]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/clang/lib/CodeGen/CGExpr.cpp
Merge ^/vendor/libc++/dist up to its last change, and resolve conflicts.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / clang / lib / CodeGen / CGExpr.cpp
1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40
41 #include <string>
42
43 using namespace clang;
44 using namespace CodeGen;
45
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
65                                                      CharUnits Align,
66                                                      const Twine &Name,
67                                                      llvm::Value *ArraySize) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getAsAlign());
70   return Address(Alloca, Align);
71 }
72
73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
74 /// block. The alloca is casted to default address space if necessary.
75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
76                                           const Twine &Name,
77                                           llvm::Value *ArraySize,
78                                           Address *AllocaAddr) {
79   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
80   if (AllocaAddr)
81     *AllocaAddr = Alloca;
82   llvm::Value *V = Alloca.getPointer();
83   // Alloca always returns a pointer in alloca address space, which may
84   // be different from the type defined by the language. For example,
85   // in C++ the auto variables are in the default address space. Therefore
86   // cast alloca to the default address space when necessary.
87   if (getASTAllocaAddressSpace() != LangAS::Default) {
88     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
89     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
90     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
91     // otherwise alloca is inserted at the current insertion point of the
92     // builder.
93     if (!ArraySize)
94       Builder.SetInsertPoint(AllocaInsertPt);
95     V = getTargetHooks().performAddrSpaceCast(
96         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
97         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
98   }
99
100   return Address(V, Align);
101 }
102
103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
105 /// insertion point of the builder.
106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
107                                                     const Twine &Name,
108                                                     llvm::Value *ArraySize) {
109   if (ArraySize)
110     return Builder.CreateAlloca(Ty, ArraySize, Name);
111   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
112                               ArraySize, Name, AllocaInsertPt);
113 }
114
115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
116 /// default alignment of the corresponding LLVM type, which is *not*
117 /// guaranteed to be related in any way to the expected alignment of
118 /// an AST type that might have been lowered to Ty.
119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
120                                                       const Twine &Name) {
121   CharUnits Align =
122     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
123   return CreateTempAlloca(Ty, Align, Name);
124 }
125
126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
127   assert(isa<llvm::AllocaInst>(Var.getPointer()));
128   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
129   Store->setAlignment(Var.getAlignment().getAsAlign());
130   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
131   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
132 }
133
134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
135   CharUnits Align = getContext().getTypeAlignInChars(Ty);
136   return CreateTempAlloca(ConvertType(Ty), Align, Name);
137 }
138
139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
140                                        Address *Alloca) {
141   // FIXME: Should we prefer the preferred type alignment here?
142   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
143 }
144
145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
146                                        const Twine &Name, Address *Alloca) {
147   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
148                           /*ArraySize=*/nullptr, Alloca);
149 }
150
151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
152                                                   const Twine &Name) {
153   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
154 }
155
156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
157                                                   const Twine &Name) {
158   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
159                                   Name);
160 }
161
162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
163 /// expression and compare the result against zero, returning an Int1Ty value.
164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
165   PGO.setCurrentStmt(E);
166   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
167     llvm::Value *MemPtr = EmitScalarExpr(E);
168     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
169   }
170
171   QualType BoolTy = getContext().BoolTy;
172   SourceLocation Loc = E->getExprLoc();
173   if (!E->getType()->isAnyComplexType())
174     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
175
176   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
177                                        Loc);
178 }
179
180 /// EmitIgnoredExpr - Emit code to compute the specified expression,
181 /// ignoring the result.
182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
183   if (E->isRValue())
184     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
185
186   // Just emit it as an l-value and drop the result.
187   EmitLValue(E);
188 }
189
190 /// EmitAnyExpr - Emit code to compute the specified expression which
191 /// can have any type.  The result is returned as an RValue struct.
192 /// If this is an aggregate expression, AggSlot indicates where the
193 /// result should be returned.
194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
195                                     AggValueSlot aggSlot,
196                                     bool ignoreResult) {
197   switch (getEvaluationKind(E->getType())) {
198   case TEK_Scalar:
199     return RValue::get(EmitScalarExpr(E, ignoreResult));
200   case TEK_Complex:
201     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
202   case TEK_Aggregate:
203     if (!ignoreResult && aggSlot.isIgnored())
204       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
205     EmitAggExpr(E, aggSlot);
206     return aggSlot.asRValue();
207   }
208   llvm_unreachable("bad evaluation kind");
209 }
210
211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
212 /// always be accessible even if no aggregate location is provided.
213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
214   AggValueSlot AggSlot = AggValueSlot::ignored();
215
216   if (hasAggregateEvaluationKind(E->getType()))
217     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
218   return EmitAnyExpr(E, AggSlot);
219 }
220
221 /// EmitAnyExprToMem - Evaluate an expression into a given memory
222 /// location.
223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
224                                        Address Location,
225                                        Qualifiers Quals,
226                                        bool IsInit) {
227   // FIXME: This function should take an LValue as an argument.
228   switch (getEvaluationKind(E->getType())) {
229   case TEK_Complex:
230     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
231                               /*isInit*/ false);
232     return;
233
234   case TEK_Aggregate: {
235     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
236                                          AggValueSlot::IsDestructed_t(IsInit),
237                                          AggValueSlot::DoesNotNeedGCBarriers,
238                                          AggValueSlot::IsAliased_t(!IsInit),
239                                          AggValueSlot::MayOverlap));
240     return;
241   }
242
243   case TEK_Scalar: {
244     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
245     LValue LV = MakeAddrLValue(Location, E->getType());
246     EmitStoreThroughLValue(RV, LV);
247     return;
248   }
249   }
250   llvm_unreachable("bad evaluation kind");
251 }
252
253 static void
254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
255                      const Expr *E, Address ReferenceTemporary) {
256   // Objective-C++ ARC:
257   //   If we are binding a reference to a temporary that has ownership, we
258   //   need to perform retain/release operations on the temporary.
259   //
260   // FIXME: This should be looking at E, not M.
261   if (auto Lifetime = M->getType().getObjCLifetime()) {
262     switch (Lifetime) {
263     case Qualifiers::OCL_None:
264     case Qualifiers::OCL_ExplicitNone:
265       // Carry on to normal cleanup handling.
266       break;
267
268     case Qualifiers::OCL_Autoreleasing:
269       // Nothing to do; cleaned up by an autorelease pool.
270       return;
271
272     case Qualifiers::OCL_Strong:
273     case Qualifiers::OCL_Weak:
274       switch (StorageDuration Duration = M->getStorageDuration()) {
275       case SD_Static:
276         // Note: we intentionally do not register a cleanup to release
277         // the object on program termination.
278         return;
279
280       case SD_Thread:
281         // FIXME: We should probably register a cleanup in this case.
282         return;
283
284       case SD_Automatic:
285       case SD_FullExpression:
286         CodeGenFunction::Destroyer *Destroy;
287         CleanupKind CleanupKind;
288         if (Lifetime == Qualifiers::OCL_Strong) {
289           const ValueDecl *VD = M->getExtendingDecl();
290           bool Precise =
291               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
292           CleanupKind = CGF.getARCCleanupKind();
293           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
294                             : &CodeGenFunction::destroyARCStrongImprecise;
295         } else {
296           // __weak objects always get EH cleanups; otherwise, exceptions
297           // could cause really nasty crashes instead of mere leaks.
298           CleanupKind = NormalAndEHCleanup;
299           Destroy = &CodeGenFunction::destroyARCWeak;
300         }
301         if (Duration == SD_FullExpression)
302           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
303                           M->getType(), *Destroy,
304                           CleanupKind & EHCleanup);
305         else
306           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
307                                           M->getType(),
308                                           *Destroy, CleanupKind & EHCleanup);
309         return;
310
311       case SD_Dynamic:
312         llvm_unreachable("temporary cannot have dynamic storage duration");
313       }
314       llvm_unreachable("unknown storage duration");
315     }
316   }
317
318   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
319   if (const RecordType *RT =
320           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
321     // Get the destructor for the reference temporary.
322     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
323     if (!ClassDecl->hasTrivialDestructor())
324       ReferenceTemporaryDtor = ClassDecl->getDestructor();
325   }
326
327   if (!ReferenceTemporaryDtor)
328     return;
329
330   // Call the destructor for the temporary.
331   switch (M->getStorageDuration()) {
332   case SD_Static:
333   case SD_Thread: {
334     llvm::FunctionCallee CleanupFn;
335     llvm::Constant *CleanupArg;
336     if (E->getType()->isArrayType()) {
337       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
338           ReferenceTemporary, E->getType(),
339           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
340           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
341       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
342     } else {
343       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
344           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
345       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
346     }
347     CGF.CGM.getCXXABI().registerGlobalDtor(
348         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
349     break;
350   }
351
352   case SD_FullExpression:
353     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
354                     CodeGenFunction::destroyCXXObject,
355                     CGF.getLangOpts().Exceptions);
356     break;
357
358   case SD_Automatic:
359     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
360                                     ReferenceTemporary, E->getType(),
361                                     CodeGenFunction::destroyCXXObject,
362                                     CGF.getLangOpts().Exceptions);
363     break;
364
365   case SD_Dynamic:
366     llvm_unreachable("temporary cannot have dynamic storage duration");
367   }
368 }
369
370 static Address createReferenceTemporary(CodeGenFunction &CGF,
371                                         const MaterializeTemporaryExpr *M,
372                                         const Expr *Inner,
373                                         Address *Alloca = nullptr) {
374   auto &TCG = CGF.getTargetHooks();
375   switch (M->getStorageDuration()) {
376   case SD_FullExpression:
377   case SD_Automatic: {
378     // If we have a constant temporary array or record try to promote it into a
379     // constant global under the same rules a normal constant would've been
380     // promoted. This is easier on the optimizer and generally emits fewer
381     // instructions.
382     QualType Ty = Inner->getType();
383     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
384         (Ty->isArrayType() || Ty->isRecordType()) &&
385         CGF.CGM.isTypeConstant(Ty, true))
386       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
387         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
388           auto AS = AddrSpace.getValue();
389           auto *GV = new llvm::GlobalVariable(
390               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
391               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
392               llvm::GlobalValue::NotThreadLocal,
393               CGF.getContext().getTargetAddressSpace(AS));
394           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
395           GV->setAlignment(alignment.getAsAlign());
396           llvm::Constant *C = GV;
397           if (AS != LangAS::Default)
398             C = TCG.performAddrSpaceCast(
399                 CGF.CGM, GV, AS, LangAS::Default,
400                 GV->getValueType()->getPointerTo(
401                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
402           // FIXME: Should we put the new global into a COMDAT?
