]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/clang/lib/Analysis/ReachableCode.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / clang / lib / Analysis / ReachableCode.cpp
1 //===-- ReachableCode.cpp - Code Reachability Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a flow-sensitive, path-insensitive analysis of
10 // determining reachable blocks within a CFG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Analysis/Analyses/ReachableCode.h"
15 #include "clang/AST/Expr.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/AST/ExprObjC.h"
18 #include "clang/AST/ParentMap.h"
19 #include "clang/AST/StmtCXX.h"
20 #include "clang/Analysis/AnalysisDeclContext.h"
21 #include "clang/Analysis/CFG.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Lex/Preprocessor.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/SmallVector.h"
26
27 using namespace clang;
28
29 //===----------------------------------------------------------------------===//
30 // Core Reachability Analysis routines.
31 //===----------------------------------------------------------------------===//
32
33 static bool isEnumConstant(const Expr *Ex) {
34   const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
35   if (!DR)
36     return false;
37   return isa<EnumConstantDecl>(DR->getDecl());
38 }
39
40 static bool isTrivialExpression(const Expr *Ex) {
41   Ex = Ex->IgnoreParenCasts();
42   return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
43          isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
44          isa<CharacterLiteral>(Ex) ||
45          isEnumConstant(Ex);
46 }
47
48 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
49   // Check if the block ends with a do...while() and see if 'S' is the
50   // condition.
51   if (const Stmt *Term = B->getTerminatorStmt()) {
52     if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
53       const Expr *Cond = DS->getCond()->IgnoreParenCasts();
54       return Cond == S && isTrivialExpression(Cond);
55     }
56   }
57   return false;
58 }
59
60 static bool isBuiltinUnreachable(const Stmt *S) {
61   if (const auto *DRE = dyn_cast<DeclRefExpr>(S))
62     if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()))
63       return FDecl->getIdentifier() &&
64              FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable;
65   return false;
66 }
67
68 static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S,
69                                  ASTContext &C) {
70   if (B->empty())  {
71     // Happens if S is B's terminator and B contains nothing else
72     // (e.g. a CFGBlock containing only a goto).
73     return false;
74   }
75   if (Optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) {
76     if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) {
77       return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C);
78     }
79   }
80   return false;
81 }
82
83 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
84   // Look to see if the current control flow ends with a 'return', and see if
85   // 'S' is a substatement. The 'return' may not be the last element in the
86   // block, or may be in a subsequent block because of destructors.
87   const CFGBlock *Current = B;
88   while (true) {
89     for (CFGBlock::const_reverse_iterator I = Current->rbegin(),
90                                           E = Current->rend();
91          I != E; ++I) {
92       if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
93         if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
94           if (RS == S)
95             return true;
96           if (const Expr *RE = RS->getRetValue()) {
97             RE = RE->IgnoreParenCasts();
98             if (RE == S)
99               return true;
100             ParentMap PM(const_cast<Expr *>(RE));
101             // If 'S' is in the ParentMap, it is a subexpression of
102             // the return statement.
103             return PM.getParent(S);
104           }
105         }
106         break;
107       }
108     }
109     // Note also that we are restricting the search for the return statement
110     // to stop at control-flow; only part of a return statement may be dead,
111     // without the whole return statement being dead.
112     if (Current->getTerminator().isTemporaryDtorsBranch()) {
113       // Temporary destructors have a predictable control flow, thus we want to
114       // look into the next block for the return statement.
115       // We look into the false branch, as we know the true branch only contains
116       // the call to the destructor.
117       assert(Current->succ_size() == 2);
118       Current = *(Current->succ_begin() + 1);
119     } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) {
120       // If there is only one successor, we're not dealing with outgoing control
121       // flow. Thus, look into the next block.
122       Current = *Current->succ_begin();
123       if (Current->pred_size() > 1) {
124         // If there is more than one predecessor, we're dealing with incoming
125         // control flow - if the return statement is in that block, it might
126         // well be reachable via a different control flow, thus it's not dead.
