]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/clang/lib/CodeGen/CGExpr.cpp
THIS BRANCH IS OBSOLETE, PLEASE READ:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / clang / lib / CodeGen / CGExpr.cpp
1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "llvm/ADT/Hashing.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/Support/ConvertUTF.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/Path.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41
42 #include <string>
43
44 using namespace clang;
45 using namespace CodeGen;
46
47 //===--------------------------------------------------------------------===//
48 //                        Miscellaneous Helper Methods
49 //===--------------------------------------------------------------------===//
50
51 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
52   unsigned addressSpace =
53       cast<llvm::PointerType>(value->getType())->getAddressSpace();
54
55   llvm::PointerType *destType = Int8PtrTy;
56   if (addressSpace)
57     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
58
59   if (value->getType() == destType) return value;
60   return Builder.CreateBitCast(value, destType);
61 }
62
63 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
64 /// block.
65 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
66                                                      CharUnits Align,
67                                                      const Twine &Name,
68                                                      llvm::Value *ArraySize) {
69   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
70   Alloca->setAlignment(Align.getAsAlign());
71   return Address(Alloca, Align);
72 }
73
74 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
75 /// block. The alloca is casted to default address space if necessary.
76 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
77                                           const Twine &Name,
78                                           llvm::Value *ArraySize,
79                                           Address *AllocaAddr) {
80   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
81   if (AllocaAddr)
82     *AllocaAddr = Alloca;
83   llvm::Value *V = Alloca.getPointer();
84   // Alloca always returns a pointer in alloca address space, which may
85   // be different from the type defined by the language. For example,
86   // in C++ the auto variables are in the default address space. Therefore
87   // cast alloca to the default address space when necessary.
88   if (getASTAllocaAddressSpace() != LangAS::Default) {
89     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
90     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
91     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
92     // otherwise alloca is inserted at the current insertion point of the
93     // builder.
94     if (!ArraySize)
95       Builder.SetInsertPoint(AllocaInsertPt);
96     V = getTargetHooks().performAddrSpaceCast(
97         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
98         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
99   }
100
101   return Address(V, Align);
102 }
103
104 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
105 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
106 /// insertion point of the builder.
107 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
108                                                     const Twine &Name,
109                                                     llvm::Value *ArraySize) {
110   if (ArraySize)
111     return Builder.CreateAlloca(Ty, ArraySize, Name);
112   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
113                               ArraySize, Name, AllocaInsertPt);
114 }
115
116 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
117 /// default alignment of the corresponding LLVM type, which is *not*
118 /// guaranteed to be related in any way to the expected alignment of
119 /// an AST type that might have been lowered to Ty.
120 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
121                                                       const Twine &Name) {
122   CharUnits Align =
123     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
124   return CreateTempAlloca(Ty, Align, Name);
125 }
126
127 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
128   assert(isa<llvm::AllocaInst>(Var.getPointer()));
129   auto *Store = new llvm::StoreInst(Init, Var.getPointer(), /*volatile*/ false,
130                                     Var.getAlignment().getAsAlign());
131   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
132   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
133 }
134
135 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
136   CharUnits Align = getContext().getTypeAlignInChars(Ty);
137   return CreateTempAlloca(ConvertType(Ty), Align, Name);
138 }
139
140 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
141                                        Address *Alloca) {
142   // FIXME: Should we prefer the preferred type alignment here?
143   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
144 }
145
146 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
147                                        const Twine &Name, Address *Alloca) {
148   Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
149                                     /*ArraySize=*/nullptr, Alloca);
150
151   if (Ty->isConstantMatrixType()) {
152     auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType());
153     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
154                                                 ArrayTy->getNumElements());
155
156     Result = Address(
157         Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
158         Result.getAlignment());
159   }
160   return Result;
161 }
162
163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
164                                                   const Twine &Name) {
165   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
166 }
167
168 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
169                                                   const Twine &Name) {
170   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
171                                   Name);
172 }
173
174 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
175 /// expression and compare the result against zero, returning an Int1Ty value.
176 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
177   PGO.setCurrentStmt(E);
178   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
179     llvm::Value *MemPtr = EmitScalarExpr(E);
180     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
181   }
182
183   QualType BoolTy = getContext().BoolTy;
184   SourceLocation Loc = E->getExprLoc();
185   if (!E->getType()->isAnyComplexType())
186     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
187
188   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
189                                        Loc);
190 }
191
192 /// EmitIgnoredExpr - Emit code to compute the specified expression,
193 /// ignoring the result.
194 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
195   if (E->isRValue())
196     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
197
198   // Just emit it as an l-value and drop the result.
199   EmitLValue(E);
200 }
201
202 /// EmitAnyExpr - Emit code to compute the specified expression which
203 /// can have any type.  The result is returned as an RValue struct.
204 /// If this is an aggregate expression, AggSlot indicates where the
205 /// result should be returned.
206 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
207                                     AggValueSlot aggSlot,
208                                     bool ignoreResult) {
209   switch (getEvaluationKind(E->getType())) {
210   case TEK_Scalar:
211     return RValue::get(EmitScalarExpr(E, ignoreResult));
212   case TEK_Complex:
213     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
214   case TEK_Aggregate:
215     if (!ignoreResult && aggSlot.isIgnored())
216       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
217     EmitAggExpr(E, aggSlot);
218     return aggSlot.asRValue();
219   }
220   llvm_unreachable("bad evaluation kind");
221 }
222
223 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
224 /// always be accessible even if no aggregate location is provided.
225 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
226   AggValueSlot AggSlot = AggValueSlot::ignored();
227
228   if (hasAggregateEvaluationKind(E->getType()))
229     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
230   return EmitAnyExpr(E, AggSlot);
231 }
232
233 /// EmitAnyExprToMem - Evaluate an expression into a given memory
234 /// location.
235 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
236                                        Address Location,
237                                        Qualifiers Quals,
238                                        bool IsInit) {
239   // FIXME: This function should take an LValue as an argument.
240   switch (getEvaluationKind(E->getType())) {
241   case TEK_Complex:
242     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
243                               /*isInit*/ false);
244     return;
245
246   case TEK_Aggregate: {
247     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
248                                          AggValueSlot::IsDestructed_t(IsInit),
249                                          AggValueSlot::DoesNotNeedGCBarriers,
250                                          AggValueSlot::IsAliased_t(!IsInit),
251                                          AggValueSlot::MayOverlap));
252     return;
253   }
254
255   case TEK_Scalar: {
256     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
257     LValue LV = MakeAddrLValue(Location, E->getType());
258     EmitStoreThroughLValue(RV, LV);
259     return;
260   }
261   }
262   llvm_unreachable("bad evaluation kind");
263 }
264
265 static void
266 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
267                      const Expr *E, Address ReferenceTemporary) {
268   // Objective-C++ ARC:
269   //   If we are binding a reference to a temporary that has ownership, we
270   //   need to perform retain/release operations on the temporary.
271   //
272   // FIXME: This should be looking at E, not M.
273   if (auto Lifetime = M->getType().getObjCLifetime()) {
274     switch (Lifetime) {
275     case Qualifiers::OCL_None:
276     case Qualifiers::OCL_ExplicitNone:
277       // Carry on to normal cleanup handling.
278       break;
279
280     case Qualifiers::OCL_Autoreleasing:
281       // Nothing to do; cleaned up by an autorelease pool.
282       return;
283
284     case Qualifiers::OCL_Strong:
285     case Qualifiers::OCL_Weak:
286       switch (StorageDuration Duration = M->getStorageDuration()) {
287       case SD_Static:
288         // Note: we intentionally do not register a cleanup to release
289         // the object on program termination.
290         return;
291
292       case SD_Thread:
293         // FIXME: We should probably register a cleanup in this case.
294         return;
295
296       case SD_Automatic:
297       case SD_FullExpression:
298         CodeGenFunction::Destroyer *Destroy;
299         CleanupKind CleanupKind;
300         if (Lifetime == Qualifiers::OCL_Strong) {
301           const ValueDecl *VD = M->getExtendingDecl();
302           bool Precise =
303               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
304           CleanupKind = CGF.getARCCleanupKind();
305           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
306                             : &CodeGenFunction::destroyARCStrongImprecise;
307         } else {
308           // __weak objects always get EH cleanups; otherwise, exceptions
309           // could cause really nasty crashes instead of mere leaks.
310           CleanupKind = NormalAndEHCleanup;
311           Destroy = &CodeGenFunction::destroyARCWeak;
312         }
313         if (Duration == SD_FullExpression)
314           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
315                           M->getType(), *Destroy,
316                           CleanupKind & EHCleanup);
317         else
318           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
319                                           M->getType(),
320                                           *Destroy, CleanupKind & EHCleanup);
321         return;
322
323       case SD_Dynamic:
324         llvm_unreachable("temporary cannot have dynamic storage duration");
325       }
326       llvm_unreachable("unknown storage duration");
327     }
328   }
329
330   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
331   if (const RecordType *RT =
332           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
333     // Get the destructor for the reference temporary.
334     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
335     if (!ClassDecl->hasTrivialDestructor())
336       ReferenceTemporaryDtor = ClassDecl->getDestructor();
337   }
338
339   if (!ReferenceTemporaryDtor)
340     return;
341
342   // Call the destructor for the temporary.
343   switch (M->getStorageDuration()) {
344   case SD_Static:
345   case SD_Thread: {
346     llvm::FunctionCallee CleanupFn;
347     llvm::Constant *CleanupArg;
348     if (E->getType()->isArrayType()) {
349       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
350           ReferenceTemporary, E->getType(),
351           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
352           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
353       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
354     } else {
355       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
356           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
357       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
358     }
359     CGF.CGM.getCXXABI().registerGlobalDtor(
360         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
361     break;
362   }
363
364   case SD_FullExpression:
365     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
366                     CodeGenFunction::destroyCXXObject,
367                     CGF.getLangOpts().Exceptions);
368     break;
369
370   case SD_Automatic:
371     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
372                                     ReferenceTemporary, E->getType(),
373                                     CodeGenFunction::destroyCXXObject,
374                                     CGF.getLangOpts().Exceptions);
375     break;
376
377   case SD_Dynamic:
378     llvm_unreachable("temporary cannot have dynamic storage duration");
379   }
380 }
381
382 static Address createReferenceTemporary(CodeGenFunction &CGF,
383                                         const MaterializeTemporaryExpr *M,
384                                         const Expr *Inner,
385                                         Address *Alloca = nullptr) {
386   auto &TCG = CGF.getTargetHooks();
387   switch (M->getStorageDuration()) {
388   case SD_FullExpression:
389   case SD_Automatic: {
390     // If we have a constant temporary array or record try to promote it into a
391     // constant global under the same rules a normal constant would've been
392     // promoted. This is easier on the optimizer and generally emits fewer
393     // instructions.
394     QualType Ty = Inner->getType();
395     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
396         (Ty->isArrayType() || Ty->isRecordType()) &&
397         CGF.CGM.isTypeConstant(Ty, true))
398       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
399         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
400           auto AS = AddrSpace.getValue();
401           auto *GV = new llvm::GlobalVariable(
402               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
403               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
404               llvm::GlobalValue::NotThreadLocal,
405               CGF.getContext().getTargetAddressSpace(AS));
406           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
407           GV->setAlignment(alignment.getAsAlign());
408           llvm::Constant *C = GV;
409           if (AS != LangAS::Default)
410             C = TCG.performAddrSpaceCast(
411                 CGF.CGM, GV, AS, LangAS::Default,
412                 GV->getValueType()->getPointerTo(
413                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
414           // FIXME: Should we put the new global into a COMDAT?
415           return Address(C, alignment);
416         }
417       }
418     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
419   }
420   case SD_Thread:
421   case SD_Static:
422     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
423
424   case SD_Dynamic:
425     llvm_unreachable("temporary can't have dynamic storage duration");
426   }
427   llvm_unreachable("unknown storage duration");
428 }
429
430 /// Helper method to check if the underlying ABI is AAPCS
431 static bool isAAPCS(const TargetInfo &TargetInfo) {
432   return TargetInfo.getABI().startswith("aapcs");
433 }
434
435 LValue CodeGenFunction::
436 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
437   const Expr *E = M->getSubExpr();
438
439   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
440           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
441          "Reference should never be pseudo-strong!");
442
443   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
444   // as that will cause the lifetime adjustment to be lost for ARC
445   auto ownership = M->getType().getObjCLifetime();
446   if (ownership != Qualifiers::OCL_None &&
447       ownership != Qualifiers::OCL_ExplicitNone) {
448     Address Object = createReferenceTemporary(*this, M, E);
449     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
450       Object = Address(llvm::ConstantExpr::getBitCast(Var,
451                            ConvertTypeForMem(E->getType())
452                              ->getPointerTo(Object.getAddressSpace())),
453                        Object.getAlignment());
454
455       // createReferenceTemporary will promote the temporary to a global with a
456       // constant initializer if it can.  It can only do this to a value of
457       // ARC-manageable type if the value is global and therefore "immune" to
458       // ref-counting operations.  Therefore we have no need to emit either a
459       // dynamic initialization or a cleanup and we can just return the address
460       // of the temporary.
461       if (Var->hasInitializer())
462         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
463
464       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
465     }
466     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
467                                        AlignmentSource::Decl);
468
469     switch (getEvaluationKind(E->getType())) {
470     default: llvm_unreachable("expected scalar or aggregate expression");
471     case TEK_Scalar:
472       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
473       break;
474     case TEK_Aggregate: {
475       EmitAggExpr(E, AggValueSlot::forAddr(Object,
476                                            E->getType().getQualifiers(),
477                                            AggValueSlot::IsDestructed,
478                                            AggValueSlot::DoesNotNeedGCBarriers,
479                                            AggValueSlot::IsNotAliased,
480                                            AggValueSlot::DoesNotOverlap));
481       break;
482     }
483     }
484
485     pushTemporaryCleanup(*this, M, E, Object);
486     return RefTempDst;
487   }
488
489   SmallVector<const Expr *, 2> CommaLHSs;
490   SmallVector<SubobjectAdjustment, 2> Adjustments;
491   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
492
493   for (const auto &Ignored : CommaLHSs)
494     EmitIgnoredExpr(Ignored);
495
496   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
497     if (opaque->getType()->isRecordType()) {
498       assert(Adjustments.empty());
499       return EmitOpaqueValueLValue(opaque);
500     }
501   }
502
503   // Create and initialize the reference temporary.
504   Address Alloca = Address::invalid();
505   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
506   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
507           Object.getPointer()->stripPointerCasts())) {
508     Object = Address(llvm::ConstantExpr::getBitCast(
509                          cast<llvm::Constant>(Object.getPointer()),
510                          ConvertTypeForMem(E->getType())->getPointerTo()),
511                      Object.getAlignment());
512     // If the temporary is a global and has a constant initializer or is a
513     // constant temporary that we promoted to a global, we may have already
514     // initialized it.
515     if (!Var->hasInitializer()) {
516       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
517       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
518     }
519   } else {
520     switch (M->getStorageDuration()) {
521     case SD_Automatic:
522       if (auto *Size = EmitLifetimeStart(
523               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
524               Alloca.getPointer())) {
525         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
526                                                   Alloca, Size);
527       }
528       break;
529
530     case SD_FullExpression: {
531       if (!ShouldEmitLifetimeMarkers)
532         break;
533
534       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
535       // marker. Instead, start the lifetime of a conditional temporary earlier
536       // so that it's unconditional. Don't do this with sanitizers which need
537       // more precise lifetime marks.
538       ConditionalEvaluation *OldConditional = nullptr;
539       CGBuilderTy::InsertPoint OldIP;
540       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
541           !SanOpts.has(SanitizerKind::HWAddress) &&
542           !SanOpts.has(SanitizerKind::Memory) &&
543           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
544         OldConditional = OutermostConditional;
545         OutermostConditional = nullptr;
546
547         OldIP = Builder.saveIP();
548         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
549         Builder.restoreIP(CGBuilderTy::InsertPoint(
550             Block, llvm::BasicBlock::iterator(Block->back())));
551       }
552
553       if (auto *Size = EmitLifetimeStart(
554               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
555               Alloca.getPointer())) {
556         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
557                                              Size);
558       }
559
560       if (OldConditional) {
561         OutermostConditional = OldConditional;
562         Builder.restoreIP(OldIP);
563       }
564       break;
565     }
566
567     default:
568       break;
569     }
570     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
571   }
572   pushTemporaryCleanup(*this, M, E, Object);
573
574   // Perform derived-to-base casts and/or field accesses, to get from the
575   // temporary object we created (and, potentially, for which we extended
576   // the lifetime) to the subobject we're binding the reference to.
577   for (unsigned I = Adjustments.size(); I != 0; --I) {
578     SubobjectAdjustment &Adjustment = Adjustments[I-1];
579     switch (Adjustment.Kind) {
580     case SubobjectAdjustment::DerivedToBaseAdjustment:
581       Object =
582           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
583                                 Adjustment.DerivedToBase.BasePath->path_begin(),
584                                 Adjustment.DerivedToBase.BasePath->path_end(),
585                                 /*NullCheckValue=*/ false, E->getExprLoc());
586       break;
587
588     case SubobjectAdjustment::FieldAdjustment: {
589       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
590       LV = EmitLValueForField(LV, Adjustment.Field);
591       assert(LV.isSimple() &&
592              "materialized temporary field is not a simple lvalue");
593       Object = LV.getAddress(*this);
594       break;
595     }
596
597     case SubobjectAdjustment::MemberPointerAdjustment: {
598       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
599       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
600                                                Adjustment.Ptr.MPT);
601       break;
602     }
603     }
604   }
605
606   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
607 }
608
609 RValue
610 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
611   // Emit the expression as an lvalue.
612   LValue LV = EmitLValue(E);
613   assert(LV.isSimple());
614   llvm::Value *Value = LV.getPointer(*this);
615
616   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
617     // C++11 [dcl.ref]p5 (as amended by core issue 453):
618     //   If a glvalue to which a reference is directly bound designates neither
619     //   an existing object or function of an appropriate type nor a region of
620     //   storage of suitable size and alignment to contain an object of the
621     //   reference's type, the behavior is undefined.
622     QualType Ty = E->getType();
623     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
624   }
625
626   return RValue::get(Value);
627 }
628
629
630 /// getAccessedFieldNo - Given an encoded value and a result number, return the
631 /// input field number being accessed.
632 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
633                                              const llvm::Constant *Elts) {
634   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
635       ->getZExtValue();
636 }
637
638 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
639 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
640                                     llvm::Value *High) {
641   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
642   llvm::Value *K47 = Builder.getInt64(47);
643   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
644   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
645   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
646   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
647   return Builder.CreateMul(B1, KMul);
648 }
649
650 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
651   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
652          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
653 }
654
655 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
656   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
657   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
658          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
659           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
660           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
661 }
662
663 bool CodeGenFunction::sanitizePerformTypeCheck() const {
664   return SanOpts.has(SanitizerKind::Null) |
665          SanOpts.has(SanitizerKind::Alignment) |
666          SanOpts.has(SanitizerKind::ObjectSize) |
667          SanOpts.has(SanitizerKind::Vptr);
668 }
669
670 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
671                                     llvm::Value *Ptr, QualType Ty,
672                                     CharUnits Alignment,
673                                     SanitizerSet SkippedChecks,
674                                     llvm::Value *ArraySize) {
675   if (!sanitizePerformTypeCheck())
676     return;
677
678   // Don't check pointers outside the default address space. The null check
679   // isn't correct, the object-size check isn't supported by LLVM, and we can't
680   // communicate the addresses to the runtime handler for the vptr check.
681   if (Ptr->getType()->getPointerAddressSpace())
682     return;
683
684   // Don't check pointers to volatile data. The behavior here is implementation-
685   // defined.
686   if (Ty.isVolatileQualified())
687     return;
688
689   SanitizerScope SanScope(this);
690
691   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
692   llvm::BasicBlock *Done = nullptr;
693
694   // Quickly determine whether we have a pointer to an alloca. It's possible
695   // to skip null checks, and some alignment checks, for these pointers. This
696   // can reduce compile-time significantly.