403           return Address(C, alignment);
404         }
405       }
406     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
407   }
408   case SD_Thread:
409   case SD_Static:
410     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
411
412   case SD_Dynamic:
413     llvm_unreachable("temporary can't have dynamic storage duration");
414   }
415   llvm_unreachable("unknown storage duration");
416 }
417
418 LValue CodeGenFunction::
419 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
420   const Expr *E = M->GetTemporaryExpr();
421
422   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
423           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
424          "Reference should never be pseudo-strong!");
425
426   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
427   // as that will cause the lifetime adjustment to be lost for ARC
428   auto ownership = M->getType().getObjCLifetime();
429   if (ownership != Qualifiers::OCL_None &&
430       ownership != Qualifiers::OCL_ExplicitNone) {
431     Address Object = createReferenceTemporary(*this, M, E);
432     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
433       Object = Address(llvm::ConstantExpr::getBitCast(Var,
434                            ConvertTypeForMem(E->getType())
435                              ->getPointerTo(Object.getAddressSpace())),
436                        Object.getAlignment());
437
438       // createReferenceTemporary will promote the temporary to a global with a
439       // constant initializer if it can.  It can only do this to a value of
440       // ARC-manageable type if the value is global and therefore "immune" to
441       // ref-counting operations.  Therefore we have no need to emit either a
442       // dynamic initialization or a cleanup and we can just return the address
443       // of the temporary.
444       if (Var->hasInitializer())
445         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
446
447       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
448     }
449     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
450                                        AlignmentSource::Decl);
451
452     switch (getEvaluationKind(E->getType())) {
453     default: llvm_unreachable("expected scalar or aggregate expression");
454     case TEK_Scalar:
455       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
456       break;
457     case TEK_Aggregate: {
458       EmitAggExpr(E, AggValueSlot::forAddr(Object,
459                                            E->getType().getQualifiers(),
460                                            AggValueSlot::IsDestructed,
461                                            AggValueSlot::DoesNotNeedGCBarriers,
462                                            AggValueSlot::IsNotAliased,
463                                            AggValueSlot::DoesNotOverlap));
464       break;
465     }
466     }
467
468     pushTemporaryCleanup(*this, M, E, Object);
469     return RefTempDst;
470   }
471
472   SmallVector<const Expr *, 2> CommaLHSs;
473   SmallVector<SubobjectAdjustment, 2> Adjustments;
474   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
475
476   for (const auto &Ignored : CommaLHSs)
477     EmitIgnoredExpr(Ignored);
478
479   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
480     if (opaque->getType()->isRecordType()) {
481       assert(Adjustments.empty());
482       return EmitOpaqueValueLValue(opaque);
483     }
484   }
485
486   // Create and initialize the reference temporary.
487   Address Alloca = Address::invalid();
488   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
489   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
490           Object.getPointer()->stripPointerCasts())) {
491     Object = Address(llvm::ConstantExpr::getBitCast(
492                          cast<llvm::Constant>(Object.getPointer()),
493                          ConvertTypeForMem(E->getType())->getPointerTo()),
494                      Object.getAlignment());
495     // If the temporary is a global and has a constant initializer or is a
496     // constant temporary that we promoted to a global, we may have already
497     // initialized it.
498     if (!Var->hasInitializer()) {
499       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
500       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
501     }
502   } else {
503     switch (M->getStorageDuration()) {
504     case SD_Automatic:
505       if (auto *Size = EmitLifetimeStart(
506               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
507               Alloca.getPointer())) {
508         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
509                                                   Alloca, Size);
510       }
511       break;
512
513     case SD_FullExpression: {
514       if (!ShouldEmitLifetimeMarkers)
515         break;
516
517       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
518       // marker. Instead, start the lifetime of a conditional temporary earlier
519       // so that it's unconditional. Don't do this with sanitizers which need
520       // more precise lifetime marks.
521       ConditionalEvaluation *OldConditional = nullptr;
522       CGBuilderTy::InsertPoint OldIP;
523       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
524           !SanOpts.has(SanitizerKind::HWAddress) &&
525           !SanOpts.has(SanitizerKind::Memory) &&
526           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
527         OldConditional = OutermostConditional;
528         OutermostConditional = nullptr;
529
530         OldIP = Builder.saveIP();
531         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
532         Builder.restoreIP(CGBuilderTy::InsertPoint(
533             Block, llvm::BasicBlock::iterator(Block->back())));
534       }
535
536       if (auto *Size = EmitLifetimeStart(
537               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
538               Alloca.getPointer())) {
539         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
540                                              Size);
541       }
542
543       if (OldConditional) {
544         OutermostConditional = OldConditional;
545         Builder.restoreIP(OldIP);
546       }
547       break;
548     }
549
550     default:
551       break;
552     }
553     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
554   }
555   pushTemporaryCleanup(*this, M, E, Object);
556
557   // Perform derived-to-base casts and/or field accesses, to get from the
558   // temporary object we created (and, potentially, for which we extended
559   // the lifetime) to the subobject we're binding the reference to.
560   for (unsigned I = Adjustments.size(); I != 0; --I) {
561     SubobjectAdjustment &Adjustment = Adjustments[I-1];
562     switch (Adjustment.Kind) {
563     case SubobjectAdjustment::DerivedToBaseAdjustment:
564       Object =
565           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
566                                 Adjustment.DerivedToBase.BasePath->path_begin(),
567                                 Adjustment.DerivedToBase.BasePath->path_end(),
568                                 /*NullCheckValue=*/ false, E->getExprLoc());
569       break;
570
571     case SubobjectAdjustment::FieldAdjustment: {
572       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
573       LV = EmitLValueForField(LV, Adjustment.Field);
574       assert(LV.isSimple() &&
575              "materialized temporary field is not a simple lvalue");
576       Object = LV.getAddress();
577       break;
578     }
579
580     case SubobjectAdjustment::MemberPointerAdjustment: {
581       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
582       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
583                                                Adjustment.Ptr.MPT);
584       break;
585     }
586     }
587   }
588
589   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
590 }
591
592 RValue
593 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
594   // Emit the expression as an lvalue.
595   LValue LV = EmitLValue(E);
596   assert(LV.isSimple());
597   llvm::Value *Value = LV.getPointer();
598
599   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
600     // C++11 [dcl.ref]p5 (as amended by core issue 453):
601     //   If a glvalue to which a reference is directly bound designates neither
602     //   an existing object or function of an appropriate type nor a region of
603     //   storage of suitable size and alignment to contain an object of the
604     //   reference's type, the behavior is undefined.
605     QualType Ty = E->getType();
606     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
607   }
608
609   return RValue::get(Value);
610 }
611
612
613 /// getAccessedFieldNo - Given an encoded value and a result number, return the
614 /// input field number being accessed.
615 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
616                                              const llvm::Constant *Elts) {
617   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
618       ->getZExtValue();
619 }
620
621 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
622 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
623                                     llvm::Value *High) {
624   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
625   llvm::Value *K47 = Builder.getInt64(47);
626   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
627   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
628   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
629   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
630   return Builder.CreateMul(B1, KMul);
631 }
632
633 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
634   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
635          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
636 }
637
638 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
639   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
640   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
641          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
642           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
643           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
644 }
645
646 bool CodeGenFunction::sanitizePerformTypeCheck() const {
647   return SanOpts.has(SanitizerKind::Null) |
648          SanOpts.has(SanitizerKind::Alignment) |
649          SanOpts.has(SanitizerKind::ObjectSize) |
650          SanOpts.has(SanitizerKind::Vptr);
651 }
652
653 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
654                                     llvm::Value *Ptr, QualType Ty,
655                                     CharUnits Alignment,
656                                     SanitizerSet SkippedChecks,
657                                     llvm::Value *ArraySize) {
658   if (!sanitizePerformTypeCheck())
659     return;
660
661   // Don't check pointers outside the default address space. The null check
662   // isn't correct, the object-size check isn't supported by LLVM, and we can't
663   // communicate the addresses to the runtime handler for the vptr check.
664   if (Ptr->getType()->getPointerAddressSpace())
665     return;
666
667   // Don't check pointers to volatile data. The behavior here is implementation-
668   // defined.
669   if (Ty.isVolatileQualified())
670     return;
671
672   SanitizerScope SanScope(this);
673
674   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
675   llvm::BasicBlock *Done = nullptr;
676
677   // Quickly determine whether we have a pointer to an alloca. It's possible
678   // to skip null checks, and some alignment checks, for these pointers. This
679   // can reduce compile-time significantly.
680   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
681
682   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
683   llvm::Value *IsNonNull = nullptr;
684   bool IsGuaranteedNonNull =
685       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
686   bool AllowNullPointers = isNullPointerAllowed(TCK);
687   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
688       !IsGuaranteedNonNull) {
689     // The glvalue must not be an empty glvalue.
690     IsNonNull = Builder.CreateIsNotNull(Ptr);
691
692     // The IR builder can constant-fold the null check if the pointer points to
693     // a constant.
694     IsGuaranteedNonNull = IsNonNull == True;
695
696     // Skip the null check if the pointer is known to be non-null.
697     if (!IsGuaranteedNonNull) {
698       if (AllowNullPointers) {
699         // When performing pointer casts, it's OK if the value is null.
700         // Skip the remaining checks in that case.
701         Done = createBasicBlock("null");
702         llvm::BasicBlock *Rest = createBasicBlock("not.null");
703         Builder.CreateCondBr(IsNonNull, Rest, Done);
704         EmitBlock(Rest);
705       } else {
706         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
707       }
708     }
709   }
710
711   if (SanOpts.has(SanitizerKind::ObjectSize) &&
712       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
713       !Ty->isIncompleteType()) {
714     uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity();
715     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
716     if (ArraySize)
717       Size = Builder.CreateMul(Size, ArraySize);
718
719     // Degenerate case: new X[0] does not need an objectsize check.
720     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
721     if (!ConstantSize || !ConstantSize->isNullValue()) {
722       // The glvalue must refer to a large enough storage region.