127         return false;
128       }
129     } else {
130       // We hit control flow or a dead end. Stop searching.
131       return false;
132     }
133   }
134   llvm_unreachable("Broke out of infinite loop.");
135 }
136
137 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
138   assert(Loc.isMacroID());
139   SourceLocation Last;
140   while (Loc.isMacroID()) {
141     Last = Loc;
142     Loc = SM.getImmediateMacroCallerLoc(Loc);
143   }
144   return Last;
145 }
146
147 /// Returns true if the statement is expanded from a configuration macro.
148 static bool isExpandedFromConfigurationMacro(const Stmt *S,
149                                              Preprocessor &PP,
150                                              bool IgnoreYES_NO = false) {
151   // FIXME: This is not very precise.  Here we just check to see if the
152   // value comes from a macro, but we can do much better.  This is likely
153   // to be over conservative.  This logic is factored into a separate function
154   // so that we can refine it later.
155   SourceLocation L = S->getBeginLoc();
156   if (L.isMacroID()) {
157     SourceManager &SM = PP.getSourceManager();
158     if (IgnoreYES_NO) {
159       // The Objective-C constant 'YES' and 'NO'
160       // are defined as macros.  Do not treat them
161       // as configuration values.
162       SourceLocation TopL = getTopMostMacro(L, SM);
163       StringRef MacroName = PP.getImmediateMacroName(TopL);
164       if (MacroName == "YES" || MacroName == "NO")
165         return false;
166     } else if (!PP.getLangOpts().CPlusPlus) {
167       // Do not treat C 'false' and 'true' macros as configuration values.
168       SourceLocation TopL = getTopMostMacro(L, SM);
169       StringRef MacroName = PP.getImmediateMacroName(TopL);
170       if (MacroName == "false" || MacroName == "true")
171         return false;
172     }
173     return true;
174   }
175   return false;
176 }
177
178 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
179
180 /// Returns true if the statement represents a configuration value.
181 ///
182 /// A configuration value is something usually determined at compile-time
183 /// to conditionally always execute some branch.  Such guards are for
184 /// "sometimes unreachable" code.  Such code is usually not interesting
185 /// to report as unreachable, and may mask truly unreachable code within
186 /// those blocks.
187 static bool isConfigurationValue(const Stmt *S,
188                                  Preprocessor &PP,
189                                  SourceRange *SilenceableCondVal = nullptr,
190                                  bool IncludeIntegers = true,
191                                  bool WrappedInParens = false) {
192   if (!S)
193     return false;
194
195   if (const auto *Ex = dyn_cast<Expr>(S))
196     S = Ex->IgnoreImplicit();
197
198   if (const auto *Ex = dyn_cast<Expr>(S))
199     S = Ex->IgnoreCasts();
200
201   // Special case looking for the sigil '()' around an integer literal.
202   if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
203     if (!PE->getBeginLoc().isMacroID())
204       return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
205                                   IncludeIntegers, true);
206
207   if (const Expr *Ex = dyn_cast<Expr>(S))
208     S = Ex->IgnoreCasts();
209
210   bool IgnoreYES_NO = false;
211
212   switch (S->getStmtClass()) {
213     case Stmt::CallExprClass: {
214       const FunctionDecl *Callee =
215         dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
216       return Callee ? Callee->isConstexpr() : false;
217     }
218     case Stmt::DeclRefExprClass:
219       return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
220     case Stmt::ObjCBoolLiteralExprClass:
221       IgnoreYES_NO = true;
222       LLVM_FALLTHROUGH;
223     case Stmt::CXXBoolLiteralExprClass:
224     case Stmt::IntegerLiteralClass: {
225       const Expr *E = cast<Expr>(S);
226       if (IncludeIntegers) {
227         if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
228           *SilenceableCondVal = E->getSourceRange();
229         return WrappedInParens || isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
230       }
231       return false;
232     }
233     case Stmt::MemberExprClass:
234       return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
235     case Stmt::UnaryExprOrTypeTraitExprClass:
236       return true;
237     case Stmt::BinaryOperatorClass: {
238       const BinaryOperator *B = cast<BinaryOperator>(S);
239       // Only include raw integers (not enums) as configuration
240       // values if they are used in a logical or comparison operator
241       // (not arithmetic).