697   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
698
699   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
700   llvm::Value *IsNonNull = nullptr;
701   bool IsGuaranteedNonNull =
702       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
703   bool AllowNullPointers = isNullPointerAllowed(TCK);
704   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
705       !IsGuaranteedNonNull) {
706     // The glvalue must not be an empty glvalue.
707     IsNonNull = Builder.CreateIsNotNull(Ptr);
708
709     // The IR builder can constant-fold the null check if the pointer points to
710     // a constant.
711     IsGuaranteedNonNull = IsNonNull == True;
712
713     // Skip the null check if the pointer is known to be non-null.
714     if (!IsGuaranteedNonNull) {
715       if (AllowNullPointers) {
716         // When performing pointer casts, it's OK if the value is null.
717         // Skip the remaining checks in that case.
718         Done = createBasicBlock("null");
719         llvm::BasicBlock *Rest = createBasicBlock("not.null");
720         Builder.CreateCondBr(IsNonNull, Rest, Done);
721         EmitBlock(Rest);
722       } else {
723         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
724       }
725     }
726   }
727
728   if (SanOpts.has(SanitizerKind::ObjectSize) &&
729       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
730       !Ty->isIncompleteType()) {
731     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
732     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
733     if (ArraySize)
734       Size = Builder.CreateMul(Size, ArraySize);
735
736     // Degenerate case: new X[0] does not need an objectsize check.
737     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
738     if (!ConstantSize || !ConstantSize->isNullValue()) {
739       // The glvalue must refer to a large enough storage region.
740       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
741       //        to check this.
742       // FIXME: Get object address space
743       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
744       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
745       llvm::Value *Min = Builder.getFalse();
746       llvm::Value *NullIsUnknown = Builder.getFalse();
747       llvm::Value *Dynamic = Builder.getFalse();
748       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
749       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
750           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
751       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
752     }
753   }
754
755   uint64_t AlignVal = 0;
756   llvm::Value *PtrAsInt = nullptr;
757
758   if (SanOpts.has(SanitizerKind::Alignment) &&
759       !SkippedChecks.has(SanitizerKind::Alignment)) {
760     AlignVal = Alignment.getQuantity();
761     if (!Ty->isIncompleteType() && !AlignVal)
762       AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
763                                              /*ForPointeeType=*/true)
764                      .getQuantity();
765
766     // The glvalue must be suitably aligned.
767     if (AlignVal > 1 &&
768         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
769       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
770       llvm::Value *Align = Builder.CreateAnd(
771           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
772       llvm::Value *Aligned =
773           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
774       if (Aligned != True)
775         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
776     }
777   }
778
779   if (Checks.size() > 0) {
780     // Make sure we're not losing information. Alignment needs to be a power of
781     // 2
782     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
783     llvm::Constant *StaticData[] = {
784         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
785         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
786         llvm::ConstantInt::get(Int8Ty, TCK)};
787     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
788               PtrAsInt ? PtrAsInt : Ptr);
789   }
790
791   // If possible, check that the vptr indicates that there is a subobject of
792   // type Ty at offset zero within this object.
793   //
794   // C++11 [basic.life]p5,6:
795   //   [For storage which does not refer to an object within its lifetime]
796   //   The program has undefined behavior if:
797   //    -- the [pointer or glvalue] is used to access a non-static data member
798   //       or call a non-static member function
799   if (SanOpts.has(SanitizerKind::Vptr) &&
800       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
801     // Ensure that the pointer is non-null before loading it. If there is no
802     // compile-time guarantee, reuse the run-time null check or emit a new one.
803     if (!IsGuaranteedNonNull) {
804       if (!IsNonNull)
805         IsNonNull = Builder.CreateIsNotNull(Ptr);
806       if (!Done)
807         Done = createBasicBlock("vptr.null");
808       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
809       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
810       EmitBlock(VptrNotNull);
811     }
812
813     // Compute a hash of the mangled name of the type.
814     //
815     // FIXME: This is not guaranteed to be deterministic! Move to a
816     //        fingerprinting mechanism once LLVM provides one. For the time
817     //        being the implementation happens to be deterministic.
818     SmallString<64> MangledName;
819     llvm::raw_svector_ostream Out(MangledName);
820     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
821                                                      Out);
822
823     // Blacklist based on the mangled type.
824     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
825             SanitizerKind::Vptr, Out.str())) {
826       llvm::hash_code TypeHash = hash_value(Out.str());
827
828       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
829       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
830       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
831       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
832       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
833       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
834
835       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
836       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
837
838       // Look the hash up in our cache.
839       const int CacheSize = 128;
840       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
841       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
842                                                      "__ubsan_vptr_type_cache");
843       llvm::Value *Slot = Builder.CreateAnd(Hash,
844                                             llvm::ConstantInt::get(IntPtrTy,
845                                                                    CacheSize-1));
846       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
847       llvm::Value *CacheVal =
848         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
849                                   getPointerAlign());
850
851       // If the hash isn't in the cache, call a runtime handler to perform the
852       // hard work of checking whether the vptr is for an object of the right
853       // type. This will either fill in the cache and return, or produce a
854       // diagnostic.
855       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
856       llvm::Constant *StaticData[] = {
857         EmitCheckSourceLocation(Loc),
858         EmitCheckTypeDescriptor(Ty),
859         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
860         llvm::ConstantInt::get(Int8Ty, TCK)
861       };
862       llvm::Value *DynamicData[] = { Ptr, Hash };
863       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
864                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
865                 DynamicData);
866     }
867   }
868
869   if (Done) {
870     Builder.CreateBr(Done);
871     EmitBlock(Done);
872   }
873 }
874
875 /// Determine whether this expression refers to a flexible array member in a
876 /// struct. We disable array bounds checks for such members.
877 static bool isFlexibleArrayMemberExpr(const Expr *E) {
878   // For compatibility with existing code, we treat arrays of length 0 or
879   // 1 as flexible array members.
880   // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
881   // the two mechanisms.
882   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
883   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
884     // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
885     // was produced by macro expansion.
886     if (CAT->getSize().ugt(1))
887       return false;
888   } else if (!isa<IncompleteArrayType>(AT))
889     return false;
890
891   E = E->IgnoreParens();
892
893   // A flexible array member must be the last member in the class.
894   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
895     // FIXME: If the base type of the member expr is not FD->getParent(),
896     // this should not be treated as a flexible array member access.
897     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
898       // FIXME: Sema doesn't treat a T[1] union member as a flexible array
899       // member, only a T[0] or T[] member gets that treatment.
900       if (FD->getParent()->isUnion())
901         return true;
902       RecordDecl::field_iterator FI(
903           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
904       return ++FI == FD->getParent()->field_end();
905     }
906   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
907     return IRE->getDecl()->getNextIvar() == nullptr;
908   }
909
910   return false;
911 }
912
913 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
914                                                    QualType EltTy) {
915   ASTContext &C = getContext();
916   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
917   if (!EltSize)
918     return nullptr;
919
920   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
921   if (!ArrayDeclRef)
922     return nullptr;
923
924   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
925   if (!ParamDecl)
926     return nullptr;
927
928   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
929   if (!POSAttr)
930     return nullptr;
931
932   // Don't load the size if it's a lower bound.
933   int POSType = POSAttr->getType();
934   if (POSType != 0 && POSType != 1)
935     return nullptr;
936
937   // Find the implicit size parameter.
938   auto PassedSizeIt = SizeArguments.find(ParamDecl);
939   if (PassedSizeIt == SizeArguments.end())
940     return nullptr;
941
942   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
943   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
944   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
945   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
946                                               C.getSizeType(), E->getExprLoc());
947   llvm::Value *SizeOfElement =
948       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
949   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
950 }
951
952 /// If Base is known to point to the start of an array, return the length of
953 /// that array. Return 0 if the length cannot be determined.
954 static llvm::Value *getArrayIndexingBound(
955     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
956   // For the vector indexing extension, the bound is the number of elements.
957   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
958     IndexedType = Base->getType();
959     return CGF.Builder.getInt32(VT->getNumElements());
960   }
961
962   Base = Base->IgnoreParens();
963
964   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
965     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
966         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
967       IndexedType = CE->getSubExpr()->getType();
968       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
969       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
970         return CGF.Builder.getInt(CAT->getSize());
971       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
972         return CGF.getVLASize(VAT).NumElts;
973       // Ignore pass_object_size here. It's not applicable on decayed pointers.
974     }
975   }
976
977   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
978   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
979     IndexedType = Base->getType();
980     return POS;
981   }
982
983   return nullptr;
984 }
985
986 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
987                                       llvm::Value *Index, QualType IndexType,
988                                       bool Accessed) {
989   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
990          "should not be called unless adding bounds checks");
991   SanitizerScope SanScope(this);
992
993   QualType IndexedType;
994   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
995   if (!Bound)
996     return;
997
998   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
999   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1000   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1001
1002   llvm::Constant *StaticData[] = {
1003     EmitCheckSourceLocation(E->getExprLoc()),
1004     EmitCheckTypeDescriptor(IndexedType),
1005     EmitCheckTypeDescriptor(IndexType)
1006   };
1007   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1008                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
1009   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1010             SanitizerHandler::OutOfBounds, StaticData, Index);
1011 }
1012
1013
1014 CodeGenFunction::ComplexPairTy CodeGenFunction::
1015 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1016                          bool isInc, bool isPre) {
1017   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1018
1019   llvm::Value *NextVal;
1020   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1021     uint64_t AmountVal = isInc ? 1 : -1;
1022     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1023
1024     // Add the inc/dec to the real part.
1025     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1026   } else {
1027     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1028     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1029     if (!isInc)
1030       FVal.changeSign();
1031     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1032
1033     // Add the inc/dec to the real part.
1034     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1035   }
1036
1037   ComplexPairTy IncVal(NextVal, InVal.second);
1038
1039   // Store the updated result through the lvalue.
1040   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1041   if (getLangOpts().OpenMP)
1042     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1043                                                               E->getSubExpr());
1044
1045   // If this is a postinc, return the value read from memory, otherwise use the
1046   // updated value.
1047   return isPre ? IncVal : InVal;
1048 }
1049
1050 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1051                                              CodeGenFunction *CGF) {
1052   // Bind VLAs in the cast type.
1053   if (CGF && E->getType()->isVariablyModifiedType())
1054     CGF->EmitVariablyModifiedType(E->getType());
1055
1056   if (CGDebugInfo *DI = getModuleDebugInfo())
1057     DI->EmitExplicitCastType(E->getType());
1058 }
1059
1060 //===----------------------------------------------------------------------===//
1061 //                         LValue Expression Emission
1062 //===----------------------------------------------------------------------===//
1063
1064 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1065 /// derive a more accurate bound on the alignment of the pointer.
1066 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1067                                                   LValueBaseInfo *BaseInfo,
1068                                                   TBAAAccessInfo *TBAAInfo) {
1069   // We allow this with ObjC object pointers because of fragile ABIs.
1070   assert(E->getType()->isPointerType() ||
1071          E->getType()->isObjCObjectPointerType());
1072   E = E->IgnoreParens();
1073
1074   // Casts:
1075   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1076     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1077       CGM.EmitExplicitCastExprType(ECE, this);
1078
1079     switch (CE->getCastKind()) {
1080     // Non-converting casts (but not C's implicit conversion from void*).
1081     case CK_BitCast:
1082     case CK_NoOp:
1083     case CK_AddressSpaceConversion:
1084       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1085         if (PtrTy->getPointeeType()->isVoidType())
1086           break;
1087
1088         LValueBaseInfo InnerBaseInfo;
1089         TBAAAccessInfo InnerTBAAInfo;
1090         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1091                                                 &InnerBaseInfo,
1092                                                 &InnerTBAAInfo);
1093         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1094         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1095
1096         if (isa<ExplicitCastExpr>(CE)) {
1097           LValueBaseInfo TargetTypeBaseInfo;
1098           TBAAAccessInfo TargetTypeTBAAInfo;
1099           CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1100               E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1101           if (TBAAInfo)
1102             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1103                                                  TargetTypeTBAAInfo);
1104           // If the source l-value is opaque, honor the alignment of the
1105           // casted-to type.
1106           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1107             if (BaseInfo)
1108               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1109             Addr = Address(Addr.getPointer(), Align);
1110           }
1111         }
1112
1113         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1114             CE->getCastKind() == CK_BitCast) {
1115           if (auto PT = E->getType()->getAs<PointerType>())
1116             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1117                                       /*MayBeNull=*/true,
1118                                       CodeGenFunction::CFITCK_UnrelatedCast,
1119                                       CE->getBeginLoc());
1120         }
1121         return CE->getCastKind() != CK_AddressSpaceConversion
1122                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1123                    : Builder.CreateAddrSpaceCast(Addr,
1124                                                  ConvertType(E->getType()));
1125       }
1126       break;
1127
1128     // Array-to-pointer decay.
1129     case CK_ArrayToPointerDecay:
1130       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1131
1132     // Derived-to-base conversions.
1133     case CK_UncheckedDerivedToBase:
1134     case CK_DerivedToBase: {
1135       // TODO: Support accesses to members of base classes in TBAA. For now, we
1136       // conservatively pretend that the complete object is of the base class
1137       // type.
1138       if (TBAAInfo)
1139         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1140       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1141       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1142       return GetAddressOfBaseClass(Addr, Derived,
1143                                    CE->path_begin(), CE->path_end(),
1144                                    ShouldNullCheckClassCastValue(CE),
1145                                    CE->getExprLoc());
1146     }
1147
1148     // TODO: Is there any reason to treat base-to-derived conversions
1149     // specially?
1150     default:
1151       break;
1152     }
1153   }
1154
1155   // Unary &.
1156   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1157     if (UO->getOpcode() == UO_AddrOf) {
1158       LValue LV = EmitLValue(UO->getSubExpr());
1159       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1160       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1161       return LV.getAddress(*this);
1162     }
1163   }
1164
1165   // TODO: conditional operators, comma.
1166
1167   // Otherwise, use the alignment of the type.
1168   CharUnits Align =
1169       CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1170   return Address(EmitScalarExpr(E), Align);
1171 }
1172
1173 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1174   if (Ty->isVoidType())
1175     return RValue::get(nullptr);
1176
1177   switch (getEvaluationKind(Ty)) {
1178   case TEK_Complex: {
1179     llvm::Type *EltTy =
1180       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1181     llvm::Value *U = llvm::UndefValue::get(EltTy);
1182     return RValue::getComplex(std::make_pair(U, U));
1183   }
1184
1185   // If this is a use of an undefined aggregate type, the aggregate must have an
1186   // identifiable address.  Just because the contents of the value are undefined
1187   // doesn't mean that the address can't be taken and compared.
1188   case TEK_Aggregate: {
1189     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1190     return RValue::getAggregate(DestPtr);
1191   }
1192
1193   case TEK_Scalar:
1194     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1195   }
1196   llvm_unreachable("bad evaluation kind");
1197 }
1198
1199 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1200                                               const char *Name) {
1201   ErrorUnsupported(E, Name);
1202   return GetUndefRValue(E->getType());
1203 }
1204
1205 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1206                                               const char *Name) {
1207   ErrorUnsupported(E, Name);
1208   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1209   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1210                         E->getType());
1211 }
1212
1213 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1214   const Expr *Base = Obj;
1215   while (!isa<CXXThisExpr>(Base)) {
1216     // The result of a dynamic_cast can be null.
1217     if (isa<CXXDynamicCastExpr>(Base))
1218       return false;
1219
1220     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1221       Base = CE->getSubExpr();
1222     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1223       Base = PE->getSubExpr();
1224     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1225       if (UO->getOpcode() == UO_Extension)
1226         Base = UO->getSubExpr();
1227       else
1228         return false;
1229     } else {
1230       return false;
1231     }
1232   }
1233   return true;
1234 }
1235
1236 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1237   LValue LV;
1238   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1239     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1240   else
1241     LV = EmitLValue(E);
1242   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1243     SanitizerSet SkippedChecks;
1244     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1245       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1246       if (IsBaseCXXThis)
1247         SkippedChecks.set(SanitizerKind::Alignment, true);
1248       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1249         SkippedChecks.set(SanitizerKind::Null, true);
1250     }
1251     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1252                   LV.getAlignment(), SkippedChecks);
1253   }
1254   return LV;
1255 }
1256
1257 /// EmitLValue - Emit code to compute a designator that specifies the location
1258 /// of the expression.
1259 ///
1260 /// This can return one of two things: a simple address or a bitfield reference.
1261 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1262 /// an LLVM pointer type.
1263 ///
1264 /// If this returns a bitfield reference, nothing about the pointee type of the
1265 /// LLVM value is known: For example, it may not be a pointer to an integer.
1266 ///
1267 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1268 /// this method guarantees that the returned pointer type will point to an LLVM
1269 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1270 /// length type, this is not possible.
1271 ///
1272 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1273   ApplyDebugLocation DL(*this, E);
1274   switch (E->getStmtClass()) {
1275   default: return EmitUnsupportedLValue(E, "l-value expression");
1276
1277   case Expr::ObjCPropertyRefExprClass:
1278     llvm_unreachable("cannot emit a property reference directly");
1279
1280   case Expr::ObjCSelectorExprClass:
1281     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1282   case Expr::ObjCIsaExprClass:
1283     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1284   case Expr::BinaryOperatorClass:
1285     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1286   case Expr::CompoundAssignOperatorClass: {
1287     QualType Ty = E->getType();
1288     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1289       Ty = AT->getValueType();
1290     if (!Ty->isAnyComplexType())
1291       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1292     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1293   }
1294   case Expr::CallExprClass:
1295   case Expr::CXXMemberCallExprClass:
1296   case Expr::CXXOperatorCallExprClass:
1297   case Expr::UserDefinedLiteralClass:
1298     return EmitCallExprLValue(cast<CallExpr>(E));
1299   case Expr::CXXRewrittenBinaryOperatorClass:
1300     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1301   case Expr::VAArgExprClass:
1302     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1303   case Expr::DeclRefExprClass:
1304     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1305   case Expr::ConstantExprClass: {
1306     const ConstantExpr *CE = cast<ConstantExpr>(E);
1307     if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1308       QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1309                              ->getCallReturnType(getContext());
1310       return MakeNaturalAlignAddrLValue(Result, RetType);
1311     }
1312     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1313   }
1314   case Expr::ParenExprClass:
1315     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1316   case Expr::GenericSelectionExprClass:
1317     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1318   case Expr::PredefinedExprClass:
1319     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1320   case Expr::StringLiteralClass:
1321     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1322   case Expr::ObjCEncodeExprClass:
1323     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1324   case Expr::PseudoObjectExprClass:
1325     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1326   case Expr::InitListExprClass:
1327     return EmitInitListLValue(cast<InitListExpr>(E));
1328   case Expr::CXXTemporaryObjectExprClass:
1329   case Expr::CXXConstructExprClass:
1330     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1331   case Expr::CXXBindTemporaryExprClass:
1332     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1333   case Expr::CXXUuidofExprClass:
1334     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1335   case Expr::LambdaExprClass:
1336     return EmitAggExprToLValue(E);
1337
1338   case Expr::ExprWithCleanupsClass: {
1339     const auto *cleanups = cast<ExprWithCleanups>(E);
1340     RunCleanupsScope Scope(*this);
1341     LValue LV = EmitLValue(cleanups->getSubExpr());
1342     if (LV.isSimple()) {
1343       // Defend against branches out of gnu statement expressions surrounded by
1344       // cleanups.
1345       llvm::Value *V = LV.getPointer(*this);
1346       Scope.ForceCleanup({&V});
1347       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1348                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1349     }
1350     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1351     // bitfield lvalue or some other non-simple lvalue?
