]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/clang/lib/CodeGen/CGCUDANV.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / clang / lib / CodeGen / CGCUDANV.cpp
1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA
10 // runtime library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGCUDARuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/Basic/Cuda.h"
19 #include "clang/CodeGen/CodeGenABITypes.h"
20 #include "clang/CodeGen/ConstantInitBuilder.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/Support/Format.h"
25
26 using namespace clang;
27 using namespace CodeGen;
28
29 namespace {
30 constexpr unsigned CudaFatMagic = 0x466243b1;
31 constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF"
32
33 class CGNVCUDARuntime : public CGCUDARuntime {
34
35 private:
36   llvm::IntegerType *IntTy, *SizeTy;
37   llvm::Type *VoidTy;
38   llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy;
39
40   /// Convenience reference to LLVM Context
41   llvm::LLVMContext &Context;
42   /// Convenience reference to the current module
43   llvm::Module &TheModule;
44   /// Keeps track of kernel launch stubs emitted in this module
45   struct KernelInfo {
46     llvm::Function *Kernel;
47     const Decl *D;
48   };
49   llvm::SmallVector<KernelInfo, 16> EmittedKernels;
50   struct VarInfo {
51     llvm::GlobalVariable *Var;
52     const VarDecl *D;
53     unsigned Flag;
54   };
55   llvm::SmallVector<VarInfo, 16> DeviceVars;
56   /// Keeps track of variable containing handle of GPU binary. Populated by
57   /// ModuleCtorFunction() and used to create corresponding cleanup calls in
58   /// ModuleDtorFunction()
59   llvm::GlobalVariable *GpuBinaryHandle = nullptr;
60   /// Whether we generate relocatable device code.
61   bool RelocatableDeviceCode;
62   /// Mangle context for device.
63   std::unique_ptr<MangleContext> DeviceMC;
64
65   llvm::FunctionCallee getSetupArgumentFn() const;
66   llvm::FunctionCallee getLaunchFn() const;
67
68   llvm::FunctionType *getRegisterGlobalsFnTy() const;
69   llvm::FunctionType *getCallbackFnTy() const;
70   llvm::FunctionType *getRegisterLinkedBinaryFnTy() const;
71   std::string addPrefixToName(StringRef FuncName) const;
72   std::string addUnderscoredPrefixToName(StringRef FuncName) const;
73
74   /// Creates a function to register all kernel stubs generated in this module.
75   llvm::Function *makeRegisterGlobalsFn();
76
77   /// Helper function that generates a constant string and returns a pointer to
78   /// the start of the string.  The result of this function can be used anywhere
79   /// where the C code specifies const char*.
80   llvm::Constant *makeConstantString(const std::string &Str,
81                                      const std::string &Name = "",
82                                      const std::string &SectionName = "",
83                                      unsigned Alignment = 0) {
84     llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
85                                llvm::ConstantInt::get(SizeTy, 0)};
86     auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
87     llvm::GlobalVariable *GV =
88         cast<llvm::GlobalVariable>(ConstStr.getPointer());
89     if (!SectionName.empty()) {
90       GV->setSection(SectionName);
91       // Mark the address as used which make sure that this section isn't
92       // merged and we will really have it in the object file.
93       GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
94     }
95     if (Alignment)
96       GV->setAlignment(llvm::Align(Alignment));
97
98     return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(),
99                                                 ConstStr.getPointer(), Zeros);
100   }
101
102   /// Helper function that generates an empty dummy function returning void.
103   llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) {
104     assert(FnTy->getReturnType()->isVoidTy() &&
105            "Can only generate dummy functions returning void!");
106     llvm::Function *DummyFunc = llvm::Function::Create(
107         FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule);
108
109     llvm::BasicBlock *DummyBlock =
110         llvm::BasicBlock::Create(Context, "", DummyFunc);
111     CGBuilderTy FuncBuilder(CGM, Context);
112     FuncBuilder.SetInsertPoint(DummyBlock);
113     FuncBuilder.CreateRetVoid();
114
115     return DummyFunc;
116   }
117
118   void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args);
119   void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args);
120   std::string getDeviceSideName(const Decl *ND);
121
122 public:
123   CGNVCUDARuntime(CodeGenModule &CGM);
124
125   void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override;
126   void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var,
127                          unsigned Flags) override {
128     DeviceVars.push_back({&Var, VD, Flags});
129   }
130
131   /// Creates module constructor function
132   llvm::Function *makeModuleCtorFunction() override;
133   /// Creates module destructor function
134   llvm::Function *makeModuleDtorFunction() override;
135   /// Construct and return the stub name of a kernel.
