]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/clang/lib/AST/VTableBuilder.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / clang / lib / AST / VTableBuilder.cpp
1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with generation of the layout of virtual tables.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/VTableBuilder.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTDiagnostic.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/RecordLayout.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include <algorithm>
24 #include <cstdio>
25
26 using namespace clang;
27
28 #define DUMP_OVERRIDERS 0
29
30 namespace {
31
32 /// BaseOffset - Represents an offset from a derived class to a direct or
33 /// indirect base class.
34 struct BaseOffset {
35   /// DerivedClass - The derived class.
36   const CXXRecordDecl *DerivedClass;
37
38   /// VirtualBase - If the path from the derived class to the base class
39   /// involves virtual base classes, this holds the declaration of the last
40   /// virtual base in this path (i.e. closest to the base class).
41   const CXXRecordDecl *VirtualBase;
42
43   /// NonVirtualOffset - The offset from the derived class to the base class.
44   /// (Or the offset from the virtual base class to the base class, if the
45   /// path from the derived class to the base class involves a virtual base
46   /// class.
47   CharUnits NonVirtualOffset;
48
49   BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
50                  NonVirtualOffset(CharUnits::Zero()) { }
51   BaseOffset(const CXXRecordDecl *DerivedClass,
52              const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
53     : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
54     NonVirtualOffset(NonVirtualOffset) { }
55
56   bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
57 };
58
59 /// FinalOverriders - Contains the final overrider member functions for all
60 /// member functions in the base subobjects of a class.
61 class FinalOverriders {
62 public:
63   /// OverriderInfo - Information about a final overrider.
64   struct OverriderInfo {
65     /// Method - The method decl of the overrider.
66     const CXXMethodDecl *Method;
67
68     /// VirtualBase - The virtual base class subobject of this overrider.
69     /// Note that this records the closest derived virtual base class subobject.
70     const CXXRecordDecl *VirtualBase;
71
72     /// Offset - the base offset of the overrider's parent in the layout class.
73     CharUnits Offset;
74
75     OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
76                       Offset(CharUnits::Zero()) { }
77   };
78
79 private:
80   /// MostDerivedClass - The most derived class for which the final overriders
81   /// are stored.
82   const CXXRecordDecl *MostDerivedClass;
83
84   /// MostDerivedClassOffset - If we're building final overriders for a
85   /// construction vtable, this holds the offset from the layout class to the
86   /// most derived class.
87   const CharUnits MostDerivedClassOffset;
88
89   /// LayoutClass - The class we're using for layout information. Will be
90   /// different than the most derived class if the final overriders are for a
91   /// construction vtable.
92   const CXXRecordDecl *LayoutClass;
93
94   ASTContext &Context;
95
96   /// MostDerivedClassLayout - the AST record layout of the most derived class.
97   const ASTRecordLayout &MostDerivedClassLayout;
98
99   /// MethodBaseOffsetPairTy - Uniquely identifies a member function
100   /// in a base subobject.
101   typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
102
103   typedef llvm::DenseMap<MethodBaseOffsetPairTy,
104                          OverriderInfo> OverridersMapTy;
105
106   /// OverridersMap - The final overriders for all virtual member functions of
107   /// all the base subobjects of the most derived class.
108   OverridersMapTy OverridersMap;
109
110   /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
111   /// as a record decl and a subobject number) and its offsets in the most
112   /// derived class as well as the layout class.
113   typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
114                          CharUnits> SubobjectOffsetMapTy;
115
116   typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
117
118   /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
119   /// given base.
120   void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
121                           CharUnits OffsetInLayoutClass,
122                           SubobjectOffsetMapTy &SubobjectOffsets,
123                           SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
124                           SubobjectCountMapTy &SubobjectCounts);
125
126   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
127
128   /// dump - dump the final overriders for a base subobject, and all its direct
129   /// and indirect base subobjects.
130   void dump(raw_ostream &Out, BaseSubobject Base,
131             VisitedVirtualBasesSetTy& VisitedVirtualBases);
132
133 public:
134   FinalOverriders(const CXXRecordDecl *MostDerivedClass,
135                   CharUnits MostDerivedClassOffset,
136                   const CXXRecordDecl *LayoutClass);
137
138   /// getOverrider - Get the final overrider for the given method declaration in
139   /// the subobject with the given base offset.
140   OverriderInfo getOverrider(const CXXMethodDecl *MD,
141                              CharUnits BaseOffset) const {
142     assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
143            "Did not find overrider!");
144
145     return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
146   }
147
148   /// dump - dump the final overriders.
149   void dump() {
150     VisitedVirtualBasesSetTy VisitedVirtualBases;
151     dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
152          VisitedVirtualBases);
153   }
154
155 };
156
157 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
158                                  CharUnits MostDerivedClassOffset,
159                                  const CXXRecordDecl *LayoutClass)
160   : MostDerivedClass(MostDerivedClass),
161   MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
162   Context(MostDerivedClass->getASTContext()),
163   MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
164
165   // Compute base offsets.
166   SubobjectOffsetMapTy SubobjectOffsets;
167   SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
168   SubobjectCountMapTy SubobjectCounts;
169   ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
170                      /*IsVirtual=*/false,
171                      MostDerivedClassOffset,
172                      SubobjectOffsets, SubobjectLayoutClassOffsets,
173                      SubobjectCounts);
174
175   // Get the final overriders.
176   CXXFinalOverriderMap FinalOverriders;
177   MostDerivedClass->getFinalOverriders(FinalOverriders);
178
179   for (const auto &Overrider : FinalOverriders) {
180     const CXXMethodDecl *MD = Overrider.first;
181     const OverridingMethods &Methods = Overrider.second;
182
183     for (const auto &M : Methods) {
184       unsigned SubobjectNumber = M.first;
185       assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
186                                                    SubobjectNumber)) &&
187              "Did not find subobject offset!");
188
189       CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
190                                                             SubobjectNumber)];
191
192       assert(M.second.size() == 1 && "Final overrider is not unique!");
193       const UniqueVirtualMethod &Method = M.second.front();
194
195       const CXXRecordDecl *OverriderRD = Method.Method->getParent();
196       assert(SubobjectLayoutClassOffsets.count(
197              std::make_pair(OverriderRD, Method.Subobject))
198              && "Did not find subobject offset!");
199       CharUnits OverriderOffset =
200         SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
201                                                    Method.Subobject)];
202
203       OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
204       assert(!Overrider.Method && "Overrider should not exist yet!");
205
206       Overrider.Offset = OverriderOffset;
207       Overrider.Method = Method.Method;
208       Overrider.VirtualBase = Method.InVirtualSubobject;
209     }
210   }
211
212 #if DUMP_OVERRIDERS
213   // And dump them (for now).
214   dump();
215 #endif
216 }
217
218 static BaseOffset ComputeBaseOffset(const ASTContext &Context,
219                                     const CXXRecordDecl *DerivedRD,
220                                     const CXXBasePath &Path) {
221   CharUnits NonVirtualOffset = CharUnits::Zero();
222
223   unsigned NonVirtualStart = 0;
224   const CXXRecordDecl *VirtualBase = nullptr;
225
226   // First, look for the virtual base class.
227   for (int I = Path.size(), E = 0; I != E; --I) {
228     const CXXBasePathElement &Element = Path[I - 1];
229
230     if (Element.Base->isVirtual()) {
231       NonVirtualStart = I;
232       QualType VBaseType = Element.Base->getType();
233       VirtualBase = VBaseType->getAsCXXRecordDecl();
234       break;
235     }
236   }
237
238   // Now compute the non-virtual offset.
239   for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
240     const CXXBasePathElement &Element = Path[I];
241
242     // Check the base class offset.
243     const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
244
245     const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
246
247     NonVirtualOffset += Layout.getBaseClassOffset(Base);
248   }
249
250   // FIXME: This should probably use CharUnits or something. Maybe we should
251   // even change the base offsets in ASTRecordLayout to be specified in
252   // CharUnits.
253   return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
254
255 }
256
257 static BaseOffset ComputeBaseOffset(const ASTContext &Context,
258                                     const CXXRecordDecl *BaseRD,
259                                     const CXXRecordDecl *DerivedRD) {
260   CXXBasePaths Paths(/*FindAmbiguities=*/false,
261                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
262
263   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
264     llvm_unreachable("Class must be derived from the passed in base class!");
265
266   return ComputeBaseOffset(Context, DerivedRD, Paths.front());
267 }
268
269 static BaseOffset
270 ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
271                                   const CXXMethodDecl *DerivedMD,
272                                   const CXXMethodDecl *BaseMD) {
273   const FunctionType *BaseFT = BaseMD->getType()->getAs<FunctionType>();
274   const FunctionType *DerivedFT = DerivedMD->getType()->getAs<FunctionType>();
275
276   // Canonicalize the return types.
277   CanQualType CanDerivedReturnType =
278       Context.getCanonicalType(DerivedFT->getReturnType());
279   CanQualType CanBaseReturnType =
280       Context.getCanonicalType(BaseFT->getReturnType());
281
282   assert(CanDerivedReturnType->getTypeClass() ==
283          CanBaseReturnType->getTypeClass() &&
284          "Types must have same type class!");
285
286   if (CanDerivedReturnType == CanBaseReturnType) {
287     // No adjustment needed.
288     return BaseOffset();
289   }
290
291   if (isa<ReferenceType>(CanDerivedReturnType)) {
292     CanDerivedReturnType =
293       CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
294     CanBaseReturnType =
295       CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
296   } else if (isa<PointerType>(CanDerivedReturnType)) {
297     CanDerivedReturnType =
298       CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
299     CanBaseReturnType =
300       CanBaseReturnType->getAs<PointerType>()->getPointeeType();
301   } else {
302     llvm_unreachable("Unexpected return type!");
303   }
304
305   // We need to compare unqualified types here; consider
306   //   const T *Base::foo();
307   //   T *Derived::foo();
308   if (CanDerivedReturnType.getUnqualifiedType() ==
309       CanBaseReturnType.getUnqualifiedType()) {
310     // No adjustment needed.
311     return BaseOffset();
312   }
313
314   const CXXRecordDecl *DerivedRD =
315     cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
316
317   const CXXRecordDecl *BaseRD =
318     cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
319
320   return ComputeBaseOffset(Context, BaseRD, DerivedRD);
321 }
322
323 void
324 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
325                               CharUnits OffsetInLayoutClass,
326                               SubobjectOffsetMapTy &SubobjectOffsets,
327                               SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
328                               SubobjectCountMapTy &SubobjectCounts) {
329   const CXXRecordDecl *RD = Base.getBase();
330
331   unsigned SubobjectNumber = 0;
332   if (!IsVirtual)
333     SubobjectNumber = ++SubobjectCounts[RD];
334
335   // Set up the subobject to offset mapping.
336   assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
337          && "Subobject offset already exists!");
338   assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
339          && "Subobject offset already exists!");
340
341   SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
342   SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
343     OffsetInLayoutClass;
344
345   // Traverse our bases.
346   for (const auto &B : RD->bases()) {
347     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
348
349     CharUnits BaseOffset;
350     CharUnits BaseOffsetInLayoutClass;
351     if (B.isVirtual()) {
352       // Check if we've visited this virtual base before.
353       if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
354         continue;
355
356       const ASTRecordLayout &LayoutClassLayout =
357         Context.getASTRecordLayout(LayoutClass);
358
359       BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
360       BaseOffsetInLayoutClass =
361         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
362     } else {
363       const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
364       CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
365
366       BaseOffset = Base.getBaseOffset() + Offset;
367       BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
368     }
369
370     ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
371                        B.isVirtual(), BaseOffsetInLayoutClass,
372                        SubobjectOffsets, SubobjectLayoutClassOffsets,
373                        SubobjectCounts);
374   }
375 }
376
377 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
378                            VisitedVirtualBasesSetTy &VisitedVirtualBases) {
379   const CXXRecordDecl *RD = Base.getBase();
380   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
381
382   for (const auto &B : RD->bases()) {
383     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
384
385     // Ignore bases that don't have any virtual member functions.
386     if (!BaseDecl->isPolymorphic())
387       continue;
388
389     CharUnits BaseOffset;
390     if (B.isVirtual()) {
391       if (!VisitedVirtualBases.insert(BaseDecl).second) {
392         // We've visited this base before.
393         continue;
394       }
395
396       BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
397     } else {
398       BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
399     }
400
401     dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
402   }
403
404   Out << "Final overriders for (";
405   RD->printQualifiedName(Out);
406   Out << ", ";
407   Out << Base.getBaseOffset().getQuantity() << ")\n";
408
409   // Now dump the overriders for this base subobject.
410   for (const auto *MD : RD->methods()) {
411     if (!MD->isVirtual())
412       continue;
413     MD = MD->getCanonicalDecl();
414
415     OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
416
417     Out << "  ";
418     MD->printQualifiedName(Out);
419     Out << " - (";
420     Overrider.Method->printQualifiedName(Out);
421     Out << ", " << Overrider.Offset.getQuantity() << ')';
422
423     BaseOffset Offset;
424     if (!Overrider.Method->isPure())
425       Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
426
427     if (!Offset.isEmpty()) {
428       Out << " [ret-adj: ";
429       if (Offset.VirtualBase) {
430         Offset.VirtualBase->printQualifiedName(Out);
431         Out << " vbase, ";
432       }
433
434       Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
435     }
436
437     Out << "\n";
438   }
439 }
440
441 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
442 struct VCallOffsetMap {
443
444   typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
445
446   /// Offsets - Keeps track of methods and their offsets.
447   // FIXME: This should be a real map and not a vector.
448   SmallVector<MethodAndOffsetPairTy, 16> Offsets;
449
450   /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
451   /// can share the same vcall offset.
452   static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
453                                          const CXXMethodDecl *RHS);
454
455 public:
456   /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
457   /// add was successful, or false if there was already a member function with
458   /// the same signature in the map.
459   bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
460
461   /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
462   /// vtable address point) for the given virtual member function.
463   CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
464
465   // empty - Return whether the offset map is empty or not.
466   bool empty() const { return Offsets.empty(); }
467 };
468
469 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
470                                     const CXXMethodDecl *RHS) {
471   const FunctionProtoType *LT =
472     cast<FunctionProtoType>(LHS->getType().getCanonicalType());
473   const FunctionProtoType *RT =
474     cast<FunctionProtoType>(RHS->getType().getCanonicalType());
475
476   // Fast-path matches in the canonical types.
477   if (LT == RT) return true;
478
479   // Force the signatures to match.  We can't rely on the overrides
480   // list here because there isn't necessarily an inheritance
481   // relationship between the two methods.
482   if (LT->getMethodQuals() != RT->getMethodQuals())
483     return false;
484   return LT->getParamTypes() == RT->getParamTypes();
485 }
486
487 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
488                                                 const CXXMethodDecl *RHS) {
489   assert(LHS->isVirtual() && "LHS must be virtual!");
490   assert(RHS->isVirtual() && "LHS must be virtual!");
491
492   // A destructor can share a vcall offset with another destructor.
493   if (isa<CXXDestructorDecl>(LHS))
494     return isa<CXXDestructorDecl>(RHS);
495
496   // FIXME: We need to check more things here.
497
498   // The methods must have the same name.
499   DeclarationName LHSName = LHS->getDeclName();
500   DeclarationName RHSName = RHS->getDeclName();
501   if (LHSName != RHSName)
502     return false;
503
504   // And the same signatures.
505   return HasSameVirtualSignature(LHS, RHS);
506 }
507
508 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
509                                     CharUnits OffsetOffset) {
510   // Check if we can reuse an offset.
511   for (const auto &OffsetPair : Offsets) {
512     if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
513       return false;
514   }
515
516   // Add the offset.
517   Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
518   return true;
519 }
520
521 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
522   // Look for an offset.
