expr::OffsetOfExprClass:
3612   case Expr::PredefinedExprClass:
3613   case Expr::ShuffleVectorExprClass:
3614   case Expr::ConvertVectorExprClass:
3615   case Expr::StmtExprClass:
3616   case Expr::TypeTraitExprClass:
3617   case Expr::ArrayTypeTraitExprClass:
3618   case Expr::ExpressionTraitExprClass:
3619   case Expr::VAArgExprClass:
3620   case Expr::CUDAKernelCallExprClass:
3621   case Expr::AsTypeExprClass:
3622   case Expr::PseudoObjectExprClass:
3623   case Expr::AtomicExprClass:
3624   case Expr::SourceLocExprClass:
3625   case Expr::FixedPointLiteralClass:
3626   case Expr::BuiltinBitCastExprClass:
3627   {
3628     if (!NullOut) {
3629       // As bad as this diagnostic is, it's better than crashing.
3630       DiagnosticsEngine &Diags = Context.getDiags();
3631       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3632                                        "cannot yet mangle expression type %0");
3633       Diags.Report(E->getExprLoc(), DiagID)
3634         << E->getStmtClassName() << E->getSourceRange();
3635     }
3636     break;
3637   }
3638
3639   case Expr::CXXUuidofExprClass: {
3640     const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
3641     if (UE->isTypeOperand()) {
3642       QualType UuidT = UE->getTypeOperand(Context.getASTContext());
3643       Out << "u8__uuidoft";
3644       mangleType(UuidT);
3645     } else {
3646       Expr *UuidExp = UE->getExprOperand();
3647       Out << "u8__uuidofz";
3648       mangleExpression(UuidExp, Arity);
3649     }
3650     break;
3651   }
3652
3653   // Even gcc-4.5 doesn't mangle this.
3654   case Expr::BinaryConditionalOperatorClass: {
3655     DiagnosticsEngine &Diags = Context.getDiags();
3656     unsigned DiagID =
3657       Diags.getCustomDiagID(DiagnosticsEngine::Error,
3658                 "?: operator with omitted middle operand cannot be mangled");
3659     Diags.Report(E->getExprLoc(), DiagID)
3660       << E->getStmtClassName() << E->getSourceRange();
3661     break;
3662   }
3663
3664   // These are used for internal purposes and cannot be meaningfully mangled.
3665   case Expr::OpaqueValueExprClass:
3666     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
3667
3668   case Expr::InitListExprClass: {
3669     Out << "il";
3670     mangleInitListElements(cast<InitListExpr>(E));
3671     Out << "E";
3672     break;
3673   }
3674
3675   case Expr::DesignatedInitExprClass: {
3676     auto *DIE = cast<DesignatedInitExpr>(E);
3677     for (const auto &Designator : DIE->designators()) {
3678       if (Designator.isFieldDesignator()) {
3679         Out << "di";
3680         mangleSourceName(Designator.getFieldName());
3681       } else if (Designator.isArrayDesignator()) {
3682         Out << "dx";
3683         mangleExpression(DIE->getArrayIndex(Designator));
3684       } else {
3685         assert(Designator.isArrayRangeDesignator() &&
3686                "unknown designator kind");
3687         Out << "dX";
3688         mangleExpression(DIE->getArrayRangeStart(Designator));
3689         mangleExpression(DIE->getArrayRangeEnd(Designator));
3690       }
3691     }
3692     mangleExpression(DIE->getInit());
3693     break;
3694   }
3695
3696   case Expr::CXXDefaultArgExprClass:
3697     mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
3698     break;
3699
3700   case Expr::CXXDefaultInitExprClass:
3701     mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
3702     break;
3703
3704   case Expr::CXXStdInitializerListExprClass:
3705     mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
3706     break;
3707
3708   case Expr::SubstNonTypeTemplateParmExprClass:
3709     mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
3710                      Arity);
3711     break;
3712
3713   case Expr::UserDefinedLiteralClass:
3714     // We follow g++'s approach of mangling a UDL as a call to the literal
3715     // operator.
3716   case Expr::CXXMemberCallExprClass: // fallthrough
3717   case Expr::CallExprClass: {
3718     const CallExpr *CE = cast<CallExpr>(E);
3719
3720     // <expression> ::= cp <simple-id> <expression>* E
3721     // We use this mangling only when the call would use ADL except
3722     // for being parenthesized.  Per discussion with David
3723     // Vandervoorde, 2011.04.25.
3724     if (isParenthesizedADLCallee(CE)) {
3725       Out << "cp";
3726       // The callee here is a parenthesized UnresolvedLookupExpr with
3727       // no qualifier and should always get mangled as a <simple-id>
3728       // anyway.
3729
3730     // <expression> ::= cl <expression>* E
3731     } else {
3732       Out << "cl";
3733     }
3734
3735     unsigned CallArity = CE->getNumArgs();
3736     for (const Expr *Arg : CE->arguments())
3737       if (isa<PackExpansionExpr>(Arg))
3738         CallArity = UnknownArity;
3739
3740     mangleExpression(CE->getCallee(), CallArity);
3741     for (const Expr *Arg : CE->arguments())
3742       mangleExpression(Arg);
3743     Out << 'E';
3744     break;
3745   }
3746
3747   case Expr::CXXNewExprClass: {
3748     const CXXNewExpr *New = cast<CXXNewExpr>(E);
3749     if (New->isGlobalNew()) Out << "gs";
3750     Out << (New->isArray() ? "na" : "nw");
3751     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
3752            E = New->placement_arg_end(); I != E; ++I)
3753       mangleExpression(*I);
3754     Out << '_';
3755     mangleType(New->getAllocatedType());
3756     if (New->hasInitializer()) {
3757       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
3758         Out << "il";
3759       else
3760         Out << "pi";
3761       const Expr *Init = New->getInitializer();
3762       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
3763         // Directly inline the initializers.
3764         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
3765                                                   E = CCE->arg_end();
3766              I != E; ++I)
3767           mangleExpression(*I);
3768       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
3769         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
3770           mangleExpression(PLE->getExpr(i));
3771       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
3772                  isa<InitListExpr>(Init)) {
3773         // Only take InitListExprs apart for list-initialization.