723       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
724       //        to check this.
725       // FIXME: Get object address space
726       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
727       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
728       llvm::Value *Min = Builder.getFalse();
729       llvm::Value *NullIsUnknown = Builder.getFalse();
730       llvm::Value *Dynamic = Builder.getFalse();
731       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
732       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
733           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
734       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
735     }
736   }
737
738   uint64_t AlignVal = 0;
739   llvm::Value *PtrAsInt = nullptr;
740
741   if (SanOpts.has(SanitizerKind::Alignment) &&
742       !SkippedChecks.has(SanitizerKind::Alignment)) {
743     AlignVal = Alignment.getQuantity();
744     if (!Ty->isIncompleteType() && !AlignVal)
745       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
746
747     // The glvalue must be suitably aligned.
748     if (AlignVal > 1 &&
749         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
750       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
751       llvm::Value *Align = Builder.CreateAnd(
752           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
753       llvm::Value *Aligned =
754           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
755       if (Aligned != True)
756         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
757     }
758   }
759
760   if (Checks.size() > 0) {
761     // Make sure we're not losing information. Alignment needs to be a power of
762     // 2
763     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
764     llvm::Constant *StaticData[] = {
765         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
766         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
767         llvm::ConstantInt::get(Int8Ty, TCK)};
768     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
769               PtrAsInt ? PtrAsInt : Ptr);
770   }
771
772   // If possible, check that the vptr indicates that there is a subobject of
773   // type Ty at offset zero within this object.
774   //
775   // C++11 [basic.life]p5,6:
776   //   [For storage which does not refer to an object within its lifetime]
777   //   The program has undefined behavior if:
778   //    -- the [pointer or glvalue] is used to access a non-static data member
779   //       or call a non-static member function
780   if (SanOpts.has(SanitizerKind::Vptr) &&
781       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
782     // Ensure that the pointer is non-null before loading it. If there is no
783     // compile-time guarantee, reuse the run-time null check or emit a new one.
784     if (!IsGuaranteedNonNull) {
785       if (!IsNonNull)
786         IsNonNull = Builder.CreateIsNotNull(Ptr);
787       if (!Done)
788         Done = createBasicBlock("vptr.null");
789       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
790       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
791       EmitBlock(VptrNotNull);
792     }
793
794     // Compute a hash of the mangled name of the type.
795     //
796     // FIXME: This is not guaranteed to be deterministic! Move to a
797     //        fingerprinting mechanism once LLVM provides one. For the time
798     //        being the implementation happens to be deterministic.
799     SmallString<64> MangledName;
800     llvm::raw_svector_ostream Out(MangledName);
801     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
802                                                      Out);
803
804     // Blacklist based on the mangled type.
805     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
806             SanitizerKind::Vptr, Out.str())) {
807       llvm::hash_code TypeHash = hash_value(Out.str());
808
809       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
810       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
811       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
812       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
813       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
814       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
815
816       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
817       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
818
819       // Look the hash up in our cache.
820       const int CacheSize = 128;
821       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
822       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
823                                                      "__ubsan_vptr_type_cache");
824       llvm::Value *Slot = Builder.CreateAnd(Hash,
825                                             llvm::ConstantInt::get(IntPtrTy,
826                                                                    CacheSize-1));
827       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
828       llvm::Value *CacheVal =
829         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
830                                   getPointerAlign());
831
832       // If the hash isn't in the cache, call a runtime handler to perform the
833       // hard work of checking whether the vptr is for an object of the right
834       // type. This will either fill in the cache and return, or produce a
835       // diagnostic.
836       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
837       llvm::Constant *StaticData[] = {
838         EmitCheckSourceLocation(Loc),
839         EmitCheckTypeDescriptor(Ty),
840         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
841         llvm::ConstantInt::get(Int8Ty, TCK)
842       };
843       llvm::Value *DynamicData[] = { Ptr, Hash };
844       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
845                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
846                 DynamicData);
847     }
848   }
849
850   if (Done) {
851     Builder.CreateBr(Done);
852     EmitBlock(Done);
853   }
854 }
855
856 /// Determine whether this expression refers to a flexible array member in a
857 /// struct. We disable array bounds checks for such members.
858 static bool isFlexibleArrayMemberExpr(const Expr *E) {
859   // For compatibility with existing code, we treat arrays of length 0 or
860   // 1 as flexible array members.
861   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
862   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
863     if (CAT->getSize().ugt(1))
864       return false;
865   } else if (!isa<IncompleteArrayType>(AT))
866     return false;
867
868   E = E->IgnoreParens();
869
870   // A flexible array member must be the last member in the class.
871   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
872     // FIXME: If the base type of the member expr is not FD->getParent(),
873     // this should not be treated as a flexible array member access.
874     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
875       RecordDecl::field_iterator FI(
876           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
877       return ++FI == FD->getParent()->field_end();
878     }
879   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
880     return IRE->getDecl()->getNextIvar() == nullptr;
881   }
882
883   return false;
884 }
885
886 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
887                                                    QualType EltTy) {
888   ASTContext &C = getContext();
889   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
890   if (!EltSize)
891     return nullptr;
892
893   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
894   if (!ArrayDeclRef)
895     return nullptr;
896
897   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
898   if (!ParamDecl)
899     return nullptr;
900
901   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
902   if (!POSAttr)
903     return nullptr;
904
905   // Don't load the size if it's a lower bound.
906   int POSType = POSAttr->getType();
907   if (POSType != 0 && POSType != 1)
908     return nullptr;
909
910   // Find the implicit size parameter.
911   auto PassedSizeIt = SizeArguments.find(ParamDecl);
912   if (PassedSizeIt == SizeArguments.end())
913     return nullptr;
914
915   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
916   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
917   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
918   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
919                                               C.getSizeType(), E->getExprLoc());
920   llvm::Value *SizeOfElement =
921       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
922   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
923 }
924
925 /// If Base is known to point to the start of an array, return the length of
926 /// that array. Return 0 if the length cannot be determined.
927 static llvm::Value *getArrayIndexingBound(
928     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
929   // For the vector indexing extension, the bound is the number of elements.
930   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
931     IndexedType = Base->getType();
932     return CGF.Builder.getInt32(VT->getNumElements());
933   }
934
935   Base = Base->IgnoreParens();
936
937   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
938     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
939         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
940       IndexedType = CE->getSubExpr()->getType();
941       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
942       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
943         return CGF.Builder.getInt(CAT->getSize());
944       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
945         return CGF.getVLASize(VAT).NumElts;
946       // Ignore pass_object_size here. It's not applicable on decayed pointers.
947     }
948   }
949
950   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
951   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
952     IndexedType = Base->getType();
953     return POS;
954   }
955
956   return nullptr;
957 }
958
959 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
960                                       llvm::Value *Index, QualType IndexType,
961                                       bool Accessed) {
962   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
963          "should not be called unless adding bounds checks");
964   SanitizerScope SanScope(this);
965
966   QualType IndexedType;
967   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
968   if (!Bound)
969     return;
970
971   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
972   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
973   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
974
975   llvm::Constant *StaticData[] = {
976     EmitCheckSourceLocation(E->getExprLoc()),
977     EmitCheckTypeDescriptor(IndexedType),
978     EmitCheckTypeDescriptor(IndexType)
979   };
980   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
981                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
982   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
983             SanitizerHandler::OutOfBounds, StaticData, Index);
984 }
985
986
987 CodeGenFunction::ComplexPairTy CodeGenFunction::
988 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
989                          bool isInc, bool isPre) {
990   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
991
992   llvm::Value *NextVal;
993   if (isa<llvm::IntegerType>(InVal.first->getType())) {
994     uint64_t AmountVal = isInc ? 1 : -1;
995     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
996
997     // Add the inc/dec to the real part.
998     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
999   } else {
1000     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1001     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1002     if (!isInc)
1003       FVal.changeSign();
1004     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1005
1006     // Add the inc/dec to the real part.
1007     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1008   }
1009
1010   ComplexPairTy IncVal(NextVal, InVal.second);
1011
1012   // Store the updated result through the lvalue.
1013   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1014
1015   // If this is a postinc, return the value read from memory, otherwise use the
1016   // updated value.
1017   return isPre ? IncVal : InVal;
1018 }
1019
1020 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1021                                              CodeGenFunction *CGF) {
1022   // Bind VLAs in the cast type.
1023   if (CGF && E->getType()->isVariablyModifiedType())
1024     CGF->EmitVariablyModifiedType(E->getType());
1025
1026   if (CGDebugInfo *DI = getModuleDebugInfo())
1027     DI->EmitExplicitCastType(E->getType());
1028 }
1029
1030 //===----------------------------------------------------------------------===//
1031 //                         LValue Expression Emission
1032 //===----------------------------------------------------------------------===//
1033
1034 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1035 /// derive a more accurate bound on the alignment of the pointer.
1036 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1037                                                   LValueBaseInfo *BaseInfo,
1038                                                   TBAAAccessInfo *TBAAInfo) {
1039   // We allow this with ObjC object pointers because of fragile ABIs.
1040   assert(E->getType()->isPointerType() ||
1041          E->getType()->isObjCObjectPointerType());
1042   E = E->IgnoreParens();
1043
1044   // Casts:
1045   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1046     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1047       CGM.EmitExplicitCastExprType(ECE, this);
1048
1049     switch (CE->getCastKind()) {
1050     // Non-converting casts (but not C's implicit conversion from void*).
1051     case CK_BitCast:
1052     case CK_NoOp:
1053     case CK_AddressSpaceConversion:
1054       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1055         if (PtrTy->getPointeeType()->isVoidType())
1056           break;
1057
1058         LValueBaseInfo InnerBaseInfo;
1059         TBAAAccessInfo InnerTBAAInfo;
1060         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1061                                                 &InnerBaseInfo,
1062                                                 &InnerTBAAInfo);
1063         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1064         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1065
1066         if (isa<ExplicitCastExpr>(CE)) {
1067           LValueBaseInfo TargetTypeBaseInfo;
1068           TBAAAccessInfo TargetTypeTBAAInfo;
1069           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1070                                                            &TargetTypeBaseInfo,
1071                                                            &TargetTypeTBAAInfo);
1072           if (TBAAInfo)
1073             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1074                                                  TargetTypeTBAAInfo);
1075           // If the source l-value is opaque, honor the alignment of the
1076           // casted-to type.