523   for (const auto &OffsetPair : Offsets) {
524     if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
525       return OffsetPair.second;
526   }
527
528   llvm_unreachable("Should always find a vcall offset offset!");
529 }
530
531 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
532 class VCallAndVBaseOffsetBuilder {
533 public:
534   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
535     VBaseOffsetOffsetsMapTy;
536
537 private:
538   /// MostDerivedClass - The most derived class for which we're building vcall
539   /// and vbase offsets.
540   const CXXRecordDecl *MostDerivedClass;
541
542   /// LayoutClass - The class we're using for layout information. Will be
543   /// different than the most derived class if we're building a construction
544   /// vtable.
545   const CXXRecordDecl *LayoutClass;
546
547   /// Context - The ASTContext which we will use for layout information.
548   ASTContext &Context;
549
550   /// Components - vcall and vbase offset components
551   typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
552   VTableComponentVectorTy Components;
553
554   /// VisitedVirtualBases - Visited virtual bases.
555   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
556
557   /// VCallOffsets - Keeps track of vcall offsets.
558   VCallOffsetMap VCallOffsets;
559
560
561   /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
562   /// relative to the address point.
563   VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
564
565   /// FinalOverriders - The final overriders of the most derived class.
566   /// (Can be null when we're not building a vtable of the most derived class).
567   const FinalOverriders *Overriders;
568
569   /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
570   /// given base subobject.
571   void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
572                                CharUnits RealBaseOffset);
573
574   /// AddVCallOffsets - Add vcall offsets for the given base subobject.
575   void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
576
577   /// AddVBaseOffsets - Add vbase offsets for the given class.
578   void AddVBaseOffsets(const CXXRecordDecl *Base,
579                        CharUnits OffsetInLayoutClass);
580
581   /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
582   /// chars, relative to the vtable address point.
583   CharUnits getCurrentOffsetOffset() const;
584
585 public:
586   VCallAndVBaseOffsetBuilder(const CXXRecordDecl *MostDerivedClass,
587                              const CXXRecordDecl *LayoutClass,
588                              const FinalOverriders *Overriders,
589                              BaseSubobject Base, bool BaseIsVirtual,
590                              CharUnits OffsetInLayoutClass)
591     : MostDerivedClass(MostDerivedClass), LayoutClass(LayoutClass),
592     Context(MostDerivedClass->getASTContext()), Overriders(Overriders) {
593
594     // Add vcall and vbase offsets.
595     AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
596   }
597
598   /// Methods for iterating over the components.
599   typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
600   const_iterator components_begin() const { return Components.rbegin(); }
601   const_iterator components_end() const { return Components.rend(); }
602
603   const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
604   const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
605     return VBaseOffsetOffsets;
606   }
607 };
608
609 void
610 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
611                                                     bool BaseIsVirtual,
612                                                     CharUnits RealBaseOffset) {
613   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
614
615   // Itanium C++ ABI 2.5.2:
616   //   ..in classes sharing a virtual table with a primary base class, the vcall
617   //   and vbase offsets added by the derived class all come before the vcall
618   //   and vbase offsets required by the base class, so that the latter may be
619   //   laid out as required by the base class without regard to additions from
620   //   the derived class(es).
621
622   // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
623   // emit them for the primary base first).
624   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
625     bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
626
627     CharUnits PrimaryBaseOffset;
628
629     // Get the base offset of the primary base.
630     if (PrimaryBaseIsVirtual) {
631       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
632              "Primary vbase should have a zero offset!");
633
634       const ASTRecordLayout &MostDerivedClassLayout =
635         Context.getASTRecordLayout(MostDerivedClass);
636
637       PrimaryBaseOffset =
638         MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
639     } else {
640       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
641              "Primary base should have a zero offset!");
642
643       PrimaryBaseOffset = Base.getBaseOffset();
644     }
645
646     AddVCallAndVBaseOffsets(
647       BaseSubobject(PrimaryBase,PrimaryBaseOffset),
648       PrimaryBaseIsVirtual, RealBaseOffset);
649   }
650
651   AddVBaseOffsets(Base.getBase(), RealBaseOffset);
652
653   // We only want to add vcall offsets for virtual bases.
654   if (BaseIsVirtual)
655     AddVCallOffsets(Base, RealBaseOffset);
656 }
657
658 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
659   // OffsetIndex is the index of this vcall or vbase offset, relative to the
660   // vtable address point. (We subtract 3 to account for the information just
661   // above the address point, the RTTI info, the offset to top, and the
662   // vcall offset itself).
663   int64_t OffsetIndex = -(int64_t)(3 + Components.size());
664
665   CharUnits PointerWidth =
666     Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
667   CharUnits OffsetOffset = PointerWidth * OffsetIndex;
668   return OffsetOffset;
669 }
670
671 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
672                                                  CharUnits VBaseOffset) {
673   const CXXRecordDecl *RD = Base.getBase();
674   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
675
676   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
677
678   // Handle the primary base first.
679   // We only want to add vcall offsets if the base is non-virtual; a virtual
680   // primary base will have its vcall and vbase offsets emitted already.
681   if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
682     // Get the base offset of the primary base.
683     assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
684            "Primary base should have a zero offset!");
685
686     AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
687                     VBaseOffset);
688   }
689
690   // Add the vcall offsets.
691   for (const auto *MD : RD->methods()) {
692     if (!MD->isVirtual())
693       continue;
694     MD = MD->getCanonicalDecl();
695
696     CharUnits OffsetOffset = getCurrentOffsetOffset();
697
698     // Don't add a vcall offset if we already have one for this member function
699     // signature.
700     if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
701       continue;
702
703     CharUnits Offset = CharUnits::Zero();
704
705     if (Overriders) {
706       // Get the final overrider.
707       FinalOverriders::OverriderInfo Overrider =
708         Overriders->getOverrider(MD, Base.getBaseOffset());
709
710       /// The vcall offset is the offset from the virtual base to the object
711       /// where the function was overridden.
712       Offset = Overrider.Offset - VBaseOffset;
713     }
714
715     Components.push_back(
716       VTableComponent::MakeVCallOffset(Offset));
717   }
718
719   // And iterate over all non-virtual bases (ignoring the primary base).
720   for (const auto &B : RD->bases()) {
721     if (B.isVirtual())
722       continue;
723
724     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
725     if (BaseDecl == PrimaryBase)
726       continue;
727
728     // Get the base offset of this base.
729     CharUnits BaseOffset = Base.getBaseOffset() +
730       Layout.getBaseClassOffset(BaseDecl);
731
732     AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
733                     VBaseOffset);
734   }
735 }
736
737 void
738 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
739                                             CharUnits OffsetInLayoutClass) {
740   const ASTRecordLayout &LayoutClassLayout =
741     Context.getASTRecordLayout(LayoutClass);
742
743   // Add vbase offsets.
744   for (const auto &B : RD->bases()) {
745     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
746
747     // Check if this is a virtual base that we haven't visited before.
748     if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) {
749       CharUnits Offset =
750         LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
751
752       // Add the vbase offset offset.
753       assert(!VBaseOffsetOffsets.count(BaseDecl) &&
754              "vbase offset offset already exists!");
755
756       CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
757       VBaseOffsetOffsets.insert(
758           std::make_pair(BaseDecl, VBaseOffsetOffset));
759
760       Components.push_back(
761           VTableComponent::MakeVBaseOffset(Offset));
762     }
763
764     // Check the base class looking for more vbase offsets.
765     AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
766   }
767 }
768
769 /// ItaniumVTableBuilder - Class for building vtable layout information.
770 class ItaniumVTableBuilder {
771 public:
772   /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
773   /// primary bases.
774   typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
775     PrimaryBasesSetVectorTy;
776
777   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
778     VBaseOffsetOffsetsMapTy;
779
780   typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy;
781
782   typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
783
784 private:
785   /// VTables - Global vtable information.
786   ItaniumVTableContext &VTables;
787
788   /// MostDerivedClass - The most derived class for which we're building this
789   /// vtable.
790   const CXXRecordDecl *MostDerivedClass;
791
792   /// MostDerivedClassOffset - If we're building a construction vtable, this
793   /// holds the offset from the layout class to the most derived class.
794   const CharUnits MostDerivedClassOffset;
795
796   /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
797   /// base. (This only makes sense when building a construction vtable).
798   bool MostDerivedClassIsVirtual;
799
800   /// LayoutClass - The class we're using for layout information. Will be
801   /// different than the most derived class if we're building a construction
802   /// vtable.
803   const CXXRecordDecl *LayoutClass;
804
805   /// Context - The ASTContext which we will use for layout information.
806   ASTContext &Context;
807
808   /// FinalOverriders - The final overriders of the most derived class.
809   const FinalOverriders Overriders;
810
811   /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
812   /// bases in this vtable.
813   llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
814
815   /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
816   /// the most derived class.
817   VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
818
819   /// Components - The components of the vtable being built.
820   SmallVector<VTableComponent, 64> Components;
821
822   /// AddressPoints - Address points for the vtable being built.
823   AddressPointsMapTy AddressPoints;
824
825   /// MethodInfo - Contains information about a method in a vtable.
826   /// (Used for computing 'this' pointer adjustment thunks.
827   struct MethodInfo {
828     /// BaseOffset - The base offset of this method.
829     const CharUnits BaseOffset;
830
831     /// BaseOffsetInLayoutClass - The base offset in the layout class of this
832     /// method.
833     const CharUnits BaseOffsetInLayoutClass;
834
835     /// VTableIndex - The index in the vtable that this method has.
836     /// (For destructors, this is the index of the complete destructor).
837     const uint64_t VTableIndex;
838
839     MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
840                uint64_t VTableIndex)
841       : BaseOffset(BaseOffset),
842       BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
843       VTableIndex(VTableIndex) { }
844
845     MethodInfo()
846       : BaseOffset(CharUnits::Zero()),
847       BaseOffsetInLayoutClass(CharUnits::Zero()),
848       VTableIndex(0) { }
849
850     MethodInfo(MethodInfo const&) = default;
851   };
852
853   typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
854
855   /// MethodInfoMap - The information for all methods in the vtable we're
856   /// currently building.
857   MethodInfoMapTy MethodInfoMap;
858
859   /// MethodVTableIndices - Contains the index (relative to the vtable address
860   /// point) where the function pointer for a virtual function is stored.
861   MethodVTableIndicesTy MethodVTableIndices;
862
863   typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
864
865   /// VTableThunks - The thunks by vtable index in the vtable currently being
866   /// built.
867   VTableThunksMapTy VTableThunks;
868
869   typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
870   typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
871
872   /// Thunks - A map that contains all the thunks needed for all methods in the
873   /// most derived class for which the vtable is currently being built.
874   ThunksMapTy Thunks;
875
876   /// AddThunk - Add a thunk for the given method.
877   void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
878
879   /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
880   /// part of the vtable we're currently building.
881   void ComputeThisAdjustments();
882
883   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
884
885   /// PrimaryVirtualBases - All known virtual bases who are a primary base of
886   /// some other base.
887   VisitedVirtualBasesSetTy PrimaryVirtualBases;
888
889   /// ComputeReturnAdjustment - Compute the return adjustment given a return
890   /// adjustment base offset.
891   ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
892
893   /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
894   /// the 'this' pointer from the base subobject to the derived subobject.
895   BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
896                                              BaseSubobject Derived) const;
897
898   /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
899   /// given virtual member function, its offset in the layout class and its
900   /// final overrider.
901   ThisAdjustment
902   ComputeThisAdjustment(const CXXMethodDecl *MD,
903                         CharUnits BaseOffsetInLayoutClass,
904                         FinalOverriders::OverriderInfo Overrider);
905
906   /// AddMethod - Add a single virtual member function to the vtable
907   /// components vector.
908   void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
909
910   /// IsOverriderUsed - Returns whether the overrider will ever be used in this
911   /// part of the vtable.
912   ///
913   /// Itanium C++ ABI 2.5.2:
914   ///
915   ///   struct A { virtual void f(); };
916   ///   struct B : virtual public A { int i; };
917   ///   struct C : virtual public A { int j; };
918   ///   struct D : public B, public C {};
919   ///
920   ///   When B and C are declared, A is a primary base in each case, so although
921   ///   vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
922   ///   adjustment is required and no thunk is generated. However, inside D
923   ///   objects, A is no longer a primary base of C, so if we allowed calls to
924   ///   C::f() to use the copy of A's vtable in the C subobject, we would need
925   ///   to adjust this from C* to B::A*, which would require a third-party
926   ///   thunk. Since we require that a call to C::f() first convert to A*,
927   ///   C-in-D's copy of A's vtable is never referenced, so this is not
928   ///   necessary.
929   bool IsOverriderUsed(const CXXMethodDecl *Overrider,
930                        CharUnits BaseOffsetInLayoutClass,
931                        const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
932                        CharUnits FirstBaseOffsetInLayoutClass) const;
933
934
935   /// AddMethods - Add the methods of this base subobject and all its
936   /// primary bases to the vtable components vector.
937   void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
938                   const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
939                   CharUnits FirstBaseOffsetInLayoutClass,
940                   PrimaryBasesSetVectorTy &PrimaryBases);
941
942   // LayoutVTable - Layout the vtable for the given base class, including its
943   // secondary vtables and any vtables for virtual bases.
944   void LayoutVTable();
945
946   /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
947   /// given base subobject, as well as all its secondary vtables.
948   ///
949   /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
950   /// or a direct or indirect base of a virtual base.
951   ///
952   /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
953   /// in the layout class.
954   void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
955                                         bool BaseIsMorallyVirtual,
956                                         bool BaseIsVirtualInLayoutClass,
957                                         CharUnits OffsetInLayoutClass);
958
959   /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
960   /// subobject.
961   ///
962   /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
963   /// or a direct or indirect base of a virtual base.
964   void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
965                               CharUnits OffsetInLayoutClass);
966
967   /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
968   /// class hierarchy.
969   void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
970                                     CharUnits OffsetInLayoutClass,
971                                     VisitedVirtualBasesSetTy &VBases);
972
973   /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
974   /// given base (excluding any primary bases).
975   void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
976                                     VisitedVirtualBasesSetTy &VBases);
977
978   /// isBuildingConstructionVTable - Return whether this vtable builder is
979   /// building a construction vtable.
980   bool isBuildingConstructorVTable() const {
981     return MostDerivedClass != LayoutClass;
982   }
983
984 public:
985   /// Component indices of the first component of each of the vtables in the
986   /// vtable group.
987   SmallVector<size_t, 4> VTableIndices;
988
989   ItaniumVTableBuilder(ItaniumVTableContext &VTables,
990                        const CXXRecordDecl *MostDerivedClass,
991                        CharUnits MostDerivedClassOffset,
992                        bool MostDerivedClassIsVirtual,
993                        const CXXRecordDecl *LayoutClass)
994       : VTables(VTables), MostDerivedClass(MostDerivedClass),
995         MostDerivedClassOffset(MostDerivedClassOffset),
996         MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
997         LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
998         Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
999     assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
1000
1001     LayoutVTable();
1002
1003     if (Context.getLangOpts().DumpVTableLayouts)
1004       dumpLayout(llvm::outs());
1005   }
1006
1007   uint64_t getNumThunks() const {
1008     return Thunks.size();
1009   }
1010
1011   ThunksMapTy::const_iterator thunks_begin() const {
1012     return Thunks.begin();
1013   }
1014
1015   ThunksMapTy::const_iterator thunks_end() const {
1016     return Thunks.end();
1017   }
1018
1019   const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
1020     return VBaseOffsetOffsets;
1021   }
1022
1023   const AddressPointsMapTy &getAddressPoints() const {
1024     return AddressPoints;
1025   }
1026
1027   MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
1028     return MethodVTableIndices.begin();
1029   }
1030
1031   MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
1032     return MethodVTableIndices.end();
1033   }
1034
1035   ArrayRef<VTableComponent> vtable_components() const { return Components; }
1036
1037   AddressPointsMapTy::const_iterator address_points_begin() const {
1038     return AddressPoints.begin();
1039   }
1040
1041   AddressPointsMapTy::const_iterator address_points_end() const {
1042     return AddressPoints.end();
1043   }
1044
1045   VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
1046     return VTableThunks.begin();
1047   }
1048
1049   VTableThunksMapTy::const_iterator vtable_thunks_end() const {
1050     return VTableThunks.end();
1051   }
1052
1053   /// dumpLayout - Dump the vtable layout.