136   std::string getDeviceStubName(llvm::StringRef Name) const override;
137 };
138
139 }
140
141 std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const {
142   if (CGM.getLangOpts().HIP)
143     return ((Twine("hip") + Twine(FuncName)).str());
144   return ((Twine("cuda") + Twine(FuncName)).str());
145 }
146 std::string
147 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const {
148   if (CGM.getLangOpts().HIP)
149     return ((Twine("__hip") + Twine(FuncName)).str());
150   return ((Twine("__cuda") + Twine(FuncName)).str());
151 }
152
153 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM)
154     : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()),
155       TheModule(CGM.getModule()),
156       RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode),
157       DeviceMC(CGM.getContext().createMangleContext(
158           CGM.getContext().getAuxTargetInfo())) {
159   CodeGen::CodeGenTypes &Types = CGM.getTypes();
160   ASTContext &Ctx = CGM.getContext();
161
162   IntTy = CGM.IntTy;
163   SizeTy = CGM.SizeTy;
164   VoidTy = CGM.VoidTy;
165
166   CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy));
167   VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy));
168   VoidPtrPtrTy = VoidPtrTy->getPointerTo();
169 }
170
171 llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const {
172   // cudaError_t cudaSetupArgument(void *, size_t, size_t)
173   llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy};
174   return CGM.CreateRuntimeFunction(
175       llvm::FunctionType::get(IntTy, Params, false),
176       addPrefixToName("SetupArgument"));
177 }
178
179 llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const {
180   if (CGM.getLangOpts().HIP) {
181     // hipError_t hipLaunchByPtr(char *);
182     return CGM.CreateRuntimeFunction(
183         llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr");
184   } else {
185     // cudaError_t cudaLaunch(char *);
186     return CGM.CreateRuntimeFunction(
187         llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch");
188   }
189 }
190
191 llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
192   return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false);
193 }
194
195 llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const {
196   return llvm::FunctionType::get(VoidTy, VoidPtrTy, false);
197 }
198
199 llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
200   auto CallbackFnTy = getCallbackFnTy();
201   auto RegisterGlobalsFnTy = getRegisterGlobalsFnTy();
202   llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy,
203                           VoidPtrTy, CallbackFnTy->getPointerTo()};
204   return llvm::FunctionType::get(VoidTy, Params, false);
205 }
206
207 std::string CGNVCUDARuntime::getDeviceSideName(const Decl *D) {
208   auto *ND = cast<const NamedDecl>(D);
209   std::string DeviceSideName;
210   if (DeviceMC->shouldMangleDeclName(ND)) {
211     SmallString<256> Buffer;
212     llvm::raw_svector_ostream Out(Buffer);
213     DeviceMC->mangleName(ND, Out);
214     DeviceSideName = Out.str();
215   } else
216     DeviceSideName = ND->getIdentifier()->getName();
217   return DeviceSideName;
218 }
219
220 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF,
221                                      FunctionArgList &Args) {
222   // Ensure either we have different ABIs between host and device compilations,
223   // says host compilation following MSVC ABI but device compilation follows
224   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
225   // mangling should be the same after name stubbing. The later checking is
226   // very important as the device kernel name being mangled in host-compilation
227   // is used to resolve the device binaries to be executed. Inconsistent naming
228   // result in undefined behavior. Even though we cannot check that naming
229   // directly between host- and device-compilations, the host- and
230   // device-mangling in host compilation could help catching certain ones.
231   assert((CGF.CGM.getContext().getAuxTargetInfo() &&
232           (CGF.CGM.getContext().getAuxTargetInfo()->getCXXABI() !=
233            CGF.CGM.getContext().getTargetInfo().getCXXABI())) ||
234          getDeviceStubName(getDeviceSideName(CGF.CurFuncDecl)) ==
235              CGF.CurFn->getName());
236
237   EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl});
238   if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
239                          CudaFeature::CUDA_USES_NEW_LAUNCH) ||
240       CGF.getLangOpts().HIPUseNewLaunchAPI)
241     emitDeviceStubBodyNew(CGF, Args);
242   else
243     emitDeviceStubBodyLegacy(CGF, Args);
244 }
245
246 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
247 // array and kernels are launched using cudaLaunchKernel().