1352     return LV;
1353   }
1354
1355   case Expr::CXXDefaultArgExprClass: {
1356     auto *DAE = cast<CXXDefaultArgExpr>(E);
1357     CXXDefaultArgExprScope Scope(*this, DAE);
1358     return EmitLValue(DAE->getExpr());
1359   }
1360   case Expr::CXXDefaultInitExprClass: {
1361     auto *DIE = cast<CXXDefaultInitExpr>(E);
1362     CXXDefaultInitExprScope Scope(*this, DIE);
1363     return EmitLValue(DIE->getExpr());
1364   }
1365   case Expr::CXXTypeidExprClass:
1366     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1367
1368   case Expr::ObjCMessageExprClass:
1369     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1370   case Expr::ObjCIvarRefExprClass:
1371     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1372   case Expr::StmtExprClass:
1373     return EmitStmtExprLValue(cast<StmtExpr>(E));
1374   case Expr::UnaryOperatorClass:
1375     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1376   case Expr::ArraySubscriptExprClass:
1377     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1378   case Expr::MatrixSubscriptExprClass:
1379     return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1380   case Expr::OMPArraySectionExprClass:
1381     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1382   case Expr::ExtVectorElementExprClass:
1383     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1384   case Expr::MemberExprClass:
1385     return EmitMemberExpr(cast<MemberExpr>(E));
1386   case Expr::CompoundLiteralExprClass:
1387     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1388   case Expr::ConditionalOperatorClass:
1389     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1390   case Expr::BinaryConditionalOperatorClass:
1391     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1392   case Expr::ChooseExprClass:
1393     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1394   case Expr::OpaqueValueExprClass:
1395     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1396   case Expr::SubstNonTypeTemplateParmExprClass:
1397     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1398   case Expr::ImplicitCastExprClass:
1399   case Expr::CStyleCastExprClass:
1400   case Expr::CXXFunctionalCastExprClass:
1401   case Expr::CXXStaticCastExprClass:
1402   case Expr::CXXDynamicCastExprClass:
1403   case Expr::CXXReinterpretCastExprClass:
1404   case Expr::CXXConstCastExprClass:
1405   case Expr::CXXAddrspaceCastExprClass:
1406   case Expr::ObjCBridgedCastExprClass:
1407     return EmitCastLValue(cast<CastExpr>(E));
1408
1409   case Expr::MaterializeTemporaryExprClass:
1410     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1411
1412   case Expr::CoawaitExprClass:
1413     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1414   case Expr::CoyieldExprClass:
1415     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1416   }
1417 }
1418
1419 /// Given an object of the given canonical type, can we safely copy a
1420 /// value out of it based on its initializer?
1421 static bool isConstantEmittableObjectType(QualType type) {
1422   assert(type.isCanonical());
1423   assert(!type->isReferenceType());
1424
1425   // Must be const-qualified but non-volatile.
1426   Qualifiers qs = type.getLocalQualifiers();
1427   if (!qs.hasConst() || qs.hasVolatile()) return false;
1428
1429   // Otherwise, all object types satisfy this except C++ classes with
1430   // mutable subobjects or non-trivial copy/destroy behavior.
1431   if (const auto *RT = dyn_cast<RecordType>(type))
1432     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1433       if (RD->hasMutableFields() || !RD->isTrivial())
1434         return false;
1435
1436   return true;
1437 }
1438
1439 /// Can we constant-emit a load of a reference to a variable of the
1440 /// given type?  This is different from predicates like
1441 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1442 /// in situations that don't necessarily satisfy the language's rules
1443 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1444 /// to do this with const float variables even if those variables
1445 /// aren't marked 'constexpr'.
1446 enum ConstantEmissionKind {
1447   CEK_None,
1448   CEK_AsReferenceOnly,
1449   CEK_AsValueOrReference,
1450   CEK_AsValueOnly
1451 };
1452 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1453   type = type.getCanonicalType();
1454   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1455     if (isConstantEmittableObjectType(ref->getPointeeType()))
1456       return CEK_AsValueOrReference;
1457     return CEK_AsReferenceOnly;
1458   }
1459   if (isConstantEmittableObjectType(type))
1460     return CEK_AsValueOnly;
1461   return CEK_None;
1462 }
1463
1464 /// Try to emit a reference to the given value without producing it as
1465 /// an l-value.  This is just an optimization, but it avoids us needing
1466 /// to emit global copies of variables if they're named without triggering
1467 /// a formal use in a context where we can't emit a direct reference to them,
1468 /// for instance if a block or lambda or a member of a local class uses a
1469 /// const int variable or constexpr variable from an enclosing function.
1470 CodeGenFunction::ConstantEmission
1471 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1472   ValueDecl *value = refExpr->getDecl();
1473
1474   // The value needs to be an enum constant or a constant variable.
1475   ConstantEmissionKind CEK;
1476   if (isa<ParmVarDecl>(value)) {
1477     CEK = CEK_None;
1478   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1479     CEK = checkVarTypeForConstantEmission(var->getType());
1480   } else if (isa<EnumConstantDecl>(value)) {
1481     CEK = CEK_AsValueOnly;
1482   } else {
1483     CEK = CEK_None;
1484   }
1485   if (CEK == CEK_None) return ConstantEmission();
1486
1487   Expr::EvalResult result;
1488   bool resultIsReference;
1489   QualType resultType;
1490
1491   // It's best to evaluate all the way as an r-value if that's permitted.
1492   if (CEK != CEK_AsReferenceOnly &&
1493       refExpr->EvaluateAsRValue(result, getContext())) {
1494     resultIsReference = false;
1495     resultType = refExpr->getType();
1496
1497   // Otherwise, try to evaluate as an l-value.
1498   } else if (CEK != CEK_AsValueOnly &&
1499              refExpr->EvaluateAsLValue(result, getContext())) {
1500     resultIsReference = true;
1501     resultType = value->getType();
1502
1503   // Failure.
1504   } else {
1505     return ConstantEmission();
1506   }
1507
1508   // In any case, if the initializer has side-effects, abandon ship.
1509   if (result.HasSideEffects)
1510     return ConstantEmission();
1511
1512   // Emit as a constant.
1513   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1514                                                result.Val, resultType);
1515
1516   // Make sure we emit a debug reference to the global variable.
1517   // This should probably fire even for
1518   if (isa<VarDecl>(value)) {
1519     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1520       EmitDeclRefExprDbgValue(refExpr, result.Val);
1521   } else {
1522     assert(isa<EnumConstantDecl>(value));
1523     EmitDeclRefExprDbgValue(refExpr, result.Val);
1524   }
1525
1526   // If we emitted a reference constant, we need to dereference that.
1527   if (resultIsReference)
1528     return ConstantEmission::forReference(C);
1529
1530   return ConstantEmission::forValue(C);
1531 }
1532
1533 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1534                                                         const MemberExpr *ME) {
1535   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1536     // Try to emit static variable member expressions as DREs.
1537     return DeclRefExpr::Create(
1538         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1539         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1540         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1541   }
1542   return nullptr;
1543 }
1544
1545 CodeGenFunction::ConstantEmission
1546 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1547   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1548     return tryEmitAsConstant(DRE);
1549   return ConstantEmission();
1550 }
1551
1552 llvm::Value *CodeGenFunction::emitScalarConstant(
1553     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1554   assert(Constant && "not a constant");
1555   if (Constant.isReference())
1556     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1557                             E->getExprLoc())
1558         .getScalarVal();
1559   return Constant.getValue();
1560 }
1561
1562 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1563                                                SourceLocation Loc) {
1564   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1565                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1566                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1567 }
1568
1569 static bool hasBooleanRepresentation(QualType Ty) {
1570   if (Ty->isBooleanType())
1571     return true;
1572
1573   if (const EnumType *ET = Ty->getAs<EnumType>())
1574     return ET->getDecl()->getIntegerType()->isBooleanType();
1575
1576   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1577     return hasBooleanRepresentation(AT->getValueType());
1578
1579   return false;
1580 }
1581
1582 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1583                             llvm::APInt &Min, llvm::APInt &End,
1584                             bool StrictEnums, bool IsBool) {
1585   const EnumType *ET = Ty->getAs<EnumType>();
1586   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1587                                 ET && !ET->getDecl()->isFixed();
1588   if (!IsBool && !IsRegularCPlusPlusEnum)
1589     return false;
1590
1591   if (IsBool) {
1592     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1593     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1594   } else {
1595     const EnumDecl *ED = ET->getDecl();
1596     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1597     unsigned Bitwidth = LTy->getScalarSizeInBits();
1598     unsigned NumNegativeBits = ED->getNumNegativeBits();
1599     unsigned NumPositiveBits = ED->getNumPositiveBits();
1600
1601     if (NumNegativeBits) {
1602       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1603       assert(NumBits <= Bitwidth);
1604       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1605       Min = -End;
1606     } else {
1607       assert(NumPositiveBits <= Bitwidth);
1608       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1609       Min = llvm::APInt(Bitwidth, 0);
1610     }
1611   }
1612   return true;
1613 }
1614
1615 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1616   llvm::APInt Min, End;
1617   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1618                        hasBooleanRepresentation(Ty)))
1619     return nullptr;
1620
1621   llvm::MDBuilder MDHelper(getLLVMContext());
1622   return MDHelper.createRange(Min, End);
1623 }
1624
1625 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1626                                            SourceLocation Loc) {
1627   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1628   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1629   if (!HasBoolCheck && !HasEnumCheck)
1630     return false;
1631
1632   bool IsBool = hasBooleanRepresentation(Ty) ||
1633                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1634   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1635   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1636   if (!NeedsBoolCheck && !NeedsEnumCheck)
1637     return false;
1638
1639   // Single-bit booleans don't need to be checked. Special-case this to avoid
1640   // a bit width mismatch when handling bitfield values. This is handled by
1641   // EmitFromMemory for the non-bitfield case.
1642   if (IsBool &&
1643       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1644     return false;
1645
1646   llvm::APInt Min, End;
1647   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1648     return true;
1649
1650   auto &Ctx = getLLVMContext();
1651   SanitizerScope SanScope(this);
1652   llvm::Value *Check;
1653   --End;
1654   if (!Min) {
1655     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1656   } else {
1657     llvm::Value *Upper =
1658         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1659     llvm::Value *Lower =
1660         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1661     Check = Builder.CreateAnd(Upper, Lower);
1662   }
1663   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1664                                   EmitCheckTypeDescriptor(Ty)};
1665   SanitizerMask Kind =
1666       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1667   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1668             StaticArgs, EmitCheckValue(Value));
1669   return true;
1670 }
1671
1672 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1673                                                QualType Ty,
1674                                                SourceLocation Loc,
1675                                                LValueBaseInfo BaseInfo,
1676                                                TBAAAccessInfo TBAAInfo,
1677                                                bool isNontemporal) {
1678   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1679     // For better performance, handle vector loads differently.
1680     if (Ty->isVectorType()) {
1681       const llvm::Type *EltTy = Addr.getElementType();
1682
1683       const auto *VTy = cast<llvm::VectorType>(EltTy);
1684
1685       // Handle vectors of size 3 like size 4 for better performance.
1686       if (VTy->getNumElements() == 3) {
1687
1688         // Bitcast to vec4 type.
1689         auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4);
1690         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1691         // Now load value.
1692         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1693
1694         // Shuffle vector to get vec3.
1695         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1696                                         ArrayRef<int>{0, 1, 2}, "extractVec");
1697         return EmitFromMemory(V, Ty);
1698       }
1699     }
1700   }
1701
1702   // Atomic operations have to be done on integral types.
1703   LValue AtomicLValue =
1704       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1705   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1706     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1707   }
1708
1709   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1710   if (isNontemporal) {
1711     llvm::MDNode *Node = llvm::MDNode::get(
1712         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1713     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1714   }
1715
1716   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1717
1718   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1719     // In order to prevent the optimizer from throwing away the check, don't
1720     // attach range metadata to the load.
1721   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1722     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1723       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1724
1725   return EmitFromMemory(Load, Ty);
1726 }
1727
1728 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1729   // Bool has a different representation in memory than in registers.
1730   if (hasBooleanRepresentation(Ty)) {
1731     // This should really always be an i1, but sometimes it's already
1732     // an i8, and it's awkward to track those cases down.
1733     if (Value->getType()->isIntegerTy(1))
1734       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1735     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1736            "wrong value rep of bool");
1737   }
1738
1739   return Value;
1740 }
1741
1742 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1743   // Bool has a different representation in memory than in registers.
1744   if (hasBooleanRepresentation(Ty)) {
1745     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1746            "wrong value rep of bool");
1747     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1748   }
1749
1750   return Value;
1751 }
1752
1753 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1754 // MatrixType), if it points to a array (the memory type of MatrixType).
1755 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1756                                          bool IsVector = true) {
1757   auto *ArrayTy = dyn_cast<llvm::ArrayType>(
1758       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1759   if (ArrayTy && IsVector) {
1760     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1761                                                 ArrayTy->getNumElements());
1762
1763     return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1764   }
1765   auto *VectorTy = dyn_cast<llvm::VectorType>(
1766       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1767   if (VectorTy && !IsVector) {
1768     auto *ArrayTy = llvm::ArrayType::get(VectorTy->getElementType(),
1769                                          VectorTy->getNumElements());
1770
1771     return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1772   }
1773
1774   return Addr;
1775 }
1776
1777 // Emit a store of a matrix LValue. This may require casting the original
1778 // pointer to memory address (ArrayType) to a pointer to the value type
1779 // (VectorType).
1780 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1781                                     bool isInit, CodeGenFunction &CGF) {
1782   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1783                                            value->getType()->isVectorTy());
1784   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1785                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1786                         lvalue.isNontemporal());
1787 }
1788
1789 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1790                                         bool Volatile, QualType Ty,
1791                                         LValueBaseInfo BaseInfo,
1792                                         TBAAAccessInfo TBAAInfo,
1793                                         bool isInit, bool isNontemporal) {
1794   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1795     // Handle vectors differently to get better performance.
1796     if (Ty->isVectorType()) {
1797       llvm::Type *SrcTy = Value->getType();
1798       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1799       // Handle vec3 special.
1800       if (VecTy && VecTy->getNumElements() == 3) {
1801         // Our source is a vec3, do a shuffle vector to make it a vec4.
1802         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1803                                             ArrayRef<int>{0, 1, 2, -1},
1804                                             "extractVec");
1805         SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1806       }
1807       if (Addr.getElementType() != SrcTy) {
1808         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1809       }
1810     }
1811   }
1812
1813   Value = EmitToMemory(Value, Ty);
1814
1815   LValue AtomicLValue =
1816       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1817   if (Ty->isAtomicType() ||
1818       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1819     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1820     return;
1821   }
1822
1823   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1824   if (isNontemporal) {
1825     llvm::MDNode *Node =
1826         llvm::MDNode::get(Store->getContext(),
1827                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1828     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1829   }
1830
1831   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1832 }
1833
1834 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1835                                         bool isInit) {
1836   if (lvalue.getType()->isConstantMatrixType()) {
1837     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1838     return;
1839   }
1840
1841   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1842                     lvalue.getType(), lvalue.getBaseInfo(),
1843                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1844 }
1845
1846 // Emit a load of a LValue of matrix type. This may require casting the pointer
1847 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1848 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1849                                      CodeGenFunction &CGF) {
1850   assert(LV.getType()->isConstantMatrixType());
1851   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1852   LV.setAddress(Addr);
1853   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1854 }
1855
1856 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1857 /// method emits the address of the lvalue, then loads the result as an rvalue,
1858 /// returning the rvalue.
1859 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1860   if (LV.isObjCWeak()) {
1861     // load of a __weak object.
1862     Address AddrWeakObj = LV.getAddress(*this);
1863     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1864                                                              AddrWeakObj));
1865   }
1866   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1867     // In MRC mode, we do a load+autorelease.
1868     if (!getLangOpts().ObjCAutoRefCount) {
1869       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1870     }
1871
1872     // In ARC mode, we load retained and then consume the value.
1873     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1874     Object = EmitObjCConsumeObject(LV.getType(), Object);
1875     return RValue::get(Object);
1876   }
1877
1878   if (LV.isSimple()) {
1879     assert(!LV.getType()->isFunctionType());
1880
1881     if (LV.getType()->isConstantMatrixType())
1882       return EmitLoadOfMatrixLValue(LV, Loc, *this);
1883
1884     // Everything needs a load.
1885     return RValue::get(EmitLoadOfScalar(LV, Loc));
1886   }
1887
1888   if (LV.isVectorElt()) {
1889     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1890                                               LV.isVolatileQualified());
1891     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1892                                                     "vecext"));
1893   }
1894
1895   // If this is a reference to a subset of the elements of a vector, either
1896   // shuffle the input or extract/insert them as appropriate.
1897   if (LV.isExtVectorElt()) {
1898     return EmitLoadOfExtVectorElementLValue(LV);
1899   }
1900
1901   // Global Register variables always invoke intrinsics
1902   if (LV.isGlobalReg())
1903     return EmitLoadOfGlobalRegLValue(LV);
1904
1905   if (LV.isMatrixElt()) {
1906     llvm::LoadInst *Load =
1907         Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
1908     return RValue::get(
1909         Builder.CreateExtractElement(Load, LV.getMatrixIdx(), "matrixext"));
1910   }
1911
1912   assert(LV.isBitField() && "Unknown LValue type!");
1913   return EmitLoadOfBitfieldLValue(LV, Loc);
1914 }
1915
1916 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1917                                                  SourceLocation Loc) {
1918   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1919
1920   // Get the output type.
1921   llvm::Type *ResLTy = ConvertType(LV.getType());
1922
1923   Address Ptr = LV.getBitFieldAddress();
1924   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1925
1926   if (Info.IsSigned) {
1927     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1928     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1929     if (HighBits)
1930       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1931     if (Info.Offset + HighBits)
1932       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1933   } else {
1934     if (Info.Offset)
1935       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1936     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1937       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1938                                                               Info.Size),
1939                               "bf.clear");
1940   }
1941   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1942   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1943   return RValue::get(Val);
1944 }
1945
1946 // If this is a reference to a subset of the elements of a vector, create an
1947 // appropriate shufflevector.
1948 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1949   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1950                                         LV.isVolatileQualified());
1951
1952   const llvm::Constant *Elts = LV.getExtVectorElts();
1953
1954   // If the result of the expression is a non-vector type, we must be extracting
1955   // a single element.  Just codegen as an extractelement.
1956   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1957   if (!ExprVT) {
1958     unsigned InIdx = getAccessedFieldNo(0, Elts);
1959     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1960     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1961   }
1962
1963   // Always use shuffle vector to try to retain the original program structure
1964   unsigned NumResultElts = ExprVT->getNumElements();
1965
1966   SmallVector<int, 4> Mask;
1967   for (unsigned i = 0; i != NumResultElts; ++i)
1968     Mask.push_back(getAccessedFieldNo(i, Elts));
1969
1970   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1971                                     Mask);
1972   return RValue::get(Vec);
1973 }
1974
1975 /// Generates lvalue for partial ext_vector access.
1976 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1977   Address VectorAddress = LV.getExtVectorAddress();
1978   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
1979   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1980
1981   Address CastToPointerElement =
1982     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1983                                  "conv.ptr.element");
1984
1985   const llvm::Constant *Elts = LV.getExtVectorElts();
1986   unsigned ix = getAccessedFieldNo(0, Elts);
1987
1988   Address VectorBasePtrPlusIx =
1989     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1990                                    "vector.elt");
1991
1992   return VectorBasePtrPlusIx;
1993 }
1994
1995 /// Load of global gamed gegisters are always calls to intrinsics.
1996 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1997   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1998          "Bad type for register variable");
1999   llvm::MDNode *RegName = cast<llvm::MDNode>(
2000       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2001
2002   // We accept integer and pointer types only
2003   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2004   llvm::Type *Ty = OrigTy;
2005   if (OrigTy->isPointerTy())
2006     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2007   llvm::Type *Types[] = { Ty };
2008
2009   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2010   llvm::Value *Call = Builder.CreateCall(
2011       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2012   if (OrigTy->isPointerTy())
2013     Call = Builder.CreateIntToPtr(Call, OrigTy);
2014   return RValue::get(Call);
2015 }
2016
2017 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2018 /// lvalue, where both are guaranteed to the have the same type, and that type
2019 /// is 'Ty'.
2020 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2021                                              bool isInit) {
2022   if (!Dst.isSimple()) {
2023     if (Dst.isVectorElt()) {
2024       // Read/modify/write the vector, inserting the new element.
2025       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2026                                             Dst.isVolatileQualified());
2027       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2028                                         Dst.getVectorIdx(), "vecins");
2029       Builder.CreateStore(Vec, Dst.getVectorAddress(),
2030                           Dst.isVolatileQualified());
2031       return;
2032     }
2033
2034     // If this is an update of extended vector elements, insert them as
2035     // appropriate.