1077           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1078             if (BaseInfo)
1079               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1080             Addr = Address(Addr.getPointer(), Align);
1081           }
1082         }
1083
1084         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1085             CE->getCastKind() == CK_BitCast) {
1086           if (auto PT = E->getType()->getAs<PointerType>())
1087             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1088                                       /*MayBeNull=*/true,
1089                                       CodeGenFunction::CFITCK_UnrelatedCast,
1090                                       CE->getBeginLoc());
1091         }
1092         return CE->getCastKind() != CK_AddressSpaceConversion
1093                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1094                    : Builder.CreateAddrSpaceCast(Addr,
1095                                                  ConvertType(E->getType()));
1096       }
1097       break;
1098
1099     // Array-to-pointer decay.
1100     case CK_ArrayToPointerDecay:
1101       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1102
1103     // Derived-to-base conversions.
1104     case CK_UncheckedDerivedToBase:
1105     case CK_DerivedToBase: {
1106       // TODO: Support accesses to members of base classes in TBAA. For now, we
1107       // conservatively pretend that the complete object is of the base class
1108       // type.
1109       if (TBAAInfo)
1110         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1111       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1112       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1113       return GetAddressOfBaseClass(Addr, Derived,
1114                                    CE->path_begin(), CE->path_end(),
1115                                    ShouldNullCheckClassCastValue(CE),
1116                                    CE->getExprLoc());
1117     }
1118
1119     // TODO: Is there any reason to treat base-to-derived conversions
1120     // specially?
1121     default:
1122       break;
1123     }
1124   }
1125
1126   // Unary &.
1127   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1128     if (UO->getOpcode() == UO_AddrOf) {
1129       LValue LV = EmitLValue(UO->getSubExpr());
1130       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1131       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1132       return LV.getAddress();
1133     }
1134   }
1135
1136   // TODO: conditional operators, comma.
1137
1138   // Otherwise, use the alignment of the type.
1139   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1140                                                    TBAAInfo);
1141   return Address(EmitScalarExpr(E), Align);
1142 }
1143
1144 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1145   if (Ty->isVoidType())
1146     return RValue::get(nullptr);
1147
1148   switch (getEvaluationKind(Ty)) {
1149   case TEK_Complex: {
1150     llvm::Type *EltTy =
1151       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1152     llvm::Value *U = llvm::UndefValue::get(EltTy);
1153     return RValue::getComplex(std::make_pair(U, U));
1154   }
1155
1156   // If this is a use of an undefined aggregate type, the aggregate must have an
1157   // identifiable address.  Just because the contents of the value are undefined
1158   // doesn't mean that the address can't be taken and compared.
1159   case TEK_Aggregate: {
1160     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1161     return RValue::getAggregate(DestPtr);
1162   }
1163
1164   case TEK_Scalar:
1165     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1166   }
1167   llvm_unreachable("bad evaluation kind");
1168 }
1169
1170 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1171                                               const char *Name) {
1172   ErrorUnsupported(E, Name);
1173   return GetUndefRValue(E->getType());
1174 }
1175
1176 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1177                                               const char *Name) {
1178   ErrorUnsupported(E, Name);
1179   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1180   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1181                         E->getType());
1182 }
1183
1184 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1185   const Expr *Base = Obj;
1186   while (!isa<CXXThisExpr>(Base)) {
1187     // The result of a dynamic_cast can be null.
1188     if (isa<CXXDynamicCastExpr>(Base))
1189       return false;
1190
1191     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1192       Base = CE->getSubExpr();
1193     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1194       Base = PE->getSubExpr();
1195     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1196       if (UO->getOpcode() == UO_Extension)
1197         Base = UO->getSubExpr();
1198       else
1199         return false;
1200     } else {
1201       return false;
1202     }
1203   }
1204   return true;
1205 }
1206
1207 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1208   LValue LV;
1209   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1210     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1211   else
1212     LV = EmitLValue(E);
1213   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1214     SanitizerSet SkippedChecks;
1215     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1216       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1217       if (IsBaseCXXThis)
1218         SkippedChecks.set(SanitizerKind::Alignment, true);
1219       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1220         SkippedChecks.set(SanitizerKind::Null, true);
1221     }
1222     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1223                   E->getType(), LV.getAlignment(), SkippedChecks);
1224   }
1225   return LV;
1226 }
1227
1228 /// EmitLValue - Emit code to compute a designator that specifies the location
1229 /// of the expression.
1230 ///
1231 /// This can return one of two things: a simple address or a bitfield reference.
1232 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1233 /// an LLVM pointer type.
1234 ///
1235 /// If this returns a bitfield reference, nothing about the pointee type of the
1236 /// LLVM value is known: For example, it may not be a pointer to an integer.
1237 ///
1238 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1239 /// this method guarantees that the returned pointer type will point to an LLVM
1240 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1241 /// length type, this is not possible.
1242 ///
1243 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1244   ApplyDebugLocation DL(*this, E);
1245   switch (E->getStmtClass()) {
1246   default: return EmitUnsupportedLValue(E, "l-value expression");
1247
1248   case Expr::ObjCPropertyRefExprClass:
1249     llvm_unreachable("cannot emit a property reference directly");
1250
1251   case Expr::ObjCSelectorExprClass:
1252     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1253   case Expr::ObjCIsaExprClass:
1254     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1255   case Expr::BinaryOperatorClass:
1256     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1257   case Expr::CompoundAssignOperatorClass: {
1258     QualType Ty = E->getType();
1259     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1260       Ty = AT->getValueType();
1261     if (!Ty->isAnyComplexType())
1262       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1263     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1264   }
1265   case Expr::CallExprClass:
1266   case Expr::CXXMemberCallExprClass:
1267   case Expr::CXXOperatorCallExprClass:
1268   case Expr::UserDefinedLiteralClass:
1269     return EmitCallExprLValue(cast<CallExpr>(E));
1270   case Expr::CXXRewrittenBinaryOperatorClass:
1271     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1272   case Expr::VAArgExprClass:
1273     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1274   case Expr::DeclRefExprClass:
1275     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1276   case Expr::ConstantExprClass:
1277     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1278   case Expr::ParenExprClass:
1279     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1280   case Expr::GenericSelectionExprClass:
1281     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1282   case Expr::PredefinedExprClass:
1283     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1284   case Expr::StringLiteralClass:
1285     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1286   case Expr::ObjCEncodeExprClass:
1287     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1288   case Expr::PseudoObjectExprClass:
1289     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1290   case Expr::InitListExprClass:
1291     return EmitInitListLValue(cast<InitListExpr>(E));
1292   case Expr::CXXTemporaryObjectExprClass:
1293   case Expr::CXXConstructExprClass:
1294     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1295   case Expr::CXXBindTemporaryExprClass:
1296     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1297   case Expr::CXXUuidofExprClass:
1298     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1299   case Expr::LambdaExprClass:
1300     return EmitAggExprToLValue(E);
1301
1302   case Expr::ExprWithCleanupsClass: {
1303     const auto *cleanups = cast<ExprWithCleanups>(E);
1304     enterFullExpression(cleanups);
1305     RunCleanupsScope Scope(*this);
1306     LValue LV = EmitLValue(cleanups->getSubExpr());
1307     if (LV.isSimple()) {
1308       // Defend against branches out of gnu statement expressions surrounded by
1309       // cleanups.
1310       llvm::Value *V = LV.getPointer();
1311       Scope.ForceCleanup({&V});
1312       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1313                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1314     }
1315     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1316     // bitfield lvalue or some other non-simple lvalue?
1317     return LV;
1318   }
1319
1320   case Expr::CXXDefaultArgExprClass: {
1321     auto *DAE = cast<CXXDefaultArgExpr>(E);
1322     CXXDefaultArgExprScope Scope(*this, DAE);
1323     return EmitLValue(DAE->getExpr());
1324   }
1325   case Expr::CXXDefaultInitExprClass: {
1326     auto *DIE = cast<CXXDefaultInitExpr>(E);
1327     CXXDefaultInitExprScope Scope(*this, DIE);
1328     return EmitLValue(DIE->getExpr());
1329   }
1330   case Expr::CXXTypeidExprClass:
1331     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1332
1333   case Expr::ObjCMessageExprClass:
1334     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1335   case Expr::ObjCIvarRefExprClass:
1336     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1337   case Expr::StmtExprClass:
1338     return EmitStmtExprLValue(cast<StmtExpr>(E));
1339   case Expr::UnaryOperatorClass:
1340     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1341   case Expr::ArraySubscriptExprClass:
1342     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1343   case Expr::OMPArraySectionExprClass:
1344     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1345   case Expr::ExtVectorElementExprClass:
1346     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1347   case Expr::MemberExprClass:
1348     return EmitMemberExpr(cast<MemberExpr>(E));
1349   case Expr::CompoundLiteralExprClass:
1350     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1351   case Expr::ConditionalOperatorClass:
1352     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1353   case Expr::BinaryConditionalOperatorClass:
1354     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1355   case Expr::ChooseExprClass:
1356     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1357   case Expr::OpaqueValueExprClass:
1358     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1359   case Expr::SubstNonTypeTemplateParmExprClass:
1360     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1361   case Expr::ImplicitCastExprClass:
1362   case Expr::CStyleCastExprClass:
1363   case Expr::CXXFunctionalCastExprClass:
1364   case Expr::CXXStaticCastExprClass:
1365   case Expr::CXXDynamicCastExprClass:
1366   case Expr::CXXReinterpretCastExprClass:
1367   case Expr::CXXConstCastExprClass:
1368   case Expr::ObjCBridgedCastExprClass:
1369     return EmitCastLValue(cast<CastExpr>(E));
1370
1371   case Expr::MaterializeTemporaryExprClass:
1372     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1373
1374   case Expr::CoawaitExprClass:
1375     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1376   case Expr::CoyieldExprClass:
1377     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1378   }
1379 }
1380
1381 /// Given an object of the given canonical type, can we safely copy a
1382 /// value out of it based on its initializer?
1383 static bool isConstantEmittableObjectType(QualType type) {
1384   assert(type.isCanonical());
1385   assert(!type->isReferenceType());
1386
1387   // Must be const-qualified but non-volatile.