248 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF,
249                                             FunctionArgList &Args) {
250   // Build the shadow stack entry at the very start of the function.
251
252   // Calculate amount of space we will need for all arguments.  If we have no
253   // args, allocate a single pointer so we still have a valid pointer to the
254   // argument array that we can pass to runtime, even if it will be unused.
255   Address KernelArgs = CGF.CreateTempAlloca(
256       VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args",
257       llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size())));
258   // Store pointers to the arguments in a locally allocated launch_args.
259   for (unsigned i = 0; i < Args.size(); ++i) {
260     llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer();
261     llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy);
262     CGF.Builder.CreateDefaultAlignedStore(
263         VoidVarPtr, CGF.Builder.CreateConstGEP1_32(KernelArgs.getPointer(), i));
264   }
265
266   llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
267
268   // Lookup cudaLaunchKernel/hipLaunchKernel function.
269   // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
270   //                              void **args, size_t sharedMem,
271   //                              cudaStream_t stream);
272   // hipError_t hipLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
273   //                            void **args, size_t sharedMem,
274   //                            hipStream_t stream);
275   TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
276   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
277   auto LaunchKernelName = addPrefixToName("LaunchKernel");
278   IdentifierInfo &cudaLaunchKernelII =
279       CGM.getContext().Idents.get(LaunchKernelName);
280   FunctionDecl *cudaLaunchKernelFD = nullptr;
281   for (const auto &Result : DC->lookup(&cudaLaunchKernelII)) {
282     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result))
283       cudaLaunchKernelFD = FD;
284   }
285
286   if (cudaLaunchKernelFD == nullptr) {
287     CGM.Error(CGF.CurFuncDecl->getLocation(),
288               "Can't find declaration for " + LaunchKernelName);
289     return;
290   }
291   // Create temporary dim3 grid_dim, block_dim.
292   ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1);
293   QualType Dim3Ty = GridDimParam->getType();
294   Address GridDim =
295       CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim");
296   Address BlockDim =
297       CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim");
298   Address ShmemSize =
299       CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size");
300   Address Stream =
301       CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream");
302   llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction(
303       llvm::FunctionType::get(IntTy,
304                               {/*gridDim=*/GridDim.getType(),
305                                /*blockDim=*/BlockDim.getType(),
306                                /*ShmemSize=*/ShmemSize.getType(),
307                                /*Stream=*/Stream.getType()},
308                               /*isVarArg=*/false),
309       addUnderscoredPrefixToName("PopCallConfiguration"));
310
311   CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn,
312                               {GridDim.getPointer(), BlockDim.getPointer(),
313                                ShmemSize.getPointer(), Stream.getPointer()});
314
315   // Emit the call to cudaLaunch
316   llvm::Value *Kernel = CGF.Builder.CreatePointerCast(CGF.CurFn, VoidPtrTy);
317   CallArgList LaunchKernelArgs;
318   LaunchKernelArgs.add(RValue::get(Kernel),
319                        cudaLaunchKernelFD->getParamDecl(0)->getType());
320   LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty);
321   LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty);
322   LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()),
323                        cudaLaunchKernelFD->getParamDecl(3)->getType());
324   LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)),
325                        cudaLaunchKernelFD->getParamDecl(4)->getType());
326   LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)),
327                        cudaLaunchKernelFD->getParamDecl(5)->getType());
328
329   QualType QT = cudaLaunchKernelFD->getType();
330   QualType CQT = QT.getCanonicalType();
331   llvm::Type *Ty = CGM.getTypes().ConvertType(CQT);
332   llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(Ty);
333
334   const CGFunctionInfo &FI =
335       CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD);
336   llvm::FunctionCallee cudaLaunchKernelFn =
337       CGM.CreateRuntimeFunction(FTy, LaunchKernelName);
338   CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(),
339                LaunchKernelArgs);
340   CGF.EmitBranch(EndBlock);
341
342   CGF.EmitBlock(EndBlock);
343 }
344
345 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF,
346                                                FunctionArgList &Args) {
347   // Emit a call to cudaSetupArgument for each arg in Args.