242       IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
243       return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
244                                   IncludeIntegers) ||
245              isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
246                                   IncludeIntegers);
247     }
248     case Stmt::UnaryOperatorClass: {
249       const UnaryOperator *UO = cast<UnaryOperator>(S);
250       if (UO->getOpcode() != UO_LNot)
251         return false;
252       bool SilenceableCondValNotSet =
253           SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid();
254       bool IsSubExprConfigValue =
255           isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
256                                IncludeIntegers, WrappedInParens);
257       // Update the silenceable condition value source range only if the range
258       // was set directly by the child expression.
259       if (SilenceableCondValNotSet &&
260           SilenceableCondVal->getBegin().isValid() &&
261           *SilenceableCondVal ==
262               UO->getSubExpr()->IgnoreCasts()->getSourceRange())
263         *SilenceableCondVal = UO->getSourceRange();
264       return IsSubExprConfigValue;
265     }
266     default:
267       return false;
268   }
269 }
270
271 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
272   if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
273     return isConfigurationValue(ED->getInitExpr(), PP);
274   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
275     // As a heuristic, treat globals as configuration values.  Note
276     // that we only will get here if Sema evaluated this
277     // condition to a constant expression, which means the global
278     // had to be declared in a way to be a truly constant value.
279     // We could generalize this to local variables, but it isn't
280     // clear if those truly represent configuration values that
281     // gate unreachable code.
282     if (!VD->hasLocalStorage())
283       return true;
284
285     // As a heuristic, locals that have been marked 'const' explicitly
286     // can be treated as configuration values as well.
287     return VD->getType().isLocalConstQualified();
288   }
289   return false;
290 }
291
292 /// Returns true if we should always explore all successors of a block.
293 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
294                                              Preprocessor &PP) {
295   if (const Stmt *Term = B->getTerminatorStmt()) {
296     if (isa<SwitchStmt>(Term))
297       return true;
298     // Specially handle '||' and '&&'.
299     if (isa<BinaryOperator>(Term)) {
300       return isConfigurationValue(Term, PP);
301     }
302   }
303
304   const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false);
305   return isConfigurationValue(Cond, PP);
306 }
307
308 static unsigned scanFromBlock(const CFGBlock *Start,
309                               llvm::BitVector &Reachable,
310                               Preprocessor *PP,
311                               bool IncludeSometimesUnreachableEdges) {
312   unsigned count = 0;
313
314   // Prep work queue
315   SmallVector<const CFGBlock*, 32> WL;
316
317   // The entry block may have already been marked reachable
318   // by the caller.
319   if (!Reachable[Start->getBlockID()]) {
320     ++count;
321     Reachable[Start->getBlockID()] = true;
322   }
323
324   WL.push_back(Start);
325
326   // Find the reachable blocks from 'Start'.
327   while (!WL.empty()) {
328     const CFGBlock *item = WL.pop_back_val();
329
330     // There are cases where we want to treat all successors as reachable.
331     // The idea is that some "sometimes unreachable" code is not interesting,
332     // and that we should forge ahead and explore those branches anyway.
333     // This allows us to potentially uncover some "always unreachable" code
334     // within the "sometimes unreachable" code.
335     // Look at the successors and mark then reachable.