3774         mangleInitListElements(cast<InitListExpr>(Init));
3775       } else
3776         mangleExpression(Init);
3777     }
3778     Out << 'E';
3779     break;
3780   }
3781
3782   case Expr::CXXPseudoDestructorExprClass: {
3783     const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
3784     if (const Expr *Base = PDE->getBase())
3785       mangleMemberExprBase(Base, PDE->isArrow());
3786     NestedNameSpecifier *Qualifier = PDE->getQualifier();
3787     if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
3788       if (Qualifier) {
3789         mangleUnresolvedPrefix(Qualifier,
3790                                /*recursive=*/true);
3791         mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
3792         Out << 'E';
3793       } else {
3794         Out << "sr";
3795         if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
3796           Out << 'E';
3797       }
3798     } else if (Qualifier) {
3799       mangleUnresolvedPrefix(Qualifier);
3800     }
3801     // <base-unresolved-name> ::= dn <destructor-name>
3802     Out << "dn";
3803     QualType DestroyedType = PDE->getDestroyedType();
3804     mangleUnresolvedTypeOrSimpleId(DestroyedType);
3805     break;
3806   }
3807
3808   case Expr::MemberExprClass: {
3809     const MemberExpr *ME = cast<MemberExpr>(E);
3810     mangleMemberExpr(ME->getBase(), ME->isArrow(),
3811                      ME->getQualifier(), nullptr,
3812                      ME->getMemberDecl()->getDeclName(),
3813                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3814                      Arity);
3815     break;
3816   }
3817
3818   case Expr::UnresolvedMemberExprClass: {
3819     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
3820     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3821                      ME->isArrow(), ME->getQualifier(), nullptr,
3822                      ME->getMemberName(),
3823                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3824                      Arity);
3825     break;
3826   }
3827
3828   case Expr::CXXDependentScopeMemberExprClass: {
3829     const CXXDependentScopeMemberExpr *ME
3830       = cast<CXXDependentScopeMemberExpr>(E);
3831     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3832                      ME->isArrow(), ME->getQualifier(),
3833                      ME->getFirstQualifierFoundInScope(),
3834                      ME->getMember(),
3835                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3836                      Arity);
3837     break;
3838   }
3839
3840   case Expr::UnresolvedLookupExprClass: {
3841     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
3842     mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
3843                          ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
3844                          Arity);
3845     break;
3846   }
3847
3848   case Expr::CXXUnresolvedConstructExprClass: {
3849     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
3850     unsigned N = CE->arg_size();
3851
3852     if (CE->isListInitialization()) {
3853       assert(N == 1 && "unexpected form for list initialization");
3854       auto *IL = cast<InitListExpr>(CE->getArg(0));
3855       Out << "tl";
3856       mangleType(CE->getType());
3857       mangleInitListElements(IL);
3858       Out << "E";
3859       return;
3860     }
3861
3862     Out << "cv";
3863     mangleType(CE->getType());
3864     if (N != 1) Out << '_';
3865     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
3866     if (N != 1) Out << 'E';
3867     break;
3868   }
3869
3870   case Expr::CXXConstructExprClass: {
3871     const auto *CE = cast<CXXConstructExpr>(E);
3872     if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
3873       assert(
3874           CE->getNumArgs() >= 1 &&
3875           (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
3876           "implicit CXXConstructExpr must have one argument");
3877       return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
3878     }
3879     Out << "il";
3880     for (auto *E : CE->arguments())
3881       mangleExpression(E);
3882     Out << "E";
3883     break;
3884   }
3885
3886   case Expr::CXXTemporaryObjectExprClass: {
3887     const auto *CE = cast<CXXTemporaryObjectExpr>(E);
3888     unsigned N = CE->getNumArgs();
3889     bool List = CE->isListInitialization();
3890
3891     if (List)
3892       Out << "tl";
3893     else
3894       Out << "cv";
3895     mangleType(CE->getType());
3896     if (!List && N != 1)
3897       Out << '_';
3898     if (CE->isStdInitListInitialization()) {
3899       // We implicitly created a std::initializer_list<T> for the first argument
3900       // of a constructor of type U in an expression of the form U{a, b, c}.
3901       // Strip all the semantic gunk off the initializer list.
3902       auto *SILE =
3903           cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
3904       auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
3905       mangleInitListElements(ILE);
3906     } else {
3907       for (auto *E : CE->arguments())
3908         mangleExpression(E);
3909     }
3910     if (List || N != 1)
3911       Out << 'E';
3912     break;
3913   }
3914
3915   case Expr::CXXScalarValueInitExprClass:
3916     Out << "cv";
3917     mangleType(E->getType());
3918     Out << "_E";
3919     break;
3920
3921   case Expr::CXXNoexceptExprClass:
3922     Out << "nx";
3923     mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
3924     break;
3925
3926   case Expr::UnaryExprOrTypeTraitExprClass: {
3927     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
3928
3929     if (!SAE->isInstantiationDependent()) {
3930       // Itanium C++ ABI:
3931       //   If the operand of a sizeof or alignof operator is not
3932       //   instantiation-dependent it is encoded as an integer literal
3933       //   reflecting the result of the operator.
3934       //
3935       //   If the result of the operator is implicitly converted to a known
3936       //   integer type, that type is used for the literal; otherwise, the type
3937       //   of std::size_t or std::ptrdiff_t is used.