348   llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn();
349   llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
350   CharUnits Offset = CharUnits::Zero();
351   for (const VarDecl *A : Args) {
352     CharUnits TyWidth, TyAlign;
353     std::tie(TyWidth, TyAlign) =
354         CGM.getContext().getTypeInfoInChars(A->getType());
355     Offset = Offset.alignTo(TyAlign);
356     llvm::Value *Args[] = {
357         CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(),
358                                       VoidPtrTy),
359         llvm::ConstantInt::get(SizeTy, TyWidth.getQuantity()),
360         llvm::ConstantInt::get(SizeTy, Offset.getQuantity()),
361     };
362     llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
363     llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0);
364     llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero);
365     llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
366     CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock);
367     CGF.EmitBlock(NextBlock);
368     Offset += TyWidth;
369   }
370
371   // Emit the call to cudaLaunch
372   llvm::FunctionCallee cudaLaunchFn = getLaunchFn();
373   llvm::Value *Arg = CGF.Builder.CreatePointerCast(CGF.CurFn, CharPtrTy);
374   CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg);
375   CGF.EmitBranch(EndBlock);
376
377   CGF.EmitBlock(EndBlock);
378 }
379
380 /// Creates a function that sets up state on the host side for CUDA objects that
381 /// have a presence on both the host and device sides. Specifically, registers
382 /// the host side of kernel functions and device global variables with the CUDA
383 /// runtime.
384 /// \code
385 /// void __cuda_register_globals(void** GpuBinaryHandle) {
386 ///    __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
387 ///    ...
388 ///    __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
389 ///    __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
390 ///    ...
391 ///    __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
392 /// }
393 /// \endcode
394 llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() {
395   // No need to register anything
396   if (EmittedKernels.empty() && DeviceVars.empty())
397     return nullptr;
398
399   llvm::Function *RegisterKernelsFunc = llvm::Function::Create(
400       getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage,
401       addUnderscoredPrefixToName("_register_globals"), &TheModule);
402   llvm::BasicBlock *EntryBB =
403       llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc);
404   CGBuilderTy Builder(CGM, Context);
405   Builder.SetInsertPoint(EntryBB);
406
407   // void __cudaRegisterFunction(void **, const char *, char *, const char *,
408   //                             int, uint3*, uint3*, dim3*, dim3*, int*)
409   llvm::Type *RegisterFuncParams[] = {
410       VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy,
411       VoidPtrTy,    VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()};
412   llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction(
413       llvm::FunctionType::get(IntTy, RegisterFuncParams, false),
414       addUnderscoredPrefixToName("RegisterFunction"));
415
416   // Extract GpuBinaryHandle passed as the first argument passed to
417   // __cuda_register_globals() and generate __cudaRegisterFunction() call for
418   // each emitted kernel.
419   llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin();
420   for (auto &&I : EmittedKernels) {
421     llvm::Constant *KernelName = makeConstantString(getDeviceSideName(I.D));
422     llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy);
423     llvm::Value *Args[] = {
424         &GpuBinaryHandlePtr,
425         Builder.CreateBitCast(I.Kernel, VoidPtrTy),
426         KernelName,
427         KernelName,
428         llvm::ConstantInt::get(IntTy, -1),
429         NullPtr,
430         NullPtr,
431         NullPtr,
432         NullPtr,
433         llvm::ConstantPointerNull::get(IntTy->getPointerTo())};
434     Builder.CreateCall(RegisterFunc, Args);
435   }
436
437   // void __cudaRegisterVar(void **, char *, char *, const char *,
438   //                        int, int, int, int)
439   llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
440                                      CharPtrTy,    IntTy,     IntTy,
441                                      IntTy,        IntTy};
442   llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction(
443       llvm::FunctionType::get(IntTy, RegisterVarParams, false),
444       addUnderscoredPrefixToName("RegisterVar"));
445   for (auto &&Info : DeviceVars) {
446     llvm::GlobalVariable *Var = Info.Var;
447     unsigned Flags = Info.Flag;
448     llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D));
449     uint64_t VarSize =
450         CGM.getDataLayout().getTypeAllocSize(Var->getValueType());
451     llvm::Value *Args[] = {
452         &GpuBinaryHandlePtr,
453         Builder.CreateBitCast(Var, VoidPtrTy),
454         VarName,
455         VarName,
456         llvm::ConstantInt::get(IntTy, (Flags & ExternDeviceVar) ? 1 : 0),
457         llvm::ConstantInt::get(IntTy, VarSize),
458         llvm::ConstantInt::get(IntTy, (Flags & ConstantDeviceVar) ? 1 : 0),
459         llvm::ConstantInt::get(IntTy, 0)};
460     Builder.CreateCall(RegisterVar, Args);
461   }
462
463   Builder.CreateRetVoid();
464   return RegisterKernelsFunc;
465 }
466
467 /// Creates a global constructor function for the module:
468 ///
469 /// For CUDA:
470 /// \code
471 /// void __cuda_module_ctor(void*) {
472 ///     Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
473 ///     __cuda_register_globals(Handle);
474 /// }
475 /// \endcode
476 ///
477 /// For HIP:
478 /// \code
479 /// void __hip_module_ctor(void*) {
480 ///     if (__hip_gpubin_handle == 0) {
481 ///         __hip_gpubin_handle  = __hipRegisterFatBinary(GpuBinaryBlob);
482 ///         __hip_register_globals(__hip_gpubin_handle);
483 ///     }
484 /// }
485 /// \endcode
486 llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() {
487   bool IsHIP = CGM.getLangOpts().HIP;
488   bool IsCUDA = CGM.getLangOpts().CUDA;
489   // No need to generate ctors/dtors if there is no GPU binary.