1054   void dumpLayout(raw_ostream&);
1055 };
1056
1057 void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
1058                                     const ThunkInfo &Thunk) {
1059   assert(!isBuildingConstructorVTable() &&
1060          "Can't add thunks for construction vtable");
1061
1062   SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
1063
1064   // Check if we have this thunk already.
1065   if (llvm::find(ThunksVector, Thunk) != ThunksVector.end())
1066     return;
1067
1068   ThunksVector.push_back(Thunk);
1069 }
1070
1071 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
1072
1073 /// Visit all the methods overridden by the given method recursively,
1074 /// in a depth-first pre-order. The Visitor's visitor method returns a bool
1075 /// indicating whether to continue the recursion for the given overridden
1076 /// method (i.e. returning false stops the iteration).
1077 template <class VisitorTy>
1078 static void
1079 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
1080   assert(MD->isVirtual() && "Method is not virtual!");
1081
1082   for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1083     if (!Visitor(OverriddenMD))
1084       continue;
1085     visitAllOverriddenMethods(OverriddenMD, Visitor);
1086   }
1087 }
1088
1089 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
1090 /// the overridden methods that the function decl overrides.
1091 static void
1092 ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
1093                             OverriddenMethodsSetTy& OverriddenMethods) {
1094   auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) {
1095     // Don't recurse on this method if we've already collected it.
1096     return OverriddenMethods.insert(MD).second;
1097   };
1098   visitAllOverriddenMethods(MD, OverriddenMethodsCollector);
1099 }
1100
1101 void ItaniumVTableBuilder::ComputeThisAdjustments() {
1102   // Now go through the method info map and see if any of the methods need
1103   // 'this' pointer adjustments.
1104   for (const auto &MI : MethodInfoMap) {
1105     const CXXMethodDecl *MD = MI.first;
1106     const MethodInfo &MethodInfo = MI.second;
1107
1108     // Ignore adjustments for unused function pointers.
1109     uint64_t VTableIndex = MethodInfo.VTableIndex;
1110     if (Components[VTableIndex].getKind() ==
1111         VTableComponent::CK_UnusedFunctionPointer)
1112       continue;
1113
1114     // Get the final overrider for this method.
1115     FinalOverriders::OverriderInfo Overrider =
1116       Overriders.getOverrider(MD, MethodInfo.BaseOffset);
1117
1118     // Check if we need an adjustment at all.
1119     if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
1120       // When a return thunk is needed by a derived class that overrides a
1121       // virtual base, gcc uses a virtual 'this' adjustment as well.
1122       // While the thunk itself might be needed by vtables in subclasses or
1123       // in construction vtables, there doesn't seem to be a reason for using
1124       // the thunk in this vtable. Still, we do so to match gcc.
1125       if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
1126         continue;
1127     }
1128
1129     ThisAdjustment ThisAdjustment =
1130       ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
1131
1132     if (ThisAdjustment.isEmpty())
1133       continue;
1134
1135     // Add it.
1136     VTableThunks[VTableIndex].This = ThisAdjustment;
1137
1138     if (isa<CXXDestructorDecl>(MD)) {
1139       // Add an adjustment for the deleting destructor as well.
1140       VTableThunks[VTableIndex + 1].This = ThisAdjustment;
1141     }
1142   }
1143
1144   /// Clear the method info map.
1145   MethodInfoMap.clear();
1146
1147   if (isBuildingConstructorVTable()) {
1148     // We don't need to store thunk information for construction vtables.
1149     return;
1150   }
1151
1152   for (const auto &TI : VTableThunks) {
1153     const VTableComponent &Component = Components[TI.first];
1154     const ThunkInfo &Thunk = TI.second;
1155     const CXXMethodDecl *MD;
1156
1157     switch (Component.getKind()) {
1158     default:
1159       llvm_unreachable("Unexpected vtable component kind!");
1160     case VTableComponent::CK_FunctionPointer:
1161       MD = Component.getFunctionDecl();
1162       break;
1163     case VTableComponent::CK_CompleteDtorPointer:
1164       MD = Component.getDestructorDecl();
1165       break;
1166     case VTableComponent::CK_DeletingDtorPointer:
1167       // We've already added the thunk when we saw the complete dtor pointer.
1168       continue;
1169     }
1170
1171     if (MD->getParent() == MostDerivedClass)
1172       AddThunk(MD, Thunk);
1173   }
1174 }
1175
1176 ReturnAdjustment
1177 ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
1178   ReturnAdjustment Adjustment;
1179
1180   if (!Offset.isEmpty()) {
1181     if (Offset.VirtualBase) {
1182       // Get the virtual base offset offset.
1183       if (Offset.DerivedClass == MostDerivedClass) {
1184         // We can get the offset offset directly from our map.
1185         Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1186           VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
1187       } else {
1188         Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1189           VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
1190                                              Offset.VirtualBase).getQuantity();
1191       }
1192     }
1193
1194     Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1195   }
1196
1197   return Adjustment;
1198 }
1199
1200 BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
1201     BaseSubobject Base, BaseSubobject Derived) const {
1202   const CXXRecordDecl *BaseRD = Base.getBase();
1203   const CXXRecordDecl *DerivedRD = Derived.getBase();
1204
1205   CXXBasePaths Paths(/*FindAmbiguities=*/true,
1206                      /*RecordPaths=*/true, /*DetectVirtual=*/true);
1207
1208   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
1209     llvm_unreachable("Class must be derived from the passed in base class!");
1210
1211   // We have to go through all the paths, and see which one leads us to the
1212   // right base subobject.
1213   for (const CXXBasePath &Path : Paths) {
1214     BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path);
1215
1216     CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
1217
1218     if (Offset.VirtualBase) {
1219       // If we have a virtual base class, the non-virtual offset is relative
1220       // to the virtual base class offset.
1221       const ASTRecordLayout &LayoutClassLayout =
1222         Context.getASTRecordLayout(LayoutClass);
1223
1224       /// Get the virtual base offset, relative to the most derived class
1225       /// layout.
1226       OffsetToBaseSubobject +=
1227         LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
1228     } else {
1229       // Otherwise, the non-virtual offset is relative to the derived class
1230       // offset.
1231       OffsetToBaseSubobject += Derived.getBaseOffset();
1232     }
1233
1234     // Check if this path gives us the right base subobject.
1235     if (OffsetToBaseSubobject == Base.getBaseOffset()) {
1236       // Since we're going from the base class _to_ the derived class, we'll
1237       // invert the non-virtual offset here.
1238       Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
1239       return Offset;
1240     }
1241   }
1242
1243   return BaseOffset();
1244 }
1245
1246 ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
1247     const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
1248     FinalOverriders::OverriderInfo Overrider) {
1249   // Ignore adjustments for pure virtual member functions.
1250   if (Overrider.Method->isPure())
1251     return ThisAdjustment();
1252
1253   BaseSubobject OverriddenBaseSubobject(MD->getParent(),
1254                                         BaseOffsetInLayoutClass);
1255
1256   BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
1257                                        Overrider.Offset);
1258
1259   // Compute the adjustment offset.
1260   BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
1261                                                       OverriderBaseSubobject);
1262   if (Offset.isEmpty())
1263     return ThisAdjustment();
1264
1265   ThisAdjustment Adjustment;
1266
1267   if (Offset.VirtualBase) {
1268     // Get the vcall offset map for this virtual base.
1269     VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
1270
1271     if (VCallOffsets.empty()) {
1272       // We don't have vcall offsets for this virtual base, go ahead and
1273       // build them.
1274       VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, MostDerivedClass,
1275                                          /*Overriders=*/nullptr,
1276                                          BaseSubobject(Offset.VirtualBase,
1277                                                        CharUnits::Zero()),
1278                                          /*BaseIsVirtual=*/true,
1279                                          /*OffsetInLayoutClass=*/
1280                                              CharUnits::Zero());
1281
1282       VCallOffsets = Builder.getVCallOffsets();
1283     }
1284
1285     Adjustment.Virtual.Itanium.VCallOffsetOffset =
1286       VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
1287   }
1288
1289   // Set the non-virtual part of the adjustment.
1290   Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1291
1292   return Adjustment;
1293 }
1294
1295 void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
1296                                      ReturnAdjustment ReturnAdjustment) {
1297   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1298     assert(ReturnAdjustment.isEmpty() &&
1299            "Destructor can't have return adjustment!");
1300
1301     // Add both the complete destructor and the deleting destructor.
1302     Components.push_back(VTableComponent::MakeCompleteDtor(DD));
1303     Components.push_back(VTableComponent::MakeDeletingDtor(DD));
1304   } else {
1305     // Add the return adjustment if necessary.
1306     if (!ReturnAdjustment.isEmpty())
1307       VTableThunks[Components.size()].Return = ReturnAdjustment;
1308
1309     // Add the function.
1310     Components.push_back(VTableComponent::MakeFunction(MD));
1311   }
1312 }
1313
1314 /// OverridesIndirectMethodInBase - Return whether the given member function
1315 /// overrides any methods in the set of given bases.
1316 /// Unlike OverridesMethodInBase, this checks "overriders of overriders".
1317 /// For example, if we have:
1318 ///
1319 /// struct A { virtual void f(); }
1320 /// struct B : A { virtual void f(); }
1321 /// struct C : B { virtual void f(); }
1322 ///
1323 /// OverridesIndirectMethodInBase will return true if given C::f as the method
1324 /// and { A } as the set of bases.
1325 static bool OverridesIndirectMethodInBases(
1326     const CXXMethodDecl *MD,
1327     ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
1328   if (Bases.count(MD->getParent()))
1329     return true;
1330
1331   for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1332     // Check "indirect overriders".
1333     if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
1334       return true;
1335   }
1336
1337   return false;
1338 }
1339
1340 bool ItaniumVTableBuilder::IsOverriderUsed(
1341     const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
1342     const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1343     CharUnits FirstBaseOffsetInLayoutClass) const {
1344   // If the base and the first base in the primary base chain have the same
1345   // offsets, then this overrider will be used.
1346   if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
1347    return true;
1348
1349   // We know now that Base (or a direct or indirect base of it) is a primary
1350   // base in part of the class hierarchy, but not a primary base in the most
1351   // derived class.
1352
1353   // If the overrider is the first base in the primary base chain, we know
1354   // that the overrider will be used.
1355   if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
1356     return true;
1357
1358   ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
1359
1360   const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
1361   PrimaryBases.insert(RD);
1362
1363   // Now traverse the base chain, starting with the first base, until we find
1364   // the base that is no longer a primary base.
1365   while (true) {
1366     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1367     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1368
1369     if (!PrimaryBase)
1370       break;
1371
1372     if (Layout.isPrimaryBaseVirtual()) {
1373       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1374              "Primary base should always be at offset 0!");
1375
1376       const ASTRecordLayout &LayoutClassLayout =
1377         Context.getASTRecordLayout(LayoutClass);
1378
1379       // Now check if this is the primary base that is not a primary base in the
1380       // most derived class.
1381       if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1382           FirstBaseOffsetInLayoutClass) {
1383         // We found it, stop walking the chain.
1384         break;
1385       }
1386     } else {
1387       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1388              "Primary base should always be at offset 0!");
1389     }
1390
1391     if (!PrimaryBases.insert(PrimaryBase))
1392       llvm_unreachable("Found a duplicate primary base!");
1393
1394     RD = PrimaryBase;
1395   }
1396
1397   // If the final overrider is an override of one of the primary bases,
1398   // then we know that it will be used.
1399   return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
1400 }
1401
1402 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
1403
1404 /// FindNearestOverriddenMethod - Given a method, returns the overridden method
1405 /// from the nearest base. Returns null if no method was found.
1406 /// The Bases are expected to be sorted in a base-to-derived order.
1407 static const CXXMethodDecl *
1408 FindNearestOverriddenMethod(const CXXMethodDecl *MD,
1409                             BasesSetVectorTy &Bases) {
1410   OverriddenMethodsSetTy OverriddenMethods;
1411   ComputeAllOverriddenMethods(MD, OverriddenMethods);
1412
1413   for (const CXXRecordDecl *PrimaryBase :
1414        llvm::make_range(Bases.rbegin(), Bases.rend())) {
1415     // Now check the overridden methods.
1416     for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) {
1417       // We found our overridden method.
1418       if (OverriddenMD->getParent() == PrimaryBase)
1419         return OverriddenMD;
1420     }
1421   }
1422
1423   return nullptr;
1424 }
1425
1426 void ItaniumVTableBuilder::AddMethods(
1427     BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
1428     const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1429     CharUnits FirstBaseOffsetInLayoutClass,
1430     PrimaryBasesSetVectorTy &PrimaryBases) {
1431   // Itanium C++ ABI 2.5.2:
1432   //   The order of the virtual function pointers in a virtual table is the
1433   //   order of declaration of the corresponding member functions in the class.
1434   //
1435   //   There is an entry for any virtual function declared in a class,
1436   //   whether it is a new function or overrides a base class function,
1437   //   unless it overrides a function from the primary base, and conversion
1438   //   between their return types does not require an adjustment.
1439
1440   const CXXRecordDecl *RD = Base.getBase();
1441   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1442
1443   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1444     CharUnits PrimaryBaseOffset;
1445     CharUnits PrimaryBaseOffsetInLayoutClass;
1446     if (Layout.isPrimaryBaseVirtual()) {
1447       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1448              "Primary vbase should have a zero offset!");
1449
1450       const ASTRecordLayout &MostDerivedClassLayout =
1451         Context.getASTRecordLayout(MostDerivedClass);
1452
1453       PrimaryBaseOffset =
1454         MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
1455
1456       const ASTRecordLayout &LayoutClassLayout =
1457         Context.getASTRecordLayout(LayoutClass);
1458
1459       PrimaryBaseOffsetInLayoutClass =
1460         LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1461     } else {
1462       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1463              "Primary base should have a zero offset!");
1464
1465       PrimaryBaseOffset = Base.getBaseOffset();
1466       PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
1467     }
1468
1469     AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
1470                PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
1471                FirstBaseOffsetInLayoutClass, PrimaryBases);
1472
1473     if (!PrimaryBases.insert(PrimaryBase))
1474       llvm_unreachable("Found a duplicate primary base!");
1475   }
1476
1477   const CXXDestructorDecl *ImplicitVirtualDtor = nullptr;
1478
1479   typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
1480   NewVirtualFunctionsTy NewVirtualFunctions;
1481
1482   // Now go through all virtual member functions and add them.
1483   for (const auto *MD : RD->methods()) {
1484     if (!MD->isVirtual())
1485       continue;
1486     MD = MD->getCanonicalDecl();
1487
1488     // Get the final overrider.
1489     FinalOverriders::OverriderInfo Overrider =
1490       Overriders.getOverrider(MD, Base.getBaseOffset());
1491
1492     // Check if this virtual member function overrides a method in a primary
1493     // base. If this is the case, and the return type doesn't require adjustment
1494     // then we can just use the member function from the primary base.
1495     if (const CXXMethodDecl *OverriddenMD =
1496           FindNearestOverriddenMethod(MD, PrimaryBases)) {
1497       if (ComputeReturnAdjustmentBaseOffset(Context, MD,
1498                                             OverriddenMD).isEmpty()) {
1499         // Replace the method info of the overridden method with our own
1500         // method.
1501         assert(MethodInfoMap.count(OverriddenMD) &&
1502                "Did not find the overridden method!");
1503         MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
1504
1505         MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1506                               OverriddenMethodInfo.VTableIndex);
1507
1508         assert(!MethodInfoMap.count(MD) &&
1509                "Should not have method info for this method yet!");
1510
1511         MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1512         MethodInfoMap.erase(OverriddenMD);
1513
1514         // If the overridden method exists in a virtual base class or a direct
1515         // or indirect base class of a virtual base class, we need to emit a
1516         // thunk if we ever have a class hierarchy where the base class is not
1517         // a primary base in the complete object.