3938       QualType T = (ImplicitlyConvertedToType.isNull() ||
3939                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
3940                                                     : ImplicitlyConvertedToType;
3941       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
3942       mangleIntegerLiteral(T, V);
3943       break;
3944     }
3945
3946     switch(SAE->getKind()) {
3947     case UETT_SizeOf:
3948       Out << 's';
3949       break;
3950     case UETT_PreferredAlignOf:
3951     case UETT_AlignOf:
3952       Out << 'a';
3953       break;
3954     case UETT_VecStep: {
3955       DiagnosticsEngine &Diags = Context.getDiags();
3956       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3957                                      "cannot yet mangle vec_step expression");
3958       Diags.Report(DiagID);
3959       return;
3960     }
3961     case UETT_OpenMPRequiredSimdAlign: {
3962       DiagnosticsEngine &Diags = Context.getDiags();
3963       unsigned DiagID = Diags.getCustomDiagID(
3964           DiagnosticsEngine::Error,
3965           "cannot yet mangle __builtin_omp_required_simd_align expression");
3966       Diags.Report(DiagID);
3967       return;
3968     }
3969     }
3970     if (SAE->isArgumentType()) {
3971       Out << 't';
3972       mangleType(SAE->getArgumentType());
3973     } else {
3974       Out << 'z';
3975       mangleExpression(SAE->getArgumentExpr());
3976     }
3977     break;
3978   }
3979
3980   case Expr::CXXThrowExprClass: {
3981     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
3982     //  <expression> ::= tw <expression>  # throw expression
3983     //               ::= tr               # rethrow
3984     if (TE->getSubExpr()) {
3985       Out << "tw";
3986       mangleExpression(TE->getSubExpr());
3987     } else {
3988       Out << "tr";
3989     }
3990     break;
3991   }
3992
3993   case Expr::CXXTypeidExprClass: {
3994     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
3995     //  <expression> ::= ti <type>        # typeid (type)
3996     //               ::= te <expression>  # typeid (expression)
3997     if (TIE->isTypeOperand()) {
3998       Out << "ti";
3999       mangleType(TIE->getTypeOperand(Context.getASTContext()));
4000     } else {
4001       Out << "te";
4002       mangleExpression(TIE->getExprOperand());
4003     }
4004     break;
4005   }
4006
4007   case Expr::CXXDeleteExprClass: {
4008     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
4009     //  <expression> ::= [gs] dl <expression>  # [::] delete expr
4010     //               ::= [gs] da <expression>  # [::] delete [] expr
4011     if (DE->isGlobalDelete()) Out << "gs";
4012     Out << (DE->isArrayForm() ? "da" : "dl");
4013     mangleExpression(DE->getArgument());
4014     break;
4015   }
4016
4017   case Expr::UnaryOperatorClass: {
4018     const UnaryOperator *UO = cast<UnaryOperator>(E);
4019     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
4020                        /*Arity=*/1);
4021     mangleExpression(UO->getSubExpr());
4022     break;
4023   }
4024
4025   case Expr::ArraySubscriptExprClass: {
4026     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
4027
4028     // Array subscript is treated as a syntactically weird form of
4029     // binary operator.
4030     Out << "ix";
4031     mangleExpression(AE->getLHS());
4032     mangleExpression(AE->getRHS());
4033     break;
4034   }
4035
4036   case Expr::CompoundAssignOperatorClass: // fallthrough
4037   case Expr::BinaryOperatorClass: {
4038     const BinaryOperator *BO = cast<BinaryOperator>(E);
4039     if (BO->getOpcode() == BO_PtrMemD)
4040       Out << "ds";
4041     else
4042       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
4043                          /*Arity=*/2);
4044     mangleExpression(BO->getLHS());
4045     mangleExpression(BO->getRHS());
4046     break;
4047   }
4048
4049   case Expr::ConditionalOperatorClass: {
4050     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
4051     mangleOperatorName(OO_Conditional, /*Arity=*/3);
4052     mangleExpression(CO->getCond());
4053     mangleExpression(CO->getLHS(), Arity);
4054     mangleExpression(CO->getRHS(), Arity);
4055     break;
4056   }
4057
4058   case Expr::ImplicitCastExprClass: {
4059     ImplicitlyConvertedToType = E->getType();
4060     E = cast<ImplicitCastExpr>(E)->getSubExpr();
4061     goto recurse;
4062   }
4063
4064   case Expr::ObjCBridgedCastExprClass: {
4065     // Mangle ownership casts as a vendor extended operator __bridge,
4066     // __bridge_transfer, or __bridge_retain.
4067     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
4068     Out << "v1U" << Kind.size() << Kind;
4069   }
4070   // Fall through to mangle the cast itself.
4071   LLVM_FALLTHROUGH;
4072
4073   case Expr::CStyleCastExprClass:
4074     mangleCastExpression(E, "cv");
4075     break;
4076
4077   case Expr::CXXFunctionalCastExprClass: {
4078     auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
4079     // FIXME: Add isImplicit to CXXConstructExpr.
4080     if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
4081       if (CCE->getParenOrBraceRange().isInvalid())
4082         Sub = CCE->getArg(0)->IgnoreImplicit();
4083     if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
4084       Sub = StdInitList->getSubExpr()->IgnoreImplicit();
4085     if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
4086       Out << "tl";
4087       mangleType(E->getType());
4088       mangleInitListElements(IL);
4089       Out << "E";
4090     } else {
4091       mangleCastExpression(E, "cv");
4092     }
4093     break;
4094   }
4095
4096   case Expr::CXXStaticCastExprClass:
4097     mangleCastExpression(E, "sc");
4098     break;
4099   case Expr::CXXDynamicCastExprClass:
4100     mangleCastExpression(E, "dc");
4101     break;
4102   case Expr::CXXReinterpretCastExprClass:
4103     mangleCastExpression(E, "rc");
4104     break;
4105   case Expr::CXXConstCastExprClass:
4106     mangleCastExpression(E, "cc");
4107     break;
4108
4109   case Expr::CXXOperatorCallExprClass: {
4110     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
4111     unsigned NumArgs = CE->getNumArgs();
4112     // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
4113     // (the enclosing MemberExpr covers the syntactic portion).
4114     if (CE->getOperator() != OO_Arrow)
4115       mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
4116     // Mangle the arguments.
4117     for (unsigned i = 0; i != NumArgs; ++i)
4118       mangleExpression(CE->getArg(i));
4119     break;
4120   }
4121
4122   case Expr::ParenExprClass:
4123     mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
4124     break;
4125
4126   case Expr::DeclRefExprClass:
4127     mangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
4128     break;
4129
4130   case Expr::SubstNonTypeTemplateParmPackExprClass:
4131     // FIXME: not clear how to mangle this!