2036     if (Dst.isExtVectorElt())
2037       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2038
2039     if (Dst.isGlobalReg())
2040       return EmitStoreThroughGlobalRegLValue(Src, Dst);
2041
2042     if (Dst.isMatrixElt()) {
2043       llvm::Value *Vec = Builder.CreateLoad(Dst.getMatrixAddress());
2044       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2045                                         Dst.getMatrixIdx(), "matins");
2046       Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2047                           Dst.isVolatileQualified());
2048       return;
2049     }
2050
2051     assert(Dst.isBitField() && "Unknown LValue type");
2052     return EmitStoreThroughBitfieldLValue(Src, Dst);
2053   }
2054
2055   // There's special magic for assigning into an ARC-qualified l-value.
2056   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2057     switch (Lifetime) {
2058     case Qualifiers::OCL_None:
2059       llvm_unreachable("present but none");
2060
2061     case Qualifiers::OCL_ExplicitNone:
2062       // nothing special
2063       break;
2064
2065     case Qualifiers::OCL_Strong:
2066       if (isInit) {
2067         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2068         break;
2069       }
2070       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2071       return;
2072
2073     case Qualifiers::OCL_Weak:
2074       if (isInit)
2075         // Initialize and then skip the primitive store.
2076         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2077       else
2078         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2079                          /*ignore*/ true);
2080       return;
2081
2082     case Qualifiers::OCL_Autoreleasing:
2083       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2084                                                      Src.getScalarVal()));
2085       // fall into the normal path
2086       break;
2087     }
2088   }
2089
2090   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2091     // load of a __weak object.
2092     Address LvalueDst = Dst.getAddress(*this);
2093     llvm::Value *src = Src.getScalarVal();
2094      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2095     return;
2096   }
2097
2098   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2099     // load of a __strong object.
2100     Address LvalueDst = Dst.getAddress(*this);
2101     llvm::Value *src = Src.getScalarVal();
2102     if (Dst.isObjCIvar()) {
2103       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2104       llvm::Type *ResultType = IntPtrTy;
2105       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2106       llvm::Value *RHS = dst.getPointer();
2107       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2108       llvm::Value *LHS =
2109         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2110                                "sub.ptr.lhs.cast");
2111       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2112       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2113                                               BytesBetween);
2114     } else if (Dst.isGlobalObjCRef()) {
2115       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2116                                                 Dst.isThreadLocalRef());
2117     }
2118     else
2119       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2120     return;
2121   }
2122
2123   assert(Src.isScalar() && "Can't emit an agg store with this method");
2124   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2125 }
2126
2127 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2128                                                      llvm::Value **Result) {
2129   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2130   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2131   Address Ptr = Dst.getBitFieldAddress();
2132
2133   // Get the source value, truncated to the width of the bit-field.
2134   llvm::Value *SrcVal = Src.getScalarVal();
2135
2136   // Cast the source to the storage type and shift it into place.
2137   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2138                                  /*isSigned=*/false);
2139   llvm::Value *MaskedVal = SrcVal;
2140
2141   // See if there are other bits in the bitfield's storage we'll need to load
2142   // and mask together with source before storing.
2143   if (Info.StorageSize != Info.Size) {
2144     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2145     llvm::Value *Val =
2146       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2147
2148     // Mask the source value as needed.
2149     if (!hasBooleanRepresentation(Dst.getType()))
2150       SrcVal = Builder.CreateAnd(SrcVal,
2151                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2152                                                             Info.Size),
2153                                  "bf.value");
2154     MaskedVal = SrcVal;
2155     if (Info.Offset)
2156       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2157
2158     // Mask out the original value.
2159     Val = Builder.CreateAnd(Val,
2160                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2161                                                      Info.Offset,
2162                                                      Info.Offset + Info.Size),
2163                             "bf.clear");
2164
2165     // Or together the unchanged values and the source value.
2166     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2167   } else {
2168     assert(Info.Offset == 0);
2169     // According to the AACPS:
2170     // When a volatile bit-field is written, and its container does not overlap
2171     // with any non-bit-field member, its container must be read exactly once and
2172     // written exactly once using the access width appropriate to the type of the
2173     // container. The two accesses are not atomic.
2174     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2175         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2176       Builder.CreateLoad(Ptr, true, "bf.load");
2177   }
2178
2179   // Write the new value back out.
2180   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2181
2182   // Return the new value of the bit-field, if requested.
2183   if (Result) {
2184     llvm::Value *ResultVal = MaskedVal;
2185
2186     // Sign extend the value if needed.
2187     if (Info.IsSigned) {
2188       assert(Info.Size <= Info.StorageSize);
2189       unsigned HighBits = Info.StorageSize - Info.Size;
2190       if (HighBits) {
2191         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2192         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2193       }
2194     }
2195
2196     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2197                                       "bf.result.cast");
2198     *Result = EmitFromMemory(ResultVal, Dst.getType());
2199   }
2200 }
2201
2202 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2203                                                                LValue Dst) {
2204   // This access turns into a read/modify/write of the vector.  Load the input
2205   // value now.
2206   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2207                                         Dst.isVolatileQualified());
2208   const llvm::Constant *Elts = Dst.getExtVectorElts();
2209
2210   llvm::Value *SrcVal = Src.getScalarVal();
2211
2212   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2213     unsigned NumSrcElts = VTy->getNumElements();
2214     unsigned NumDstElts =
2215         cast<llvm::VectorType>(Vec->getType())->getNumElements();
2216     if (NumDstElts == NumSrcElts) {
2217       // Use shuffle vector is the src and destination are the same number of
2218       // elements and restore the vector mask since it is on the side it will be
2219       // stored.
2220       SmallVector<int, 4> Mask(NumDstElts);
2221       for (unsigned i = 0; i != NumSrcElts; ++i)
2222         Mask[getAccessedFieldNo(i, Elts)] = i;
2223
2224       Vec = Builder.CreateShuffleVector(
2225           SrcVal, llvm::UndefValue::get(Vec->getType()), Mask);
2226     } else if (NumDstElts > NumSrcElts) {
2227       // Extended the source vector to the same length and then shuffle it
2228       // into the destination.
2229       // FIXME: since we're shuffling with undef, can we just use the indices
2230       //        into that?  This could be simpler.
2231       SmallVector<int, 4> ExtMask;
2232       for (unsigned i = 0; i != NumSrcElts; ++i)
2233         ExtMask.push_back(i);
2234       ExtMask.resize(NumDstElts, -1);
2235       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(
2236           SrcVal, llvm::UndefValue::get(SrcVal->getType()), ExtMask);
2237       // build identity
2238       SmallVector<int, 4> Mask;
2239       for (unsigned i = 0; i != NumDstElts; ++i)
2240         Mask.push_back(i);
2241
2242       // When the vector size is odd and .odd or .hi is used, the last element
2243       // of the Elts constant array will be one past the size of the vector.
2244       // Ignore the last element here, if it is greater than the mask size.
2245       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2246         NumSrcElts--;
2247
2248       // modify when what gets shuffled in
2249       for (unsigned i = 0; i != NumSrcElts; ++i)
2250         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2251       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2252     } else {
2253       // We should never shorten the vector
2254       llvm_unreachable("unexpected shorten vector length");
2255     }
2256   } else {
2257     // If the Src is a scalar (not a vector) it must be updating one element.
2258     unsigned InIdx = getAccessedFieldNo(0, Elts);
2259     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2260     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2261   }
2262
2263   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2264                       Dst.isVolatileQualified());
2265 }
2266
2267 /// Store of global named registers are always calls to intrinsics.
2268 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2269   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2270          "Bad type for register variable");
2271   llvm::MDNode *RegName = cast<llvm::MDNode>(
2272       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2273   assert(RegName && "Register LValue is not metadata");
2274
2275   // We accept integer and pointer types only
2276   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2277   llvm::Type *Ty = OrigTy;
2278   if (OrigTy->isPointerTy())
2279     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2280   llvm::Type *Types[] = { Ty };
2281
2282   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2283   llvm::Value *Value = Src.getScalarVal();
2284   if (OrigTy->isPointerTy())
2285     Value = Builder.CreatePtrToInt(Value, Ty);
2286   Builder.CreateCall(
2287       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2288 }
2289
2290 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2291 // generating write-barries API. It is currently a global, ivar,
2292 // or neither.
2293 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2294                                  LValue &LV,
2295                                  bool IsMemberAccess=false) {
2296   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2297     return;
2298
2299   if (isa<ObjCIvarRefExpr>(E)) {
2300     QualType ExpTy = E->getType();
2301     if (IsMemberAccess && ExpTy->isPointerType()) {
2302       // If ivar is a structure pointer, assigning to field of
2303       // this struct follows gcc's behavior and makes it a non-ivar
2304       // writer-barrier conservatively.
2305       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2306       if (ExpTy->isRecordType()) {
2307         LV.setObjCIvar(false);
2308         return;
2309       }
2310     }
2311     LV.setObjCIvar(true);
2312     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2313     LV.setBaseIvarExp(Exp->getBase());
2314     LV.setObjCArray(E->getType()->isArrayType());
2315     return;
2316   }
2317
2318   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2319     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2320       if (VD->hasGlobalStorage()) {
2321         LV.setGlobalObjCRef(true);
2322         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2323       }
2324     }
2325     LV.setObjCArray(E->getType()->isArrayType());
2326     return;
2327   }
2328
2329   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2330     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2331     return;
2332   }
2333
2334   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2335     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2336     if (LV.isObjCIvar()) {
2337       // If cast is to a structure pointer, follow gcc's behavior and make it
2338       // a non-ivar write-barrier.
2339       QualType ExpTy = E->getType();
2340       if (ExpTy->isPointerType())
2341         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2342       if (ExpTy->isRecordType())
2343         LV.setObjCIvar(false);
2344     }
2345     return;
2346   }
2347
2348   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2349     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2350     return;
2351   }
2352
2353   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2354     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2355     return;
2356   }
2357
2358   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2359     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2360     return;
2361   }
2362
2363   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2364     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2365     return;
2366   }
2367
2368   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2369     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2370     if (LV.isObjCIvar() && !LV.isObjCArray())
2371       // Using array syntax to assigning to what an ivar points to is not
2372       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2373       LV.setObjCIvar(false);
2374     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2375       // Using array syntax to assigning to what global points to is not
2376       // same as assigning to the global itself. {id *G;} G[i] = 0;
2377       LV.setGlobalObjCRef(false);
2378     return;
2379   }
2380
2381   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2382     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2383     // We don't know if member is an 'ivar', but this flag is looked at
2384     // only in the context of LV.isObjCIvar().
2385     LV.setObjCArray(E->getType()->isArrayType());
2386     return;
2387   }
2388 }
2389
2390 static llvm::Value *
2391 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2392                                 llvm::Value *V, llvm::Type *IRType,
2393                                 StringRef Name = StringRef()) {
2394   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2395   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2396 }
2397
2398 static LValue EmitThreadPrivateVarDeclLValue(
2399     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2400     llvm::Type *RealVarTy, SourceLocation Loc) {
2401   if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2402     Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2403         CGF, VD, Addr, Loc);
2404   else
2405     Addr =
2406         CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2407
2408   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2409   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2410 }
2411
2412 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2413                                            const VarDecl *VD, QualType T) {
2414   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2415       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2416   // Return an invalid address if variable is MT_To and unified
2417   // memory is not enabled. For all other cases: MT_Link and
2418   // MT_To with unified memory, return a valid address.
2419   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2420                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2421     return Address::invalid();
2422   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2423           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2424            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2425          "Expected link clause OR to clause with unified memory enabled.");
2426   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2427   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2428   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2429 }
2430
2431 Address
2432 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2433                                      LValueBaseInfo *PointeeBaseInfo,
2434                                      TBAAAccessInfo *PointeeTBAAInfo) {
2435   llvm::LoadInst *Load =
2436       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2437   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2438
2439   CharUnits Align = CGM.getNaturalTypeAlignment(
2440       RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo,
2441       /* forPointeeType= */ true);
2442   return Address(Load, Align);
2443 }
2444
2445 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2446   LValueBaseInfo PointeeBaseInfo;
2447   TBAAAccessInfo PointeeTBAAInfo;
2448   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2449                                             &PointeeTBAAInfo);
2450   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2451                         PointeeBaseInfo, PointeeTBAAInfo);
2452 }
2453
2454 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2455                                            const PointerType *PtrTy,
2456                                            LValueBaseInfo *BaseInfo,
2457                                            TBAAAccessInfo *TBAAInfo) {
2458   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2459   return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(),
2460                                                    BaseInfo, TBAAInfo,
2461                                                    /*forPointeeType=*/true));
2462 }
2463
2464 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2465                                                 const PointerType *PtrTy) {
2466   LValueBaseInfo BaseInfo;
2467   TBAAAccessInfo TBAAInfo;
2468   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2469   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2470 }
2471
2472 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2473                                       const Expr *E, const VarDecl *VD) {
2474   QualType T = E->getType();
2475
2476   // If it's thread_local, emit a call to its wrapper function instead.
2477   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2478       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2479     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2480   // Check if the variable is marked as declare target with link clause in
2481   // device codegen.
2482   if (CGF.getLangOpts().OpenMPIsDevice) {
2483     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2484     if (Addr.isValid())
2485       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2486   }
2487
2488   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2489   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2490   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2491   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2492   Address Addr(V, Alignment);
2493   // Emit reference to the private copy of the variable if it is an OpenMP
2494   // threadprivate variable.
2495   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2496       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2497     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2498                                           E->getExprLoc());
2499   }
2500   LValue LV = VD->getType()->isReferenceType() ?
2501       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2502                                     AlignmentSource::Decl) :
2503       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2504   setObjCGCLValueClass(CGF.getContext(), E, LV);
2505   return LV;
2506 }
2507
2508 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2509                                                GlobalDecl GD) {
2510   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2511   if (FD->hasAttr<WeakRefAttr>()) {
2512     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2513     return aliasee.getPointer();
2514   }
2515
2516   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2517   if (!FD->hasPrototype()) {
2518     if (const FunctionProtoType *Proto =
2519             FD->getType()->getAs<FunctionProtoType>()) {
2520       // Ugly case: for a K&R-style definition, the type of the definition
2521       // isn't the same as the type of a use.  Correct for this with a
2522       // bitcast.
2523       QualType NoProtoType =
2524           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2525       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2526       V = llvm::ConstantExpr::getBitCast(V,
2527                                       CGM.getTypes().ConvertType(NoProtoType));
2528     }
2529   }
2530   return V;
2531 }
2532
2533 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2534                                      GlobalDecl GD) {
2535   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2536   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2537   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2538   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2539                             AlignmentSource::Decl);
2540 }
2541
2542 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2543                                       llvm::Value *ThisValue) {
2544   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2545   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2546   return CGF.EmitLValueForField(LV, FD);
2547 }
2548
2549 /// Named Registers are named metadata pointing to the register name
2550 /// which will be read from/written to as an argument to the intrinsic
2551 /// @llvm.read/write_register.
2552 /// So far, only the name is being passed down, but other options such as
2553 /// register type, allocation type or even optimization options could be
2554 /// passed down via the metadata node.
2555 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2556   SmallString<64> Name("llvm.named.register.");
2557   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2558   assert(Asm->getLabel().size() < 64-Name.size() &&
2559       "Register name too big");
2560   Name.append(Asm->getLabel());
2561   llvm::NamedMDNode *M =
2562     CGM.getModule().getOrInsertNamedMetadata(Name);
2563   if (M->getNumOperands() == 0) {
2564     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2565                                               Asm->getLabel());
2566     llvm::Metadata *Ops[] = {Str};
2567     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2568   }
2569
2570   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2571
2572   llvm::Value *Ptr =
2573     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2574   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2575 }
2576
2577 /// Determine whether we can emit a reference to \p VD from the current
2578 /// context, despite not necessarily having seen an odr-use of the variable in
2579 /// this context.
2580 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2581                                                const DeclRefExpr *E,
2582                                                const VarDecl *VD,
2583                                                bool IsConstant) {
2584   // For a variable declared in an enclosing scope, do not emit a spurious
2585   // reference even if we have a capture, as that will emit an unwarranted
2586   // reference to our capture state, and will likely generate worse code than
2587   // emitting a local copy.
2588   if (E->refersToEnclosingVariableOrCapture())
2589     return false;
2590
2591   // For a local declaration declared in this function, we can always reference
2592   // it even if we don't have an odr-use.
2593   if (VD->hasLocalStorage()) {
2594     return VD->getDeclContext() ==
2595            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2596   }
2597
2598   // For a global declaration, we can emit a reference to it if we know
2599   // for sure that we are able to emit a definition of it.
2600   VD = VD->getDefinition(CGF.getContext());
2601   if (!VD)
2602     return false;
2603
2604   // Don't emit a spurious reference if it might be to a variable that only
2605   // exists on a different device / target.
2606   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2607   // cross-target reference.
2608   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2609       CGF.getLangOpts().OpenCL) {
2610     return false;
2611   }
2612
2613   // We can emit a spurious reference only if the linkage implies that we'll
2614   // be emitting a non-interposable symbol that will be retained until link
2615   // time.
2616   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2617   case llvm::GlobalValue::ExternalLinkage:
2618   case llvm::GlobalValue::LinkOnceODRLinkage:
2619   case llvm::GlobalValue::WeakODRLinkage:
2620   case llvm::GlobalValue::InternalLinkage:
2621   case llvm::GlobalValue::PrivateLinkage:
2622     return true;
2623   default:
2624     return false;
2625   }
2626 }
2627
2628 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2629   const NamedDecl *ND = E->getDecl();
2630   QualType T = E->getType();
2631
2632   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2633          "should not emit an unevaluated operand");
2634
2635   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2636     // Global Named registers access via intrinsics only
2637     if (VD->getStorageClass() == SC_Register &&
2638         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2639       return EmitGlobalNamedRegister(VD, CGM);
2640
2641     // If this DeclRefExpr does not constitute an odr-use of the variable,
2642     // we're not permitted to emit a reference to it in general, and it might
2643     // not be captured if capture would be necessary for a use. Emit the
2644     // constant value directly instead.
2645     if (E->isNonOdrUse() == NOUR_Constant &&
2646         (VD->getType()->isReferenceType() ||
2647          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2648       VD->getAnyInitializer(VD);
2649       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2650           E->getLocation(), *VD->evaluateValue(), VD->getType());
2651       assert(Val && "failed to emit constant expression");
2652
2653       Address Addr = Address::invalid();
2654       if (!VD->getType()->isReferenceType()) {
2655         // Spill the constant value to a global.
2656         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2657                                            getContext().getDeclAlign(VD));
2658         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2659         auto *PTy = llvm::PointerType::get(
2660             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2661         if (PTy != Addr.getType())
2662           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2663       } else {
2664         // Should we be using the alignment of the constant pointer we emitted?
2665         CharUnits Alignment =
2666             CGM.getNaturalTypeAlignment(E->getType(),
2667                                         /* BaseInfo= */ nullptr,
2668                                         /* TBAAInfo= */ nullptr,
2669                                         /* forPointeeType= */ true);
2670         Addr = Address(Val, Alignment);
2671       }
2672       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2673     }
2674
2675     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2676
2677     // Check for captured variables.
2678     if (E->refersToEnclosingVariableOrCapture()) {
2679       VD = VD->getCanonicalDecl();
2680       if (auto *FD = LambdaCaptureFields.lookup(VD))
2681         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2682       if (CapturedStmtInfo) {
2683         auto I = LocalDeclMap.find(VD);
2684         if (I != LocalDeclMap.end()) {
2685           LValue CapLVal;
2686           if (VD->getType()->isReferenceType())
2687             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2688                                                 AlignmentSource::Decl);
2689           else
2690             CapLVal = MakeAddrLValue(I->second, T);
2691           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2692           // in simd context.
2693           if (getLangOpts().OpenMP &&
2694               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2695             CapLVal.setNontemporal(/*Value=*/true);
2696           return CapLVal;
2697         }
2698         LValue CapLVal =
2699             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2700                                     CapturedStmtInfo->getContextValue());
2701         CapLVal = MakeAddrLValue(
2702             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2703             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2704             CapLVal.getTBAAInfo());
2705         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2706         // in simd context.