1388   Qualifiers qs = type.getLocalQualifiers();
1389   if (!qs.hasConst() || qs.hasVolatile()) return false;
1390
1391   // Otherwise, all object types satisfy this except C++ classes with
1392   // mutable subobjects or non-trivial copy/destroy behavior.
1393   if (const auto *RT = dyn_cast<RecordType>(type))
1394     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1395       if (RD->hasMutableFields() || !RD->isTrivial())
1396         return false;
1397
1398   return true;
1399 }
1400
1401 /// Can we constant-emit a load of a reference to a variable of the
1402 /// given type?  This is different from predicates like
1403 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1404 /// in situations that don't necessarily satisfy the language's rules
1405 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1406 /// to do this with const float variables even if those variables
1407 /// aren't marked 'constexpr'.
1408 enum ConstantEmissionKind {
1409   CEK_None,
1410   CEK_AsReferenceOnly,
1411   CEK_AsValueOrReference,
1412   CEK_AsValueOnly
1413 };
1414 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1415   type = type.getCanonicalType();
1416   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1417     if (isConstantEmittableObjectType(ref->getPointeeType()))
1418       return CEK_AsValueOrReference;
1419     return CEK_AsReferenceOnly;
1420   }
1421   if (isConstantEmittableObjectType(type))
1422     return CEK_AsValueOnly;
1423   return CEK_None;
1424 }
1425
1426 /// Try to emit a reference to the given value without producing it as
1427 /// an l-value.  This is just an optimization, but it avoids us needing
1428 /// to emit global copies of variables if they're named without triggering
1429 /// a formal use in a context where we can't emit a direct reference to them,
1430 /// for instance if a block or lambda or a member of a local class uses a
1431 /// const int variable or constexpr variable from an enclosing function.
1432 CodeGenFunction::ConstantEmission
1433 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1434   ValueDecl *value = refExpr->getDecl();
1435
1436   // The value needs to be an enum constant or a constant variable.
1437   ConstantEmissionKind CEK;
1438   if (isa<ParmVarDecl>(value)) {
1439     CEK = CEK_None;
1440   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1441     CEK = checkVarTypeForConstantEmission(var->getType());
1442   } else if (isa<EnumConstantDecl>(value)) {
1443     CEK = CEK_AsValueOnly;
1444   } else {
1445     CEK = CEK_None;
1446   }
1447   if (CEK == CEK_None) return ConstantEmission();
1448
1449   Expr::EvalResult result;
1450   bool resultIsReference;
1451   QualType resultType;
1452
1453   // It's best to evaluate all the way as an r-value if that's permitted.
1454   if (CEK != CEK_AsReferenceOnly &&
1455       refExpr->EvaluateAsRValue(result, getContext())) {
1456     resultIsReference = false;
1457     resultType = refExpr->getType();
1458
1459   // Otherwise, try to evaluate as an l-value.
1460   } else if (CEK != CEK_AsValueOnly &&
1461              refExpr->EvaluateAsLValue(result, getContext())) {
1462     resultIsReference = true;
1463     resultType = value->getType();
1464
1465   // Failure.
1466   } else {
1467     return ConstantEmission();
1468   }
1469
1470   // In any case, if the initializer has side-effects, abandon ship.
1471   if (result.HasSideEffects)
1472     return ConstantEmission();
1473
1474   // Emit as a constant.
1475   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1476                                                result.Val, resultType);
1477
1478   // Make sure we emit a debug reference to the global variable.
1479   // This should probably fire even for
1480   if (isa<VarDecl>(value)) {
1481     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1482       EmitDeclRefExprDbgValue(refExpr, result.Val);
1483   } else {
1484     assert(isa<EnumConstantDecl>(value));
1485     EmitDeclRefExprDbgValue(refExpr, result.Val);
1486   }
1487
1488   // If we emitted a reference constant, we need to dereference that.
1489   if (resultIsReference)
1490     return ConstantEmission::forReference(C);
1491
1492   return ConstantEmission::forValue(C);
1493 }
1494
1495 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1496                                                         const MemberExpr *ME) {
1497   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1498     // Try to emit static variable member expressions as DREs.
1499     return DeclRefExpr::Create(
1500         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1501         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1502         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1503   }
1504   return nullptr;
1505 }
1506
1507 CodeGenFunction::ConstantEmission
1508 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1509   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1510     return tryEmitAsConstant(DRE);
1511   return ConstantEmission();
1512 }
1513
1514 llvm::Value *CodeGenFunction::emitScalarConstant(
1515     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1516   assert(Constant && "not a constant");
1517   if (Constant.isReference())
1518     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1519                             E->getExprLoc())
1520         .getScalarVal();
1521   return Constant.getValue();
1522 }
1523
1524 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1525                                                SourceLocation Loc) {
1526   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1527                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1528                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1529 }
1530
1531 static bool hasBooleanRepresentation(QualType Ty) {
1532   if (Ty->isBooleanType())
1533     return true;
1534
1535   if (const EnumType *ET = Ty->getAs<EnumType>())
1536     return ET->getDecl()->getIntegerType()->isBooleanType();
1537
1538   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1539     return hasBooleanRepresentation(AT->getValueType());
1540
1541   return false;
1542 }
1543
1544 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1545                             llvm::APInt &Min, llvm::APInt &End,
1546                             bool StrictEnums, bool IsBool) {
1547   const EnumType *ET = Ty->getAs<EnumType>();
1548   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1549                                 ET && !ET->getDecl()->isFixed();
1550   if (!IsBool && !IsRegularCPlusPlusEnum)
1551     return false;
1552
1553   if (IsBool) {
1554     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1555     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1556   } else {
1557     const EnumDecl *ED = ET->getDecl();
1558     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1559     unsigned Bitwidth = LTy->getScalarSizeInBits();
1560     unsigned NumNegativeBits = ED->getNumNegativeBits();
1561     unsigned NumPositiveBits = ED->getNumPositiveBits();
1562
1563     if (NumNegativeBits) {
1564       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1565       assert(NumBits <= Bitwidth);
1566       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1567       Min = -End;
1568     } else {
1569       assert(NumPositiveBits <= Bitwidth);
1570       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1571       Min = llvm::APInt(Bitwidth, 0);
1572     }
1573   }
1574   return true;
1575 }
1576
1577 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1578   llvm::APInt Min, End;
1579   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1580                        hasBooleanRepresentation(Ty)))
1581     return nullptr;
1582
1583   llvm::MDBuilder MDHelper(getLLVMContext());
1584   return MDHelper.createRange(Min, End);
1585 }
1586
1587 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1588                                            SourceLocation Loc) {
1589   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1590   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1591   if (!HasBoolCheck && !HasEnumCheck)
1592     return false;
1593
1594   bool IsBool = hasBooleanRepresentation(Ty) ||
1595                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1596   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1597   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1598   if (!NeedsBoolCheck && !NeedsEnumCheck)
1599     return false;
1600
1601   // Single-bit booleans don't need to be checked. Special-case this to avoid
1602   // a bit width mismatch when handling bitfield values. This is handled by
1603   // EmitFromMemory for the non-bitfield case.
1604   if (IsBool &&
1605       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1606     return false;
1607
1608   llvm::APInt Min, End;
1609   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1610     return true;
1611
1612   auto &Ctx = getLLVMContext();
1613   SanitizerScope SanScope(this);
1614   llvm::Value *Check;
1615   --End;
1616   if (!Min) {
1617     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1618   } else {
1619     llvm::Value *Upper =
1620         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1621     llvm::Value *Lower =
1622         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1623     Check = Builder.CreateAnd(Upper, Lower);
1624   }
1625   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1626                                   EmitCheckTypeDescriptor(Ty)};
1627   SanitizerMask Kind =
1628       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1629   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1630             StaticArgs, EmitCheckValue(Value));
1631   return true;
1632 }
1633
1634 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1635                                                QualType Ty,
1636                                                SourceLocation Loc,
1637                                                LValueBaseInfo BaseInfo,
1638                                                TBAAAccessInfo TBAAInfo,
1639                                                bool isNontemporal) {
1640   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1641     // For better performance, handle vector loads differently.
1642     if (Ty->isVectorType()) {
1643       const llvm::Type *EltTy = Addr.getElementType();
1644
1645       const auto *VTy = cast<llvm::VectorType>(EltTy);
1646
1647       // Handle vectors of size 3 like size 4 for better performance.
1648       if (VTy->getNumElements() == 3) {
1649
1650         // Bitcast to vec4 type.
1651         llvm::VectorType *vec4Ty =
1652             llvm::VectorType::get(VTy->getElementType(), 4);
1653         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1654         // Now load value.
1655         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1656
1657         // Shuffle vector to get vec3.
1658         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1659                                         {0, 1, 2}, "extractVec");
1660         return EmitFromMemory(V, Ty);
1661       }
1662     }
1663   }
1664
1665   // Atomic operations have to be done on integral types.
1666   LValue AtomicLValue =
1667       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1668   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1669     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1670   }
1671
1672   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1673   if (isNontemporal) {
1674     llvm::MDNode *Node = llvm::MDNode::get(
1675         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1676     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1677   }
1678
1679   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1680
1681   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1682     // In order to prevent the optimizer from throwing away the check, don't
1683     // attach range metadata to the load.
1684   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1685     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1686       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1687
1688   return EmitFromMemory(Load, Ty);
1689 }
1690
1691 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1692   // Bool has a different representation in memory than in registers.
1693   if (hasBooleanRepresentation(Ty)) {
1694     // This should really always be an i1, but sometimes it's already
1695     // an i8, and it's awkward to track those cases down.
1696     if (Value->getType()->isIntegerTy(1))
1697       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1698     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1699            "wrong value rep of bool");
1700   }
1701
1702   return Value;
1703 }
1704
1705 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1706   // Bool has a different representation in memory than in registers.
1707   if (hasBooleanRepresentation(Ty)) {
1708     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1709            "wrong value rep of bool");
1710     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1711   }
1712
1713   return Value;
1714 }
1715
1716 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1717                                         bool Volatile, QualType Ty,
1718                                         LValueBaseInfo BaseInfo,
1719                                         TBAAAccessInfo TBAAInfo,
1720                                         bool isInit, bool isNontemporal) {
1721   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1722     // Handle vectors differently to get better performance.
1723     if (Ty->isVectorType()) {
1724       llvm::Type *SrcTy = Value->getType();
1725       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1726       // Handle vec3 special.