4132     // template <unsigned N...> class A {
4133     //   template <class U...> void foo(U (&x)[N]...);
4134     // };
4135     Out << "_SUBSTPACK_";
4136     break;
4137
4138   case Expr::FunctionParmPackExprClass: {
4139     // FIXME: not clear how to mangle this!
4140     const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4141     Out << "v110_SUBSTPACK";
4142     mangleDeclRefExpr(FPPE->getParameterPack());
4143     break;
4144   }
4145
4146   case Expr::DependentScopeDeclRefExprClass: {
4147     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4148     mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4149                          DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4150                          Arity);
4151     break;
4152   }
4153
4154   case Expr::CXXBindTemporaryExprClass:
4155     mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
4156     break;
4157
4158   case Expr::ExprWithCleanupsClass:
4159     mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
4160     break;
4161
4162   case Expr::FloatingLiteralClass: {
4163     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4164     Out << 'L';
4165     mangleType(FL->getType());
4166     mangleFloat(FL->getValue());
4167     Out << 'E';
4168     break;
4169   }
4170
4171   case Expr::CharacterLiteralClass:
4172     Out << 'L';
4173     mangleType(E->getType());
4174     Out << cast<CharacterLiteral>(E)->getValue();
4175     Out << 'E';
4176     break;
4177
4178   // FIXME. __objc_yes/__objc_no are mangled same as true/false
4179   case Expr::ObjCBoolLiteralExprClass:
4180     Out << "Lb";
4181     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4182     Out << 'E';
4183     break;
4184
4185   case Expr::CXXBoolLiteralExprClass:
4186     Out << "Lb";
4187     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4188     Out << 'E';
4189     break;
4190
4191   case Expr::IntegerLiteralClass: {
4192     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4193     if (E->getType()->isSignedIntegerType())
4194       Value.setIsSigned(true);
4195     mangleIntegerLiteral(E->getType(), Value);
4196     break;
4197   }
4198
4199   case Expr::ImaginaryLiteralClass: {
4200     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4201     // Mangle as if a complex literal.
4202     // Proposal from David Vandevoorde, 2010.06.30.
4203     Out << 'L';
4204     mangleType(E->getType());
4205     if (const FloatingLiteral *Imag =
4206           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4207       // Mangle a floating-point zero of the appropriate type.
4208       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4209       Out << '_';
4210       mangleFloat(Imag->getValue());
4211     } else {
4212       Out << "0_";
4213       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4214       if (IE->getSubExpr()->getType()->isSignedIntegerType())
4215         Value.setIsSigned(true);
4216       mangleNumber(Value);
4217     }
4218     Out << 'E';
4219     break;
4220   }
4221
4222   case Expr::StringLiteralClass: {
4223     // Revised proposal from David Vandervoorde, 2010.07.15.
4224     Out << 'L';
4225     assert(isa<ConstantArrayType>(E->getType()));
4226     mangleType(E->getType());
4227     Out << 'E';
4228     break;
4229   }
4230
4231   case Expr::GNUNullExprClass:
4232     // FIXME: should this really be mangled the same as nullptr?
4233     // fallthrough
4234
4235   case Expr::CXXNullPtrLiteralExprClass: {
4236     Out << "LDnE";
4237     break;
4238   }
4239
4240   case Expr::PackExpansionExprClass:
4241     Out << "sp";
4242     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
4243     break;
4244
4245   case Expr::SizeOfPackExprClass: {
4246     auto *SPE = cast<SizeOfPackExpr>(E);
4247     if (SPE->isPartiallySubstituted()) {
4248       Out << "sP";
4249       for (const auto &A : SPE->getPartialArguments())
4250         mangleTemplateArg(A);
4251       Out << "E";
4252       break;
4253     }
4254
4255     Out << "sZ";
4256     const NamedDecl *Pack = SPE->getPack();
4257     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
4258       mangleTemplateParameter(TTP->getIndex());
4259     else if (const NonTypeTemplateParmDecl *NTTP
4260                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
4261       mangleTemplateParameter(NTTP->getIndex());
4262     else if (const TemplateTemplateParmDecl *TempTP
4263                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
4264       mangleTemplateParameter(TempTP->getIndex());
4265     else
4266       mangleFunctionParam(cast<ParmVarDecl>(Pack));
4267     break;
4268   }
4269
4270   case Expr::MaterializeTemporaryExprClass: {
4271     mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
4272     break;
4273   }
4274
4275   case Expr::CXXFoldExprClass: {
4276     auto *FE = cast<CXXFoldExpr>(E);
4277     if (FE->isLeftFold())
4278       Out << (FE->getInit() ? "fL" : "fl");
4279     else
4280       Out << (FE->getInit() ? "fR" : "fr");
4281
4282     if (FE->getOperator() == BO_PtrMemD)
4283       Out << "ds";
4284     else
4285       mangleOperatorName(
4286           BinaryOperator::getOverloadedOperator(FE->getOperator()),
4287           /*Arity=*/2);
4288
4289     if (FE->getLHS())
4290       mangleExpression(FE->getLHS());
4291     if (FE->getRHS())
4292       mangleExpression(FE->getRHS());
4293     break;
4294   }
4295
4296   case Expr::CXXThisExprClass:
4297     Out << "fpT";
4298     break;
4299
4300   case Expr::CoawaitExprClass:
4301     // FIXME: Propose a non-vendor mangling.
4302     Out << "v18co_await";
4303     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4304     break;
4305
4306   case Expr::DependentCoawaitExprClass:
4307     // FIXME: Propose a non-vendor mangling.
4308     Out << "v18co_await";
4309     mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
4310     break;
4311
4312   case Expr::CoyieldExprClass:
4313     // FIXME: Propose a non-vendor mangling.
4314     Out << "v18co_yield";
4315     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4316     break;
4317   }
4318 }
4319
4320 /// Mangle an expression which refers to a parameter variable.