1518         if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
1519           // Compute the this adjustment.
1520           ThisAdjustment ThisAdjustment =
1521             ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
1522                                   Overrider);
1523
1524           if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
1525               Overrider.Method->getParent() == MostDerivedClass) {
1526
1527             // There's no return adjustment from OverriddenMD and MD,
1528             // but that doesn't mean there isn't one between MD and
1529             // the final overrider.
1530             BaseOffset ReturnAdjustmentOffset =
1531               ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
1532             ReturnAdjustment ReturnAdjustment =
1533               ComputeReturnAdjustment(ReturnAdjustmentOffset);
1534
1535             // This is a virtual thunk for the most derived class, add it.
1536             AddThunk(Overrider.Method,
1537                      ThunkInfo(ThisAdjustment, ReturnAdjustment));
1538           }
1539         }
1540
1541         continue;
1542       }
1543     }
1544
1545     if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1546       if (MD->isImplicit()) {
1547         // Itanium C++ ABI 2.5.2:
1548         //   If a class has an implicitly-defined virtual destructor,
1549         //   its entries come after the declared virtual function pointers.
1550
1551         assert(!ImplicitVirtualDtor &&
1552                "Did already see an implicit virtual dtor!");
1553         ImplicitVirtualDtor = DD;
1554         continue;
1555       }
1556     }
1557
1558     NewVirtualFunctions.push_back(MD);
1559   }
1560
1561   if (ImplicitVirtualDtor)
1562     NewVirtualFunctions.push_back(ImplicitVirtualDtor);
1563
1564   for (const CXXMethodDecl *MD : NewVirtualFunctions) {
1565     // Get the final overrider.
1566     FinalOverriders::OverriderInfo Overrider =
1567       Overriders.getOverrider(MD, Base.getBaseOffset());
1568
1569     // Insert the method info for this method.
1570     MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1571                           Components.size());
1572
1573     assert(!MethodInfoMap.count(MD) &&
1574            "Should not have method info for this method yet!");
1575     MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1576
1577     // Check if this overrider is going to be used.
1578     const CXXMethodDecl *OverriderMD = Overrider.Method;
1579     if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
1580                          FirstBaseInPrimaryBaseChain,
1581                          FirstBaseOffsetInLayoutClass)) {
1582       Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
1583       continue;
1584     }
1585
1586     // Check if this overrider needs a return adjustment.
1587     // We don't want to do this for pure virtual member functions.
1588     BaseOffset ReturnAdjustmentOffset;
1589     if (!OverriderMD->isPure()) {
1590       ReturnAdjustmentOffset =
1591         ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
1592     }
1593
1594     ReturnAdjustment ReturnAdjustment =
1595       ComputeReturnAdjustment(ReturnAdjustmentOffset);
1596
1597     AddMethod(Overrider.Method, ReturnAdjustment);
1598   }
1599 }
1600
1601 void ItaniumVTableBuilder::LayoutVTable() {
1602   LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
1603                                                  CharUnits::Zero()),
1604                                    /*BaseIsMorallyVirtual=*/false,
1605                                    MostDerivedClassIsVirtual,
1606                                    MostDerivedClassOffset);
1607
1608   VisitedVirtualBasesSetTy VBases;
1609
1610   // Determine the primary virtual bases.
1611   DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
1612                                VBases);
1613   VBases.clear();
1614
1615   LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
1616
1617   // -fapple-kext adds an extra entry at end of vtbl.
1618   bool IsAppleKext = Context.getLangOpts().AppleKext;
1619   if (IsAppleKext)
1620     Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
1621 }
1622
1623 void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
1624     BaseSubobject Base, bool BaseIsMorallyVirtual,
1625     bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
1626   assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
1627
1628   unsigned VTableIndex = Components.size();
1629   VTableIndices.push_back(VTableIndex);
1630
1631   // Add vcall and vbase offsets for this vtable.
1632   VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, LayoutClass, &Overriders,
1633                                      Base, BaseIsVirtualInLayoutClass,
1634                                      OffsetInLayoutClass);
1635   Components.append(Builder.components_begin(), Builder.components_end());
1636
1637   // Check if we need to add these vcall offsets.
1638   if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
1639     VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
1640
1641     if (VCallOffsets.empty())
1642       VCallOffsets = Builder.getVCallOffsets();
1643   }
1644
1645   // If we're laying out the most derived class we want to keep track of the
1646   // virtual base class offset offsets.
1647   if (Base.getBase() == MostDerivedClass)
1648     VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
1649
1650   // Add the offset to top.
1651   CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
1652   Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
1653
1654   // Next, add the RTTI.
1655   Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
1656
1657   uint64_t AddressPoint = Components.size();
1658
1659   // Now go through all virtual member functions and add them.
1660   PrimaryBasesSetVectorTy PrimaryBases;
1661   AddMethods(Base, OffsetInLayoutClass,
1662              Base.getBase(), OffsetInLayoutClass,
1663              PrimaryBases);
1664
1665   const CXXRecordDecl *RD = Base.getBase();
1666   if (RD == MostDerivedClass) {
1667     assert(MethodVTableIndices.empty());
1668     for (const auto &I : MethodInfoMap) {
1669       const CXXMethodDecl *MD = I.first;
1670       const MethodInfo &MI = I.second;
1671       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1672         MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
1673             = MI.VTableIndex - AddressPoint;
1674         MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
1675             = MI.VTableIndex + 1 - AddressPoint;
1676       } else {
1677         MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
1678       }
1679     }
1680   }
1681
1682   // Compute 'this' pointer adjustments.
1683   ComputeThisAdjustments();
1684
1685   // Add all address points.
1686   while (true) {
1687     AddressPoints.insert(
1688         std::make_pair(BaseSubobject(RD, OffsetInLayoutClass),
1689                        VTableLayout::AddressPointLocation{
1690                            unsigned(VTableIndices.size() - 1),
1691                            unsigned(AddressPoint - VTableIndex)}));
1692
1693     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1694     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1695
1696     if (!PrimaryBase)
1697       break;
1698
1699     if (Layout.isPrimaryBaseVirtual()) {
1700       // Check if this virtual primary base is a primary base in the layout
1701       // class. If it's not, we don't want to add it.
1702       const ASTRecordLayout &LayoutClassLayout =
1703         Context.getASTRecordLayout(LayoutClass);
1704
1705       if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1706           OffsetInLayoutClass) {
1707         // We don't want to add this class (or any of its primary bases).
1708         break;
1709       }
1710     }
1711
1712     RD = PrimaryBase;
1713   }
1714
1715   // Layout secondary vtables.
1716   LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
1717 }
1718
1719 void
1720 ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
1721                                              bool BaseIsMorallyVirtual,
1722                                              CharUnits OffsetInLayoutClass) {
1723   // Itanium C++ ABI 2.5.2:
1724   //   Following the primary virtual table of a derived class are secondary
1725   //   virtual tables for each of its proper base classes, except any primary
1726   //   base(s) with which it shares its primary virtual table.
1727
1728   const CXXRecordDecl *RD = Base.getBase();
1729   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1730   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1731
1732   for (const auto &B : RD->bases()) {
1733     // Ignore virtual bases, we'll emit them later.
1734     if (B.isVirtual())
1735       continue;
1736
1737     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1738
1739     // Ignore bases that don't have a vtable.
1740     if (!BaseDecl->isDynamicClass())
1741       continue;
1742
1743     if (isBuildingConstructorVTable()) {
1744       // Itanium C++ ABI 2.6.4:
1745       //   Some of the base class subobjects may not need construction virtual
1746       //   tables, which will therefore not be present in the construction
1747       //   virtual table group, even though the subobject virtual tables are
1748       //   present in the main virtual table group for the complete object.
1749       if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
1750         continue;
1751     }
1752
1753     // Get the base offset of this base.
1754     CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
1755     CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
1756
1757     CharUnits BaseOffsetInLayoutClass =
1758       OffsetInLayoutClass + RelativeBaseOffset;
1759
1760     // Don't emit a secondary vtable for a primary base. We might however want
1761     // to emit secondary vtables for other bases of this base.
1762     if (BaseDecl == PrimaryBase) {
1763       LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
1764                              BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
1765       continue;
1766     }
1767
1768     // Layout the primary vtable (and any secondary vtables) for this base.
1769     LayoutPrimaryAndSecondaryVTables(
1770       BaseSubobject(BaseDecl, BaseOffset),
1771       BaseIsMorallyVirtual,
1772       /*BaseIsVirtualInLayoutClass=*/false,
1773       BaseOffsetInLayoutClass);
1774   }
1775 }
1776
1777 void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
1778     const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
1779     VisitedVirtualBasesSetTy &VBases) {
1780   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1781
1782   // Check if this base has a primary base.
1783   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1784
1785     // Check if it's virtual.
1786     if (Layout.isPrimaryBaseVirtual()) {
1787       bool IsPrimaryVirtualBase = true;
1788
1789       if (isBuildingConstructorVTable()) {
1790         // Check if the base is actually a primary base in the class we use for
1791         // layout.
1792         const ASTRecordLayout &LayoutClassLayout =
1793           Context.getASTRecordLayout(LayoutClass);
1794
1795         CharUnits PrimaryBaseOffsetInLayoutClass =
1796           LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1797
1798         // We know that the base is not a primary base in the layout class if
1799         // the base offsets are different.
1800         if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
1801           IsPrimaryVirtualBase = false;
1802       }
1803
1804       if (IsPrimaryVirtualBase)
1805         PrimaryVirtualBases.insert(PrimaryBase);
1806     }
1807   }
1808
1809   // Traverse bases, looking for more primary virtual bases.
1810   for (const auto &B : RD->bases()) {
1811     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1812
1813     CharUnits BaseOffsetInLayoutClass;
1814
1815     if (B.isVirtual()) {
1816       if (!VBases.insert(BaseDecl).second)
1817         continue;
1818
1819       const ASTRecordLayout &LayoutClassLayout =
1820         Context.getASTRecordLayout(LayoutClass);
1821
1822       BaseOffsetInLayoutClass =
1823         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1824     } else {
1825       BaseOffsetInLayoutClass =
1826         OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
1827     }
1828
1829     DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
1830   }
1831 }
1832
1833 void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
1834     const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
1835   // Itanium C++ ABI 2.5.2:
1836   //   Then come the virtual base virtual tables, also in inheritance graph
1837   //   order, and again excluding primary bases (which share virtual tables with
1838   //   the classes for which they are primary).
1839   for (const auto &B : RD->bases()) {
1840     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1841
1842     // Check if this base needs a vtable. (If it's virtual, not a primary base
1843     // of some other class, and we haven't visited it before).
1844     if (B.isVirtual() && BaseDecl->isDynamicClass() &&
1845         !PrimaryVirtualBases.count(BaseDecl) &&
1846         VBases.insert(BaseDecl).second) {
1847       const ASTRecordLayout &MostDerivedClassLayout =
1848         Context.getASTRecordLayout(MostDerivedClass);
1849       CharUnits BaseOffset =
1850         MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
1851
1852       const ASTRecordLayout &LayoutClassLayout =
1853         Context.getASTRecordLayout(LayoutClass);
1854       CharUnits BaseOffsetInLayoutClass =
1855         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1856
1857       LayoutPrimaryAndSecondaryVTables(
1858         BaseSubobject(BaseDecl, BaseOffset),
1859         /*BaseIsMorallyVirtual=*/true,
1860         /*BaseIsVirtualInLayoutClass=*/true,
1861         BaseOffsetInLayoutClass);
1862     }
1863
1864     // We only need to check the base for virtual base vtables if it actually
1865     // has virtual bases.
1866     if (BaseDecl->getNumVBases())
1867       LayoutVTablesForVirtualBases(BaseDecl, VBases);
1868   }
1869 }
1870
1871 /// dumpLayout - Dump the vtable layout.
1872 void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
1873   // FIXME: write more tests that actually use the dumpLayout output to prevent
1874   // ItaniumVTableBuilder regressions.
1875
1876   if (isBuildingConstructorVTable()) {
1877     Out << "Construction vtable for ('";
1878     MostDerivedClass->printQualifiedName(Out);
1879     Out << "', ";
1880     Out << MostDerivedClassOffset.getQuantity() << ") in '";
1881     LayoutClass->printQualifiedName(Out);
1882   } else {
1883     Out << "Vtable for '";
1884     MostDerivedClass->printQualifiedName(Out);
1885   }
1886   Out << "' (" << Components.size() << " entries).\n";
1887
1888   // Iterate through the address points and insert them into a new map where
1889   // they are keyed by the index and not the base object.
1890   // Since an address point can be shared by multiple subobjects, we use an
1891   // STL multimap.
1892   std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
1893   for (const auto &AP : AddressPoints) {
1894     const BaseSubobject &Base = AP.first;
1895     uint64_t Index =
1896         VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex;
1897
1898     AddressPointsByIndex.insert(std::make_pair(Index, Base));
1899   }
1900
1901   for (unsigned I = 0, E = Components.size(); I != E; ++I) {
1902     uint64_t Index = I;
1903
1904     Out << llvm::format("%4d | ", I);
1905
1906     const VTableComponent &Component = Components[I];
1907
1908     // Dump the component.
1909     switch (Component.getKind()) {
1910
1911     case VTableComponent::CK_VCallOffset:
1912       Out << "vcall_offset ("
1913           << Component.getVCallOffset().getQuantity()
1914           << ")";
1915       break;
1916
1917     case VTableComponent::CK_VBaseOffset:
1918       Out << "vbase_offset ("
1919           << Component.getVBaseOffset().getQuantity()
1920           << ")";
1921       break;
1922
1923     case VTableComponent::CK_OffsetToTop:
1924       Out << "offset_to_top ("
1925           << Component.getOffsetToTop().getQuantity()
1926           << ")";
1927       break;
1928
1929     case VTableComponent::CK_RTTI:
1930       Component.getRTTIDecl()->printQualifiedName(Out);
1931       Out << " RTTI";
1932       break;
1933
1934     case VTableComponent::CK_FunctionPointer: {
1935       const CXXMethodDecl *MD = Component.getFunctionDecl();
1936
1937       std::string Str =
1938         PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
1939                                     MD);
1940       Out << Str;
1941       if (MD->isPure())
1942         Out << " [pure]";
1943
1944       if (MD->isDeleted())
1945         Out << " [deleted]";
1946
1947       ThunkInfo Thunk = VTableThunks.lookup(I);
1948       if (!Thunk.isEmpty()) {
1949         // If this function pointer has a return adjustment, dump it.
1950         if (!Thunk.Return.isEmpty()) {
1951           Out << "\n       [return adjustment: ";
1952           Out << Thunk.Return.NonVirtual << " non-virtual";
1953
1954           if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
1955             Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
1956             Out << " vbase offset offset";
1957           }
1958
1959           Out << ']';
1960         }
1961
1962         // If this function pointer has a 'this' pointer adjustment, dump it.
1963         if (!Thunk.This.isEmpty()) {
1964           Out << "\n       [this adjustment: ";
1965           Out << Thunk.This.NonVirtual << " non-virtual";
1966
1967           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
1968             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
1969             Out << " vcall offset offset";
1970           }
1971
1972           Out << ']';
1973         }
1974       }
1975
1976       break;
1977     }
1978
1979     case VTableComponent::CK_CompleteDtorPointer:
1980     case VTableComponent::CK_DeletingDtorPointer: {
1981       bool IsComplete =
1982         Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
1983
1984       const CXXDestructorDecl *DD = Component.getDestructorDecl();
1985
1986       DD->printQualifiedName(Out);
1987       if (IsComplete)
1988         Out << "() [complete]";
1989       else
1990         Out << "() [deleting]";
1991
1992       if (DD->isPure())
1993         Out << " [pure]";
1994
1995       ThunkInfo Thunk = VTableThunks.lookup(I);
1996       if (!Thunk.isEmpty()) {
1997         // If this destructor has a 'this' pointer adjustment, dump it.