2707         if (getLangOpts().OpenMP &&
2708             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2709           CapLVal.setNontemporal(/*Value=*/true);
2710         return CapLVal;
2711       }
2712
2713       assert(isa<BlockDecl>(CurCodeDecl));
2714       Address addr = GetAddrOfBlockDecl(VD);
2715       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2716     }
2717   }
2718
2719   // FIXME: We should be able to assert this for FunctionDecls as well!
2720   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2721   // those with a valid source location.
2722   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2723           !E->getLocation().isValid()) &&
2724          "Should not use decl without marking it used!");
2725
2726   if (ND->hasAttr<WeakRefAttr>()) {
2727     const auto *VD = cast<ValueDecl>(ND);
2728     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2729     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2730   }
2731
2732   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2733     // Check if this is a global variable.
2734     if (VD->hasLinkage() || VD->isStaticDataMember())
2735       return EmitGlobalVarDeclLValue(*this, E, VD);
2736
2737     Address addr = Address::invalid();
2738
2739     // The variable should generally be present in the local decl map.
2740     auto iter = LocalDeclMap.find(VD);
2741     if (iter != LocalDeclMap.end()) {
2742       addr = iter->second;
2743
2744     // Otherwise, it might be static local we haven't emitted yet for
2745     // some reason; most likely, because it's in an outer function.
2746     } else if (VD->isStaticLocal()) {
2747       addr = Address(CGM.getOrCreateStaticVarDecl(
2748           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2749                      getContext().getDeclAlign(VD));
2750
2751     // No other cases for now.
2752     } else {
2753       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2754     }
2755
2756
2757     // Check for OpenMP threadprivate variables.
2758     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2759         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2760       return EmitThreadPrivateVarDeclLValue(
2761           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2762           E->getExprLoc());
2763     }
2764
2765     // Drill into block byref variables.
2766     bool isBlockByref = VD->isEscapingByref();
2767     if (isBlockByref) {
2768       addr = emitBlockByrefAddress(addr, VD);
2769     }
2770
2771     // Drill into reference types.
2772     LValue LV = VD->getType()->isReferenceType() ?
2773         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2774         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2775
2776     bool isLocalStorage = VD->hasLocalStorage();
2777
2778     bool NonGCable = isLocalStorage &&
2779                      !VD->getType()->isReferenceType() &&
2780                      !isBlockByref;
2781     if (NonGCable) {
2782       LV.getQuals().removeObjCGCAttr();
2783       LV.setNonGC(true);
2784     }
2785
2786     bool isImpreciseLifetime =
2787       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2788     if (isImpreciseLifetime)
2789       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2790     setObjCGCLValueClass(getContext(), E, LV);
2791     return LV;
2792   }
2793
2794   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2795     return EmitFunctionDeclLValue(*this, E, FD);
2796
2797   // FIXME: While we're emitting a binding from an enclosing scope, all other
2798   // DeclRefExprs we see should be implicitly treated as if they also refer to
2799   // an enclosing scope.
2800   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2801     return EmitLValue(BD->getBinding());
2802
2803   // We can form DeclRefExprs naming GUID declarations when reconstituting
2804   // non-type template parameters into expressions.
2805   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2806     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2807                           AlignmentSource::Decl);
2808
2809   llvm_unreachable("Unhandled DeclRefExpr");
2810 }
2811
2812 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2813   // __extension__ doesn't affect lvalue-ness.
2814   if (E->getOpcode() == UO_Extension)
2815     return EmitLValue(E->getSubExpr());
2816
2817   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2818   switch (E->getOpcode()) {
2819   default: llvm_unreachable("Unknown unary operator lvalue!");
2820   case UO_Deref: {
2821     QualType T = E->getSubExpr()->getType()->getPointeeType();
2822     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2823
2824     LValueBaseInfo BaseInfo;
2825     TBAAAccessInfo TBAAInfo;
2826     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2827                                             &TBAAInfo);
2828     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2829     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2830
2831     // We should not generate __weak write barrier on indirect reference
2832     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2833     // But, we continue to generate __strong write barrier on indirect write
2834     // into a pointer to object.
2835     if (getLangOpts().ObjC &&
2836         getLangOpts().getGC() != LangOptions::NonGC &&
2837         LV.isObjCWeak())
2838       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2839     return LV;
2840   }
2841   case UO_Real:
2842   case UO_Imag: {
2843     LValue LV = EmitLValue(E->getSubExpr());
2844     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2845
2846     // __real is valid on scalars.  This is a faster way of testing that.
2847     // __imag can only produce an rvalue on scalars.
2848     if (E->getOpcode() == UO_Real &&
2849         !LV.getAddress(*this).getElementType()->isStructTy()) {
2850       assert(E->getSubExpr()->getType()->isArithmeticType());
2851       return LV;
2852     }
2853
2854     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2855
2856     Address Component =
2857         (E->getOpcode() == UO_Real
2858              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2859              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2860     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2861                                    CGM.getTBAAInfoForSubobject(LV, T));
2862     ElemLV.getQuals().addQualifiers(LV.getQuals());
2863     return ElemLV;
2864   }
2865   case UO_PreInc:
2866   case UO_PreDec: {
2867     LValue LV = EmitLValue(E->getSubExpr());
2868     bool isInc = E->getOpcode() == UO_PreInc;
2869
2870     if (E->getType()->isAnyComplexType())
2871       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2872     else
2873       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2874     return LV;
2875   }
2876   }
2877 }
2878
2879 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2880   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2881                         E->getType(), AlignmentSource::Decl);
2882 }
2883
2884 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2885   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2886                         E->getType(), AlignmentSource::Decl);
2887 }
2888
2889 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2890   auto SL = E->getFunctionName();
2891   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2892   StringRef FnName = CurFn->getName();
2893   if (FnName.startswith("\01"))
2894     FnName = FnName.substr(1);
2895   StringRef NameItems[] = {
2896       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2897   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2898   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2899     std::string Name = std::string(SL->getString());
2900     if (!Name.empty()) {
2901       unsigned Discriminator =
2902           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2903       if (Discriminator)
2904         Name += "_" + Twine(Discriminator + 1).str();
2905       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2906       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2907     } else {
2908       auto C =
2909           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2910       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2911     }
2912   }
2913   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2914   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2915 }
2916
2917 /// Emit a type description suitable for use by a runtime sanitizer library. The
2918 /// format of a type descriptor is
2919 ///
2920 /// \code
2921 ///   { i16 TypeKind, i16 TypeInfo }
2922 /// \endcode
2923 ///
2924 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2925 /// integer, 1 for a floating point value, and -1 for anything else.
2926 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2927   // Only emit each type's descriptor once.
2928   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2929     return C;
2930
2931   uint16_t TypeKind = -1;
2932   uint16_t TypeInfo = 0;
2933
2934   if (T->isIntegerType()) {
2935     TypeKind = 0;
2936     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2937                (T->isSignedIntegerType() ? 1 : 0);
2938   } else if (T->isFloatingType()) {
2939     TypeKind = 1;
2940     TypeInfo = getContext().getTypeSize(T);
2941   }
2942
2943   // Format the type name as if for a diagnostic, including quotes and
2944   // optionally an 'aka'.
2945   SmallString<32> Buffer;
2946   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2947                                     (intptr_t)T.getAsOpaquePtr(),
2948                                     StringRef(), StringRef(), None, Buffer,
2949                                     None);
2950
2951   llvm::Constant *Components[] = {
2952     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2953     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2954   };
2955   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2956
2957   auto *GV = new llvm::GlobalVariable(
2958       CGM.getModule(), Descriptor->getType(),
2959       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2960   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2961   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2962
2963   // Remember the descriptor for this type.
2964   CGM.setTypeDescriptorInMap(T, GV);
2965
2966   return GV;
2967 }
2968
2969 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2970   llvm::Type *TargetTy = IntPtrTy;
2971
2972   if (V->getType() == TargetTy)
2973     return V;
2974
2975   // Floating-point types which fit into intptr_t are bitcast to integers
2976   // and then passed directly (after zero-extension, if necessary).
2977   if (V->getType()->isFloatingPointTy()) {
2978     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2979     if (Bits <= TargetTy->getIntegerBitWidth())
2980       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2981                                                          Bits));
2982   }
2983
2984   // Integers which fit in intptr_t are zero-extended and passed directly.
2985   if (V->getType()->isIntegerTy() &&
2986       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2987     return Builder.CreateZExt(V, TargetTy);
2988
2989   // Pointers are passed directly, everything else is passed by address.
2990   if (!V->getType()->isPointerTy()) {
2991     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2992     Builder.CreateStore(V, Ptr);
2993     V = Ptr.getPointer();
2994   }
2995   return Builder.CreatePtrToInt(V, TargetTy);
2996 }
2997
2998 /// Emit a representation of a SourceLocation for passing to a handler
2999 /// in a sanitizer runtime library. The format for this data is:
3000 /// \code
3001 ///   struct SourceLocation {
3002 ///     const char *Filename;
3003 ///     int32_t Line, Column;
3004 ///   };
3005 /// \endcode
3006 /// For an invalid SourceLocation, the Filename pointer is null.
3007 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3008   llvm::Constant *Filename;
3009   int Line, Column;
3010
3011   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3012   if (PLoc.isValid()) {
3013     StringRef FilenameString = PLoc.getFilename();
3014
3015     int PathComponentsToStrip =
3016         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3017     if (PathComponentsToStrip < 0) {
3018       assert(PathComponentsToStrip != INT_MIN);
3019       int PathComponentsToKeep = -PathComponentsToStrip;
3020       auto I = llvm::sys::path::rbegin(FilenameString);
3021       auto E = llvm::sys::path::rend(FilenameString);
3022       while (I != E && --PathComponentsToKeep)
3023         ++I;
3024
3025       FilenameString = FilenameString.substr(I - E);
3026     } else if (PathComponentsToStrip > 0) {
3027       auto I = llvm::sys::path::begin(FilenameString);
3028       auto E = llvm::sys::path::end(FilenameString);
3029       while (I != E && PathComponentsToStrip--)
3030         ++I;
3031
3032       if (I != E)
3033         FilenameString =
3034             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3035       else
3036         FilenameString = llvm::sys::path::filename(FilenameString);
3037     }
3038
3039     auto FilenameGV =
3040         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3041     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3042                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3043     Filename = FilenameGV.getPointer();
3044     Line = PLoc.getLine();
3045     Column = PLoc.getColumn();
3046   } else {
3047     Filename = llvm::Constant::getNullValue(Int8PtrTy);
3048     Line = Column = 0;
3049   }
3050
3051   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3052                             Builder.getInt32(Column)};
3053
3054   return llvm::ConstantStruct::getAnon(Data);
3055 }
3056
3057 namespace {
3058 /// Specify under what conditions this check can be recovered
3059 enum class CheckRecoverableKind {
3060   /// Always terminate program execution if this check fails.
3061   Unrecoverable,
3062   /// Check supports recovering, runtime has both fatal (noreturn) and
3063   /// non-fatal handlers for this check.
3064   Recoverable,
3065   /// Runtime conditionally aborts, always need to support recovery.
3066   AlwaysRecoverable
3067 };
3068 }
3069
3070 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3071   assert(Kind.countPopulation() == 1);
3072   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3073     return CheckRecoverableKind::AlwaysRecoverable;
3074   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3075     return CheckRecoverableKind::Unrecoverable;
3076   else
3077     return CheckRecoverableKind::Recoverable;
3078 }
3079
3080 namespace {
3081 struct SanitizerHandlerInfo {
3082   char const *const Name;
3083   unsigned Version;
3084 };
3085 }
3086
3087 const SanitizerHandlerInfo SanitizerHandlers[] = {
3088 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3089     LIST_SANITIZER_CHECKS
3090 #undef SANITIZER_CHECK
3091 };
3092
3093 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3094                                  llvm::FunctionType *FnType,
3095                                  ArrayRef<llvm::Value *> FnArgs,
3096                                  SanitizerHandler CheckHandler,
3097                                  CheckRecoverableKind RecoverKind, bool IsFatal,
3098                                  llvm::BasicBlock *ContBB) {
3099   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3100   Optional<ApplyDebugLocation> DL;
3101   if (!CGF.Builder.getCurrentDebugLocation()) {
3102     // Ensure that the call has at least an artificial debug location.
3103     DL.emplace(CGF, SourceLocation());
3104   }
3105   bool NeedsAbortSuffix =
3106       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3107   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3108   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3109   const StringRef CheckName = CheckInfo.Name;
3110   std::string FnName = "__ubsan_handle_" + CheckName.str();
3111   if (CheckInfo.Version && !MinimalRuntime)
3112     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3113   if (MinimalRuntime)
3114     FnName += "_minimal";
3115   if (NeedsAbortSuffix)
3116     FnName += "_abort";
3117   bool MayReturn =
3118       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3119
3120   llvm::AttrBuilder B;
3121   if (!MayReturn) {
3122     B.addAttribute(llvm::Attribute::NoReturn)
3123         .addAttribute(llvm::Attribute::NoUnwind);
3124   }
3125   B.addAttribute(llvm::Attribute::UWTable);
3126
3127   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3128       FnType, FnName,
3129       llvm::AttributeList::get(CGF.getLLVMContext(),
3130                                llvm::AttributeList::FunctionIndex, B),
3131       /*Local=*/true);
3132   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3133   if (!MayReturn) {
3134     HandlerCall->setDoesNotReturn();
3135     CGF.Builder.CreateUnreachable();
3136   } else {
3137     CGF.Builder.CreateBr(ContBB);
3138   }
3139 }
3140
3141 void CodeGenFunction::EmitCheck(
3142     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3143     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3144     ArrayRef<llvm::Value *> DynamicArgs) {
3145   assert(IsSanitizerScope);
3146   assert(Checked.size() > 0);
3147   assert(CheckHandler >= 0 &&
3148          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3149   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3150
3151   llvm::Value *FatalCond = nullptr;
3152   llvm::Value *RecoverableCond = nullptr;
3153   llvm::Value *TrapCond = nullptr;
3154   for (int i = 0, n = Checked.size(); i < n; ++i) {
3155     llvm::Value *Check = Checked[i].first;
3156     // -fsanitize-trap= overrides -fsanitize-recover=.
3157     llvm::Value *&Cond =
3158         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3159             ? TrapCond
3160             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3161                   ? RecoverableCond
3162                   : FatalCond;
3163     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3164   }
3165
3166   if (TrapCond)
3167     EmitTrapCheck(TrapCond);
3168   if (!FatalCond && !RecoverableCond)
3169     return;
3170
3171   llvm::Value *JointCond;
3172   if (FatalCond && RecoverableCond)
3173     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3174   else
3175     JointCond = FatalCond ? FatalCond : RecoverableCond;
3176   assert(JointCond);
3177
3178   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3179   assert(SanOpts.has(Checked[0].second));
3180 #ifndef NDEBUG
3181   for (int i = 1, n = Checked.size(); i < n; ++i) {
3182     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3183            "All recoverable kinds in a single check must be same!");
3184     assert(SanOpts.has(Checked[i].second));
3185   }
3186 #endif
3187
3188   llvm::BasicBlock *Cont = createBasicBlock("cont");
3189   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3190   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3191   // Give hint that we very much don't expect to execute the handler
3192   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3193   llvm::MDBuilder MDHelper(getLLVMContext());
3194   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3195   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3196   EmitBlock(Handlers);
3197
3198   // Handler functions take an i8* pointing to the (handler-specific) static
3199   // information block, followed by a sequence of intptr_t arguments
3200   // representing operand values.
3201   SmallVector<llvm::Value *, 4> Args;
3202   SmallVector<llvm::Type *, 4> ArgTypes;
3203   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3204     Args.reserve(DynamicArgs.size() + 1);
3205     ArgTypes.reserve(DynamicArgs.size() + 1);
3206
3207     // Emit handler arguments and create handler function type.
3208     if (!StaticArgs.empty()) {
3209       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3210       auto *InfoPtr =
3211           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3212                                    llvm::GlobalVariable::PrivateLinkage, Info);
3213       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3214       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3215       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3216       ArgTypes.push_back(Int8PtrTy);
3217     }
3218
3219     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3220       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3221       ArgTypes.push_back(IntPtrTy);
3222     }
3223   }
3224
3225   llvm::FunctionType *FnType =
3226     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3227
3228   if (!FatalCond || !RecoverableCond) {
3229     // Simple case: we need to generate a single handler call, either
3230     // fatal, or non-fatal.
3231     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3232                          (FatalCond != nullptr), Cont);
3233   } else {
3234     // Emit two handler calls: first one for set of unrecoverable checks,
3235     // another one for recoverable.
3236     llvm::BasicBlock *NonFatalHandlerBB =
3237         createBasicBlock("non_fatal." + CheckName);
3238     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3239     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3240     EmitBlock(FatalHandlerBB);
3241     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3242                          NonFatalHandlerBB);
3243     EmitBlock(NonFatalHandlerBB);
3244     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3245                          Cont);
3246   }
3247
3248   EmitBlock(Cont);
3249 }
3250
3251 void CodeGenFunction::EmitCfiSlowPathCheck(
3252     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3253     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3254   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3255
3256   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3257   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3258
3259   llvm::MDBuilder MDHelper(getLLVMContext());
3260   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3261   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3262
3263   EmitBlock(CheckBB);
3264
3265   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3266
3267   llvm::CallInst *CheckCall;
3268   llvm::FunctionCallee SlowPathFn;
3269   if (WithDiag) {
3270     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3271     auto *InfoPtr =
3272         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3273                                  llvm::GlobalVariable::PrivateLinkage, Info);
3274     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3275     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3276
3277     SlowPathFn = CGM.getModule().getOrInsertFunction(
3278         "__cfi_slowpath_diag",
3279         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3280                                 false));
3281     CheckCall = Builder.CreateCall(
3282         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3283   } else {
3284     SlowPathFn = CGM.getModule().getOrInsertFunction(
3285         "__cfi_slowpath",
3286         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3287     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3288   }
3289
3290   CGM.setDSOLocal(
3291       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3292   CheckCall->setDoesNotThrow();
3293
3294   EmitBlock(Cont);
3295 }
3296
3297 // Emit a stub for __cfi_check function so that the linker knows about this
3298 // symbol in LTO mode.
3299 void CodeGenFunction::EmitCfiCheckStub() {
3300   llvm::Module *M = &CGM.getModule();
3301   auto &Ctx = M->getContext();
3302   llvm::Function *F = llvm::Function::Create(
3303       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3304       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3305   CGM.setDSOLocal(F);
3306   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3307   // FIXME: consider emitting an intrinsic call like
3308   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3309   // which can be lowered in CrossDSOCFI pass to the actual contents of
3310   // __cfi_check. This would allow inlining of __cfi_check calls.
3311   llvm::CallInst::Create(
3312       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3313   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3314 }
3315
3316 // This function is basically a switch over the CFI failure kind, which is
3317 // extracted from CFICheckFailData (1st function argument). Each case is either
3318 // llvm.trap or a call to one of the two runtime handlers, based on
3319 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3320 // failure kind) traps, but this should really never happen.  CFICheckFailData
3321 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3322 // check kind; in this case __cfi_check_fail traps as well.
3323 void CodeGenFunction::EmitCfiCheckFail() {
3324   SanitizerScope SanScope(this);
3325   FunctionArgList Args;
3326   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3327                             ImplicitParamDecl::Other);
3328   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3329                             ImplicitParamDecl::Other);
3330   Args.push_back(&ArgData);
3331   Args.push_back(&ArgAddr);
3332
3333   const CGFunctionInfo &FI =
3334     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3335
3336   llvm::Function *F = llvm::Function::Create(
3337       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3338       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3339
3340   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
3341   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3342   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3343
3344   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3345                 SourceLocation());
3346
3347   // This function should not be affected by blacklist. This function does
3348   // not have a source location, but "src:*" would still apply. Revert any
3349   // changes to SanOpts made in StartFunction.
3350   SanOpts = CGM.getLangOpts().Sanitize;
3351
3352   llvm::Value *Data =
3353       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3354                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3355   llvm::Value *Addr =
3356       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3357                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3358
3359   // Data == nullptr means the calling module has trap behaviour for this check.