4321 ///
4322 /// <expression>     ::= <function-param>
4323 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
4324 /// <function-param> ::= fp <top-level CV-qualifiers>
4325 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
4326 /// <function-param> ::= fL <L-1 non-negative number>
4327 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
4328 /// <function-param> ::= fL <L-1 non-negative number>
4329 ///                      p <top-level CV-qualifiers>
4330 ///                      <I-1 non-negative number> _         # L > 0, I > 0
4331 ///
4332 /// L is the nesting depth of the parameter, defined as 1 if the
4333 /// parameter comes from the innermost function prototype scope
4334 /// enclosing the current context, 2 if from the next enclosing
4335 /// function prototype scope, and so on, with one special case: if
4336 /// we've processed the full parameter clause for the innermost
4337 /// function type, then L is one less.  This definition conveniently
4338 /// makes it irrelevant whether a function's result type was written
4339 /// trailing or leading, but is otherwise overly complicated; the
4340 /// numbering was first designed without considering references to
4341 /// parameter in locations other than return types, and then the
4342 /// mangling had to be generalized without changing the existing
4343 /// manglings.
4344 ///
4345 /// I is the zero-based index of the parameter within its parameter
4346 /// declaration clause.  Note that the original ABI document describes
4347 /// this using 1-based ordinals.
4348 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
4349   unsigned parmDepth = parm->getFunctionScopeDepth();
4350   unsigned parmIndex = parm->getFunctionScopeIndex();
4351
4352   // Compute 'L'.
4353   // parmDepth does not include the declaring function prototype.
4354   // FunctionTypeDepth does account for that.
4355   assert(parmDepth < FunctionTypeDepth.getDepth());
4356   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
4357   if (FunctionTypeDepth.isInResultType())
4358     nestingDepth--;
4359
4360   if (nestingDepth == 0) {
4361     Out << "fp";
4362   } else {
4363     Out << "fL" << (nestingDepth - 1) << 'p';
4364   }
4365
4366   // Top-level qualifiers.  We don't have to worry about arrays here,
4367   // because parameters declared as arrays should already have been
4368   // transformed to have pointer type. FIXME: apparently these don't
4369   // get mangled if used as an rvalue of a known non-class type?
4370   assert(!parm->getType()->isArrayType()
4371          && "parameter's type is still an array type?");
4372
4373   if (const DependentAddressSpaceType *DAST =
4374       dyn_cast<DependentAddressSpaceType>(parm->getType())) {
4375     mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
4376   } else {
4377     mangleQualifiers(parm->getType().getQualifiers());
4378   }
4379
4380   // Parameter index.
4381   if (parmIndex != 0) {
4382     Out << (parmIndex - 1);
4383   }
4384   Out << '_';
4385 }
4386
4387 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
4388                                        const CXXRecordDecl *InheritedFrom) {
4389   // <ctor-dtor-name> ::= C1  # complete object constructor
4390   //                  ::= C2  # base object constructor
4391   //                  ::= CI1 <type> # complete inheriting constructor
4392   //                  ::= CI2 <type> # base inheriting constructor
4393   //
4394   // In addition, C5 is a comdat name with C1 and C2 in it.
4395   Out << 'C';
4396   if (InheritedFrom)
4397     Out << 'I';
4398   switch (T) {
4399   case Ctor_Complete:
4400     Out << '1';
4401     break;
4402   case Ctor_Base:
4403     Out << '2';
4404     break;
4405   case Ctor_Comdat:
4406     Out << '5';
4407     break;
4408   case Ctor_DefaultClosure:
4409   case Ctor_CopyingClosure:
4410     llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
4411   }
4412   if (InheritedFrom)
4413     mangleName(InheritedFrom);
4414 }
4415
4416 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
4417   // <ctor-dtor-name> ::= D0  # deleting destructor
4418   //                  ::= D1  # complete object destructor
4419   //                  ::= D2  # base object destructor
4420   //
4421   // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
4422   switch (T) {
4423   case Dtor_Deleting:
4424     Out << "D0";
4425     break;
4426   case Dtor_Complete:
4427     Out << "D1";
4428     break;
4429   case Dtor_Base:
4430     Out << "D2";
4431     break;
4432   case Dtor_Comdat:
4433     Out << "D5";
4434     break;
4435   }
4436 }
4437
4438 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
4439                                         unsigned NumTemplateArgs) {
4440   // <template-args> ::= I <template-arg>+ E
4441   Out << 'I';
4442   for (unsigned i = 0; i != NumTemplateArgs; ++i)
4443     mangleTemplateArg(TemplateArgs[i].getArgument());
4444   Out << 'E';
4445 }
4446
4447 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
4448   // <template-args> ::= I <template-arg>+ E
4449   Out << 'I';
4450   for (unsigned i = 0, e = AL.size(); i != e; ++i)
4451     mangleTemplateArg(AL[i]);
4452   Out << 'E';
4453 }
4454
4455 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
4456                                         unsigned NumTemplateArgs) {
4457   // <template-args> ::= I <template-arg>+ E
4458   Out << 'I';
4459   for (unsigned i = 0; i != NumTemplateArgs; ++i)
4460     mangleTemplateArg(TemplateArgs[i]);
4461   Out << 'E';
4462 }
4463
4464 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
4465   // <template-arg> ::= <type>              # type or template
4466   //                ::= X <expression> E    # expression
4467   //                ::= <expr-primary>      # simple expressions
4468   //                ::= J <template-arg>* E # argument pack
4469   if (!A.isInstantiationDependent() || A.isDependent())
4470     A = Context.getASTContext().getCanonicalTemplateArgument(A);
4471
4472   switch (A.getKind()) {
4473   case TemplateArgument::Null:
4474     llvm_unreachable("Cannot mangle NULL template argument");
4475
4476   case TemplateArgument::Type:
4477     mangleType(A.getAsType());
4478     break;
4479   case TemplateArgument::Template:
4480     // This is mangled as <type>.
4481     mangleType(A.getAsTemplate());
4482     break;
4483   case TemplateArgument::TemplateExpansion:
4484     // <type>  ::= Dp <type>          # pack expansion (C++0x)
4485     Out << "Dp";
4486     mangleType(A.getAsTemplateOrTemplatePattern());
4487     break;
4488   case TemplateArgument::Expression: {
4489     // It's possible to end up with a DeclRefExpr here in certain
4490     // dependent cases, in which case we should mangle as a
4491     // declaration.