1998         if (!Thunk.This.isEmpty()) {
1999           Out << "\n       [this adjustment: ";
2000           Out << Thunk.This.NonVirtual << " non-virtual";
2001
2002           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2003             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2004             Out << " vcall offset offset";
2005           }
2006
2007           Out << ']';
2008         }
2009       }
2010
2011       break;
2012     }
2013
2014     case VTableComponent::CK_UnusedFunctionPointer: {
2015       const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
2016
2017       std::string Str =
2018         PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2019                                     MD);
2020       Out << "[unused] " << Str;
2021       if (MD->isPure())
2022         Out << " [pure]";
2023     }
2024
2025     }
2026
2027     Out << '\n';
2028
2029     // Dump the next address point.
2030     uint64_t NextIndex = Index + 1;
2031     if (AddressPointsByIndex.count(NextIndex)) {
2032       if (AddressPointsByIndex.count(NextIndex) == 1) {
2033         const BaseSubobject &Base =
2034           AddressPointsByIndex.find(NextIndex)->second;
2035
2036         Out << "       -- (";
2037         Base.getBase()->printQualifiedName(Out);
2038         Out << ", " << Base.getBaseOffset().getQuantity();
2039         Out << ") vtable address --\n";
2040       } else {
2041         CharUnits BaseOffset =
2042           AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
2043
2044         // We store the class names in a set to get a stable order.
2045         std::set<std::string> ClassNames;
2046         for (const auto &I :
2047              llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) {
2048           assert(I.second.getBaseOffset() == BaseOffset &&
2049                  "Invalid base offset!");
2050           const CXXRecordDecl *RD = I.second.getBase();
2051           ClassNames.insert(RD->getQualifiedNameAsString());
2052         }
2053
2054         for (const std::string &Name : ClassNames) {
2055           Out << "       -- (" << Name;
2056           Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
2057         }
2058       }
2059     }
2060   }
2061
2062   Out << '\n';
2063
2064   if (isBuildingConstructorVTable())
2065     return;
2066
2067   if (MostDerivedClass->getNumVBases()) {
2068     // We store the virtual base class names and their offsets in a map to get
2069     // a stable order.
2070
2071     std::map<std::string, CharUnits> ClassNamesAndOffsets;
2072     for (const auto &I : VBaseOffsetOffsets) {
2073       std::string ClassName = I.first->getQualifiedNameAsString();
2074       CharUnits OffsetOffset = I.second;
2075       ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset));
2076     }
2077
2078     Out << "Virtual base offset offsets for '";
2079     MostDerivedClass->printQualifiedName(Out);
2080     Out << "' (";
2081     Out << ClassNamesAndOffsets.size();
2082     Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
2083
2084     for (const auto &I : ClassNamesAndOffsets)
2085       Out << "   " << I.first << " | " << I.second.getQuantity() << '\n';
2086
2087     Out << "\n";
2088   }
2089
2090   if (!Thunks.empty()) {
2091     // We store the method names in a map to get a stable order.
2092     std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
2093
2094     for (const auto &I : Thunks) {
2095       const CXXMethodDecl *MD = I.first;
2096       std::string MethodName =
2097         PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2098                                     MD);
2099
2100       MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
2101     }
2102
2103     for (const auto &I : MethodNamesAndDecls) {
2104       const std::string &MethodName = I.first;
2105       const CXXMethodDecl *MD = I.second;
2106
2107       ThunkInfoVectorTy ThunksVector = Thunks[MD];
2108       llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
2109         assert(LHS.Method == nullptr && RHS.Method == nullptr);
2110         return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
2111       });
2112
2113       Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
2114       Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
2115
2116       for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
2117         const ThunkInfo &Thunk = ThunksVector[I];
2118
2119         Out << llvm::format("%4d | ", I);
2120
2121         // If this function pointer has a return pointer adjustment, dump it.
2122         if (!Thunk.Return.isEmpty()) {
2123           Out << "return adjustment: " << Thunk.Return.NonVirtual;
2124           Out << " non-virtual";
2125           if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
2126             Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
2127             Out << " vbase offset offset";
2128           }
2129
2130           if (!Thunk.This.isEmpty())
2131             Out << "\n       ";
2132         }
2133
2134         // If this function pointer has a 'this' pointer adjustment, dump it.
2135         if (!Thunk.This.isEmpty()) {
2136           Out << "this adjustment: ";
2137           Out << Thunk.This.NonVirtual << " non-virtual";
2138
2139           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2140             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2141             Out << " vcall offset offset";
2142           }
2143         }
2144
2145         Out << '\n';
2146       }
2147
2148       Out << '\n';
2149     }
2150   }
2151
2152   // Compute the vtable indices for all the member functions.
2153   // Store them in a map keyed by the index so we'll get a sorted table.
2154   std::map<uint64_t, std::string> IndicesMap;
2155
2156   for (const auto *MD : MostDerivedClass->methods()) {
2157     // We only want virtual member functions.
2158     if (!MD->isVirtual())
2159       continue;
2160     MD = MD->getCanonicalDecl();
2161
2162     std::string MethodName =
2163       PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2164                                   MD);
2165
2166     if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2167       GlobalDecl GD(DD, Dtor_Complete);
2168       assert(MethodVTableIndices.count(GD));
2169       uint64_t VTableIndex = MethodVTableIndices[GD];
2170       IndicesMap[VTableIndex] = MethodName + " [complete]";
2171       IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
2172     } else {
2173       assert(MethodVTableIndices.count(MD));
2174       IndicesMap[MethodVTableIndices[MD]] = MethodName;
2175     }
2176   }
2177
2178   // Print the vtable indices for all the member functions.
2179   if (!IndicesMap.empty()) {
2180     Out << "VTable indices for '";
2181     MostDerivedClass->printQualifiedName(Out);
2182     Out << "' (" << IndicesMap.size() << " entries).\n";
2183
2184     for (const auto &I : IndicesMap) {
2185       uint64_t VTableIndex = I.first;
2186       const std::string &MethodName = I.second;
2187
2188       Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
2189           << '\n';
2190     }
2191   }
2192
2193   Out << '\n';
2194 }
2195 }
2196
2197 VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices,
2198                            ArrayRef<VTableComponent> VTableComponents,
2199                            ArrayRef<VTableThunkTy> VTableThunks,
2200                            const AddressPointsMapTy &AddressPoints)
2201     : VTableComponents(VTableComponents), VTableThunks(VTableThunks),
2202       AddressPoints(AddressPoints) {
2203   if (VTableIndices.size() <= 1)
2204     assert(VTableIndices.size() == 1 && VTableIndices[0] == 0);
2205   else
2206     this->VTableIndices = OwningArrayRef<size_t>(VTableIndices);
2207
2208   llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS,
2209                                     const VTableLayout::VTableThunkTy &RHS) {
2210     assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
2211            "Different thunks should have unique indices!");
2212     return LHS.first < RHS.first;
2213   });
2214 }
2215
2216 VTableLayout::~VTableLayout() { }
2217
2218 ItaniumVTableContext::ItaniumVTableContext(ASTContext &Context)
2219     : VTableContextBase(/*MS=*/false) {}
2220
2221 ItaniumVTableContext::~ItaniumVTableContext() {}
2222
2223 uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
2224   GD = GD.getCanonicalDecl();
2225   MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
2226   if (I != MethodVTableIndices.end())
2227     return I->second;
2228
2229   const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
2230
2231   computeVTableRelatedInformation(RD);
2232
2233   I = MethodVTableIndices.find(GD);
2234   assert(I != MethodVTableIndices.end() && "Did not find index!");
2235   return I->second;
2236 }
2237
2238 CharUnits
2239 ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
2240                                                  const CXXRecordDecl *VBase) {
2241   ClassPairTy ClassPair(RD, VBase);
2242
2243   VirtualBaseClassOffsetOffsetsMapTy::iterator I =
2244     VirtualBaseClassOffsetOffsets.find(ClassPair);
2245   if (I != VirtualBaseClassOffsetOffsets.end())
2246     return I->second;
2247
2248   VCallAndVBaseOffsetBuilder Builder(RD, RD, /*Overriders=*/nullptr,
2249                                      BaseSubobject(RD, CharUnits::Zero()),
2250                                      /*BaseIsVirtual=*/false,
2251                                      /*OffsetInLayoutClass=*/CharUnits::Zero());
2252
2253   for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2254     // Insert all types.
2255     ClassPairTy ClassPair(RD, I.first);
2256
2257     VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2258   }
2259
2260   I = VirtualBaseClassOffsetOffsets.find(ClassPair);
2261   assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
2262
2263   return I->second;
2264 }
2265
2266 static std::unique_ptr<VTableLayout>
2267 CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
2268   SmallVector<VTableLayout::VTableThunkTy, 1>
2269     VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
2270
2271   return llvm::make_unique<VTableLayout>(
2272       Builder.VTableIndices, Builder.vtable_components(), VTableThunks,
2273       Builder.getAddressPoints());
2274 }
2275
2276 void
2277 ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
2278   std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD];
2279
2280   // Check if we've computed this information before.
2281   if (Entry)
2282     return;
2283
2284   ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
2285                                /*MostDerivedClassIsVirtual=*/0, RD);
2286   Entry = CreateVTableLayout(Builder);
2287
2288   MethodVTableIndices.insert(Builder.vtable_indices_begin(),
2289                              Builder.vtable_indices_end());
2290
2291   // Add the known thunks.
2292   Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
2293
2294   // If we don't have the vbase information for this class, insert it.
2295   // getVirtualBaseOffsetOffset will compute it separately without computing
2296   // the rest of the vtable related information.
2297   if (!RD->getNumVBases())
2298     return;
2299
2300   const CXXRecordDecl *VBase =
2301     RD->vbases_begin()->getType()->getAsCXXRecordDecl();
2302
2303   if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
2304     return;
2305
2306   for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2307     // Insert all types.
2308     ClassPairTy ClassPair(RD, I.first);
2309
2310     VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2311   }
2312 }
2313
2314 std::unique_ptr<VTableLayout>
2315 ItaniumVTableContext::createConstructionVTableLayout(
2316     const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
2317     bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
2318   ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
2319                                MostDerivedClassIsVirtual, LayoutClass);
2320   return CreateVTableLayout(Builder);
2321 }
2322
2323 namespace {
2324
2325 // Vtables in the Microsoft ABI are different from the Itanium ABI.
2326 //
2327 // The main differences are:
2328 //  1. Separate vftable and vbtable.
2329 //
2330 //  2. Each subobject with a vfptr gets its own vftable rather than an address
2331 //     point in a single vtable shared between all the subobjects.
2332 //     Each vftable is represented by a separate section and virtual calls
2333 //     must be done using the vftable which has a slot for the function to be
2334 //     called.
2335 //
2336 //  3. Virtual method definitions expect their 'this' parameter to point to the
2337 //     first vfptr whose table provides a compatible overridden method.  In many
2338 //     cases, this permits the original vf-table entry to directly call
2339 //     the method instead of passing through a thunk.
2340 //     See example before VFTableBuilder::ComputeThisOffset below.
2341 //
2342 //     A compatible overridden method is one which does not have a non-trivial
2343 //     covariant-return adjustment.
2344 //
2345 //     The first vfptr is the one with the lowest offset in the complete-object
2346 //     layout of the defining class, and the method definition will subtract
2347 //     that constant offset from the parameter value to get the real 'this'
2348 //     value.  Therefore, if the offset isn't really constant (e.g. if a virtual
2349 //     function defined in a virtual base is overridden in a more derived
2350 //     virtual base and these bases have a reverse order in the complete
2351 //     object), the vf-table may require a this-adjustment thunk.
2352 //
2353 //  4. vftables do not contain new entries for overrides that merely require
2354 //     this-adjustment.  Together with #3, this keeps vf-tables smaller and
2355 //     eliminates the need for this-adjustment thunks in many cases, at the cost
2356 //     of often requiring redundant work to adjust the "this" pointer.
2357 //
2358 //  5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
2359 //     Vtordisps are emitted into the class layout if a class has
2360 //      a) a user-defined ctor/dtor
2361 //     and
2362 //      b) a method overriding a method in a virtual base.
2363 //
2364 //  To get a better understanding of this code,
2365 //  you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
2366
2367 class VFTableBuilder {
2368 public:
2369   typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
2370     MethodVFTableLocationsTy;
2371
2372   typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
2373     method_locations_range;
2374
2375 private:
2376   /// VTables - Global vtable information.
2377   MicrosoftVTableContext &VTables;
2378
2379   /// Context - The ASTContext which we will use for layout information.
2380   ASTContext &Context;
2381
2382   /// MostDerivedClass - The most derived class for which we're building this
2383   /// vtable.
2384   const CXXRecordDecl *MostDerivedClass;
2385
2386   const ASTRecordLayout &MostDerivedClassLayout;
2387
2388   const VPtrInfo &WhichVFPtr;
2389
2390   /// FinalOverriders - The final overriders of the most derived class.
2391   const FinalOverriders Overriders;
2392
2393   /// Components - The components of the vftable being built.
2394   SmallVector<VTableComponent, 64> Components;
2395
2396   MethodVFTableLocationsTy MethodVFTableLocations;
2397
2398   /// Does this class have an RTTI component?
2399   bool HasRTTIComponent = false;
2400
2401   /// MethodInfo - Contains information about a method in a vtable.
2402   /// (Used for computing 'this' pointer adjustment thunks.
2403   struct MethodInfo {
2404     /// VBTableIndex - The nonzero index in the vbtable that
2405     /// this method's base has, or zero.
2406     const uint64_t VBTableIndex;
2407
2408     /// VFTableIndex - The index in the vftable that this method has.
2409     const uint64_t VFTableIndex;
2410
2411     /// Shadowed - Indicates if this vftable slot is shadowed by
2412     /// a slot for a covariant-return override. If so, it shouldn't be printed
2413     /// or used for vcalls in the most derived class.
2414     bool Shadowed;
2415
2416     /// UsesExtraSlot - Indicates if this vftable slot was created because
2417     /// any of the overridden slots required a return adjusting thunk.
2418     bool UsesExtraSlot;
2419
2420     MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
2421                bool UsesExtraSlot = false)
2422         : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
2423           Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
2424
2425     MethodInfo()
2426         : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
2427           UsesExtraSlot(false) {}
2428   };
2429
2430   typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
2431
2432   /// MethodInfoMap - The information for all methods in the vftable we're
2433   /// currently building.
2434   MethodInfoMapTy MethodInfoMap;
2435
2436   typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
2437
2438   /// VTableThunks - The thunks by vftable index in the vftable currently being
2439   /// built.
2440   VTableThunksMapTy VTableThunks;
2441
2442   typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
2443   typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
2444
2445   /// Thunks - A map that contains all the thunks needed for all methods in the
2446   /// most derived class for which the vftable is currently being built.
2447   ThunksMapTy Thunks;
2448
2449   /// AddThunk - Add a thunk for the given method.
2450   void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
2451     SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
2452
2453     // Check if we have this thunk already.
2454     if (llvm::find(ThunksVector, Thunk) != ThunksVector.end())
2455       return;
2456
2457     ThunksVector.push_back(Thunk);
2458   }
2459
2460   /// ComputeThisOffset - Returns the 'this' argument offset for the given
2461   /// method, relative to the beginning of the MostDerivedClass.
2462   CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
2463
2464   void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
2465                                    CharUnits ThisOffset, ThisAdjustment &TA);
2466
2467   /// AddMethod - Add a single virtual member function to the vftable
2468   /// components vector.
2469   void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
2470     if (!TI.isEmpty()) {
2471       VTableThunks[Components.size()] = TI;
2472       AddThunk(MD, TI);
2473     }
2474     if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2475       assert(TI.Return.isEmpty() &&
2476              "Destructor can't have return adjustment!");
2477       Components.push_back(VTableComponent::MakeDeletingDtor(DD));
2478     } else {
2479       Components.push_back(VTableComponent::MakeFunction(MD));
2480     }
2481   }
2482
2483   /// AddMethods - Add the methods of this base subobject and the relevant
2484   /// subbases to the vftable we're currently laying out.