336     Optional<bool> TreatAllSuccessorsAsReachable;
337     if (!IncludeSometimesUnreachableEdges)
338       TreatAllSuccessorsAsReachable = false;
339
340     for (CFGBlock::const_succ_iterator I = item->succ_begin(),
341          E = item->succ_end(); I != E; ++I) {
342       const CFGBlock *B = *I;
343       if (!B) do {
344         const CFGBlock *UB = I->getPossiblyUnreachableBlock();
345         if (!UB)
346           break;
347
348         if (!TreatAllSuccessorsAsReachable.hasValue()) {
349           assert(PP);
350           TreatAllSuccessorsAsReachable =
351             shouldTreatSuccessorsAsReachable(item, *PP);
352         }
353
354         if (TreatAllSuccessorsAsReachable.getValue()) {
355           B = UB;
356           break;
357         }
358       }
359       while (false);
360
361       if (B) {
362         unsigned blockID = B->getBlockID();
363         if (!Reachable[blockID]) {
364           Reachable.set(blockID);
365           WL.push_back(B);
366           ++count;
367         }
368       }
369     }
370   }
371   return count;
372 }
373
374 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
375                                             Preprocessor &PP,
376                                             llvm::BitVector &Reachable) {
377   return scanFromBlock(Start, Reachable, &PP, true);
378 }
379
380 //===----------------------------------------------------------------------===//
381 // Dead Code Scanner.
382 //===----------------------------------------------------------------------===//
383
384 namespace {
385   class DeadCodeScan {
386     llvm::BitVector Visited;
387     llvm::BitVector &Reachable;
388     SmallVector<const CFGBlock *, 10> WorkList;
389     Preprocessor &PP;
390     ASTContext &C;
391
392     typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
393     DeferredLocsTy;
394
395     DeferredLocsTy DeferredLocs;
396
397   public:
398     DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C)
399     : Visited(reachable.size()),
400       Reachable(reachable),
401       PP(PP), C(C) {}
402
403     void enqueue(const CFGBlock *block);
404     unsigned scanBackwards(const CFGBlock *Start,
405     clang::reachable_code::Callback &CB);
406
407     bool isDeadCodeRoot(const CFGBlock *Block);
408
409     const Stmt *findDeadCode(const CFGBlock *Block);
410
411     void reportDeadCode(const CFGBlock *B,
412                         const Stmt *S,
413                         clang::reachable_code::Callback &CB);
414   };
415 }
416
417 void DeadCodeScan::enqueue(const CFGBlock *block) {
418   unsigned blockID = block->getBlockID();
419   if (Reachable[blockID] || Visited[blockID])
420     return;
421   Visited[blockID] = true;
422   WorkList.push_back(block);
423 }
424
425 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
426   bool isDeadRoot = true;
427
428   for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
429        E = Block->pred_end(); I != E; ++I) {
430     if (const CFGBlock *PredBlock = *I) {
431       unsigned blockID = PredBlock->getBlockID();
432       if (Visited[blockID]) {
433         isDeadRoot = false;
434         continue;
435       }
436       if (!Reachable[blockID]) {
437         isDeadRoot = false;
438         Visited[blockID] = true;
439         WorkList.push_back(PredBlock);
440         continue;
441       }
442     }
443   }
444
445   return isDeadRoot;
446 }
447
448 static bool isValidDeadStmt(const Stmt *S) {
449   if (S->getBeginLoc().isInvalid())
450     return false;
451   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
452     return BO->getOpcode() != BO_Comma;
453   return true;
454 }
455
456 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
457   for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
458     if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
459       const Stmt *S = CS->getStmt();
460       if (isValidDeadStmt(S))
461         return S;
462     }
463
464   CFGTerminator T = Block->getTerminator();
465   if (T.isStmtBranch()) {
466     const Stmt *S = T.getStmt();
467     if (S && isValidDeadStmt(S))
468       return S;
469   }
470
471   return nullptr;
472 }
473
474 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
475                   const std::pair<const CFGBlock *, const Stmt *> *p2) {
476   if (p1->second->getBeginLoc() < p2->second->getBeginLoc())
477     return -1;
478   if (p2->second->getBeginLoc() < p1->second->getBeginLoc())
479     return 1;
480   return 0;
481 }
482
483 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
484                                      clang::reachable_code::Callback &CB) {
485
486   unsigned count = 0;
487   enqueue(Start);
488
489   while (!WorkList.empty()) {
490     const CFGBlock *Block = WorkList.pop_back_val();
491
492     // It is possible that this block has been marked reachable after
493     // it was enqueued.