4492     const Expr *E = A.getAsExpr()->IgnoreParenImpCasts();
4493     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4494       const ValueDecl *D = DRE->getDecl();
4495       if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
4496         Out << 'L';
4497         mangle(D);
4498         Out << 'E';
4499         break;
4500       }
4501     }
4502
4503     Out << 'X';
4504     mangleExpression(E);
4505     Out << 'E';
4506     break;
4507   }
4508   case TemplateArgument::Integral:
4509     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
4510     break;
4511   case TemplateArgument::Declaration: {
4512     //  <expr-primary> ::= L <mangled-name> E # external name
4513     // Clang produces AST's where pointer-to-member-function expressions
4514     // and pointer-to-function expressions are represented as a declaration not
4515     // an expression. We compensate for it here to produce the correct mangling.
4516     ValueDecl *D = A.getAsDecl();
4517     bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
4518     if (compensateMangling) {
4519       Out << 'X';
4520       mangleOperatorName(OO_Amp, 1);
4521     }
4522
4523     Out << 'L';
4524     // References to external entities use the mangled name; if the name would
4525     // not normally be mangled then mangle it as unqualified.
4526     mangle(D);
4527     Out << 'E';
4528
4529     if (compensateMangling)
4530       Out << 'E';
4531
4532     break;
4533   }
4534   case TemplateArgument::NullPtr: {
4535     //  <expr-primary> ::= L <type> 0 E
4536     Out << 'L';
4537     mangleType(A.getNullPtrType());
4538     Out << "0E";
4539     break;
4540   }
4541   case TemplateArgument::Pack: {
4542     //  <template-arg> ::= J <template-arg>* E
4543     Out << 'J';
4544     for (const auto &P : A.pack_elements())
4545       mangleTemplateArg(P);
4546     Out << 'E';
4547   }
4548   }
4549 }
4550
4551 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
4552   // <template-param> ::= T_    # first template parameter
4553   //                  ::= T <parameter-2 non-negative number> _
4554   if (Index == 0)
4555     Out << "T_";
4556   else
4557     Out << 'T' << (Index - 1) << '_';
4558 }
4559
4560 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
4561   if (SeqID == 1)
4562     Out << '0';
4563   else if (SeqID > 1) {
4564     SeqID--;
4565
4566     // <seq-id> is encoded in base-36, using digits and upper case letters.
4567     char Buffer[7]; // log(2**32) / log(36) ~= 7
4568     MutableArrayRef<char> BufferRef(Buffer);
4569     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
4570
4571     for (; SeqID != 0; SeqID /= 36) {
4572       unsigned C = SeqID % 36;
4573       *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
4574     }
4575
4576     Out.write(I.base(), I - BufferRef.rbegin());
4577   }
4578   Out << '_';
4579 }
4580
4581 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
4582   bool result = mangleSubstitution(tname);
4583   assert(result && "no existing substitution for template name");
4584   (void) result;
4585 }
4586
4587 // <substitution> ::= S <seq-id> _
4588 //                ::= S_
4589 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
4590   // Try one of the standard substitutions first.
4591   if (mangleStandardSubstitution(ND))
4592     return true;
4593
4594   ND = cast<NamedDecl>(ND->getCanonicalDecl());
4595   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
4596 }
4597
4598 /// Determine whether the given type has any qualifiers that are relevant for
4599 /// substitutions.
4600 static bool hasMangledSubstitutionQualifiers(QualType T) {
4601   Qualifiers Qs = T.getQualifiers();
4602   return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
4603 }
4604
4605 bool CXXNameMangler::mangleSubstitution(QualType T) {
4606   if (!hasMangledSubstitutionQualifiers(T)) {
4607     if (const RecordType *RT = T->getAs<RecordType>())
4608       return mangleSubstitution(RT->getDecl());
4609   }
4610
4611   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4612
4613   return mangleSubstitution(TypePtr);
4614 }
4615
4616 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
4617   if (TemplateDecl *TD = Template.getAsTemplateDecl())
4618     return mangleSubstitution(TD);
4619
4620   Template = Context.getASTContext().getCanonicalTemplateName(Template);
4621   return mangleSubstitution(
4622                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4623 }
4624
4625 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
4626   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
4627   if (I == Substitutions.end())
4628     return false;
4629
4630   unsigned SeqID = I->second;
4631   Out << 'S';
4632   mangleSeqID(SeqID);
4633
4634   return true;
4635 }
4636
4637 static bool isCharType(QualType T) {
4638   if (T.isNull())
4639     return false;
4640
4641   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
4642     T->isSpecificBuiltinType(BuiltinType::Char_U);
4643 }
4644
4645 /// Returns whether a given type is a template specialization of a given name
4646 /// with a single argument of type char.