2485   void AddMethods(BaseSubobject Base, unsigned BaseDepth,
2486                   const CXXRecordDecl *LastVBase,
2487                   BasesSetVectorTy &VisitedBases);
2488
2489   void LayoutVFTable() {
2490     // RTTI data goes before all other entries.
2491     if (HasRTTIComponent)
2492       Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
2493
2494     BasesSetVectorTy VisitedBases;
2495     AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
2496                VisitedBases);
2497     assert((HasRTTIComponent ? Components.size() - 1 : Components.size()) &&
2498            "vftable can't be empty");
2499
2500     assert(MethodVFTableLocations.empty());
2501     for (const auto &I : MethodInfoMap) {
2502       const CXXMethodDecl *MD = I.first;
2503       const MethodInfo &MI = I.second;
2504       assert(MD == MD->getCanonicalDecl());
2505
2506       // Skip the methods that the MostDerivedClass didn't override
2507       // and the entries shadowed by return adjusting thunks.
2508       if (MD->getParent() != MostDerivedClass || MI.Shadowed)
2509         continue;
2510       MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
2511                                 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
2512       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2513         MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
2514       } else {
2515         MethodVFTableLocations[MD] = Loc;
2516       }
2517     }
2518   }
2519
2520 public:
2521   VFTableBuilder(MicrosoftVTableContext &VTables,
2522                  const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which)
2523       : VTables(VTables),
2524         Context(MostDerivedClass->getASTContext()),
2525         MostDerivedClass(MostDerivedClass),
2526         MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
2527         WhichVFPtr(Which),
2528         Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
2529     // Provide the RTTI component if RTTIData is enabled. If the vftable would
2530     // be available externally, we should not provide the RTTI componenent. It
2531     // is currently impossible to get available externally vftables with either
2532     // dllimport or extern template instantiations, but eventually we may add a
2533     // flag to support additional devirtualization that needs this.
2534     if (Context.getLangOpts().RTTIData)
2535       HasRTTIComponent = true;
2536
2537     LayoutVFTable();
2538
2539     if (Context.getLangOpts().DumpVTableLayouts)
2540       dumpLayout(llvm::outs());
2541   }
2542
2543   uint64_t getNumThunks() const { return Thunks.size(); }
2544
2545   ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
2546
2547   ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
2548
2549   method_locations_range vtable_locations() const {
2550     return method_locations_range(MethodVFTableLocations.begin(),
2551                                   MethodVFTableLocations.end());
2552   }
2553
2554   ArrayRef<VTableComponent> vtable_components() const { return Components; }
2555
2556   VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
2557     return VTableThunks.begin();
2558   }
2559
2560   VTableThunksMapTy::const_iterator vtable_thunks_end() const {
2561     return VTableThunks.end();
2562   }
2563
2564   void dumpLayout(raw_ostream &);
2565 };
2566
2567 } // end namespace
2568
2569 // Let's study one class hierarchy as an example:
2570 //   struct A {
2571 //     virtual void f();
2572 //     int x;
2573 //   };
2574 //
2575 //   struct B : virtual A {
2576 //     virtual void f();
2577 //   };
2578 //
2579 // Record layouts:
2580 //   struct A:
2581 //   0 |   (A vftable pointer)
2582 //   4 |   int x
2583 //
2584 //   struct B:
2585 //   0 |   (B vbtable pointer)
2586 //   4 |   struct A (virtual base)
2587 //   4 |     (A vftable pointer)
2588 //   8 |     int x
2589 //
2590 // Let's assume we have a pointer to the A part of an object of dynamic type B:
2591 //   B b;
2592 //   A *a = (A*)&b;
2593 //   a->f();
2594 //
2595 // In this hierarchy, f() belongs to the vftable of A, so B::f() expects
2596 // "this" parameter to point at the A subobject, which is B+4.
2597 // In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
2598 // performed as a *static* adjustment.
2599 //
2600 // Interesting thing happens when we alter the relative placement of A and B
2601 // subobjects in a class:
2602 //   struct C : virtual B { };
2603 //
2604 //   C c;
2605 //   A *a = (A*)&c;
2606 //   a->f();
2607 //
2608 // Respective record layout is:
2609 //   0 |   (C vbtable pointer)
2610 //   4 |   struct A (virtual base)
2611 //   4 |     (A vftable pointer)
2612 //   8 |     int x
2613 //  12 |   struct B (virtual base)
2614 //  12 |     (B vbtable pointer)
2615 //
2616 // The final overrider of f() in class C is still B::f(), so B+4 should be
2617 // passed as "this" to that code.  However, "a" points at B-8, so the respective
2618 // vftable entry should hold a thunk that adds 12 to the "this" argument before
2619 // performing a tail call to B::f().
2620 //
2621 // With this example in mind, we can now calculate the 'this' argument offset
2622 // for the given method, relative to the beginning of the MostDerivedClass.
2623 CharUnits
2624 VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
2625   BasesSetVectorTy Bases;
2626
2627   {
2628     // Find the set of least derived bases that define the given method.
2629     OverriddenMethodsSetTy VisitedOverriddenMethods;
2630     auto InitialOverriddenDefinitionCollector = [&](
2631         const CXXMethodDecl *OverriddenMD) {
2632       if (OverriddenMD->size_overridden_methods() == 0)
2633         Bases.insert(OverriddenMD->getParent());
2634       // Don't recurse on this method if we've already collected it.
2635       return VisitedOverriddenMethods.insert(OverriddenMD).second;
2636     };
2637     visitAllOverriddenMethods(Overrider.Method,
2638                               InitialOverriddenDefinitionCollector);
2639   }
2640
2641   // If there are no overrides then 'this' is located
2642   // in the base that defines the method.
2643   if (Bases.size() == 0)
2644     return Overrider.Offset;
2645
2646   CXXBasePaths Paths;
2647   Overrider.Method->getParent()->lookupInBases(
2648       [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) {
2649         return Bases.count(Specifier->getType()->getAsCXXRecordDecl());
2650       },
2651       Paths);
2652
2653   // This will hold the smallest this offset among overridees of MD.
2654   // This implies that an offset of a non-virtual base will dominate an offset
2655   // of a virtual base to potentially reduce the number of thunks required
2656   // in the derived classes that inherit this method.
2657   CharUnits Ret;
2658   bool First = true;
2659
2660   const ASTRecordLayout &OverriderRDLayout =
2661       Context.getASTRecordLayout(Overrider.Method->getParent());
2662   for (const CXXBasePath &Path : Paths) {
2663     CharUnits ThisOffset = Overrider.Offset;
2664     CharUnits LastVBaseOffset;
2665
2666     // For each path from the overrider to the parents of the overridden
2667     // methods, traverse the path, calculating the this offset in the most
2668     // derived class.
2669     for (const CXXBasePathElement &Element : Path) {
2670       QualType CurTy = Element.Base->getType();
2671       const CXXRecordDecl *PrevRD = Element.Class,
2672                           *CurRD = CurTy->getAsCXXRecordDecl();
2673       const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
2674
2675       if (Element.Base->isVirtual()) {
2676         // The interesting things begin when you have virtual inheritance.
2677         // The final overrider will use a static adjustment equal to the offset
2678         // of the vbase in the final overrider class.
2679         // For example, if the final overrider is in a vbase B of the most
2680         // derived class and it overrides a method of the B's own vbase A,
2681         // it uses A* as "this".  In its prologue, it can cast A* to B* with
2682         // a static offset.  This offset is used regardless of the actual
2683         // offset of A from B in the most derived class, requiring an
2684         // this-adjusting thunk in the vftable if A and B are laid out
2685         // differently in the most derived class.
2686         LastVBaseOffset = ThisOffset =
2687             Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
2688       } else {
2689         ThisOffset += Layout.getBaseClassOffset(CurRD);
2690       }
2691     }
2692
2693     if (isa<CXXDestructorDecl>(Overrider.Method)) {
2694       if (LastVBaseOffset.isZero()) {
2695         // If a "Base" class has at least one non-virtual base with a virtual
2696         // destructor, the "Base" virtual destructor will take the address
2697         // of the "Base" subobject as the "this" argument.
2698         ThisOffset = Overrider.Offset;
2699       } else {
2700         // A virtual destructor of a virtual base takes the address of the
2701         // virtual base subobject as the "this" argument.
2702         ThisOffset = LastVBaseOffset;
2703       }
2704     }
2705
2706     if (Ret > ThisOffset || First) {
2707       First = false;
2708       Ret = ThisOffset;
2709     }
2710   }
2711
2712   assert(!First && "Method not found in the given subobject?");
2713   return Ret;
2714 }
2715
2716 // Things are getting even more complex when the "this" adjustment has to
2717 // use a dynamic offset instead of a static one, or even two dynamic offsets.
2718 // This is sometimes required when a virtual call happens in the middle of
2719 // a non-most-derived class construction or destruction.
2720 //
2721 // Let's take a look at the following example:
2722 //   struct A {
2723 //     virtual void f();
2724 //   };
2725 //
2726 //   void foo(A *a) { a->f(); }  // Knows nothing about siblings of A.
2727 //
2728 //   struct B : virtual A {
2729 //     virtual void f();
2730 //     B() {
2731 //       foo(this);
2732 //     }
2733 //   };
2734 //
2735 //   struct C : virtual B {
2736 //     virtual void f();
2737 //   };
2738 //
2739 // Record layouts for these classes are:
2740 //   struct A
2741 //   0 |   (A vftable pointer)
2742 //
2743 //   struct B
2744 //   0 |   (B vbtable pointer)
2745 //   4 |   (vtordisp for vbase A)
2746 //   8 |   struct A (virtual base)
2747 //   8 |     (A vftable pointer)
2748 //
2749 //   struct C
2750 //   0 |   (C vbtable pointer)
2751 //   4 |   (vtordisp for vbase A)
2752 //   8 |   struct A (virtual base)  // A precedes B!
2753 //   8 |     (A vftable pointer)
2754 //  12 |   struct B (virtual base)
2755 //  12 |     (B vbtable pointer)
2756 //
2757 // When one creates an object of type C, the C constructor:
2758 // - initializes all the vbptrs, then
2759 // - calls the A subobject constructor
2760 //   (initializes A's vfptr with an address of A vftable), then
2761 // - calls the B subobject constructor
2762 //   (initializes A's vfptr with an address of B vftable and vtordisp for A),
2763 //   that in turn calls foo(), then
2764 // - initializes A's vfptr with an address of C vftable and zeroes out the
2765 //   vtordisp
2766 //   FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
2767 //   without vtordisp thunks?
2768 //   FIXME: how are vtordisp handled in the presence of nooverride/final?
2769 //
2770 // When foo() is called, an object with a layout of class C has a vftable
2771 // referencing B::f() that assumes a B layout, so the "this" adjustments are
2772 // incorrect, unless an extra adjustment is done.  This adjustment is called
2773 // "vtordisp adjustment".  Vtordisp basically holds the difference between the
2774 // actual location of a vbase in the layout class and the location assumed by
2775 // the vftable of the class being constructed/destructed.  Vtordisp is only
2776 // needed if "this" escapes a
2777 // structor (or we can't prove otherwise).
2778 // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
2779 // estimation of a dynamic adjustment]
2780 //
2781 // foo() gets a pointer to the A vbase and doesn't know anything about B or C,
2782 // so it just passes that pointer as "this" in a virtual call.
2783 // If there was no vtordisp, that would just dispatch to B::f().
2784 // However, B::f() assumes B+8 is passed as "this",
2785 // yet the pointer foo() passes along is B-4 (i.e. C+8).
2786 // An extra adjustment is needed, so we emit a thunk into the B vftable.
2787 // This vtordisp thunk subtracts the value of vtordisp
2788 // from the "this" argument (-12) before making a tailcall to B::f().
2789 //
2790 // Let's consider an even more complex example:
2791 //   struct D : virtual B, virtual C {
2792 //     D() {
2793 //       foo(this);
2794 //     }
2795 //   };
2796 //
2797 //   struct D
2798 //   0 |   (D vbtable pointer)
2799 //   4 |   (vtordisp for vbase A)
2800 //   8 |   struct A (virtual base)  // A precedes both B and C!
2801 //   8 |     (A vftable pointer)
2802 //  12 |   struct B (virtual base)  // B precedes C!
2803 //  12 |     (B vbtable pointer)
2804 //  16 |   struct C (virtual base)
2805 //  16 |     (C vbtable pointer)
2806 //
2807 // When D::D() calls foo(), we find ourselves in a thunk that should tailcall
2808 // to C::f(), which assumes C+8 as its "this" parameter.  This time, foo()
2809 // passes along A, which is C-8.  The A vtordisp holds
2810 //   "D.vbptr[index_of_A] - offset_of_A_in_D"
2811 // and we statically know offset_of_A_in_D, so can get a pointer to D.
2812 // When we know it, we can make an extra vbtable lookup to locate the C vbase
2813 // and one extra static adjustment to calculate the expected value of C+8.
2814 void VFTableBuilder::CalculateVtordispAdjustment(
2815     FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
2816     ThisAdjustment &TA) {
2817   const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
2818       MostDerivedClassLayout.getVBaseOffsetsMap();
2819   const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
2820       VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
2821   assert(VBaseMapEntry != VBaseMap.end());
2822
2823   // If there's no vtordisp or the final overrider is defined in the same vbase
2824   // as the initial declaration, we don't need any vtordisp adjustment.
2825   if (!VBaseMapEntry->second.hasVtorDisp() ||
2826       Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
2827     return;
2828
2829   // OK, now we know we need to use a vtordisp thunk.
2830   // The implicit vtordisp field is located right before the vbase.
2831   CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
2832   TA.Virtual.Microsoft.VtordispOffset =
2833       (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
2834
2835   // A simple vtordisp thunk will suffice if the final overrider is defined
2836   // in either the most derived class or its non-virtual base.
2837   if (Overrider.Method->getParent() == MostDerivedClass ||
2838       !Overrider.VirtualBase)
2839     return;
2840
2841   // Otherwise, we need to do use the dynamic offset of the final overrider
2842   // in order to get "this" adjustment right.
2843   TA.Virtual.Microsoft.VBPtrOffset =
2844       (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
2845        MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
2846   TA.Virtual.Microsoft.VBOffsetOffset =
2847       Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
2848       VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);
2849
2850   TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
2851 }
2852
2853 static void GroupNewVirtualOverloads(
2854     const CXXRecordDecl *RD,
2855     SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
2856   // Put the virtual methods into VirtualMethods in the proper order:
2857   // 1) Group overloads by declaration name. New groups are added to the
2858   //    vftable in the order of their first declarations in this class
2859   //    (including overrides, non-virtual methods and any other named decl that
2860   //    might be nested within the class).
2861   // 2) In each group, new overloads appear in the reverse order of declaration.
2862   typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
2863   SmallVector<MethodGroup, 10> Groups;
2864   typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
2865   VisitedGroupIndicesTy VisitedGroupIndices;
2866   for (const auto *D : RD->decls()) {
2867     const auto *ND = dyn_cast<NamedDecl>(D);
2868     if (!ND)
2869       continue;
2870     VisitedGroupIndicesTy::iterator J;
2871     bool Inserted;
2872     std::tie(J, Inserted) = VisitedGroupIndices.insert(
2873         std::make_pair(ND->getDeclName(), Groups.size()));
2874     if (Inserted)
2875       Groups.push_back(MethodGroup());
2876     if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
2877       if (MD->isVirtual())
2878         Groups[J->second].push_back(MD->getCanonicalDecl());
2879   }
2880
2881   for (const MethodGroup &Group : Groups)
2882     VirtualMethods.append(Group.rbegin(), Group.rend());
2883 }
2884
2885 static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
2886   for (const auto &B : RD->bases()) {
2887     if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
2888       return true;
2889   }
2890   return false;
2891 }
2892
2893 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
2894                                 const CXXRecordDecl *LastVBase,
2895                                 BasesSetVectorTy &VisitedBases) {
2896   const CXXRecordDecl *RD = Base.getBase();
2897   if (!RD->isPolymorphic())
2898     return;
2899
2900   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2901
2902   // See if this class expands a vftable of the base we look at, which is either
2903   // the one defined by the vfptr base path or the primary base of the current
2904   // class.