1727       if (VecTy && VecTy->getNumElements() == 3) {
1728         // Our source is a vec3, do a shuffle vector to make it a vec4.
1729         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1730                                   Builder.getInt32(2),
1731                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1732         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1733         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1734                                             MaskV, "extractVec");
1735         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1736       }
1737       if (Addr.getElementType() != SrcTy) {
1738         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1739       }
1740     }
1741   }
1742
1743   Value = EmitToMemory(Value, Ty);
1744
1745   LValue AtomicLValue =
1746       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1747   if (Ty->isAtomicType() ||
1748       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1749     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1750     return;
1751   }
1752
1753   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1754   if (isNontemporal) {
1755     llvm::MDNode *Node =
1756         llvm::MDNode::get(Store->getContext(),
1757                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1758     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1759   }
1760
1761   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1762 }
1763
1764 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1765                                         bool isInit) {
1766   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1767                     lvalue.getType(), lvalue.getBaseInfo(),
1768                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1769 }
1770
1771 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1772 /// method emits the address of the lvalue, then loads the result as an rvalue,
1773 /// returning the rvalue.
1774 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1775   if (LV.isObjCWeak()) {
1776     // load of a __weak object.
1777     Address AddrWeakObj = LV.getAddress();
1778     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1779                                                              AddrWeakObj));
1780   }
1781   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1782     // In MRC mode, we do a load+autorelease.
1783     if (!getLangOpts().ObjCAutoRefCount) {
1784       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1785     }
1786
1787     // In ARC mode, we load retained and then consume the value.
1788     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1789     Object = EmitObjCConsumeObject(LV.getType(), Object);
1790     return RValue::get(Object);
1791   }
1792
1793   if (LV.isSimple()) {
1794     assert(!LV.getType()->isFunctionType());
1795
1796     // Everything needs a load.
1797     return RValue::get(EmitLoadOfScalar(LV, Loc));
1798   }
1799
1800   if (LV.isVectorElt()) {
1801     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1802                                               LV.isVolatileQualified());
1803     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1804                                                     "vecext"));
1805   }
1806
1807   // If this is a reference to a subset of the elements of a vector, either
1808   // shuffle the input or extract/insert them as appropriate.
1809   if (LV.isExtVectorElt())
1810     return EmitLoadOfExtVectorElementLValue(LV);
1811
1812   // Global Register variables always invoke intrinsics
1813   if (LV.isGlobalReg())
1814     return EmitLoadOfGlobalRegLValue(LV);
1815
1816   assert(LV.isBitField() && "Unknown LValue type!");
1817   return EmitLoadOfBitfieldLValue(LV, Loc);
1818 }
1819
1820 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1821                                                  SourceLocation Loc) {
1822   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1823
1824   // Get the output type.
1825   llvm::Type *ResLTy = ConvertType(LV.getType());
1826
1827   Address Ptr = LV.getBitFieldAddress();
1828   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1829
1830   if (Info.IsSigned) {
1831     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1832     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1833     if (HighBits)
1834       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1835     if (Info.Offset + HighBits)
1836       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1837   } else {
1838     if (Info.Offset)
1839       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1840     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1841       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1842                                                               Info.Size),
1843                               "bf.clear");
1844   }
1845   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1846   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1847   return RValue::get(Val);
1848 }
1849
1850 // If this is a reference to a subset of the elements of a vector, create an
1851 // appropriate shufflevector.
1852 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1853   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1854                                         LV.isVolatileQualified());
1855
1856   const llvm::Constant *Elts = LV.getExtVectorElts();
1857
1858   // If the result of the expression is a non-vector type, we must be extracting
1859   // a single element.  Just codegen as an extractelement.
1860   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1861   if (!ExprVT) {
1862     unsigned InIdx = getAccessedFieldNo(0, Elts);
1863     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1864     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1865   }
1866
1867   // Always use shuffle vector to try to retain the original program structure
1868   unsigned NumResultElts = ExprVT->getNumElements();
1869
1870   SmallVector<llvm::Constant*, 4> Mask;
1871   for (unsigned i = 0; i != NumResultElts; ++i)
1872     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1873
1874   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1875   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1876                                     MaskV);
1877   return RValue::get(Vec);
1878 }
1879
1880 /// Generates lvalue for partial ext_vector access.
1881 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1882   Address VectorAddress = LV.getExtVectorAddress();
1883   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1884   QualType EQT = ExprVT->getElementType();
1885   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1886
1887   Address CastToPointerElement =
1888     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1889                                  "conv.ptr.element");
1890
1891   const llvm::Constant *Elts = LV.getExtVectorElts();
1892   unsigned ix = getAccessedFieldNo(0, Elts);
1893
1894   Address VectorBasePtrPlusIx =
1895     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1896                                    "vector.elt");
1897
1898   return VectorBasePtrPlusIx;
1899 }
1900
1901 /// Load of global gamed gegisters are always calls to intrinsics.
1902 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1903   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1904          "Bad type for register variable");
1905   llvm::MDNode *RegName = cast<llvm::MDNode>(
1906       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1907
1908   // We accept integer and pointer types only
1909   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1910   llvm::Type *Ty = OrigTy;
1911   if (OrigTy->isPointerTy())
1912     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1913   llvm::Type *Types[] = { Ty };
1914
1915   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1916   llvm::Value *Call = Builder.CreateCall(
1917       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1918   if (OrigTy->isPointerTy())
1919     Call = Builder.CreateIntToPtr(Call, OrigTy);
1920   return RValue::get(Call);
1921 }
1922
1923
1924 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1925 /// lvalue, where both are guaranteed to the have the same type, and that type
1926 /// is 'Ty'.
1927 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1928                                              bool isInit) {
1929   if (!Dst.isSimple()) {
1930     if (Dst.isVectorElt()) {
1931       // Read/modify/write the vector, inserting the new element.
1932       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1933                                             Dst.isVolatileQualified());
1934       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1935                                         Dst.getVectorIdx(), "vecins");
1936       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1937                           Dst.isVolatileQualified());
1938       return;
1939     }
1940
1941     // If this is an update of extended vector elements, insert them as
1942     // appropriate.
1943     if (Dst.isExtVectorElt())
1944       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1945
1946     if (Dst.isGlobalReg())
1947       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1948
1949     assert(Dst.isBitField() && "Unknown LValue type");
1950     return EmitStoreThroughBitfieldLValue(Src, Dst);
1951   }
1952
1953   // There's special magic for assigning into an ARC-qualified l-value.
1954   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1955     switch (Lifetime) {
1956     case Qualifiers::OCL_None:
1957       llvm_unreachable("present but none");
1958
1959     case Qualifiers::OCL_ExplicitNone:
1960       // nothing special
1961       break;
1962
1963     case Qualifiers::OCL_Strong:
1964       if (isInit) {
1965         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1966         break;
1967       }
1968       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1969       return;
1970
1971     case Qualifiers::OCL_Weak:
1972       if (isInit)
1973         // Initialize and then skip the primitive store.
1974         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1975       else
1976         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1977       return;
1978
1979     case Qualifiers::OCL_Autoreleasing:
1980       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1981                                                      Src.getScalarVal()));
1982       // fall into the normal path
1983       break;
1984     }
1985   }
1986
1987   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1988     // load of a __weak object.
1989     Address LvalueDst = Dst.getAddress();
1990     llvm::Value *src = Src.getScalarVal();
1991      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1992     return;
1993   }
1994
1995   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1996     // load of a __strong object.
1997     Address LvalueDst = Dst.getAddress();
1998     llvm::Value *src = Src.getScalarVal();
1999     if (Dst.isObjCIvar()) {
2000       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2001       llvm::Type *ResultType = IntPtrTy;
2002       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2003       llvm::Value *RHS = dst.getPointer();
2004       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2005       llvm::Value *LHS =
2006         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2007                                "sub.ptr.lhs.cast");
2008       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2009       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2010                                               BytesBetween);
2011     } else if (Dst.isGlobalObjCRef()) {
2012       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2013                                                 Dst.isThreadLocalRef());
2014     }
2015     else
2016       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2017     return;
2018   }
2019
2020   assert(Src.isScalar() && "Can't emit an agg store with this method");
2021   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2022 }
2023
2024 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2025                                                      llvm::Value **Result) {
2026   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2027   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2028   Address Ptr = Dst.getBitFieldAddress();
2029
2030   // Get the source value, truncated to the width of the bit-field.
2031   llvm::Value *SrcVal = Src.getScalarVal();
2032
2033   // Cast the source to the storage type and shift it into place.
2034   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2035                                  /*isSigned=*/false);
2036   llvm::Value *MaskedVal = SrcVal;
2037
2038   // See if there are other bits in the bitfield's storage we'll need to load
2039   // and mask together with source before storing.
2040   if (Info.StorageSize != Info.Size) {
2041     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2042     llvm::Value *Val =
2043       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2044
2045     // Mask the source value as needed.
2046     if (!hasBooleanRepresentation(Dst.getType()))
2047       SrcVal = Builder.CreateAnd(SrcVal,
2048                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2049                                                             Info.Size),
2050                                  "bf.value");
2051     MaskedVal = SrcVal;
2052     if (Info.Offset)
2053       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2054
2055     // Mask out the original value.
2056     Val = Builder.CreateAnd(Val,
2057                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2058                                                      Info.Offset,
2059                                                      Info.Offset + Info.Size),
2060                             "bf.clear");
2061
2062     // Or together the unchanged values and the source value.
2063     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2064   } else {
2065     assert(Info.Offset == 0);
2066   }
2067
2068   // Write the new value back out.
2069   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2070
2071   // Return the new value of the bit-field, if requested.
2072   if (Result) {
2073     llvm::Value *ResultVal = MaskedVal;
2074
2075     // Sign extend the value if needed.
2076     if (Info.IsSigned) {
2077       assert(Info.Size <= Info.StorageSize);
2078       unsigned HighBits = Info.StorageSize - Info.Size;
2079       if (HighBits) {
2080         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2081         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2082       }
2083     }
2084
2085     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2086                                       "bf.result.cast");
2087     *Result = EmitFromMemory(ResultVal, Dst.getType());
2088   }
2089 }
2090
2091 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2092                                                                LValue Dst) {
2093   // This access turns into a read/modify/write of the vector.  Load the input
2094   // value now.