4647 static bool isCharSpecialization(QualType T, const char *Name) {
4648   if (T.isNull())
4649     return false;
4650
4651   const RecordType *RT = T->getAs<RecordType>();
4652   if (!RT)
4653     return false;
4654
4655   const ClassTemplateSpecializationDecl *SD =
4656     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
4657   if (!SD)
4658     return false;
4659
4660   if (!isStdNamespace(getEffectiveDeclContext(SD)))
4661     return false;
4662
4663   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4664   if (TemplateArgs.size() != 1)
4665     return false;
4666
4667   if (!isCharType(TemplateArgs[0].getAsType()))
4668     return false;
4669
4670   return SD->getIdentifier()->getName() == Name;
4671 }
4672
4673 template <std::size_t StrLen>
4674 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
4675                                        const char (&Str)[StrLen]) {
4676   if (!SD->getIdentifier()->isStr(Str))
4677     return false;
4678
4679   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4680   if (TemplateArgs.size() != 2)
4681     return false;
4682
4683   if (!isCharType(TemplateArgs[0].getAsType()))
4684     return false;
4685
4686   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4687     return false;
4688
4689   return true;
4690 }
4691
4692 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
4693   // <substitution> ::= St # ::std::
4694   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
4695     if (isStd(NS)) {
4696       Out << "St";
4697       return true;
4698     }
4699   }
4700
4701   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
4702     if (!isStdNamespace(getEffectiveDeclContext(TD)))
4703       return false;
4704
4705     // <substitution> ::= Sa # ::std::allocator
4706     if (TD->getIdentifier()->isStr("allocator")) {
4707       Out << "Sa";
4708       return true;
4709     }
4710
4711     // <<substitution> ::= Sb # ::std::basic_string
4712     if (TD->getIdentifier()->isStr("basic_string")) {
4713       Out << "Sb";
4714       return true;
4715     }
4716   }
4717
4718   if (const ClassTemplateSpecializationDecl *SD =
4719         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
4720     if (!isStdNamespace(getEffectiveDeclContext(SD)))
4721       return false;
4722
4723     //    <substitution> ::= Ss # ::std::basic_string<char,
4724     //                            ::std::char_traits<char>,
4725     //                            ::std::allocator<char> >
4726     if (SD->getIdentifier()->isStr("basic_string")) {
4727       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4728
4729       if (TemplateArgs.size() != 3)
4730         return false;
4731
4732       if (!isCharType(TemplateArgs[0].getAsType()))
4733         return false;
4734
4735       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4736         return false;
4737
4738       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
4739         return false;
4740
4741       Out << "Ss";
4742       return true;
4743     }
4744
4745     //    <substitution> ::= Si # ::std::basic_istream<char,
4746     //                            ::std::char_traits<char> >
4747     if (isStreamCharSpecialization(SD, "basic_istream")) {
4748       Out << "Si";
4749       return true;
4750     }
4751
4752     //    <substitution> ::= So # ::std::basic_ostream<char,
4753     //                            ::std::char_traits<char> >
4754     if (isStreamCharSpecialization(SD, "basic_ostream")) {
4755       Out << "So";
4756       return true;
4757     }
4758
4759     //    <substitution> ::= Sd # ::std::basic_iostream<char,
4760     //                            ::std::char_traits<char> >
4761     if (isStreamCharSpecialization(SD, "basic_iostream")) {
4762       Out << "Sd";
4763       return true;
4764     }
4765   }
4766   return false;
4767 }
4768
4769 void CXXNameMangler::addSubstitution(QualType T) {
4770   if (!hasMangledSubstitutionQualifiers(T)) {
4771     if (const RecordType *RT = T->getAs<RecordType>()) {
4772       addSubstitution(RT->getDecl());
4773       return;
4774     }
4775   }
4776
4777   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4778   addSubstitution(TypePtr);
4779 }
4780
4781 void CXXNameMangler::addSubstitution(TemplateName Template) {
4782   if (TemplateDecl *TD = Template.getAsTemplateDecl())
4783     return addSubstitution(TD);
4784
4785   Template = Context.getASTContext().getCanonicalTemplateName(Template);
4786   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4787 }
4788
4789 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
4790   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
4791   Substitutions[Ptr] = SeqID++;
4792 }
4793
4794 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
4795   assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
4796   if (Other->SeqID > SeqID) {
4797     Substitutions.swap(Other->Substitutions);
4798     SeqID = Other->SeqID;
4799   }
4800 }
4801
4802 CXXNameMangler::AbiTagList
4803 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
4804   // When derived abi tags are disabled there is no need to make any list.
4805   if (DisableDerivedAbiTags)
4806     return AbiTagList();
4807
4808   llvm::raw_null_ostream NullOutStream;
4809   CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
4810   TrackReturnTypeTags.disableDerivedAbiTags();
4811
4812   const FunctionProtoType *Proto =
4813       cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
4814   FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
4815   TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
4816   TrackReturnTypeTags.mangleType(Proto->getReturnType());
4817   TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
4818   TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
4819
4820   return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4821 }
4822
4823 CXXNameMangler::AbiTagList
4824 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
4825   // When derived abi tags are disabled there is no need to make any list.
4826   if (DisableDerivedAbiTags)
4827     return AbiTagList();
4828
4829   llvm::raw_null_ostream NullOutStream;
4830   CXXNameMangler TrackVariableType(*this, NullOutStream);
4831   TrackVariableType.disableDerivedAbiTags();
4832
4833   TrackVariableType.mangleType(VD->getType());
4834
4835   return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4836 }
4837
4838 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
4839                                        const VarDecl *VD) {
4840   llvm::raw_null_ostream NullOutStream;
4841   CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
4842   TrackAbiTags.mangle(VD);
4843   return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
4844 }
4845
4846 //
4847
4848 /// Mangles the name of the declaration D and emits that name to the given
4849 /// output stream.
4850 ///
4851 /// If the declaration D requires a mangled name, this routine will emit that
4852 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
4853 /// and this routine will return false. In this case, the caller should just
4854 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
4855 /// name.
4856 void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
4857                                              raw_ostream &Out) {
4858   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
4859           "Invalid mangleName() call, argument is not a variable or function!");
4860   assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
4861          "Invalid mangleName() call on 'structor decl!");
4862
4863   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
4864                                  getASTContext().getSourceManager(),
4865                                  "Mangling declaration");
4866
4867   CXXNameMangler Mangler(*this, Out, D);
4868   Mangler.mangle(D);
4869 }
4870
4871 void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
4872                                              CXXCtorType Type,
4873                                              raw_ostream &Out) {
4874   CXXNameMangler Mangler(*this, Out, D, Type);
4875   Mangler.mangle(D);
4876 }
4877
4878 void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
4879                                              CXXDtorType Type,
4880                                              raw_ostream &Out) {
4881   CXXNameMangler Mangler(*this, Out, D, Type);
4882   Mangler.mangle(D);
4883 }
4884
4885 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
4886                                                    raw_ostream &Out) {
4887   CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
4888   Mangler.mangle(D);
4889 }
4890
4891 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
4892                                                    raw_ostream &Out) {
4893   CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
4894   Mangler.mangle(D);
4895 }
4896
4897 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
4898                                            const ThunkInfo &Thunk,
4899                                            raw_ostream &Out) {
4900   //  <special-name> ::= T <call-offset> <base encoding>
4901   //                      # base is the nominal target function of thunk
4902   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
4903   //                      # base is the nominal target function of thunk
4904   //                      # first call-offset is 'this' adjustment
4905   //                      # second call-offset is result adjustment
4906
4907   assert(!isa<CXXDestructorDecl>(MD) &&
4908          "Use mangleCXXDtor for destructor decls!");
4909   CXXNameMangler Mangler(*this, Out);
4910   Mangler.getStream() << "_ZT";
4911   if (!Thunk.Return.isEmpty())
4912     Mangler.getStream() << 'c';
4913
4914   // Mangle the 'this' pointer adjustment.