2905   const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
2906   CharUnits NextBaseOffset;
2907   if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) {
2908     NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth];
2909     if (isDirectVBase(NextBase, RD)) {
2910       NextLastVBase = NextBase;
2911       NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
2912     } else {
2913       NextBaseOffset =
2914           Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
2915     }
2916   } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
2917     assert(!Layout.isPrimaryBaseVirtual() &&
2918            "No primary virtual bases in this ABI");
2919     NextBase = PrimaryBase;
2920     NextBaseOffset = Base.getBaseOffset();
2921   }
2922
2923   if (NextBase) {
2924     AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
2925                NextLastVBase, VisitedBases);
2926     if (!VisitedBases.insert(NextBase))
2927       llvm_unreachable("Found a duplicate primary base!");
2928   }
2929
2930   SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
2931   // Put virtual methods in the proper order.
2932   GroupNewVirtualOverloads(RD, VirtualMethods);
2933
2934   // Now go through all virtual member functions and add them to the current
2935   // vftable. This is done by
2936   //  - replacing overridden methods in their existing slots, as long as they
2937   //    don't require return adjustment; calculating This adjustment if needed.
2938   //  - adding new slots for methods of the current base not present in any
2939   //    sub-bases;
2940   //  - adding new slots for methods that require Return adjustment.
2941   // We keep track of the methods visited in the sub-bases in MethodInfoMap.
2942   for (const CXXMethodDecl *MD : VirtualMethods) {
2943     FinalOverriders::OverriderInfo FinalOverrider =
2944         Overriders.getOverrider(MD, Base.getBaseOffset());
2945     const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
2946     const CXXMethodDecl *OverriddenMD =
2947         FindNearestOverriddenMethod(MD, VisitedBases);
2948
2949     ThisAdjustment ThisAdjustmentOffset;
2950     bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
2951     CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
2952     ThisAdjustmentOffset.NonVirtual =
2953         (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
2954     if ((OverriddenMD || FinalOverriderMD != MD) &&
2955         WhichVFPtr.getVBaseWithVPtr())
2956       CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
2957                                   ThisAdjustmentOffset);
2958
2959     unsigned VBIndex =
2960         LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
2961
2962     if (OverriddenMD) {
2963       // If MD overrides anything in this vftable, we need to update the
2964       // entries.
2965       MethodInfoMapTy::iterator OverriddenMDIterator =
2966           MethodInfoMap.find(OverriddenMD);
2967
2968       // If the overridden method went to a different vftable, skip it.
2969       if (OverriddenMDIterator == MethodInfoMap.end())
2970         continue;
2971
2972       MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
2973
2974       VBIndex = OverriddenMethodInfo.VBTableIndex;
2975
2976       // Let's check if the overrider requires any return adjustments.
2977       // We must create a new slot if the MD's return type is not trivially
2978       // convertible to the OverriddenMD's one.
2979       // Once a chain of method overrides adds a return adjusting vftable slot,
2980       // all subsequent overrides will also use an extra method slot.
2981       ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
2982                                   Context, MD, OverriddenMD).isEmpty() ||
2983                              OverriddenMethodInfo.UsesExtraSlot;
2984
2985       if (!ReturnAdjustingThunk) {
2986         // No return adjustment needed - just replace the overridden method info
2987         // with the current info.
2988         MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex);
2989         MethodInfoMap.erase(OverriddenMDIterator);
2990
2991         assert(!MethodInfoMap.count(MD) &&
2992                "Should not have method info for this method yet!");
2993         MethodInfoMap.insert(std::make_pair(MD, MI));
2994         continue;
2995       }
2996
2997       // In case we need a return adjustment, we'll add a new slot for
2998       // the overrider. Mark the overridden method as shadowed by the new slot.
2999       OverriddenMethodInfo.Shadowed = true;
3000
3001       // Force a special name mangling for a return-adjusting thunk
3002       // unless the method is the final overrider without this adjustment.
3003       ForceReturnAdjustmentMangling =
3004           !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
3005     } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
3006                MD->size_overridden_methods()) {
3007       // Skip methods that don't belong to the vftable of the current class,
3008       // e.g. each method that wasn't seen in any of the visited sub-bases
3009       // but overrides multiple methods of other sub-bases.
3010       continue;
3011     }
3012
3013     // If we got here, MD is a method not seen in any of the sub-bases or
3014     // it requires return adjustment. Insert the method info for this method.
3015     MethodInfo MI(VBIndex,
3016                   HasRTTIComponent ? Components.size() - 1 : Components.size(),
3017                   ReturnAdjustingThunk);
3018
3019     assert(!MethodInfoMap.count(MD) &&
3020            "Should not have method info for this method yet!");
3021     MethodInfoMap.insert(std::make_pair(MD, MI));
3022
3023     // Check if this overrider needs a return adjustment.
3024     // We don't want to do this for pure virtual member functions.
3025     BaseOffset ReturnAdjustmentOffset;
3026     ReturnAdjustment ReturnAdjustment;
3027     if (!FinalOverriderMD->isPure()) {
3028       ReturnAdjustmentOffset =
3029           ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
3030     }
3031     if (!ReturnAdjustmentOffset.isEmpty()) {
3032       ForceReturnAdjustmentMangling = true;
3033       ReturnAdjustment.NonVirtual =
3034           ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
3035       if (ReturnAdjustmentOffset.VirtualBase) {
3036         const ASTRecordLayout &DerivedLayout =
3037             Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
3038         ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
3039             DerivedLayout.getVBPtrOffset().getQuantity();
3040         ReturnAdjustment.Virtual.Microsoft.VBIndex =
3041             VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
3042                                     ReturnAdjustmentOffset.VirtualBase);
3043       }
3044     }
3045
3046     AddMethod(FinalOverriderMD,
3047               ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
3048                         ForceReturnAdjustmentMangling ? MD : nullptr));
3049   }
3050 }
3051
3052 static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
3053   for (const CXXRecordDecl *Elem :
3054        llvm::make_range(Path.rbegin(), Path.rend())) {
3055     Out << "'";
3056     Elem->printQualifiedName(Out);
3057     Out << "' in ";
3058   }
3059 }
3060
3061 static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
3062                                          bool ContinueFirstLine) {
3063   const ReturnAdjustment &R = TI.Return;
3064   bool Multiline = false;
3065   const char *LinePrefix = "\n       ";
3066   if (!R.isEmpty() || TI.Method) {
3067     if (!ContinueFirstLine)
3068       Out << LinePrefix;
3069     Out << "[return adjustment (to type '"
3070         << TI.Method->getReturnType().getCanonicalType().getAsString()
3071         << "'): ";
3072     if (R.Virtual.Microsoft.VBPtrOffset)
3073       Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
3074     if (R.Virtual.Microsoft.VBIndex)
3075       Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
3076     Out << R.NonVirtual << " non-virtual]";
3077     Multiline = true;
3078   }
3079
3080   const ThisAdjustment &T = TI.This;
3081   if (!T.isEmpty()) {
3082     if (Multiline || !ContinueFirstLine)
3083       Out << LinePrefix;
3084     Out << "[this adjustment: ";
3085     if (!TI.This.Virtual.isEmpty()) {
3086       assert(T.Virtual.Microsoft.VtordispOffset < 0);
3087       Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
3088       if (T.Virtual.Microsoft.VBPtrOffset) {
3089         Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
3090             << " to the left,";
3091         assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
3092         Out << LinePrefix << " vboffset at "
3093             << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
3094       }
3095     }
3096     Out << T.NonVirtual << " non-virtual]";
3097   }
3098 }
3099
3100 void VFTableBuilder::dumpLayout(raw_ostream &Out) {
3101   Out << "VFTable for ";
3102   PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out);
3103   Out << "'";
3104   MostDerivedClass->printQualifiedName(Out);
3105   Out << "' (" << Components.size()
3106       << (Components.size() == 1 ? " entry" : " entries") << ").\n";
3107
3108   for (unsigned I = 0, E = Components.size(); I != E; ++I) {
3109     Out << llvm::format("%4d | ", I);
3110
3111     const VTableComponent &Component = Components[I];
3112
3113     // Dump the component.
3114     switch (Component.getKind()) {
3115     case VTableComponent::CK_RTTI:
3116       Component.getRTTIDecl()->printQualifiedName(Out);
3117       Out << " RTTI";
3118       break;
3119
3120     case VTableComponent::CK_FunctionPointer: {
3121       const CXXMethodDecl *MD = Component.getFunctionDecl();
3122
3123       // FIXME: Figure out how to print the real thunk type, since they can
3124       // differ in the return type.
3125       std::string Str = PredefinedExpr::ComputeName(
3126           PredefinedExpr::PrettyFunctionNoVirtual, MD);
3127       Out << Str;
3128       if (MD->isPure())
3129         Out << " [pure]";
3130
3131       if (MD->isDeleted())
3132         Out << " [deleted]";
3133
3134       ThunkInfo Thunk = VTableThunks.lookup(I);
3135       if (!Thunk.isEmpty())
3136         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3137
3138       break;
3139     }
3140
3141     case VTableComponent::CK_DeletingDtorPointer: {
3142       const CXXDestructorDecl *DD = Component.getDestructorDecl();
3143
3144       DD->printQualifiedName(Out);
3145       Out << "() [scalar deleting]";
3146
3147       if (DD->isPure())
3148         Out << " [pure]";
3149
3150       ThunkInfo Thunk = VTableThunks.lookup(I);
3151       if (!Thunk.isEmpty()) {
3152         assert(Thunk.Return.isEmpty() &&
3153                "No return adjustment needed for destructors!");
3154         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3155       }
3156
3157       break;
3158     }
3159
3160     default:
3161       DiagnosticsEngine &Diags = Context.getDiagnostics();
3162       unsigned DiagID = Diags.getCustomDiagID(
3163           DiagnosticsEngine::Error,
3164           "Unexpected vftable component type %0 for component number %1");
3165       Diags.Report(MostDerivedClass->getLocation(), DiagID)
3166           << I << Component.getKind();
3167     }
3168
3169     Out << '\n';
3170   }
3171
3172   Out << '\n';
3173
3174   if (!Thunks.empty()) {
3175     // We store the method names in a map to get a stable order.
3176     std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
3177
3178     for (const auto &I : Thunks) {
3179       const CXXMethodDecl *MD = I.first;
3180       std::string MethodName = PredefinedExpr::ComputeName(
3181           PredefinedExpr::PrettyFunctionNoVirtual, MD);
3182
3183       MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
3184     }
3185
3186     for (const auto &MethodNameAndDecl : MethodNamesAndDecls) {
3187       const std::string &MethodName = MethodNameAndDecl.first;
3188       const CXXMethodDecl *MD = MethodNameAndDecl.second;
3189
3190       ThunkInfoVectorTy ThunksVector = Thunks[MD];
3191       llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS,
3192                                          const ThunkInfo &RHS) {
3193         // Keep different thunks with the same adjustments in the order they
3194         // were put into the vector.
3195         return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
3196       });
3197
3198       Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
3199       Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
3200
3201       for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
3202         const ThunkInfo &Thunk = ThunksVector[I];
3203
3204         Out << llvm::format("%4d | ", I);
3205         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
3206         Out << '\n';
3207       }
3208
3209       Out << '\n';
3210     }
3211   }
3212
3213   Out.flush();
3214 }
3215
3216 static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
3217                           ArrayRef<const CXXRecordDecl *> B) {
3218   for (const CXXRecordDecl *Decl : B) {
3219     if (A.count(Decl))
3220       return true;
3221   }
3222   return false;
3223 }
3224
3225 static bool rebucketPaths(VPtrInfoVector &Paths);
3226
3227 /// Produces MSVC-compatible vbtable data.  The symbols produced by this
3228 /// algorithm match those produced by MSVC 2012 and newer, which is different
3229 /// from MSVC 2010.
3230 ///
3231 /// MSVC 2012 appears to minimize the vbtable names using the following
3232 /// algorithm.  First, walk the class hierarchy in the usual order, depth first,
3233 /// left to right, to find all of the subobjects which contain a vbptr field.
3234 /// Visiting each class node yields a list of inheritance paths to vbptrs.  Each
3235 /// record with a vbptr creates an initially empty path.
3236 ///
3237 /// To combine paths from child nodes, the paths are compared to check for
3238 /// ambiguity.  Paths are "ambiguous" if multiple paths have the same set of
3239 /// components in the same order.  Each group of ambiguous paths is extended by
3240 /// appending the class of the base from which it came.  If the current class
3241 /// node produced an ambiguous path, its path is extended with the current class.
3242 /// After extending paths, MSVC again checks for ambiguity, and extends any
3243 /// ambiguous path which wasn't already extended.  Because each node yields an
3244 /// unambiguous set of paths, MSVC doesn't need to extend any path more than once
3245 /// to produce an unambiguous set of paths.
3246 ///
3247 /// TODO: Presumably vftables use the same algorithm.
3248 void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
3249                                                 const CXXRecordDecl *RD,
3250                                                 VPtrInfoVector &Paths) {
3251   assert(Paths.empty());
3252   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3253
3254   // Base case: this subobject has its own vptr.
3255   if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
3256     Paths.push_back(llvm::make_unique<VPtrInfo>(RD));
3257
3258   // Recursive case: get all the vbtables from our bases and remove anything
3259   // that shares a virtual base.
3260   llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
3261   for (const auto &B : RD->bases()) {
3262     const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
3263     if (B.isVirtual() && VBasesSeen.count(Base))
3264       continue;
3265
3266     if (!Base->isDynamicClass())
3267       continue;
3268
3269     const VPtrInfoVector &BasePaths =
3270         ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);
3271
3272     for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) {
3273       // Don't include the path if it goes through a virtual base that we've
3274       // already included.
3275       if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
3276         continue;
3277
3278       // Copy the path and adjust it as necessary.
3279       auto P = llvm::make_unique<VPtrInfo>(*BaseInfo);
3280
3281       // We mangle Base into the path if the path would've been ambiguous and it
3282       // wasn't already extended with Base.
3283       if (P->MangledPath.empty() || P->MangledPath.back() != Base)
3284         P->NextBaseToMangle = Base;
3285
3286       // Keep track of which vtable the derived class is going to extend with
3287       // new methods or bases.  We append to either the vftable of our primary
3288       // base, or the first non-virtual base that has a vbtable.
3289       if (P->ObjectWithVPtr == Base &&
3290           Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
3291                                : Layout.getPrimaryBase()))
3292         P->ObjectWithVPtr = RD;
3293
3294       // Keep track of the full adjustment from the MDC to this vtable.  The
3295       // adjustment is captured by an optional vbase and a non-virtual offset.
3296       if (B.isVirtual())
3297         P->ContainingVBases.push_back(Base);
3298       else if (P->ContainingVBases.empty())
3299         P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
3300
3301       // Update the full offset in the MDC.
3302       P->FullOffsetInMDC = P->NonVirtualOffset;
3303       if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
3304         P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
3305
3306       Paths.push_back(std::move(P));
3307     }
3308
3309     if (B.isVirtual())
3310       VBasesSeen.insert(Base);
3311
3312     // After visiting any direct base, we've transitively visited all of its
3313     // morally virtual bases.
3314     for (const auto &VB : Base->vbases())
3315       VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
3316   }
3317
3318   // Sort the paths into buckets, and if any of them are ambiguous, extend all
3319   // paths in ambiguous buckets.