490   StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName;
491   if (CudaGpuBinaryFileName.empty() && !IsHIP)
492     return nullptr;
493   if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() &&
494       DeviceVars.empty())
495     return nullptr;
496
497   // void __{cuda|hip}_register_globals(void* handle);
498   llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn();
499   // We always need a function to pass in as callback. Create a dummy
500   // implementation if we don't need to register anything.
501   if (RelocatableDeviceCode && !RegisterGlobalsFunc)
502     RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy());
503
504   // void ** __{cuda|hip}RegisterFatBinary(void *);
505   llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction(
506       llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false),
507       addUnderscoredPrefixToName("RegisterFatBinary"));
508   // struct { int magic, int version, void * gpu_binary, void * dont_care };
509   llvm::StructType *FatbinWrapperTy =
510       llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy);
511
512   // Register GPU binary with the CUDA runtime, store returned handle in a
513   // global variable and save a reference in GpuBinaryHandle to be cleaned up
514   // in destructor on exit. Then associate all known kernels with the GPU binary
515   // handle so CUDA runtime can figure out what to call on the GPU side.
516   std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr;
517   if (!CudaGpuBinaryFileName.empty()) {
518     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr =
519         llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName);
520     if (std::error_code EC = CudaGpuBinaryOrErr.getError()) {
521       CGM.getDiags().Report(diag::err_cannot_open_file)
522           << CudaGpuBinaryFileName << EC.message();
523       return nullptr;
524     }
525     CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get());
526   }
527
528   llvm::Function *ModuleCtorFunc = llvm::Function::Create(
529       llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
530       llvm::GlobalValue::InternalLinkage,
531       addUnderscoredPrefixToName("_module_ctor"), &TheModule);
532   llvm::BasicBlock *CtorEntryBB =
533       llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc);
534   CGBuilderTy CtorBuilder(CGM, Context);
535
536   CtorBuilder.SetInsertPoint(CtorEntryBB);
537
538   const char *FatbinConstantName;
539   const char *FatbinSectionName;
540   const char *ModuleIDSectionName;
541   StringRef ModuleIDPrefix;
542   llvm::Constant *FatBinStr;
543   unsigned FatMagic;
544   if (IsHIP) {
545     FatbinConstantName = ".hip_fatbin";
546     FatbinSectionName = ".hipFatBinSegment";
547
548     ModuleIDSectionName = "__hip_module_id";
549     ModuleIDPrefix = "__hip_";
550
551     if (CudaGpuBinary) {
552       // If fatbin is available from early finalization, create a string
553       // literal containing the fat binary loaded from the given file.
554       FatBinStr = makeConstantString(CudaGpuBinary->getBuffer(), "",
555                                      FatbinConstantName, 8);
556     } else {
557       // If fatbin is not available, create an external symbol
558       // __hip_fatbin in section .hip_fatbin. The external symbol is supposed
559       // to contain the fat binary but will be populated somewhere else,
560       // e.g. by lld through link script.