494     if (Reachable[Block->getBlockID()])
495       continue;
496
497     // Look for any dead code within the block.
498     const Stmt *S = findDeadCode(Block);
499
500     if (!S) {
501       // No dead code.  Possibly an empty block.  Look at dead predecessors.
502       for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
503            E = Block->pred_end(); I != E; ++I) {
504         if (const CFGBlock *predBlock = *I)
505           enqueue(predBlock);
506       }
507       continue;
508     }
509
510     // Specially handle macro-expanded code.
511     if (S->getBeginLoc().isMacroID()) {
512       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
513       continue;
514     }
515
516     if (isDeadCodeRoot(Block)) {
517       reportDeadCode(Block, S, CB);
518       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
519     }
520     else {
521       // Record this statement as the possibly best location in a
522       // strongly-connected component of dead code for emitting a
523       // warning.
524       DeferredLocs.push_back(std::make_pair(Block, S));
525     }
526   }
527
528   // If we didn't find a dead root, then report the dead code with the
529   // earliest location.
530   if (!DeferredLocs.empty()) {
531     llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
532     for (DeferredLocsTy::iterator I = DeferredLocs.begin(),
533          E = DeferredLocs.end(); I != E; ++I) {
534       const CFGBlock *Block = I->first;
535       if (Reachable[Block->getBlockID()])
536         continue;
537       reportDeadCode(Block, I->second, CB);
538       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
539     }
540   }
541
542   return count;
543 }
544
545 static SourceLocation GetUnreachableLoc(const Stmt *S,
546                                         SourceRange &R1,
547                                         SourceRange &R2) {
548   R1 = R2 = SourceRange();
549
550   if (const Expr *Ex = dyn_cast<Expr>(S))
551     S = Ex->IgnoreParenImpCasts();
552
553   switch (S->getStmtClass()) {
554     case Expr::BinaryOperatorClass: {
555       const BinaryOperator *BO = cast<BinaryOperator>(S);
556       return BO->getOperatorLoc();
557     }
558     case Expr::UnaryOperatorClass: {
559       const UnaryOperator *UO = cast<UnaryOperator>(S);
560       R1 = UO->getSubExpr()->getSourceRange();
561       return UO->getOperatorLoc();
562     }
563     case Expr::CompoundAssignOperatorClass: {
564       const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
565       R1 = CAO->getLHS()->getSourceRange();
566       R2 = CAO->getRHS()->getSourceRange();
567       return CAO->getOperatorLoc();
568     }
569     case Expr::BinaryConditionalOperatorClass:
570     case Expr::ConditionalOperatorClass: {
571       const AbstractConditionalOperator *CO =
572       cast<AbstractConditionalOperator>(S);
573       return CO->getQuestionLoc();
574     }
575     case Expr::MemberExprClass: {
576       const MemberExpr *ME = cast<MemberExpr>(S);
577       R1 = ME->getSourceRange();
578       return ME->getMemberLoc();
579     }
580     case Expr::ArraySubscriptExprClass: {
581       const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
582       R1 = ASE->getLHS()->getSourceRange();
583       R2 = ASE->getRHS()->getSourceRange();
584       return ASE->getRBracketLoc();
585     }
586     case Expr::CStyleCastExprClass: {
587       const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
588       R1 = CSC->getSubExpr()->getSourceRange();
589       return CSC->getLParenLoc();
590     }
591     case Expr::CXXFunctionalCastExprClass: {
592       const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
593       R1 = CE->getSubExpr()->getSourceRange();
594       return CE->getBeginLoc();
595     }
596     case Stmt::CXXTryStmtClass: {
597       return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
598     }
599     case Expr::ObjCBridgedCastExprClass: {
600       const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
601       R1 = CSC->getSubExpr()->getSourceRange();
602       return CSC->getLParenLoc();
603     }
604     default: ;
605   }
606   R1 = S->getSourceRange();
607   return S->getBeginLoc();
608 }
609
610 void DeadCodeScan::reportDeadCode(const CFGBlock *B,
611                                   const Stmt *S,
612                                   clang::reachable_code::Callback &CB) {
613   // Classify the unreachable code found, or suppress it in some cases.