3320   bool Changed = true;
3321   while (Changed)
3322     Changed = rebucketPaths(Paths);
3323 }
3324
3325 static bool extendPath(VPtrInfo &P) {
3326   if (P.NextBaseToMangle) {
3327     P.MangledPath.push_back(P.NextBaseToMangle);
3328     P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
3329     return true;
3330   }
3331   return false;
3332 }
3333
3334 static bool rebucketPaths(VPtrInfoVector &Paths) {
3335   // What we're essentially doing here is bucketing together ambiguous paths.
3336   // Any bucket with more than one path in it gets extended by NextBase, which
3337   // is usually the direct base of the inherited the vbptr.  This code uses a
3338   // sorted vector to implement a multiset to form the buckets.  Note that the
3339   // ordering is based on pointers, but it doesn't change our output order.  The
3340   // current algorithm is designed to match MSVC 2012's names.
3341   llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted;
3342   PathsSorted.reserve(Paths.size());
3343   for (auto& P : Paths)
3344     PathsSorted.push_back(*P);
3345   llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) {
3346     return LHS.MangledPath < RHS.MangledPath;
3347   });
3348   bool Changed = false;
3349   for (size_t I = 0, E = PathsSorted.size(); I != E;) {
3350     // Scan forward to find the end of the bucket.
3351     size_t BucketStart = I;
3352     do {
3353       ++I;
3354     } while (I != E &&
3355              PathsSorted[BucketStart].get().MangledPath ==
3356                  PathsSorted[I].get().MangledPath);
3357
3358     // If this bucket has multiple paths, extend them all.
3359     if (I - BucketStart > 1) {
3360       for (size_t II = BucketStart; II != I; ++II)
3361         Changed |= extendPath(PathsSorted[II]);
3362       assert(Changed && "no paths were extended to fix ambiguity");
3363     }
3364   }
3365   return Changed;
3366 }
3367
3368 MicrosoftVTableContext::~MicrosoftVTableContext() {}
3369
3370 namespace {
3371 typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>,
3372                         llvm::DenseSet<BaseSubobject>> FullPathTy;
3373 }
3374
3375 // This recursive function finds all paths from a subobject centered at
3376 // (RD, Offset) to the subobject located at IntroducingObject.
3377 static void findPathsToSubobject(ASTContext &Context,
3378                                  const ASTRecordLayout &MostDerivedLayout,
3379                                  const CXXRecordDecl *RD, CharUnits Offset,
3380                                  BaseSubobject IntroducingObject,
3381                                  FullPathTy &FullPath,
3382                                  std::list<FullPathTy> &Paths) {
3383   if (BaseSubobject(RD, Offset) == IntroducingObject) {
3384     Paths.push_back(FullPath);
3385     return;
3386   }
3387
3388   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3389
3390   for (const CXXBaseSpecifier &BS : RD->bases()) {
3391     const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl();
3392     CharUnits NewOffset = BS.isVirtual()
3393                               ? MostDerivedLayout.getVBaseClassOffset(Base)
3394                               : Offset + Layout.getBaseClassOffset(Base);
3395     FullPath.insert(BaseSubobject(Base, NewOffset));
3396     findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset,
3397                          IntroducingObject, FullPath, Paths);
3398     FullPath.pop_back();
3399   }
3400 }
3401
3402 // Return the paths which are not subsets of other paths.
3403 static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) {
3404   FullPaths.remove_if([&](const FullPathTy &SpecificPath) {
3405     for (const FullPathTy &OtherPath : FullPaths) {
3406       if (&SpecificPath == &OtherPath)
3407         continue;
3408       if (llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) {
3409             return OtherPath.count(BSO) != 0;
3410           })) {
3411         return true;
3412       }
3413     }
3414     return false;
3415   });
3416 }
3417
3418 static CharUnits getOffsetOfFullPath(ASTContext &Context,
3419                                      const CXXRecordDecl *RD,
3420                                      const FullPathTy &FullPath) {
3421   const ASTRecordLayout &MostDerivedLayout =
3422       Context.getASTRecordLayout(RD);
3423   CharUnits Offset = CharUnits::fromQuantity(-1);
3424   for (const BaseSubobject &BSO : FullPath) {
3425     const CXXRecordDecl *Base = BSO.getBase();
3426     // The first entry in the path is always the most derived record, skip it.
3427     if (Base == RD) {
3428       assert(Offset.getQuantity() == -1);
3429       Offset = CharUnits::Zero();
3430       continue;
3431     }
3432     assert(Offset.getQuantity() != -1);
3433     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3434     // While we know which base has to be traversed, we don't know if that base
3435     // was a virtual base.
3436     const CXXBaseSpecifier *BaseBS = std::find_if(
3437         RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) {
3438           return BS.getType()->getAsCXXRecordDecl() == Base;
3439         });
3440     Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base)
3441                                  : Offset + Layout.getBaseClassOffset(Base);
3442     RD = Base;
3443   }
3444   return Offset;
3445 }
3446
3447 // We want to select the path which introduces the most covariant overrides.  If
3448 // two paths introduce overrides which the other path doesn't contain, issue a
3449 // diagnostic.
3450 static const FullPathTy *selectBestPath(ASTContext &Context,
3451                                         const CXXRecordDecl *RD,
3452                                         const VPtrInfo &Info,
3453                                         std::list<FullPathTy> &FullPaths) {
3454   // Handle some easy cases first.
3455   if (FullPaths.empty())
3456     return nullptr;
3457   if (FullPaths.size() == 1)
3458     return &FullPaths.front();
3459
3460   const FullPathTy *BestPath = nullptr;
3461   typedef std::set<const CXXMethodDecl *> OverriderSetTy;
3462   OverriderSetTy LastOverrides;
3463   for (const FullPathTy &SpecificPath : FullPaths) {
3464     assert(!SpecificPath.empty());
3465     OverriderSetTy CurrentOverrides;
3466     const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase();
3467     // Find the distance from the start of the path to the subobject with the
3468     // VPtr.
3469     CharUnits BaseOffset =
3470         getOffsetOfFullPath(Context, TopLevelRD, SpecificPath);
3471     FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD);
3472     for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) {
3473       if (!MD->isVirtual())
3474         continue;
3475       FinalOverriders::OverriderInfo OI =
3476           Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset);
3477       const CXXMethodDecl *OverridingMethod = OI.Method;
3478       // Only overriders which have a return adjustment introduce problematic
3479       // thunks.
3480       if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD)
3481               .isEmpty())
3482         continue;
3483       // It's possible that the overrider isn't in this path.  If so, skip it
3484       // because this path didn't introduce it.
3485       const CXXRecordDecl *OverridingParent = OverridingMethod->getParent();
3486       if (llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) {
3487             return BSO.getBase() == OverridingParent;
3488           }))
3489         continue;
3490       CurrentOverrides.insert(OverridingMethod);
3491     }
3492     OverriderSetTy NewOverrides =
3493         llvm::set_difference(CurrentOverrides, LastOverrides);
3494     if (NewOverrides.empty())
3495       continue;
3496     OverriderSetTy MissingOverrides =
3497         llvm::set_difference(LastOverrides, CurrentOverrides);
3498     if (MissingOverrides.empty()) {
3499       // This path is a strict improvement over the last path, let's use it.
3500       BestPath = &SpecificPath;
3501       std::swap(CurrentOverrides, LastOverrides);
3502     } else {
3503       // This path introduces an overrider with a conflicting covariant thunk.
3504       DiagnosticsEngine &Diags = Context.getDiagnostics();
3505       const CXXMethodDecl *CovariantMD = *NewOverrides.begin();
3506       const CXXMethodDecl *ConflictMD = *MissingOverrides.begin();
3507       Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component)
3508           << RD;
3509       Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk)
3510           << CovariantMD;
3511       Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk)
3512           << ConflictMD;
3513     }
3514   }
3515   // Go with the path that introduced the most covariant overrides.  If there is
3516   // no such path, pick the first path.
3517   return BestPath ? BestPath : &FullPaths.front();
3518 }
3519
3520 static void computeFullPathsForVFTables(ASTContext &Context,
3521                                         const CXXRecordDecl *RD,
3522                                         VPtrInfoVector &Paths) {
3523   const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
3524   FullPathTy FullPath;
3525   std::list<FullPathTy> FullPaths;
3526   for (const std::unique_ptr<VPtrInfo>& Info : Paths) {
3527     findPathsToSubobject(
3528         Context, MostDerivedLayout, RD, CharUnits::Zero(),
3529         BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath,
3530         FullPaths);
3531     FullPath.clear();
3532     removeRedundantPaths(FullPaths);
3533     Info->PathToIntroducingObject.clear();
3534     if (const FullPathTy *BestPath =
3535             selectBestPath(Context, RD, *Info, FullPaths))
3536       for (const BaseSubobject &BSO : *BestPath)
3537         Info->PathToIntroducingObject.push_back(BSO.getBase());
3538     FullPaths.clear();
3539   }
3540 }
3541
3542 static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout,
3543                                 const MethodVFTableLocation &LHS,
3544                                 const MethodVFTableLocation &RHS) {
3545   CharUnits L = LHS.VFPtrOffset;
3546   CharUnits R = RHS.VFPtrOffset;
3547   if (LHS.VBase)
3548     L += Layout.getVBaseClassOffset(LHS.VBase);
3549   if (RHS.VBase)
3550     R += Layout.getVBaseClassOffset(RHS.VBase);
3551   return L < R;
3552 }
3553
3554 void MicrosoftVTableContext::computeVTableRelatedInformation(
3555     const CXXRecordDecl *RD) {
3556   assert(RD->isDynamicClass());
3557
3558   // Check if we've computed this information before.
3559   if (VFPtrLocations.count(RD))
3560     return;
3561
3562   const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
3563
3564   {
3565     auto VFPtrs = llvm::make_unique<VPtrInfoVector>();
3566     computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
3567     computeFullPathsForVFTables(Context, RD, *VFPtrs);
3568     VFPtrLocations[RD] = std::move(VFPtrs);
3569   }
3570
3571   MethodVFTableLocationsTy NewMethodLocations;
3572   for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) {
3573     VFTableBuilder Builder(*this, RD, *VFPtr);
3574
3575     VFTableIdTy id(RD, VFPtr->FullOffsetInMDC);
3576     assert(VFTableLayouts.count(id) == 0);
3577     SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
3578         Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
3579     VFTableLayouts[id] = llvm::make_unique<VTableLayout>(
3580         ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks,
3581         EmptyAddressPointsMap);
3582     Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
3583
3584     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3585     for (const auto &Loc : Builder.vtable_locations()) {
3586       auto Insert = NewMethodLocations.insert(Loc);
3587       if (!Insert.second) {
3588         const MethodVFTableLocation &NewLoc = Loc.second;
3589         MethodVFTableLocation &OldLoc = Insert.first->second;
3590         if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc))
3591           OldLoc = NewLoc;
3592       }
3593     }
3594   }
3595
3596   MethodVFTableLocations.insert(NewMethodLocations.begin(),
3597                                 NewMethodLocations.end());
3598   if (Context.getLangOpts().DumpVTableLayouts)
3599     dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
3600 }
3601
3602 void MicrosoftVTableContext::dumpMethodLocations(
3603     const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
3604     raw_ostream &Out) {
3605   // Compute the vtable indices for all the member functions.
3606   // Store them in a map keyed by the location so we'll get a sorted table.
3607   std::map<MethodVFTableLocation, std::string> IndicesMap;
3608   bool HasNonzeroOffset = false;
3609
3610   for (const auto &I : NewMethods) {
3611     const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl());
3612     assert(MD->isVirtual());
3613
3614     std::string MethodName = PredefinedExpr::ComputeName(
3615         PredefinedExpr::PrettyFunctionNoVirtual, MD);
3616
3617     if (isa<CXXDestructorDecl>(MD)) {
3618       IndicesMap[I.second] = MethodName + " [scalar deleting]";
3619     } else {
3620       IndicesMap[I.second] = MethodName;
3621     }
3622
3623     if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0)
3624       HasNonzeroOffset = true;
3625   }
3626
3627   // Print the vtable indices for all the member functions.
3628   if (!IndicesMap.empty()) {
3629     Out << "VFTable indices for ";
3630     Out << "'";
3631     RD->printQualifiedName(Out);
3632     Out << "' (" << IndicesMap.size()
3633         << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
3634
3635     CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
3636     uint64_t LastVBIndex = 0;
3637     for (const auto &I : IndicesMap) {
3638       CharUnits VFPtrOffset = I.first.VFPtrOffset;
3639       uint64_t VBIndex = I.first.VBTableIndex;
3640       if (HasNonzeroOffset &&
3641           (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
3642         assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
3643         Out << " -- accessible via ";
3644         if (VBIndex)
3645           Out << "vbtable index " << VBIndex << ", ";
3646         Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
3647         LastVFPtrOffset = VFPtrOffset;
3648         LastVBIndex = VBIndex;
3649       }
3650
3651       uint64_t VTableIndex = I.first.Index;
3652       const std::string &MethodName = I.second;
3653       Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
3654     }
3655     Out << '\n';
3656   }
3657
3658   Out.flush();
3659 }
3660
3661 const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation(
3662     const CXXRecordDecl *RD) {
3663   VirtualBaseInfo *VBI;
3664
3665   {
3666     // Get or create a VBI for RD.  Don't hold a reference to the DenseMap cell,
3667     // as it may be modified and rehashed under us.
3668     std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD];
3669     if (Entry)
3670       return *Entry;
3671     Entry = llvm::make_unique<VirtualBaseInfo>();
3672     VBI = Entry.get();
3673   }
3674
3675   computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
3676
3677   // First, see if the Derived class shared the vbptr with a non-virtual base.
3678   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3679   if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
3680     // If the Derived class shares the vbptr with a non-virtual base, the shared
3681     // virtual bases come first so that the layout is the same.
3682     const VirtualBaseInfo &BaseInfo =
3683         computeVBTableRelatedInformation(VBPtrBase);
3684     VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(),
3685                                BaseInfo.VBTableIndices.end());
3686   }
3687
3688   // New vbases are added to the end of the vbtable.
3689   // Skip the self entry and vbases visited in the non-virtual base, if any.
3690   unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
3691   for (const auto &VB : RD->vbases()) {
3692     const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
3693     if (!VBI->VBTableIndices.count(CurVBase))
3694       VBI->VBTableIndices[CurVBase] = VBTableIndex++;
3695   }
3696
3697   return *VBI;
3698 }
3699
3700 unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
3701                                                  const CXXRecordDecl *VBase) {
3702   const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived);
3703   assert(VBInfo.VBTableIndices.count(VBase));
3704   return VBInfo.VBTableIndices.find(VBase)->second;
3705 }
3706
3707 const VPtrInfoVector &
3708 MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
3709   return computeVBTableRelatedInformation(RD).VBPtrPaths;
3710 }
3711
3712 const VPtrInfoVector &
3713 MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
3714   computeVTableRelatedInformation(RD);
3715
3716   assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
3717   return *VFPtrLocations[RD];
3718 }
3719
3720 const VTableLayout &
3721 MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
3722                                          CharUnits VFPtrOffset) {
3723   computeVTableRelatedInformation(RD);
3724
3725   VFTableIdTy id(RD, VFPtrOffset);
3726   assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
3727   return *VFTableLayouts[id];
3728 }
3729
3730 MethodVFTableLocation
3731 MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
3732   assert(cast<CXXMethodDecl>(GD.getDecl())->isVirtual() &&
3733          "Only use this method for virtual methods or dtors");
3734   if (isa<CXXDestructorDecl>(GD.getDecl()))
3735     assert(GD.getDtorType() == Dtor_Deleting);
3736
3737   GD = GD.getCanonicalDecl();
3738
3739   MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
3740   if (I != MethodVFTableLocations.end())
3741     return I->second;
3742
3743   const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
3744
3745   computeVTableRelatedInformation(RD);
3746
3747   I = MethodVFTableLocations.find(GD);
3748   assert(I != MethodVFTableLocations.end() && "Did not find index!");
3749   return I->second;
3750 }