561       FatBinStr = new llvm::GlobalVariable(
562         CGM.getModule(), CGM.Int8Ty,
563         /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr,
564         "__hip_fatbin", nullptr,
565         llvm::GlobalVariable::NotThreadLocal);
566       cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName);
567     }
568
569     FatMagic = HIPFatMagic;
570   } else {
571     if (RelocatableDeviceCode)
572       FatbinConstantName = CGM.getTriple().isMacOSX()
573                                ? "__NV_CUDA,__nv_relfatbin"
574                                : "__nv_relfatbin";
575     else
576       FatbinConstantName =
577           CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
578     // NVIDIA's cuobjdump looks for fatbins in this section.
579     FatbinSectionName =
580         CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";
581
582     ModuleIDSectionName = CGM.getTriple().isMacOSX()
583                               ? "__NV_CUDA,__nv_module_id"
584                               : "__nv_module_id";
585     ModuleIDPrefix = "__nv_";
586
587     // For CUDA, create a string literal containing the fat binary loaded from
588     // the given file.
589     FatBinStr = makeConstantString(CudaGpuBinary->getBuffer(), "",
590                                    FatbinConstantName, 8);
591     FatMagic = CudaFatMagic;
592   }
593
594   // Create initialized wrapper structure that points to the loaded GPU binary
595   ConstantInitBuilder Builder(CGM);
596   auto Values = Builder.beginStruct(FatbinWrapperTy);
597   // Fatbin wrapper magic.
598   Values.addInt(IntTy, FatMagic);
599   // Fatbin version.
600   Values.addInt(IntTy, 1);
601   // Data.
602   Values.add(FatBinStr);
603   // Unused in fatbin v1.
604   Values.add(llvm::ConstantPointerNull::get(VoidPtrTy));
605   llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal(
606       addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(),
607       /*constant*/ true);
608   FatbinWrapper->setSection(FatbinSectionName);
609
610   // There is only one HIP fat binary per linked module, however there are
611   // multiple constructor functions. Make sure the fat binary is registered
612   // only once. The constructor functions are executed by the dynamic loader
613   // before the program gains control. The dynamic loader cannot execute the
614   // constructor functions concurrently since doing that would not guarantee
615   // thread safety of the loaded program. Therefore we can assume sequential
616   // execution of constructor functions here.
617   if (IsHIP) {
618     auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage :
619         llvm::GlobalValue::LinkOnceAnyLinkage;
620     llvm::BasicBlock *IfBlock =
621         llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc);
622     llvm::BasicBlock *ExitBlock =
623         llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc);
624     // The name, size, and initialization pattern of this variable is part
625     // of HIP ABI.
626     GpuBinaryHandle = new llvm::GlobalVariable(
627         TheModule, VoidPtrPtrTy, /*isConstant=*/false,
628         Linkage,
629         /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy),
630         "__hip_gpubin_handle");
631     GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
632     // Prevent the weak symbol in different shared libraries being merged.
633     if (Linkage != llvm::GlobalValue::InternalLinkage)
634       GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility);
635     Address GpuBinaryAddr(
636         GpuBinaryHandle,
637         CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
638     {
639       auto HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
640       llvm::Constant *Zero =
641           llvm::Constant::getNullValue(HandleValue->getType());
642       llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero);
643       CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock);
644     }
645     {
646       CtorBuilder.SetInsertPoint(IfBlock);
647       // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
648       llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
649           RegisterFatbinFunc,
650           CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
651       CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr);
652       CtorBuilder.CreateBr(ExitBlock);
653     }
654     {
655       CtorBuilder.SetInsertPoint(ExitBlock);
656       // Call __hip_register_globals(GpuBinaryHandle);
657       if (RegisterGlobalsFunc) {
658         auto HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
659         CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue);
660       }
661     }
662   } else if (!RelocatableDeviceCode) {
663     // Register binary with CUDA runtime. This is substantially different in
664     // default mode vs. separate compilation!
665     // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
666     llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
667         RegisterFatbinFunc,
668         CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
669     GpuBinaryHandle = new llvm::GlobalVariable(
670         TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage,
671         llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle");
672     GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
673     CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle,
674                                    CGM.getPointerAlign());
675
676     // Call __cuda_register_globals(GpuBinaryHandle);
677     if (RegisterGlobalsFunc)
678       CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall);
679
680     // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
681     if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
682                            CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) {
683       // void __cudaRegisterFatBinaryEnd(void **);
684       llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction(
685           llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
686           "__cudaRegisterFatBinaryEnd");
687       CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall);
688     }
689   } else {
690     // Generate a unique module ID.