614   reachable_code::UnreachableKind UK = reachable_code::UK_Other;
615
616   if (isa<BreakStmt>(S)) {
617     UK = reachable_code::UK_Break;
618   } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) ||
619              isBuiltinAssumeFalse(B, S, C)) {
620     return;
621   }
622   else if (isDeadReturn(B, S)) {
623     UK = reachable_code::UK_Return;
624   }
625
626   SourceRange SilenceableCondVal;
627
628   if (UK == reachable_code::UK_Other) {
629     // Check if the dead code is part of the "loop target" of
630     // a for/for-range loop.  This is the block that contains
631     // the increment code.
632     if (const Stmt *LoopTarget = B->getLoopTarget()) {
633       SourceLocation Loc = LoopTarget->getBeginLoc();
634       SourceRange R1(Loc, Loc), R2;
635
636       if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) {
637         const Expr *Inc = FS->getInc();
638         Loc = Inc->getBeginLoc();
639         R2 = Inc->getSourceRange();
640       }
641
642       CB.HandleUnreachable(reachable_code::UK_Loop_Increment,
643                            Loc, SourceRange(), SourceRange(Loc, Loc), R2);
644       return;
645     }
646
647     // Check if the dead block has a predecessor whose branch has
648     // a configuration value that *could* be modified to
649     // silence the warning.
650     CFGBlock::const_pred_iterator PI = B->pred_begin();
651     if (PI != B->pred_end()) {
652       if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
653         const Stmt *TermCond =
654             PredBlock->getTerminatorCondition(/* strip parens */ false);
655         isConfigurationValue(TermCond, PP, &SilenceableCondVal);
656       }
657     }
658   }
659
660   SourceRange R1, R2;
661   SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
662   CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2);
663 }
664
665 //===----------------------------------------------------------------------===//
666 // Reachability APIs.
667 //===----------------------------------------------------------------------===//
668
669 namespace clang { namespace reachable_code {
670
671 void Callback::anchor() { }
672
673 unsigned ScanReachableFromBlock(const CFGBlock *Start,
674                                 llvm::BitVector &Reachable) {
675   return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false);
676 }
677
678 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
679                          Callback &CB) {
680
681   CFG *cfg = AC.getCFG();
682   if (!cfg)
683     return;
684
685   // Scan for reachable blocks from the entrance of the CFG.
686   // If there are no unreachable blocks, we're done.
687   llvm::BitVector reachable(cfg->getNumBlockIDs());
688   unsigned numReachable =
689     scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
690   if (numReachable == cfg->getNumBlockIDs())
691     return;
692
693   // If there aren't explicit EH edges, we should include the 'try' dispatch
694   // blocks as roots.
695   if (!AC.getCFGBuildOptions().AddEHEdges) {
696     for (CFG::try_block_iterator I = cfg->try_blocks_begin(),
697          E = cfg->try_blocks_end() ; I != E; ++I) {
698       numReachable += scanMaybeReachableFromBlock(*I, PP, reachable);
699     }
700     if (numReachable == cfg->getNumBlockIDs())
701       return;
702   }
703
704   // There are some unreachable blocks.  We need to find the root blocks that
705   // contain code that should be considered unreachable.
706   for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
707     const CFGBlock *block = *I;
708     // A block may have been marked reachable during this loop.
709     if (reachable[block->getBlockID()])
710       continue;
711
712     DeadCodeScan DS(reachable, PP, AC.getASTContext());
713     numReachable += DS.scanBackwards(block, CB);
714
715     if (numReachable == cfg->getNumBlockIDs())
716       return;
717   }
718 }
719
720 }} // end namespace clang::reachable_code