3360   llvm::Value *DataIsNotNullPtr =
3361       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3362   EmitTrapCheck(DataIsNotNullPtr);
3363
3364   llvm::StructType *SourceLocationTy =
3365       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3366   llvm::StructType *CfiCheckFailDataTy =
3367       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3368
3369   llvm::Value *V = Builder.CreateConstGEP2_32(
3370       CfiCheckFailDataTy,
3371       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3372       0);
3373   Address CheckKindAddr(V, getIntAlign());
3374   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3375
3376   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3377       CGM.getLLVMContext(),
3378       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3379   llvm::Value *ValidVtable = Builder.CreateZExt(
3380       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3381                          {Addr, AllVtables}),
3382       IntPtrTy);
3383
3384   const std::pair<int, SanitizerMask> CheckKinds[] = {
3385       {CFITCK_VCall, SanitizerKind::CFIVCall},
3386       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3387       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3388       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3389       {CFITCK_ICall, SanitizerKind::CFIICall}};
3390
3391   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3392   for (auto CheckKindMaskPair : CheckKinds) {
3393     int Kind = CheckKindMaskPair.first;
3394     SanitizerMask Mask = CheckKindMaskPair.second;
3395     llvm::Value *Cond =
3396         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3397     if (CGM.getLangOpts().Sanitize.has(Mask))
3398       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3399                 {Data, Addr, ValidVtable});
3400     else
3401       EmitTrapCheck(Cond);
3402   }
3403
3404   FinishFunction();
3405   // The only reference to this function will be created during LTO link.
3406   // Make sure it survives until then.
3407   CGM.addUsedGlobal(F);
3408 }
3409
3410 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3411   if (SanOpts.has(SanitizerKind::Unreachable)) {
3412     SanitizerScope SanScope(this);
3413     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3414                              SanitizerKind::Unreachable),
3415               SanitizerHandler::BuiltinUnreachable,
3416               EmitCheckSourceLocation(Loc), None);
3417   }
3418   Builder.CreateUnreachable();
3419 }
3420
3421 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3422   llvm::BasicBlock *Cont = createBasicBlock("cont");
3423
3424   // If we're optimizing, collapse all calls to trap down to just one per
3425   // function to save on code size.
3426   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3427     TrapBB = createBasicBlock("trap");
3428     Builder.CreateCondBr(Checked, Cont, TrapBB);
3429     EmitBlock(TrapBB);
3430     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3431     TrapCall->setDoesNotReturn();
3432     TrapCall->setDoesNotThrow();
3433     Builder.CreateUnreachable();
3434   } else {
3435     Builder.CreateCondBr(Checked, Cont, TrapBB);
3436   }
3437
3438   EmitBlock(Cont);
3439 }
3440
3441 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3442   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3443
3444   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3445     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3446                                   CGM.getCodeGenOpts().TrapFuncName);
3447     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3448   }
3449
3450   return TrapCall;
3451 }
3452
3453 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3454                                                  LValueBaseInfo *BaseInfo,
3455                                                  TBAAAccessInfo *TBAAInfo) {
3456   assert(E->getType()->isArrayType() &&
3457          "Array to pointer decay must have array source type!");
3458
3459   // Expressions of array type can't be bitfields or vector elements.
3460   LValue LV = EmitLValue(E);
3461   Address Addr = LV.getAddress(*this);
3462
3463   // If the array type was an incomplete type, we need to make sure
3464   // the decay ends up being the right type.
3465   llvm::Type *NewTy = ConvertType(E->getType());
3466   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3467
3468   // Note that VLA pointers are always decayed, so we don't need to do
3469   // anything here.
3470   if (!E->getType()->isVariableArrayType()) {
3471     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3472            "Expected pointer to array");
3473     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3474   }
3475
3476   // The result of this decay conversion points to an array element within the
3477   // base lvalue. However, since TBAA currently does not support representing
3478   // accesses to elements of member arrays, we conservatively represent accesses
3479   // to the pointee object as if it had no any base lvalue specified.
3480   // TODO: Support TBAA for member arrays.
3481   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3482   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3483   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3484
3485   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3486 }
3487
3488 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3489 /// array to pointer, return the array subexpression.
3490 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3491   // If this isn't just an array->pointer decay, bail out.
3492   const auto *CE = dyn_cast<CastExpr>(E);
3493   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3494     return nullptr;
3495
3496   // If this is a decay from variable width array, bail out.
3497   const Expr *SubExpr = CE->getSubExpr();
3498   if (SubExpr->getType()->isVariableArrayType())
3499     return nullptr;
3500
3501   return SubExpr;
3502 }
3503
3504 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3505                                           llvm::Value *ptr,
3506                                           ArrayRef<llvm::Value*> indices,
3507                                           bool inbounds,
3508                                           bool signedIndices,
3509                                           SourceLocation loc,
3510                                     const llvm::Twine &name = "arrayidx") {
3511   if (inbounds) {
3512     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3513                                       CodeGenFunction::NotSubtraction, loc,
3514                                       name);
3515   } else {
3516     return CGF.Builder.CreateGEP(ptr, indices, name);
3517   }
3518 }
3519
3520 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3521                                       llvm::Value *idx,
3522                                       CharUnits eltSize) {
3523   // If we have a constant index, we can use the exact offset of the
3524   // element we're accessing.
3525   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3526     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3527     return arrayAlign.alignmentAtOffset(offset);
3528
3529   // Otherwise, use the worst-case alignment for any element.
3530   } else {
3531     return arrayAlign.alignmentOfArrayElement(eltSize);
3532   }
3533 }
3534
3535 static QualType getFixedSizeElementType(const ASTContext &ctx,
3536                                         const VariableArrayType *vla) {
3537   QualType eltType;
3538   do {
3539     eltType = vla->getElementType();
3540   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3541   return eltType;
3542 }
3543
3544 /// Given an array base, check whether its member access belongs to a record
3545 /// with preserve_access_index attribute or not.
3546 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3547   if (!ArrayBase || !CGF.getDebugInfo())
3548     return false;
3549
3550   // Only support base as either a MemberExpr or DeclRefExpr.
3551   // DeclRefExpr to cover cases like:
3552   //    struct s { int a; int b[10]; };
3553   //    struct s *p;
3554   //    p[1].a
3555   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3556   // p->b[5] is a MemberExpr example.
3557   const Expr *E = ArrayBase->IgnoreImpCasts();
3558   if (const auto *ME = dyn_cast<MemberExpr>(E))
3559     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3560
3561   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3562     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3563     if (!VarDef)
3564       return false;
3565
3566     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3567     if (!PtrT)
3568       return false;
3569
3570     const auto *PointeeT = PtrT->getPointeeType()
3571                              ->getUnqualifiedDesugaredType();
3572     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3573       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3574     return false;
3575   }
3576
3577   return false;
3578 }
3579
3580 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3581                                      ArrayRef<llvm::Value *> indices,
3582                                      QualType eltType, bool inbounds,
3583                                      bool signedIndices, SourceLocation loc,
3584                                      QualType *arrayType = nullptr,
3585                                      const Expr *Base = nullptr,
3586                                      const llvm::Twine &name = "arrayidx") {
3587   // All the indices except that last must be zero.
3588 #ifndef NDEBUG
3589   for (auto idx : indices.drop_back())
3590     assert(isa<llvm::ConstantInt>(idx) &&
3591            cast<llvm::ConstantInt>(idx)->isZero());
3592 #endif
3593
3594   // Determine the element size of the statically-sized base.  This is
3595   // the thing that the indices are expressed in terms of.
3596   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3597     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3598   }
3599
3600   // We can use that to compute the best alignment of the element.
3601   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3602   CharUnits eltAlign =
3603     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3604
3605   llvm::Value *eltPtr;
3606   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3607   if (!LastIndex ||
3608       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3609     eltPtr = emitArraySubscriptGEP(
3610         CGF, addr.getPointer(), indices, inbounds, signedIndices,
3611         loc, name);
3612   } else {
3613     // Remember the original array subscript for bpf target
3614     unsigned idx = LastIndex->getZExtValue();
3615     llvm::DIType *DbgInfo = nullptr;
3616     if (arrayType)
3617       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3618     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3619                                                         addr.getPointer(),
3620                                                         indices.size() - 1,
3621                                                         idx, DbgInfo);
3622   }
3623
3624   return Address(eltPtr, eltAlign);
3625 }
3626
3627 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3628                                                bool Accessed) {
3629   // The index must always be an integer, which is not an aggregate.  Emit it
3630   // in lexical order (this complexity is, sadly, required by C++17).
3631   llvm::Value *IdxPre =
3632       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3633   bool SignedIndices = false;
3634   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3635     auto *Idx = IdxPre;
3636     if (E->getLHS() != E->getIdx()) {
3637       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3638       Idx = EmitScalarExpr(E->getIdx());
3639     }
3640
3641     QualType IdxTy = E->getIdx()->getType();
3642     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3643     SignedIndices |= IdxSigned;
3644
3645     if (SanOpts.has(SanitizerKind::ArrayBounds))
3646       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3647
3648     // Extend or truncate the index type to 32 or 64-bits.
3649     if (Promote && Idx->getType() != IntPtrTy)
3650       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3651
3652     return Idx;
3653   };
3654   IdxPre = nullptr;
3655
3656   // If the base is a vector type, then we are forming a vector element lvalue
3657   // with this subscript.
3658   if (E->getBase()->getType()->isVectorType() &&
3659       !isa<ExtVectorElementExpr>(E->getBase())) {
3660     // Emit the vector as an lvalue to get its address.
3661     LValue LHS = EmitLValue(E->getBase());
3662     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3663     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3664     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3665                                  E->getBase()->getType(), LHS.getBaseInfo(),
3666                                  TBAAAccessInfo());
3667   }
3668
3669   // All the other cases basically behave like simple offsetting.
3670
3671   // Handle the extvector case we ignored above.
3672   if (isa<ExtVectorElementExpr>(E->getBase())) {
3673     LValue LV = EmitLValue(E->getBase());
3674     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3675     Address Addr = EmitExtVectorElementLValue(LV);
3676
3677     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3678     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3679                                  SignedIndices, E->getExprLoc());
3680     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3681                           CGM.getTBAAInfoForSubobject(LV, EltType));
3682   }
3683
3684   LValueBaseInfo EltBaseInfo;
3685   TBAAAccessInfo EltTBAAInfo;
3686   Address Addr = Address::invalid();
3687   if (const VariableArrayType *vla =
3688            getContext().getAsVariableArrayType(E->getType())) {
3689     // The base must be a pointer, which is not an aggregate.  Emit
3690     // it.  It needs to be emitted first in case it's what captures
3691     // the VLA bounds.
3692     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3693     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3694
3695     // The element count here is the total number of non-VLA elements.
3696     llvm::Value *numElements = getVLASize(vla).NumElts;
3697
3698     // Effectively, the multiply by the VLA size is part of the GEP.
3699     // GEP indexes are signed, and scaling an index isn't permitted to
3700     // signed-overflow, so we use the same semantics for our explicit
3701     // multiply.  We suppress this if overflow is not undefined behavior.
3702     if (getLangOpts().isSignedOverflowDefined()) {
3703       Idx = Builder.CreateMul(Idx, numElements);
3704     } else {
3705       Idx = Builder.CreateNSWMul(Idx, numElements);
3706     }
3707
3708     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3709                                  !getLangOpts().isSignedOverflowDefined(),
3710                                  SignedIndices, E->getExprLoc());
3711
3712   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3713     // Indexing over an interface, as in "NSString *P; P[4];"
3714
3715     // Emit the base pointer.
3716     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3717     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3718
3719     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3720     llvm::Value *InterfaceSizeVal =
3721         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3722
3723     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3724
3725     // We don't necessarily build correct LLVM struct types for ObjC
3726     // interfaces, so we can't rely on GEP to do this scaling
3727     // correctly, so we need to cast to i8*.  FIXME: is this actually
3728     // true?  A lot of other things in the fragile ABI would break...
3729     llvm::Type *OrigBaseTy = Addr.getType();
3730     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3731
3732     // Do the GEP.
3733     CharUnits EltAlign =
3734       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3735     llvm::Value *EltPtr =
3736         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3737                               SignedIndices, E->getExprLoc());
3738     Addr = Address(EltPtr, EltAlign);
3739
3740     // Cast back.
3741     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3742   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3743     // If this is A[i] where A is an array, the frontend will have decayed the
3744     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3745     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3746     // "gep x, i" here.  Emit one "gep A, 0, i".
3747     assert(Array->getType()->isArrayType() &&
3748            "Array to pointer decay must have array source type!");
3749     LValue ArrayLV;
3750     // For simple multidimensional array indexing, set the 'accessed' flag for
3751     // better bounds-checking of the base expression.
3752     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3753       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3754     else
3755       ArrayLV = EmitLValue(Array);
3756     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3757
3758     // Propagate the alignment from the array itself to the result.
3759     QualType arrayType = Array->getType();
3760     Addr = emitArraySubscriptGEP(
3761         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3762         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3763         E->getExprLoc(), &arrayType, E->getBase());
3764     EltBaseInfo = ArrayLV.getBaseInfo();
3765     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3766   } else {
3767     // The base must be a pointer; emit it with an estimate of its alignment.
3768     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3769     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3770     QualType ptrType = E->getBase()->getType();
3771     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3772                                  !getLangOpts().isSignedOverflowDefined(),
3773                                  SignedIndices, E->getExprLoc(), &ptrType,
3774                                  E->getBase());
3775   }
3776
3777   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3778
3779   if (getLangOpts().ObjC &&
3780       getLangOpts().getGC() != LangOptions::NonGC) {
3781     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3782     setObjCGCLValueClass(getContext(), E, LV);
3783   }
3784   return LV;
3785 }
3786
3787 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3788   assert(
3789       !E->isIncomplete() &&
3790       "incomplete matrix subscript expressions should be rejected during Sema");
3791   LValue Base = EmitLValue(E->getBase());
3792   llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3793   llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3794   llvm::Value *NumRows = Builder.getIntN(
3795       RowIdx->getType()->getScalarSizeInBits(),
3796       E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows());
3797   llvm::Value *FinalIdx =
3798       Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3799   return LValue::MakeMatrixElt(
3800       MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3801       E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3802 }
3803
3804 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3805                                        LValueBaseInfo &BaseInfo,
3806                                        TBAAAccessInfo &TBAAInfo,
3807                                        QualType BaseTy, QualType ElTy,
3808                                        bool IsLowerBound) {
3809   LValue BaseLVal;
3810   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3811     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3812     if (BaseTy->isArrayType()) {
3813       Address Addr = BaseLVal.getAddress(CGF);
3814       BaseInfo = BaseLVal.getBaseInfo();
3815
3816       // If the array type was an incomplete type, we need to make sure
3817       // the decay ends up being the right type.
3818       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3819       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3820
3821       // Note that VLA pointers are always decayed, so we don't need to do
3822       // anything here.
3823       if (!BaseTy->isVariableArrayType()) {
3824         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3825                "Expected pointer to array");
3826         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3827       }
3828
3829       return CGF.Builder.CreateElementBitCast(Addr,
3830                                               CGF.ConvertTypeForMem(ElTy));
3831     }
3832     LValueBaseInfo TypeBaseInfo;
3833     TBAAAccessInfo TypeTBAAInfo;
3834     CharUnits Align =
3835         CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
3836     BaseInfo.mergeForCast(TypeBaseInfo);
3837     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3838     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3839   }
3840   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3841 }
3842
3843 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3844                                                 bool IsLowerBound) {
3845   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3846   QualType ResultExprTy;
3847   if (auto *AT = getContext().getAsArrayType(BaseTy))
3848     ResultExprTy = AT->getElementType();
3849   else
3850     ResultExprTy = BaseTy->getPointeeType();
3851   llvm::Value *Idx = nullptr;
3852   if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
3853     // Requesting lower bound or upper bound, but without provided length and
3854     // without ':' symbol for the default length -> length = 1.
3855     // Idx = LowerBound ?: 0;
3856     if (auto *LowerBound = E->getLowerBound()) {
3857       Idx = Builder.CreateIntCast(
3858           EmitScalarExpr(LowerBound), IntPtrTy,
3859           LowerBound->getType()->hasSignedIntegerRepresentation());
3860     } else
3861       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3862   } else {
3863     // Try to emit length or lower bound as constant. If this is possible, 1
3864     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3865     // IR (LB + Len) - 1.
3866     auto &C = CGM.getContext();
3867     auto *Length = E->getLength();
3868     llvm::APSInt ConstLength;
3869     if (Length) {
3870       // Idx = LowerBound + Length - 1;
3871       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3872         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3873         Length = nullptr;
3874       }
3875       auto *LowerBound = E->getLowerBound();
3876       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3877       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3878         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3879         LowerBound = nullptr;
3880       }
3881       if (!Length)
3882         --ConstLength;
3883       else if (!LowerBound)
3884         --ConstLowerBound;
3885
3886       if (Length || LowerBound) {
3887         auto *LowerBoundVal =
3888             LowerBound
3889                 ? Builder.CreateIntCast(
3890                       EmitScalarExpr(LowerBound), IntPtrTy,
3891                       LowerBound->getType()->hasSignedIntegerRepresentation())
3892                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3893         auto *LengthVal =
3894             Length
3895                 ? Builder.CreateIntCast(
3896                       EmitScalarExpr(Length), IntPtrTy,
3897                       Length->getType()->hasSignedIntegerRepresentation())
3898                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3899         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3900                                 /*HasNUW=*/false,
3901                                 !getLangOpts().isSignedOverflowDefined());
3902         if (Length && LowerBound) {
3903           Idx = Builder.CreateSub(
3904               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3905               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3906         }
3907       } else
3908         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3909     } else {
3910       // Idx = ArraySize - 1;
3911       QualType ArrayTy = BaseTy->isPointerType()
3912                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3913                              : BaseTy;
3914       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3915         Length = VAT->getSizeExpr();
3916         if (Length->isIntegerConstantExpr(ConstLength, C))
3917           Length = nullptr;
3918       } else {
3919         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3920         ConstLength = CAT->getSize();
3921       }
3922       if (Length) {
3923         auto *LengthVal = Builder.CreateIntCast(
3924             EmitScalarExpr(Length), IntPtrTy,
3925             Length->getType()->hasSignedIntegerRepresentation());
3926         Idx = Builder.CreateSub(
3927             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3928             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3929       } else {
3930         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3931         --ConstLength;
3932         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3933       }
3934     }
3935   }
3936   assert(Idx);
3937
3938   Address EltPtr = Address::invalid();
3939   LValueBaseInfo BaseInfo;
3940   TBAAAccessInfo TBAAInfo;
3941   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3942     // The base must be a pointer, which is not an aggregate.  Emit
3943     // it.  It needs to be emitted first in case it's what captures
3944     // the VLA bounds.
3945     Address Base =
3946         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3947                                 BaseTy, VLA->getElementType(), IsLowerBound);
3948     // The element count here is the total number of non-VLA elements.
3949     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3950
3951     // Effectively, the multiply by the VLA size is part of the GEP.
3952     // GEP indexes are signed, and scaling an index isn't permitted to
3953     // signed-overflow, so we use the same semantics for our explicit
3954     // multiply.  We suppress this if overflow is not undefined behavior.
3955     if (getLangOpts().isSignedOverflowDefined())
3956       Idx = Builder.CreateMul(Idx, NumElements);
3957     else
3958       Idx = Builder.CreateNSWMul(Idx, NumElements);
3959     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3960                                    !getLangOpts().isSignedOverflowDefined(),
3961                                    /*signedIndices=*/false, E->getExprLoc());
3962   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3963     // If this is A[i] where A is an array, the frontend will have decayed the
3964     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3965     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3966     // "gep x, i" here.  Emit one "gep A, 0, i".
3967     assert(Array->getType()->isArrayType() &&
3968            "Array to pointer decay must have array source type!");
3969     LValue ArrayLV;
3970     // For simple multidimensional array indexing, set the 'accessed' flag for
3971     // better bounds-checking of the base expression.
3972     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3973       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3974     else
3975       ArrayLV = EmitLValue(Array);
3976
3977     // Propagate the alignment from the array itself to the result.