2095   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2096                                         Dst.isVolatileQualified());
2097   const llvm::Constant *Elts = Dst.getExtVectorElts();
2098
2099   llvm::Value *SrcVal = Src.getScalarVal();
2100
2101   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2102     unsigned NumSrcElts = VTy->getNumElements();
2103     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2104     if (NumDstElts == NumSrcElts) {
2105       // Use shuffle vector is the src and destination are the same number of
2106       // elements and restore the vector mask since it is on the side it will be
2107       // stored.
2108       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2109       for (unsigned i = 0; i != NumSrcElts; ++i)
2110         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2111
2112       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2113       Vec = Builder.CreateShuffleVector(SrcVal,
2114                                         llvm::UndefValue::get(Vec->getType()),
2115                                         MaskV);
2116     } else if (NumDstElts > NumSrcElts) {
2117       // Extended the source vector to the same length and then shuffle it
2118       // into the destination.
2119       // FIXME: since we're shuffling with undef, can we just use the indices
2120       //        into that?  This could be simpler.
2121       SmallVector<llvm::Constant*, 4> ExtMask;
2122       for (unsigned i = 0; i != NumSrcElts; ++i)
2123         ExtMask.push_back(Builder.getInt32(i));
2124       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2125       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2126       llvm::Value *ExtSrcVal =
2127         Builder.CreateShuffleVector(SrcVal,
2128                                     llvm::UndefValue::get(SrcVal->getType()),
2129                                     ExtMaskV);
2130       // build identity
2131       SmallVector<llvm::Constant*, 4> Mask;
2132       for (unsigned i = 0; i != NumDstElts; ++i)
2133         Mask.push_back(Builder.getInt32(i));
2134
2135       // When the vector size is odd and .odd or .hi is used, the last element
2136       // of the Elts constant array will be one past the size of the vector.
2137       // Ignore the last element here, if it is greater than the mask size.
2138       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2139         NumSrcElts--;
2140
2141       // modify when what gets shuffled in
2142       for (unsigned i = 0; i != NumSrcElts; ++i)
2143         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2144       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2145       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2146     } else {
2147       // We should never shorten the vector
2148       llvm_unreachable("unexpected shorten vector length");
2149     }
2150   } else {
2151     // If the Src is a scalar (not a vector) it must be updating one element.
2152     unsigned InIdx = getAccessedFieldNo(0, Elts);
2153     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2154     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2155   }
2156
2157   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2158                       Dst.isVolatileQualified());
2159 }
2160
2161 /// Store of global named registers are always calls to intrinsics.
2162 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2163   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2164          "Bad type for register variable");
2165   llvm::MDNode *RegName = cast<llvm::MDNode>(
2166       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2167   assert(RegName && "Register LValue is not metadata");
2168
2169   // We accept integer and pointer types only
2170   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2171   llvm::Type *Ty = OrigTy;
2172   if (OrigTy->isPointerTy())
2173     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2174   llvm::Type *Types[] = { Ty };
2175
2176   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2177   llvm::Value *Value = Src.getScalarVal();
2178   if (OrigTy->isPointerTy())
2179     Value = Builder.CreatePtrToInt(Value, Ty);
2180   Builder.CreateCall(
2181       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2182 }
2183
2184 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2185 // generating write-barries API. It is currently a global, ivar,
2186 // or neither.
2187 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2188                                  LValue &LV,
2189                                  bool IsMemberAccess=false) {
2190   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2191     return;
2192
2193   if (isa<ObjCIvarRefExpr>(E)) {
2194     QualType ExpTy = E->getType();
2195     if (IsMemberAccess && ExpTy->isPointerType()) {
2196       // If ivar is a structure pointer, assigning to field of
2197       // this struct follows gcc's behavior and makes it a non-ivar
2198       // writer-barrier conservatively.
2199       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2200       if (ExpTy->isRecordType()) {
2201         LV.setObjCIvar(false);
2202         return;
2203       }
2204     }
2205     LV.setObjCIvar(true);
2206     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2207     LV.setBaseIvarExp(Exp->getBase());
2208     LV.setObjCArray(E->getType()->isArrayType());
2209     return;
2210   }
2211
2212   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2213     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2214       if (VD->hasGlobalStorage()) {
2215         LV.setGlobalObjCRef(true);
2216         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2217       }
2218     }
2219     LV.setObjCArray(E->getType()->isArrayType());
2220     return;
2221   }
2222
2223   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2224     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2225     return;
2226   }
2227
2228   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2229     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2230     if (LV.isObjCIvar()) {
2231       // If cast is to a structure pointer, follow gcc's behavior and make it
2232       // a non-ivar write-barrier.
2233       QualType ExpTy = E->getType();
2234       if (ExpTy->isPointerType())
2235         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2236       if (ExpTy->isRecordType())
2237         LV.setObjCIvar(false);
2238     }
2239     return;
2240   }
2241
2242   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2243     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2244     return;
2245   }
2246
2247   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2248     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2249     return;
2250   }
2251
2252   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2253     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2254     return;
2255   }
2256
2257   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2258     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2259     return;
2260   }
2261
2262   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2263     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2264     if (LV.isObjCIvar() && !LV.isObjCArray())
2265       // Using array syntax to assigning to what an ivar points to is not
2266       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2267       LV.setObjCIvar(false);
2268     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2269       // Using array syntax to assigning to what global points to is not
2270       // same as assigning to the global itself. {id *G;} G[i] = 0;
2271       LV.setGlobalObjCRef(false);
2272     return;
2273   }
2274
2275   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2276     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2277     // We don't know if member is an 'ivar', but this flag is looked at
2278     // only in the context of LV.isObjCIvar().
2279     LV.setObjCArray(E->getType()->isArrayType());
2280     return;
2281   }
2282 }
2283
2284 static llvm::Value *
2285 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2286                                 llvm::Value *V, llvm::Type *IRType,
2287                                 StringRef Name = StringRef()) {
2288   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2289   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2290 }
2291
2292 static LValue EmitThreadPrivateVarDeclLValue(
2293     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2294     llvm::Type *RealVarTy, SourceLocation Loc) {
2295   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2296   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2297   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2298 }
2299
2300 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2301                                            const VarDecl *VD, QualType T) {
2302   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2303       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2304   // Return an invalid address if variable is MT_To and unified
2305   // memory is not enabled. For all other cases: MT_Link and
2306   // MT_To with unified memory, return a valid address.
2307   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2308                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2309     return Address::invalid();
2310   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2311           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2312            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2313          "Expected link clause OR to clause with unified memory enabled.");
2314   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2315   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2316   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2317 }
2318
2319 Address
2320 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2321                                      LValueBaseInfo *PointeeBaseInfo,
2322                                      TBAAAccessInfo *PointeeTBAAInfo) {
2323   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2324                                             RefLVal.isVolatile());
2325   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2326
2327   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2328                                             PointeeBaseInfo, PointeeTBAAInfo,
2329                                             /* forPointeeType= */ true);
2330   return Address(Load, Align);
2331 }
2332
2333 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2334   LValueBaseInfo PointeeBaseInfo;
2335   TBAAAccessInfo PointeeTBAAInfo;
2336   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2337                                             &PointeeTBAAInfo);
2338   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2339                         PointeeBaseInfo, PointeeTBAAInfo);
2340 }
2341
2342 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2343                                            const PointerType *PtrTy,
2344                                            LValueBaseInfo *BaseInfo,
2345                                            TBAAAccessInfo *TBAAInfo) {
2346   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2347   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2348                                                BaseInfo, TBAAInfo,
2349                                                /*forPointeeType=*/true));
2350 }
2351
2352 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2353                                                 const PointerType *PtrTy) {
2354   LValueBaseInfo BaseInfo;
2355   TBAAAccessInfo TBAAInfo;
2356   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2357   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2358 }
2359
2360 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2361                                       const Expr *E, const VarDecl *VD) {
2362   QualType T = E->getType();
2363
2364   // If it's thread_local, emit a call to its wrapper function instead.
2365   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2366       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2367     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2368   // Check if the variable is marked as declare target with link clause in
2369   // device codegen.
2370   if (CGF.getLangOpts().OpenMPIsDevice) {
2371     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2372     if (Addr.isValid())
2373       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2374   }
2375
2376   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2377   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2378   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2379   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2380   Address Addr(V, Alignment);
2381   // Emit reference to the private copy of the variable if it is an OpenMP
2382   // threadprivate variable.
2383   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2384       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2385     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2386                                           E->getExprLoc());
2387   }
2388   LValue LV = VD->getType()->isReferenceType() ?
2389       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2390                                     AlignmentSource::Decl) :
2391       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2392   setObjCGCLValueClass(CGF.getContext(), E, LV);
2393   return LV;
2394 }
2395
2396 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2397                                                const FunctionDecl *FD) {
2398   if (FD->hasAttr<WeakRefAttr>()) {
2399     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2400     return aliasee.getPointer();
2401   }
2402
2403   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2404   if (!FD->hasPrototype()) {
2405     if (const FunctionProtoType *Proto =
2406             FD->getType()->getAs<FunctionProtoType>()) {
2407       // Ugly case: for a K&R-style definition, the type of the definition
2408       // isn't the same as the type of a use.  Correct for this with a
2409       // bitcast.
2410       QualType NoProtoType =
2411           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2412       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2413       V = llvm::ConstantExpr::getBitCast(V,
2414                                       CGM.getTypes().ConvertType(NoProtoType));
2415     }
2416   }
2417   return V;
2418 }
2419
2420 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2421                                      const Expr *E, const FunctionDecl *FD) {
2422   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2423   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2424   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2425                             AlignmentSource::Decl);
2426 }
2427
2428 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2429                                       llvm::Value *ThisValue) {
2430   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2431   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2432   return CGF.EmitLValueForField(LV, FD);
2433 }
2434
2435 /// Named Registers are named metadata pointing to the register name
2436 /// which will be read from/written to as an argument to the intrinsic
2437 /// @llvm.read/write_register.
2438 /// So far, only the name is being passed down, but other options such as
2439 /// register type, allocation type or even optimization options could be
2440 /// passed down via the metadata node.