691     SmallString<64> ModuleID;
692     llvm::raw_svector_ostream OS(ModuleID);
693     OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID());
694     llvm::Constant *ModuleIDConstant =
695         makeConstantString(ModuleID.str(), "", ModuleIDSectionName, 32);
696
697     // Create an alias for the FatbinWrapper that nvcc will look for.
698     llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage,
699                               Twine("__fatbinwrap") + ModuleID, FatbinWrapper);
700
701     // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
702     // void *, void (*)(void **))
703     SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
704     RegisterLinkedBinaryName += ModuleID;
705     llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction(
706         getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName);
707
708     assert(RegisterGlobalsFunc && "Expecting at least dummy function!");
709     llvm::Value *Args[] = {RegisterGlobalsFunc,
710                            CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy),
711                            ModuleIDConstant,
712                            makeDummyFunction(getCallbackFnTy())};
713     CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args);
714   }
715
716   // Create destructor and register it with atexit() the way NVCC does it. Doing
717   // it during regular destructor phase worked in CUDA before 9.2 but results in
718   // double-free in 9.2.
719   if (llvm::Function *CleanupFn = makeModuleDtorFunction()) {
720     // extern "C" int atexit(void (*f)(void));
721     llvm::FunctionType *AtExitTy =
722         llvm::FunctionType::get(IntTy, CleanupFn->getType(), false);
723     llvm::FunctionCallee AtExitFunc =
724         CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(),
725                                   /*Local=*/true);
726     CtorBuilder.CreateCall(AtExitFunc, CleanupFn);
727   }
728
729   CtorBuilder.CreateRetVoid();
730   return ModuleCtorFunc;
731 }
732
733 /// Creates a global destructor function that unregisters the GPU code blob
734 /// registered by constructor.
735 ///
736 /// For CUDA:
737 /// \code
738 /// void __cuda_module_dtor(void*) {
739 ///     __cudaUnregisterFatBinary(Handle);
740 /// }
741 /// \endcode
742 ///
743 /// For HIP:
744 /// \code
745 /// void __hip_module_dtor(void*) {
746 ///     if (__hip_gpubin_handle) {
747 ///         __hipUnregisterFatBinary(__hip_gpubin_handle);
748 ///         __hip_gpubin_handle = 0;
749 ///     }
750 /// }
751 /// \endcode
752 llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() {
753   // No need for destructor if we don't have a handle to unregister.
754   if (!GpuBinaryHandle)
755     return nullptr;
756
757   // void __cudaUnregisterFatBinary(void ** handle);
758   llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction(
759       llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
760       addUnderscoredPrefixToName("UnregisterFatBinary"));
761
762   llvm::Function *ModuleDtorFunc = llvm::Function::Create(
763       llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
764       llvm::GlobalValue::InternalLinkage,
765       addUnderscoredPrefixToName("_module_dtor"), &TheModule);
766
767   llvm::BasicBlock *DtorEntryBB =
768       llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc);
769   CGBuilderTy DtorBuilder(CGM, Context);
770   DtorBuilder.SetInsertPoint(DtorEntryBB);
771
772   Address GpuBinaryAddr(GpuBinaryHandle, CharUnits::fromQuantity(
773                                              GpuBinaryHandle->getAlignment()));
774   auto HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr);
775   // There is only one HIP fat binary per linked module, however there are
776   // multiple destructor functions. Make sure the fat binary is unregistered
777   // only once.
778   if (CGM.getLangOpts().HIP) {
779     llvm::BasicBlock *IfBlock =
780         llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc);
781     llvm::BasicBlock *ExitBlock =
782         llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc);
783     llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType());
784     llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero);
785     DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock);
786
787     DtorBuilder.SetInsertPoint(IfBlock);
788     DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
789     DtorBuilder.CreateStore(Zero, GpuBinaryAddr);
790     DtorBuilder.CreateBr(ExitBlock);
791
792     DtorBuilder.SetInsertPoint(ExitBlock);
793   } else {
794     DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
795   }
796   DtorBuilder.CreateRetVoid();
797   return ModuleDtorFunc;
798 }
799
800 std::string CGNVCUDARuntime::getDeviceStubName(llvm::StringRef Name) const {
801   if (!CGM.getLangOpts().HIP)
802     return Name;
803   return (Name + ".stub").str();
804 }
805
806 CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) {
807   return new CGNVCUDARuntime(CGM);
808 }