3978     EltPtr = emitArraySubscriptGEP(
3979         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3980         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3981         /*signedIndices=*/false, E->getExprLoc());
3982     BaseInfo = ArrayLV.getBaseInfo();
3983     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3984   } else {
3985     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3986                                            TBAAInfo, BaseTy, ResultExprTy,
3987                                            IsLowerBound);
3988     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3989                                    !getLangOpts().isSignedOverflowDefined(),
3990                                    /*signedIndices=*/false, E->getExprLoc());
3991   }
3992
3993   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3994 }
3995
3996 LValue CodeGenFunction::
3997 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3998   // Emit the base vector as an l-value.
3999   LValue Base;
4000
4001   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4002   if (E->isArrow()) {
4003     // If it is a pointer to a vector, emit the address and form an lvalue with
4004     // it.
4005     LValueBaseInfo BaseInfo;
4006     TBAAAccessInfo TBAAInfo;
4007     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4008     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4009     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4010     Base.getQuals().removeObjCGCAttr();
4011   } else if (E->getBase()->isGLValue()) {
4012     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4013     // emit the base as an lvalue.
4014     assert(E->getBase()->getType()->isVectorType());
4015     Base = EmitLValue(E->getBase());
4016   } else {
4017     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4018     assert(E->getBase()->getType()->isVectorType() &&
4019            "Result must be a vector");
4020     llvm::Value *Vec = EmitScalarExpr(E->getBase());
4021
4022     // Store the vector to memory (because LValue wants an address).
4023     Address VecMem = CreateMemTemp(E->getBase()->getType());
4024     Builder.CreateStore(Vec, VecMem);
4025     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4026                           AlignmentSource::Decl);
4027   }
4028
4029   QualType type =
4030     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4031
4032   // Encode the element access list into a vector of unsigned indices.
4033   SmallVector<uint32_t, 4> Indices;
4034   E->getEncodedElementAccess(Indices);
4035
4036   if (Base.isSimple()) {
4037     llvm::Constant *CV =
4038         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4039     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4040                                     Base.getBaseInfo(), TBAAAccessInfo());
4041   }
4042   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4043
4044   llvm::Constant *BaseElts = Base.getExtVectorElts();
4045   SmallVector<llvm::Constant *, 4> CElts;
4046
4047   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4048     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4049   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4050   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4051                                   Base.getBaseInfo(), TBAAAccessInfo());
4052 }
4053
4054 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4055   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4056     EmitIgnoredExpr(E->getBase());
4057     return EmitDeclRefLValue(DRE);
4058   }
4059
4060   Expr *BaseExpr = E->getBase();
4061   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4062   LValue BaseLV;
4063   if (E->isArrow()) {
4064     LValueBaseInfo BaseInfo;
4065     TBAAAccessInfo TBAAInfo;
4066     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4067     QualType PtrTy = BaseExpr->getType()->getPointeeType();
4068     SanitizerSet SkippedChecks;
4069     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4070     if (IsBaseCXXThis)
4071       SkippedChecks.set(SanitizerKind::Alignment, true);
4072     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4073       SkippedChecks.set(SanitizerKind::Null, true);
4074     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4075                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4076     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4077   } else
4078     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4079
4080   NamedDecl *ND = E->getMemberDecl();
4081   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4082     LValue LV = EmitLValueForField(BaseLV, Field);
4083     setObjCGCLValueClass(getContext(), E, LV);
4084     if (getLangOpts().OpenMP) {
4085       // If the member was explicitly marked as nontemporal, mark it as
4086       // nontemporal. If the base lvalue is marked as nontemporal, mark access
4087       // to children as nontemporal too.
4088       if ((IsWrappedCXXThis(BaseExpr) &&
4089            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4090           BaseLV.isNontemporal())
4091         LV.setNontemporal(/*Value=*/true);
4092     }
4093     return LV;
4094   }
4095
4096   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4097     return EmitFunctionDeclLValue(*this, E, FD);
4098
4099   llvm_unreachable("Unhandled member declaration!");
4100 }
4101
4102 /// Given that we are currently emitting a lambda, emit an l-value for
4103 /// one of its members.
4104 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4105   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4106   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4107   QualType LambdaTagType =
4108     getContext().getTagDeclType(Field->getParent());
4109   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4110   return EmitLValueForField(LambdaLV, Field);
4111 }
4112
4113 /// Get the field index in the debug info. The debug info structure/union
4114 /// will ignore the unnamed bitfields.
4115 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4116                                              unsigned FieldIndex) {
4117   unsigned I = 0, Skipped = 0;
4118
4119   for (auto F : Rec->getDefinition()->fields()) {
4120     if (I == FieldIndex)
4121       break;
4122     if (F->isUnnamedBitfield())
4123       Skipped++;
4124     I++;
4125   }
4126
4127   return FieldIndex - Skipped;
4128 }
4129
4130 /// Get the address of a zero-sized field within a record. The resulting
4131 /// address doesn't necessarily have the right type.
4132 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4133                                        const FieldDecl *Field) {
4134   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4135       CGF.getContext().getFieldOffset(Field));
4136   if (Offset.isZero())
4137     return Base;
4138   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4139   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4140 }
4141
4142 /// Drill down to the storage of a field without walking into
4143 /// reference types.
4144 ///
4145 /// The resulting address doesn't necessarily have the right type.
4146 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4147                                       const FieldDecl *field) {
4148   if (field->isZeroSize(CGF.getContext()))
4149     return emitAddrOfZeroSizeField(CGF, base, field);
4150
4151   const RecordDecl *rec = field->getParent();
4152
4153   unsigned idx =
4154     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4155
4156   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4157 }
4158
4159 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4160                                         Address addr, const FieldDecl *field) {
4161   const RecordDecl *rec = field->getParent();
4162   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4163       base.getType(), rec->getLocation());
4164
4165   unsigned idx =
4166       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4167
4168   return CGF.Builder.CreatePreserveStructAccessIndex(
4169       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4170 }
4171
4172 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4173   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4174   if (!RD)
4175     return false;
4176
4177   if (RD->isDynamicClass())
4178     return true;
4179
4180   for (const auto &Base : RD->bases())
4181     if (hasAnyVptr(Base.getType(), Context))
4182       return true;
4183
4184   for (const FieldDecl *Field : RD->fields())
4185     if (hasAnyVptr(Field->getType(), Context))
4186       return true;
4187
4188   return false;
4189 }
4190
4191 LValue CodeGenFunction::EmitLValueForField(LValue base,
4192                                            const FieldDecl *field) {
4193   LValueBaseInfo BaseInfo = base.getBaseInfo();
4194
4195   if (field->isBitField()) {
4196     const CGRecordLayout &RL =
4197       CGM.getTypes().getCGRecordLayout(field->getParent());
4198     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4199     Address Addr = base.getAddress(*this);
4200     unsigned Idx = RL.getLLVMFieldNo(field);
4201     const RecordDecl *rec = field->getParent();
4202     if (!IsInPreservedAIRegion &&
4203         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4204       if (Idx != 0)
4205         // For structs, we GEP to the field that the record layout suggests.
4206         Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4207     } else {
4208       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4209           getContext().getRecordType(rec), rec->getLocation());
4210       Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx,
4211           getDebugInfoFIndex(rec, field->getFieldIndex()),
4212           DbgInfo);
4213     }
4214
4215     // Get the access type.
4216     llvm::Type *FieldIntTy =
4217       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
4218     if (Addr.getElementType() != FieldIntTy)
4219       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4220
4221     QualType fieldType =
4222       field->getType().withCVRQualifiers(base.getVRQualifiers());
4223     // TODO: Support TBAA for bit fields.
4224     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4225     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4226                                 TBAAAccessInfo());
4227   }
4228
4229   // Fields of may-alias structures are may-alias themselves.
4230   // FIXME: this should get propagated down through anonymous structs
4231   // and unions.
4232   QualType FieldType = field->getType();
4233   const RecordDecl *rec = field->getParent();
4234   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4235   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4236   TBAAAccessInfo FieldTBAAInfo;
4237   if (base.getTBAAInfo().isMayAlias() ||
4238           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4239     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4240   } else if (rec->isUnion()) {
4241     // TODO: Support TBAA for unions.
4242     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4243   } else {
4244     // If no base type been assigned for the base access, then try to generate
4245     // one for this base lvalue.
4246     FieldTBAAInfo = base.getTBAAInfo();
4247     if (!FieldTBAAInfo.BaseType) {
4248         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4249         assert(!FieldTBAAInfo.Offset &&
4250                "Nonzero offset for an access with no base type!");
4251     }
4252
4253     // Adjust offset to be relative to the base type.
4254     const ASTRecordLayout &Layout =
4255         getContext().getASTRecordLayout(field->getParent());
4256     unsigned CharWidth = getContext().getCharWidth();
4257     if (FieldTBAAInfo.BaseType)
4258       FieldTBAAInfo.Offset +=
4259           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4260
4261     // Update the final access type and size.
4262     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4263     FieldTBAAInfo.Size =
4264         getContext().getTypeSizeInChars(FieldType).getQuantity();
4265   }
4266
4267   Address addr = base.getAddress(*this);
4268   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4269     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4270         ClassDef->isDynamicClass()) {
4271       // Getting to any field of dynamic object requires stripping dynamic
4272       // information provided by invariant.group.  This is because accessing
4273       // fields may leak the real address of dynamic object, which could result
4274       // in miscompilation when leaked pointer would be compared.
4275       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4276       addr = Address(stripped, addr.getAlignment());
4277     }
4278   }
4279
4280   unsigned RecordCVR = base.getVRQualifiers();
4281   if (rec->isUnion()) {
4282     // For unions, there is no pointer adjustment.
4283     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4284         hasAnyVptr(FieldType, getContext()))
4285       // Because unions can easily skip invariant.barriers, we need to add
4286       // a barrier every time CXXRecord field with vptr is referenced.
4287       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4288                      addr.getAlignment());
4289
4290     if (IsInPreservedAIRegion ||
4291         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4292       // Remember the original union field index
4293       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4294           rec->getLocation());
4295       addr = Address(
4296           Builder.CreatePreserveUnionAccessIndex(
4297               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4298           addr.getAlignment());
4299     }
4300
4301     if (FieldType->isReferenceType())
4302       addr = Builder.CreateElementBitCast(
4303           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4304   } else {
4305     if (!IsInPreservedAIRegion &&
4306         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4307       // For structs, we GEP to the field that the record layout suggests.
4308       addr = emitAddrOfFieldStorage(*this, addr, field);
4309     else
4310       // Remember the original struct field index
4311       addr = emitPreserveStructAccess(*this, base, addr, field);
4312   }
4313
4314   // If this is a reference field, load the reference right now.
4315   if (FieldType->isReferenceType()) {
4316     LValue RefLVal =
4317         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4318     if (RecordCVR & Qualifiers::Volatile)
4319       RefLVal.getQuals().addVolatile();
4320     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4321
4322     // Qualifiers on the struct don't apply to the referencee.
4323     RecordCVR = 0;
4324     FieldType = FieldType->getPointeeType();
4325   }
4326
4327   // Make sure that the address is pointing to the right type.  This is critical
4328   // for both unions and structs.  A union needs a bitcast, a struct element
4329   // will need a bitcast if the LLVM type laid out doesn't match the desired
4330   // type.
4331   addr = Builder.CreateElementBitCast(
4332       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4333
4334   if (field->hasAttr<AnnotateAttr>())
4335     addr = EmitFieldAnnotations(field, addr);
4336
4337   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4338   LV.getQuals().addCVRQualifiers(RecordCVR);
4339
4340   // __weak attribute on a field is ignored.
4341   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4342     LV.getQuals().removeObjCGCAttr();
4343
4344   return LV;
4345 }
4346
4347 LValue
4348 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4349                                                   const FieldDecl *Field) {
4350   QualType FieldType = Field->getType();
4351
4352   if (!FieldType->isReferenceType())
4353     return EmitLValueForField(Base, Field);
4354
4355   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4356
4357   // Make sure that the address is pointing to the right type.
4358   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4359   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4360
4361   // TODO: Generate TBAA information that describes this access as a structure
4362   // member access and not just an access to an object of the field's type. This
4363   // should be similar to what we do in EmitLValueForField().
4364   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4365   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4366   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4367   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4368                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4369 }
4370
4371 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4372   if (E->isFileScope()) {
4373     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4374     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4375   }
4376   if (E->getType()->isVariablyModifiedType())
4377     // make sure to emit the VLA size.
4378     EmitVariablyModifiedType(E->getType());
4379
4380   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4381   const Expr *InitExpr = E->getInitializer();
4382   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4383
4384   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4385                    /*Init*/ true);
4386
4387   // Block-scope compound literals are destroyed at the end of the enclosing
4388   // scope in C.
4389   if (!getLangOpts().CPlusPlus)
4390     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4391       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4392                                   E->getType(), getDestroyer(DtorKind),
4393                                   DtorKind & EHCleanup);
4394
4395   return Result;
4396 }
4397
4398 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4399   if (!E->isGLValue())
4400     // Initializing an aggregate temporary in C++11: T{...}.
4401     return EmitAggExprToLValue(E);
4402
4403   // An lvalue initializer list must be initializing a reference.
4404   assert(E->isTransparent() && "non-transparent glvalue init list");
4405   return EmitLValue(E->getInit(0));
4406 }
4407
4408 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4409 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4410 /// LValue is returned and the current block has been terminated.
4411 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4412                                                     const Expr *Operand) {
4413   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4414     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4415     return None;
4416   }
4417
4418   return CGF.EmitLValue(Operand);
4419 }
4420
4421 LValue CodeGenFunction::
4422 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4423   if (!expr->isGLValue()) {
4424     // ?: here should be an aggregate.
4425     assert(hasAggregateEvaluationKind(expr->getType()) &&
4426            "Unexpected conditional operator!");
4427     return EmitAggExprToLValue(expr);
4428   }
4429
4430   OpaqueValueMapping binding(*this, expr);
4431
4432   const Expr *condExpr = expr->getCond();
4433   bool CondExprBool;
4434   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4435     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4436     if (!CondExprBool) std::swap(live, dead);
4437
4438     if (!ContainsLabel(dead)) {
4439       // If the true case is live, we need to track its region.
4440       if (CondExprBool)
4441         incrementProfileCounter(expr);
4442       // If a throw expression we emit it and return an undefined lvalue
4443       // because it can't be used.
4444       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
4445         EmitCXXThrowExpr(ThrowExpr);
4446         llvm::Type *Ty =
4447             llvm::PointerType::getUnqual(ConvertType(dead->getType()));
4448         return MakeAddrLValue(
4449             Address(llvm::UndefValue::get(Ty), CharUnits::One()),
4450             dead->getType());
4451       }
4452       return EmitLValue(live);
4453     }
4454   }
4455
4456   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4457   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4458   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4459
4460   ConditionalEvaluation eval(*this);
4461   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4462
4463   // Any temporaries created here are conditional.
4464   EmitBlock(lhsBlock);
4465   incrementProfileCounter(expr);
4466   eval.begin(*this);
4467   Optional<LValue> lhs =
4468       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4469   eval.end(*this);
4470
4471   if (lhs && !lhs->isSimple())
4472     return EmitUnsupportedLValue(expr, "conditional operator");
4473
4474   lhsBlock = Builder.GetInsertBlock();
4475   if (lhs)
4476     Builder.CreateBr(contBlock);
4477
4478   // Any temporaries created here are conditional.
4479   EmitBlock(rhsBlock);
4480   eval.begin(*this);
4481   Optional<LValue> rhs =
4482       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4483   eval.end(*this);
4484   if (rhs && !rhs->isSimple())
4485     return EmitUnsupportedLValue(expr, "conditional operator");
4486   rhsBlock = Builder.GetInsertBlock();
4487
4488   EmitBlock(contBlock);
4489
4490   if (lhs && rhs) {
4491     llvm::PHINode *phi =
4492         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4493     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4494     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4495     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4496     AlignmentSource alignSource =
4497       std::max(lhs->getBaseInfo().getAlignmentSource(),
4498                rhs->getBaseInfo().getAlignmentSource());
4499     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4500         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4501     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4502                           TBAAInfo);
4503   } else {
4504     assert((lhs || rhs) &&
4505            "both operands of glvalue conditional are throw-expressions?");
4506     return lhs ? *lhs : *rhs;
4507   }
4508 }
4509
4510 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4511 /// type. If the cast is to a reference, we can have the usual lvalue result,
4512 /// otherwise if a cast is needed by the code generator in an lvalue context,
4513 /// then it must mean that we need the address of an aggregate in order to
4514 /// access one of its members.  This can happen for all the reasons that casts
4515 /// are permitted with aggregate result, including noop aggregate casts, and
4516 /// cast from scalar to union.
4517 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4518   switch (E->getCastKind()) {
4519   case CK_ToVoid:
4520   case CK_BitCast:
4521   case CK_LValueToRValueBitCast:
4522   case CK_ArrayToPointerDecay:
4523   case CK_FunctionToPointerDecay:
4524   case CK_NullToMemberPointer:
4525   case CK_NullToPointer:
4526   case CK_IntegralToPointer:
4527   case CK_PointerToIntegral:
4528   case CK_PointerToBoolean:
4529   case CK_VectorSplat:
4530   case CK_IntegralCast:
4531   case CK_BooleanToSignedIntegral:
4532   case CK_IntegralToBoolean:
4533   case CK_IntegralToFloating:
4534   case CK_FloatingToIntegral:
4535   case CK_FloatingToBoolean:
4536   case CK_FloatingCast:
4537   case CK_FloatingRealToComplex:
4538   case CK_FloatingComplexToReal:
4539   case CK_FloatingComplexToBoolean:
4540   case CK_FloatingComplexCast:
4541   case CK_FloatingComplexToIntegralComplex:
4542   case CK_IntegralRealToComplex:
4543   case CK_IntegralComplexToReal:
4544   case CK_IntegralComplexToBoolean:
4545   case CK_IntegralComplexCast:
4546   case CK_IntegralComplexToFloatingComplex:
4547   case CK_DerivedToBaseMemberPointer:
4548   case CK_BaseToDerivedMemberPointer:
4549   case CK_MemberPointerToBoolean:
4550   case CK_ReinterpretMemberPointer:
4551   case CK_AnyPointerToBlockPointerCast:
4552   case CK_ARCProduceObject:
4553   case CK_ARCConsumeObject:
4554   case CK_ARCReclaimReturnedObject:
4555   case CK_ARCExtendBlockObject:
4556   case CK_CopyAndAutoreleaseBlockObject:
4557   case CK_IntToOCLSampler:
4558   case CK_FixedPointCast:
4559   case CK_FixedPointToBoolean:
4560   case CK_FixedPointToIntegral:
4561   case CK_IntegralToFixedPoint:
4562     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4563
4564   case CK_Dependent:
4565     llvm_unreachable("dependent cast kind in IR gen!");
4566
4567   case CK_BuiltinFnToFnPtr:
4568     llvm_unreachable("builtin functions are handled elsewhere");
4569
4570   // These are never l-values; just use the aggregate emission code.
4571   case CK_NonAtomicToAtomic:
4572   case CK_AtomicToNonAtomic:
4573     return EmitAggExprToLValue(E);
4574
4575   case CK_Dynamic: {
4576     LValue LV = EmitLValue(E->getSubExpr());
4577     Address V = LV.getAddress(*this);
4578     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4579     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4580   }
4581
4582   case CK_ConstructorConversion:
4583   case CK_UserDefinedConversion:
4584   case CK_CPointerToObjCPointerCast:
4585   case CK_BlockPointerToObjCPointerCast:
4586   case CK_NoOp:
4587   case CK_LValueToRValue:
4588     return EmitLValue(E->getSubExpr());
4589
4590   case CK_UncheckedDerivedToBase:
4591   case CK_DerivedToBase: {
4592     const auto *DerivedClassTy =
4593         E->getSubExpr()->getType()->castAs<RecordType>();
4594     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4595
4596     LValue LV = EmitLValue(E->getSubExpr());
4597     Address This = LV.getAddress(*this);
4598
4599     // Perform the derived-to-base conversion
4600     Address Base = GetAddressOfBaseClass(
4601         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4602         /*NullCheckValue=*/false, E->getExprLoc());
4603
4604     // TODO: Support accesses to members of base classes in TBAA. For now, we
4605     // conservatively pretend that the complete object is of the base class
4606     // type.