4915   Mangler.mangleCallOffset(Thunk.This.NonVirtual,
4916                            Thunk.This.Virtual.Itanium.VCallOffsetOffset);
4917
4918   // Mangle the return pointer adjustment if there is one.
4919   if (!Thunk.Return.isEmpty())
4920     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
4921                              Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
4922
4923   Mangler.mangleFunctionEncoding(MD);
4924 }
4925
4926 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
4927     const CXXDestructorDecl *DD, CXXDtorType Type,
4928     const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
4929   //  <special-name> ::= T <call-offset> <base encoding>
4930   //                      # base is the nominal target function of thunk
4931   CXXNameMangler Mangler(*this, Out, DD, Type);
4932   Mangler.getStream() << "_ZT";
4933
4934   // Mangle the 'this' pointer adjustment.
4935   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
4936                            ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
4937
4938   Mangler.mangleFunctionEncoding(DD);
4939 }
4940
4941 /// Returns the mangled name for a guard variable for the passed in VarDecl.
4942 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
4943                                                          raw_ostream &Out) {
4944   //  <special-name> ::= GV <object name>       # Guard variable for one-time
4945   //                                            # initialization
4946   CXXNameMangler Mangler(*this, Out);
4947   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
4948   // be a bug that is fixed in trunk.
4949   Mangler.getStream() << "_ZGV";
4950   Mangler.mangleName(D);
4951 }
4952
4953 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
4954                                                         raw_ostream &Out) {
4955   // These symbols are internal in the Itanium ABI, so the names don't matter.
4956   // Clang has traditionally used this symbol and allowed LLVM to adjust it to
4957   // avoid duplicate symbols.
4958   Out << "__cxx_global_var_init";
4959 }
4960
4961 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
4962                                                              raw_ostream &Out) {
4963   // Prefix the mangling of D with __dtor_.
4964   CXXNameMangler Mangler(*this, Out);
4965   Mangler.getStream() << "__dtor_";
4966   if (shouldMangleDeclName(D))
4967     Mangler.mangle(D);
4968   else
4969     Mangler.getStream() << D->getName();
4970 }
4971
4972 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
4973     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4974   CXXNameMangler Mangler(*this, Out);
4975   Mangler.getStream() << "__filt_";
4976   if (shouldMangleDeclName(EnclosingDecl))
4977     Mangler.mangle(EnclosingDecl);
4978   else
4979     Mangler.getStream() << EnclosingDecl->getName();
4980 }
4981
4982 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
4983     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4984   CXXNameMangler Mangler(*this, Out);
4985   Mangler.getStream() << "__fin_";
4986   if (shouldMangleDeclName(EnclosingDecl))
4987     Mangler.mangle(EnclosingDecl);
4988   else
4989     Mangler.getStream() << EnclosingDecl->getName();
4990 }
4991
4992 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
4993                                                             raw_ostream &Out) {
4994   //  <special-name> ::= TH <object name>
4995   CXXNameMangler Mangler(*this, Out);
4996   Mangler.getStream() << "_ZTH";
4997   Mangler.mangleName(D);
4998 }
4999
5000 void
5001 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
5002                                                           raw_ostream &Out) {
5003   //  <special-name> ::= TW <object name>
5004   CXXNameMangler Mangler(*this, Out);
5005   Mangler.getStream() << "_ZTW";
5006   Mangler.mangleName(D);
5007 }
5008
5009 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
5010                                                         unsigned ManglingNumber,
5011                                                         raw_ostream &Out) {
5012   // We match the GCC mangling here.
5013   //  <special-name> ::= GR <object name>
5014   CXXNameMangler Mangler(*this, Out);
5015   Mangler.getStream() << "_ZGR";
5016   Mangler.mangleName(D);
5017   assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
5018   Mangler.mangleSeqID(ManglingNumber - 1);
5019 }
5020
5021 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
5022                                                raw_ostream &Out) {
5023   // <special-name> ::= TV <type>  # virtual table
5024   CXXNameMangler Mangler(*this, Out);
5025   Mangler.getStream() << "_ZTV";
5026   Mangler.mangleNameOrStandardSubstitution(RD);
5027 }
5028
5029 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
5030                                             raw_ostream &Out) {
5031   // <special-name> ::= TT <type>  # VTT structure
5032   CXXNameMangler Mangler(*this, Out);
5033   Mangler.getStream() << "_ZTT";
5034   Mangler.mangleNameOrStandardSubstitution(RD);
5035 }
5036
5037 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
5038                                                    int64_t Offset,
5039                                                    const CXXRecordDecl *Type,
5040                                                    raw_ostream &Out) {
5041   // <special-name> ::= TC <type> <offset number> _ <base type>
5042   CXXNameMangler Mangler(*this, Out);
5043   Mangler.getStream() << "_ZTC";
5044   Mangler.mangleNameOrStandardSubstitution(RD);
5045   Mangler.getStream() << Offset;
5046   Mangler.getStream() << '_';
5047   Mangler.mangleNameOrStandardSubstitution(Type);
5048 }
5049
5050 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
5051   // <special-name> ::= TI <type>  # typeinfo structure
5052   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
5053   CXXNameMangler Mangler(*this, Out);
5054   Mangler.getStream() << "_ZTI";
5055   Mangler.mangleType(Ty);
5056 }
5057
5058 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
5059                                                  raw_ostream &Out) {
5060   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
5061   CXXNameMangler Mangler(*this, Out);
5062   Mangler.getStream() << "_ZTS";
5063   Mangler.mangleType(Ty);
5064 }
5065
5066 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
5067   mangleCXXRTTIName(Ty, Out);
5068 }
5069
5070 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
5071   llvm_unreachable("Can't mangle string literals");
5072 }
5073
5074 ItaniumMangleContext *
5075 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
5076   return new ItaniumMangleContextImpl(Context, Diags);
5077 }