4607     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4608                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4609   }
4610   case CK_ToUnion:
4611     return EmitAggExprToLValue(E);
4612   case CK_BaseToDerived: {
4613     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4614     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4615
4616     LValue LV = EmitLValue(E->getSubExpr());
4617
4618     // Perform the base-to-derived conversion
4619     Address Derived = GetAddressOfDerivedClass(
4620         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4621         /*NullCheckValue=*/false);
4622
4623     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4624     // performed and the object is not of the derived type.
4625     if (sanitizePerformTypeCheck())
4626       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4627                     Derived.getPointer(), E->getType());
4628
4629     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4630       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4631                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4632                                 E->getBeginLoc());
4633
4634     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4635                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4636   }
4637   case CK_LValueBitCast: {
4638     // This must be a reinterpret_cast (or c-style equivalent).
4639     const auto *CE = cast<ExplicitCastExpr>(E);
4640
4641     CGM.EmitExplicitCastExprType(CE, this);
4642     LValue LV = EmitLValue(E->getSubExpr());
4643     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4644                                       ConvertType(CE->getTypeAsWritten()));
4645
4646     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4647       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4648                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4649                                 E->getBeginLoc());
4650
4651     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4652                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4653   }
4654   case CK_AddressSpaceConversion: {
4655     LValue LV = EmitLValue(E->getSubExpr());
4656     QualType DestTy = getContext().getPointerType(E->getType());
4657     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4658         *this, LV.getPointer(*this),
4659         E->getSubExpr()->getType().getAddressSpace(),
4660         E->getType().getAddressSpace(), ConvertType(DestTy));
4661     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4662                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4663   }
4664   case CK_ObjCObjectLValueCast: {
4665     LValue LV = EmitLValue(E->getSubExpr());
4666     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4667                                              ConvertType(E->getType()));
4668     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4669                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4670   }
4671   case CK_ZeroToOCLOpaqueType:
4672     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4673   }
4674
4675   llvm_unreachable("Unhandled lvalue cast kind?");
4676 }
4677
4678 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4679   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4680   return getOrCreateOpaqueLValueMapping(e);
4681 }
4682
4683 LValue
4684 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4685   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4686
4687   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4688       it = OpaqueLValues.find(e);
4689
4690   if (it != OpaqueLValues.end())
4691     return it->second;
4692
4693   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4694   return EmitLValue(e->getSourceExpr());
4695 }
4696
4697 RValue
4698 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4699   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4700
4701   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4702       it = OpaqueRValues.find(e);
4703
4704   if (it != OpaqueRValues.end())
4705     return it->second;
4706
4707   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4708   return EmitAnyExpr(e->getSourceExpr());
4709 }
4710
4711 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4712                                            const FieldDecl *FD,
4713                                            SourceLocation Loc) {
4714   QualType FT = FD->getType();
4715   LValue FieldLV = EmitLValueForField(LV, FD);
4716   switch (getEvaluationKind(FT)) {
4717   case TEK_Complex:
4718     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4719   case TEK_Aggregate:
4720     return FieldLV.asAggregateRValue(*this);
4721   case TEK_Scalar:
4722     // This routine is used to load fields one-by-one to perform a copy, so
4723     // don't load reference fields.
4724     if (FD->getType()->isReferenceType())
4725       return RValue::get(FieldLV.getPointer(*this));
4726     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4727     // primitive load.
4728     if (FieldLV.isBitField())
4729       return EmitLoadOfLValue(FieldLV, Loc);
4730     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4731   }
4732   llvm_unreachable("bad evaluation kind");
4733 }
4734
4735 //===--------------------------------------------------------------------===//
4736 //                             Expression Emission
4737 //===--------------------------------------------------------------------===//
4738
4739 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4740                                      ReturnValueSlot ReturnValue) {
4741   // Builtins never have block type.
4742   if (E->getCallee()->getType()->isBlockPointerType())
4743     return EmitBlockCallExpr(E, ReturnValue);
4744
4745   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4746     return EmitCXXMemberCallExpr(CE, ReturnValue);
4747
4748   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4749     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4750
4751   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4752     if (const CXXMethodDecl *MD =
4753           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4754       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4755
4756   CGCallee callee = EmitCallee(E->getCallee());
4757
4758   if (callee.isBuiltin()) {
4759     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4760                            E, ReturnValue);
4761   }
4762
4763   if (callee.isPseudoDestructor()) {
4764     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4765   }
4766
4767   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4768 }
4769
4770 /// Emit a CallExpr without considering whether it might be a subclass.
4771 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4772                                            ReturnValueSlot ReturnValue) {
4773   CGCallee Callee = EmitCallee(E->getCallee());
4774   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4775 }
4776
4777 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
4778   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4779
4780   if (auto builtinID = FD->getBuiltinID()) {
4781     // Replaceable builtin provide their own implementation of a builtin. Unless
4782     // we are in the builtin implementation itself, don't call the actual
4783     // builtin. If we are in the builtin implementation, avoid trivial infinite
4784     // recursion.
4785     if (!FD->isInlineBuiltinDeclaration() ||
4786         CGF.CurFn->getName() == FD->getName())
4787       return CGCallee::forBuiltin(builtinID, FD);
4788   }
4789
4790   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4791   return CGCallee::forDirect(calleePtr, GD);
4792 }
4793
4794 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4795   E = E->IgnoreParens();
4796
4797   // Look through function-to-pointer decay.
4798   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4799     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4800         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4801       return EmitCallee(ICE->getSubExpr());
4802     }
4803
4804   // Resolve direct calls.
4805   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4806     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4807       return EmitDirectCallee(*this, FD);
4808     }
4809   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4810     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4811       EmitIgnoredExpr(ME->getBase());
4812       return EmitDirectCallee(*this, FD);
4813     }
4814
4815   // Look through template substitutions.
4816   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4817     return EmitCallee(NTTP->getReplacement());
4818
4819   // Treat pseudo-destructor calls differently.
4820   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4821     return CGCallee::forPseudoDestructor(PDE);
4822   }
4823
4824   // Otherwise, we have an indirect reference.
4825   llvm::Value *calleePtr;
4826   QualType functionType;
4827   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4828     calleePtr = EmitScalarExpr(E);
4829     functionType = ptrType->getPointeeType();
4830   } else {
4831     functionType = E->getType();
4832     calleePtr = EmitLValue(E).getPointer(*this);
4833   }
4834   assert(functionType->isFunctionType());
4835
4836   GlobalDecl GD;
4837   if (const auto *VD =
4838           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4839     GD = GlobalDecl(VD);
4840
4841   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4842   CGCallee callee(calleeInfo, calleePtr);
4843   return callee;
4844 }
4845
4846 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4847   // Comma expressions just emit their LHS then their RHS as an l-value.
4848   if (E->getOpcode() == BO_Comma) {
4849     EmitIgnoredExpr(E->getLHS());
4850     EnsureInsertPoint();
4851     return EmitLValue(E->getRHS());
4852   }
4853
4854   if (E->getOpcode() == BO_PtrMemD ||
4855       E->getOpcode() == BO_PtrMemI)
4856     return EmitPointerToDataMemberBinaryExpr(E);
4857
4858   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4859
4860   // Note that in all of these cases, __block variables need the RHS
4861   // evaluated first just in case the variable gets moved by the RHS.
4862
4863   switch (getEvaluationKind(E->getType())) {
4864   case TEK_Scalar: {
4865     switch (E->getLHS()->getType().getObjCLifetime()) {
4866     case Qualifiers::OCL_Strong:
4867       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4868
4869     case Qualifiers::OCL_Autoreleasing:
4870       return EmitARCStoreAutoreleasing(E).first;
4871
4872     // No reason to do any of these differently.
4873     case Qualifiers::OCL_None:
4874     case Qualifiers::OCL_ExplicitNone:
4875     case Qualifiers::OCL_Weak:
4876       break;
4877     }
4878
4879     RValue RV = EmitAnyExpr(E->getRHS());
4880     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4881     if (RV.isScalar())
4882       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4883     EmitStoreThroughLValue(RV, LV);
4884     if (getLangOpts().OpenMP)
4885       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
4886                                                                 E->getLHS());
4887     return LV;
4888   }
4889
4890   case TEK_Complex:
4891     return EmitComplexAssignmentLValue(E);
4892
4893   case TEK_Aggregate:
4894     return EmitAggExprToLValue(E);
4895   }
4896   llvm_unreachable("bad evaluation kind");
4897 }
4898
4899 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4900   RValue RV = EmitCallExpr(E);
4901
4902   if (!RV.isScalar())
4903     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4904                           AlignmentSource::Decl);
4905
4906   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4907          "Can't have a scalar return unless the return type is a "
4908          "reference type!");
4909
4910   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4911 }
4912
4913 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4914   // FIXME: This shouldn't require another copy.
4915   return EmitAggExprToLValue(E);
4916 }
4917
4918 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4919   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4920          && "binding l-value to type which needs a temporary");
4921   AggValueSlot Slot = CreateAggTemp(E->getType());
4922   EmitCXXConstructExpr(E, Slot);
4923   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4924 }
4925
4926 LValue
4927 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4928   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4929 }
4930
4931 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4932   return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
4933                                       ConvertType(E->getType()));
4934 }
4935
4936 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4937   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4938                         AlignmentSource::Decl);
4939 }
4940
4941 LValue
4942 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4943   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4944   Slot.setExternallyDestructed();
4945   EmitAggExpr(E->getSubExpr(), Slot);
4946   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4947   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4948 }
4949
4950 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4951   RValue RV = EmitObjCMessageExpr(E);
4952
4953   if (!RV.isScalar())
4954     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4955                           AlignmentSource::Decl);
4956
4957   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4958          "Can't have a scalar return unless the return type is a "
4959          "reference type!");
4960
4961   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4962 }
4963
4964 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4965   Address V =
4966     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4967   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4968 }
4969
4970 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4971                                              const ObjCIvarDecl *Ivar) {
4972   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4973 }
4974
4975 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4976                                           llvm::Value *BaseValue,
4977                                           const ObjCIvarDecl *Ivar,
4978                                           unsigned CVRQualifiers) {
4979   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4980                                                    Ivar, CVRQualifiers);
4981 }
4982
4983 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4984   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4985   llvm::Value *BaseValue = nullptr;
4986   const Expr *BaseExpr = E->getBase();
4987   Qualifiers BaseQuals;
4988   QualType ObjectTy;
4989   if (E->isArrow()) {
4990     BaseValue = EmitScalarExpr(BaseExpr);
4991     ObjectTy = BaseExpr->getType()->getPointeeType();
4992     BaseQuals = ObjectTy.getQualifiers();
4993   } else {
4994     LValue BaseLV = EmitLValue(BaseExpr);
4995     BaseValue = BaseLV.getPointer(*this);
4996     ObjectTy = BaseExpr->getType();
4997     BaseQuals = ObjectTy.getQualifiers();
4998   }
4999
5000   LValue LV =
5001     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5002                       BaseQuals.getCVRQualifiers());
5003   setObjCGCLValueClass(getContext(), E, LV);
5004   return LV;
5005 }
5006
5007 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5008   // Can only get l-value for message expression returning aggregate type
5009   RValue RV = EmitAnyExprToTemp(E);
5010   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5011                         AlignmentSource::Decl);
5012 }
5013
5014 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5015                                  const CallExpr *E, ReturnValueSlot ReturnValue,
5016                                  llvm::Value *Chain) {
5017   // Get the actual function type. The callee type will always be a pointer to
5018   // function type or a block pointer type.
5019   assert(CalleeType->isFunctionPointerType() &&
5020          "Call must have function pointer type!");
5021
5022   const Decl *TargetDecl =
5023       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5024
5025   CalleeType = getContext().getCanonicalType(CalleeType);
5026
5027   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5028
5029   CGCallee Callee = OrigCallee;
5030
5031   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5032       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5033     if (llvm::Constant *PrefixSig =
5034             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5035       SanitizerScope SanScope(this);
5036       // Remove any (C++17) exception specifications, to allow calling e.g. a
5037       // noexcept function through a non-noexcept pointer.
5038       auto ProtoTy =
5039         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5040       llvm::Constant *FTRTTIConst =
5041           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5042       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
5043       llvm::StructType *PrefixStructTy = llvm::StructType::get(
5044           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
5045
5046       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5047
5048       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5049           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5050       llvm::Value *CalleeSigPtr =
5051           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5052       llvm::Value *CalleeSig =
5053           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
5054       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5055
5056       llvm::BasicBlock *Cont = createBasicBlock("cont");
5057       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5058       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5059
5060       EmitBlock(TypeCheck);
5061       llvm::Value *CalleeRTTIPtr =
5062           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5063       llvm::Value *CalleeRTTIEncoded =
5064           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
5065       llvm::Value *CalleeRTTI =
5066           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5067       llvm::Value *CalleeRTTIMatch =
5068           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5069       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5070                                       EmitCheckTypeDescriptor(CalleeType)};
5071       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5072                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5073                 {CalleePtr, CalleeRTTI, FTRTTIConst});
5074
5075       Builder.CreateBr(Cont);
5076       EmitBlock(Cont);
5077     }
5078   }
5079
5080   const auto *FnType = cast<FunctionType>(PointeeType);
5081
5082   // If we are checking indirect calls and this call is indirect, check that the
5083   // function pointer is a member of the bit set for the function type.
5084   if (SanOpts.has(SanitizerKind::CFIICall) &&
5085       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5086     SanitizerScope SanScope(this);
5087     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5088
5089     llvm::Metadata *MD;
5090     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5091       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5092     else
5093       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5094
5095     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5096
5097     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5098     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5099     llvm::Value *TypeTest = Builder.CreateCall(
5100         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5101
5102     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5103     llvm::Constant *StaticData[] = {
5104         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5105         EmitCheckSourceLocation(E->getBeginLoc()),
5106         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5107     };
5108     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5109       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5110                            CastedCallee, StaticData);
5111     } else {
5112       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5113                 SanitizerHandler::CFICheckFail, StaticData,
5114                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5115     }
5116   }
5117
5118   CallArgList Args;
5119   if (Chain)
5120     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5121              CGM.getContext().VoidPtrTy);
5122
5123   // C++17 requires that we evaluate arguments to a call using assignment syntax
5124   // right-to-left, and that we evaluate arguments to certain other operators
5125   // left-to-right. Note that we allow this to override the order dictated by
5126   // the calling convention on the MS ABI, which means that parameter
5127   // destruction order is not necessarily reverse construction order.
5128   // FIXME: Revisit this based on C++ committee response to unimplementability.
5129   EvaluationOrder Order = EvaluationOrder::Default;
5130   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5131     if (OCE->isAssignmentOp())
5132       Order = EvaluationOrder::ForceRightToLeft;
5133     else {
5134       switch (OCE->getOperator()) {
5135       case OO_LessLess:
5136       case OO_GreaterGreater:
5137       case OO_AmpAmp:
5138       case OO_PipePipe:
5139       case OO_Comma:
5140       case OO_ArrowStar:
5141         Order = EvaluationOrder::ForceLeftToRight;
5142         break;
5143       default:
5144         break;
5145       }
5146     }
5147   }
5148
5149   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5150                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5151
5152   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5153       Args, FnType, /*ChainCall=*/Chain);
5154
5155   // C99 6.5.2.2p6:
5156   //   If the expression that denotes the called function has a type
5157   //   that does not include a prototype, [the default argument
5158   //   promotions are performed]. If the number of arguments does not
5159   //   equal the number of parameters, the behavior is undefined. If
5160   //   the function is defined with a type that includes a prototype,
5161   //   and either the prototype ends with an ellipsis (, ...) or the
5162   //   types of the arguments after promotion are not compatible with
5163   //   the types of the parameters, the behavior is undefined. If the
5164   //   function is defined with a type that does not include a
5165   //   prototype, and the types of the arguments after promotion are
5166   //   not compatible with those of the parameters after promotion,
5167   //   the behavior is undefined [except in some trivial cases].
5168   // That is, in the general case, we should assume that a call
5169   // through an unprototyped function type works like a *non-variadic*
5170   // call.  The way we make this work is to cast to the exact type
5171   // of the promoted arguments.
5172   //
5173   // Chain calls use this same code path to add the invisible chain parameter
5174   // to the function type.
5175   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5176     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5177     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5178     CalleeTy = CalleeTy->getPointerTo(AS);
5179
5180     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5181     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5182     Callee.setFunctionPointer(CalleePtr);
5183   }
5184
5185   llvm::CallBase *CallOrInvoke = nullptr;
5186   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5187                          E->getExprLoc());
5188
5189   // Generate function declaration DISuprogram in order to be used
5190   // in debug info about call sites.
5191   if (CGDebugInfo *DI = getDebugInfo()) {
5192     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
5193       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
5194                                   CalleeDecl);
5195   }
5196
5197   return Call;
5198 }
5199
5200 LValue CodeGenFunction::
5201 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5202   Address BaseAddr = Address::invalid();
5203   if (E->getOpcode() == BO_PtrMemI) {
5204     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5205   } else {
5206     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5207   }
5208
5209   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5210   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5211
5212   LValueBaseInfo BaseInfo;
5213   TBAAAccessInfo TBAAInfo;
5214   Address MemberAddr =
5215     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5216                                     &TBAAInfo);
5217
5218   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5219 }
5220
5221 /// Given the address of a temporary variable, produce an r-value of
5222 /// its type.
5223 RValue CodeGenFunction::convertTempToRValue(Address addr,
5224                                             QualType type,
5225                                             SourceLocation loc) {
5226   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5227   switch (getEvaluationKind(type)) {
5228   case TEK_Complex:
5229     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5230   case TEK_Aggregate:
5231     return lvalue.asAggregateRValue(*this);
5232   case TEK_Scalar:
5233     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5234   }
5235   llvm_unreachable("bad evaluation kind");
5236 }
5237
5238 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5239   assert(Val->getType()->isFPOrFPVectorTy());
5240   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5241     return;
5242
5243   llvm::MDBuilder MDHelper(getLLVMContext());
5244   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5245
5246   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5247 }
5248
5249 namespace {
5250   struct LValueOrRValue {
5251     LValue LV;
5252     RValue RV;
5253   };
5254 }
5255
5256 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5257                                            const PseudoObjectExpr *E,
5258                                            bool forLValue,
5259                                            AggValueSlot slot) {
5260   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5261
5262   // Find the result expression, if any.
5263   const Expr *resultExpr = E->getResultExpr();
5264   LValueOrRValue result;
5265
5266   for (PseudoObjectExpr::const_semantics_iterator
5267          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5268     const Expr *semantic = *i;
5269
5270     // If this semantic expression is an opaque value, bind it
5271     // to the result of its source expression.
5272     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5273       // Skip unique OVEs.
5274       if (ov->isUnique()) {
5275         assert(ov != resultExpr &&
5276                "A unique OVE cannot be used as the result expression");
5277         continue;
5278       }
5279
5280       // If this is the result expression, we may need to evaluate
5281       // directly into the slot.
5282       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5283       OVMA opaqueData;
5284       if (ov == resultExpr && ov->isRValue() && !forLValue &&
5285           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5286         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5287         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5288                                        AlignmentSource::Decl);
5289         opaqueData = OVMA::bind(CGF, ov, LV);
5290         result.RV = slot.asRValue();
5291
5292       // Otherwise, emit as normal.
5293       } else {
5294         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5295
5296         // If this is the result, also evaluate the result now.
5297         if (ov == resultExpr) {
5298           if (forLValue)
5299             result.LV = CGF.EmitLValue(ov);
5300           else
5301             result.RV = CGF.EmitAnyExpr(ov, slot);
5302         }
5303       }
5304
5305       opaques.push_back(opaqueData);
5306
5307     // Otherwise, if the expression is the result, evaluate it
5308     // and remember the result.
5309     } else if (semantic == resultExpr) {
5310       if (forLValue)
5311         result.LV = CGF.EmitLValue(semantic);
5312       else
5313         result.RV = CGF.EmitAnyExpr(semantic, slot);
5314
5315     // Otherwise, evaluate the expression in an ignored context.
5316     } else {
5317       CGF.EmitIgnoredExpr(semantic);
5318     }
5319   }
5320
5321   // Unbind all the opaques now.
5322   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5323     opaques[i].unbind(CGF);
5324
5325   return result;
5326 }
5327
5328 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5329                                                AggValueSlot slot) {
5330   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5331 }
5332
5333 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5334   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5335 }