2441 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2442   SmallString<64> Name("llvm.named.register.");
2443   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2444   assert(Asm->getLabel().size() < 64-Name.size() &&
2445       "Register name too big");
2446   Name.append(Asm->getLabel());
2447   llvm::NamedMDNode *M =
2448     CGM.getModule().getOrInsertNamedMetadata(Name);
2449   if (M->getNumOperands() == 0) {
2450     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2451                                               Asm->getLabel());
2452     llvm::Metadata *Ops[] = {Str};
2453     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2454   }
2455
2456   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2457
2458   llvm::Value *Ptr =
2459     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2460   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2461 }
2462
2463 /// Determine whether we can emit a reference to \p VD from the current
2464 /// context, despite not necessarily having seen an odr-use of the variable in
2465 /// this context.
2466 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2467                                                const DeclRefExpr *E,
2468                                                const VarDecl *VD,
2469                                                bool IsConstant) {
2470   // For a variable declared in an enclosing scope, do not emit a spurious
2471   // reference even if we have a capture, as that will emit an unwarranted
2472   // reference to our capture state, and will likely generate worse code than
2473   // emitting a local copy.
2474   if (E->refersToEnclosingVariableOrCapture())
2475     return false;
2476
2477   // For a local declaration declared in this function, we can always reference
2478   // it even if we don't have an odr-use.
2479   if (VD->hasLocalStorage()) {
2480     return VD->getDeclContext() ==
2481            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2482   }
2483
2484   // For a global declaration, we can emit a reference to it if we know
2485   // for sure that we are able to emit a definition of it.
2486   VD = VD->getDefinition(CGF.getContext());
2487   if (!VD)
2488     return false;
2489
2490   // Don't emit a spurious reference if it might be to a variable that only
2491   // exists on a different device / target.
2492   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2493   // cross-target reference.
2494   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2495       CGF.getLangOpts().OpenCL) {
2496     return false;
2497   }
2498
2499   // We can emit a spurious reference only if the linkage implies that we'll
2500   // be emitting a non-interposable symbol that will be retained until link
2501   // time.
2502   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2503   case llvm::GlobalValue::ExternalLinkage:
2504   case llvm::GlobalValue::LinkOnceODRLinkage:
2505   case llvm::GlobalValue::WeakODRLinkage:
2506   case llvm::GlobalValue::InternalLinkage:
2507   case llvm::GlobalValue::PrivateLinkage:
2508     return true;
2509   default:
2510     return false;
2511   }
2512 }
2513
2514 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2515   const NamedDecl *ND = E->getDecl();
2516   QualType T = E->getType();
2517
2518   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2519          "should not emit an unevaluated operand");
2520
2521   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2522     // Global Named registers access via intrinsics only
2523     if (VD->getStorageClass() == SC_Register &&
2524         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2525       return EmitGlobalNamedRegister(VD, CGM);
2526
2527     // If this DeclRefExpr does not constitute an odr-use of the variable,
2528     // we're not permitted to emit a reference to it in general, and it might
2529     // not be captured if capture would be necessary for a use. Emit the
2530     // constant value directly instead.
2531     if (E->isNonOdrUse() == NOUR_Constant &&
2532         (VD->getType()->isReferenceType() ||
2533          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2534       VD->getAnyInitializer(VD);
2535       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2536           E->getLocation(), *VD->evaluateValue(), VD->getType());
2537       assert(Val && "failed to emit constant expression");
2538
2539       Address Addr = Address::invalid();
2540       if (!VD->getType()->isReferenceType()) {
2541         // Spill the constant value to a global.
2542         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2543                                            getContext().getDeclAlign(VD));
2544         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2545         auto *PTy = llvm::PointerType::get(
2546             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2547         if (PTy != Addr.getType())
2548           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2549       } else {
2550         // Should we be using the alignment of the constant pointer we emitted?
2551         CharUnits Alignment =
2552             getNaturalTypeAlignment(E->getType(),
2553                                     /* BaseInfo= */ nullptr,
2554                                     /* TBAAInfo= */ nullptr,
2555                                     /* forPointeeType= */ true);
2556         Addr = Address(Val, Alignment);
2557       }
2558       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2559     }
2560
2561     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2562
2563     // Check for captured variables.
2564     if (E->refersToEnclosingVariableOrCapture()) {
2565       VD = VD->getCanonicalDecl();
2566       if (auto *FD = LambdaCaptureFields.lookup(VD))
2567         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2568       else if (CapturedStmtInfo) {
2569         auto I = LocalDeclMap.find(VD);
2570         if (I != LocalDeclMap.end()) {
2571           if (VD->getType()->isReferenceType())
2572             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2573                                              AlignmentSource::Decl);
2574           return MakeAddrLValue(I->second, T);
2575         }
2576         LValue CapLVal =
2577             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2578                                     CapturedStmtInfo->getContextValue());
2579         return MakeAddrLValue(
2580             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2581             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2582             CapLVal.getTBAAInfo());
2583       }
2584
2585       assert(isa<BlockDecl>(CurCodeDecl));
2586       Address addr = GetAddrOfBlockDecl(VD);
2587       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2588     }
2589   }
2590
2591   // FIXME: We should be able to assert this for FunctionDecls as well!
2592   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2593   // those with a valid source location.
2594   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2595           !E->getLocation().isValid()) &&
2596          "Should not use decl without marking it used!");
2597
2598   if (ND->hasAttr<WeakRefAttr>()) {
2599     const auto *VD = cast<ValueDecl>(ND);
2600     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2601     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2602   }
2603
2604   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2605     // Check if this is a global variable.
2606     if (VD->hasLinkage() || VD->isStaticDataMember())
2607       return EmitGlobalVarDeclLValue(*this, E, VD);
2608
2609     Address addr = Address::invalid();
2610
2611     // The variable should generally be present in the local decl map.
2612     auto iter = LocalDeclMap.find(VD);
2613     if (iter != LocalDeclMap.end()) {
2614       addr = iter->second;
2615
2616     // Otherwise, it might be static local we haven't emitted yet for
2617     // some reason; most likely, because it's in an outer function.
2618     } else if (VD->isStaticLocal()) {
2619       addr = Address(CGM.getOrCreateStaticVarDecl(
2620           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2621                      getContext().getDeclAlign(VD));
2622
2623     // No other cases for now.
2624     } else {
2625       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2626     }
2627
2628
2629     // Check for OpenMP threadprivate variables.
2630     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2631         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2632       return EmitThreadPrivateVarDeclLValue(
2633           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2634           E->getExprLoc());
2635     }
2636
2637     // Drill into block byref variables.
2638     bool isBlockByref = VD->isEscapingByref();
2639     if (isBlockByref) {
2640       addr = emitBlockByrefAddress(addr, VD);
2641     }
2642
2643     // Drill into reference types.
2644     LValue LV = VD->getType()->isReferenceType() ?
2645         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2646         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2647
2648     bool isLocalStorage = VD->hasLocalStorage();
2649
2650     bool NonGCable = isLocalStorage &&
2651                      !VD->getType()->isReferenceType() &&
2652                      !isBlockByref;
2653     if (NonGCable) {
2654       LV.getQuals().removeObjCGCAttr();
2655       LV.setNonGC(true);
2656     }
2657
2658     bool isImpreciseLifetime =
2659       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2660     if (isImpreciseLifetime)
2661       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2662     setObjCGCLValueClass(getContext(), E, LV);
2663     return LV;
2664   }
2665
2666   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2667     return EmitFunctionDeclLValue(*this, E, FD);
2668
2669   // FIXME: While we're emitting a binding from an enclosing scope, all other
2670   // DeclRefExprs we see should be implicitly treated as if they also refer to
2671   // an enclosing scope.
2672   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2673     return EmitLValue(BD->getBinding());
2674
2675   llvm_unreachable("Unhandled DeclRefExpr");
2676 }
2677
2678 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2679   // __extension__ doesn't affect lvalue-ness.
2680   if (E->getOpcode() == UO_Extension)
2681     return EmitLValue(E->getSubExpr());
2682
2683   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2684   switch (E->getOpcode()) {
2685   default: llvm_unreachable("Unknown unary operator lvalue!");
2686   case UO_Deref: {
2687     QualType T = E->getSubExpr()->getType()->getPointeeType();
2688     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2689
2690     LValueBaseInfo BaseInfo;
2691     TBAAAccessInfo TBAAInfo;
2692     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2693                                             &TBAAInfo);
2694     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2695     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2696
2697     // We should not generate __weak write barrier on indirect reference
2698     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2699     // But, we continue to generate __strong write barrier on indirect write
2700     // into a pointer to object.
2701     if (getLangOpts().ObjC &&
2702         getLangOpts().getGC() != LangOptions::NonGC &&
2703         LV.isObjCWeak())
2704       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2705     return LV;
2706   }
2707   case UO_Real:
2708   case UO_Imag: {
2709     LValue LV = EmitLValue(E->getSubExpr());
2710     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2711
2712     // __real is valid on scalars.  This is a faster way of testing that.
2713     // __imag can only produce an rvalue on scalars.
2714     if (E->getOpcode() == UO_Real &&
2715         !LV.getAddress().getElementType()->isStructTy()) {
2716       assert(E->getSubExpr()->getType()->isArithmeticType());
2717       return LV;
2718     }
2719
2720     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2721
2722     Address Component =
2723       (E->getOpcode() == UO_Real
2724          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2725          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2726     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2727                                    CGM.getTBAAInfoForSubobject(LV, T));
2728     ElemLV.getQuals().addQualifiers(LV.getQuals());
2729     return ElemLV;
2730   }
2731   case UO_PreInc:
2732   case UO_PreDec: {
2733     LValue LV = EmitLValue(E->getSubExpr());
2734     bool isInc = E->getOpcode() == UO_PreInc;
2735
2736     if (E->getType()->isAnyComplexType())
2737       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2738     else
2739       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2740     return LV;
2741   }
2742   }
2743 }
2744
2745 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2746   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2747                         E->getType(), AlignmentSource::Decl);
2748 }
2749
2750 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2751   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2752                         E->getType(), AlignmentSource::Decl);
2753 }
2754
2755 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2756   auto SL = E->getFunctionName();
2757   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2758   StringRef FnName = CurFn->getName();
2759   if (FnName.startswith("\01"))
2760     FnName = FnName.substr(1);
2761   StringRef NameItems[] = {
2762       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2763   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2764   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2765     std::string Name = SL->getString();
2766     if (!Name.empty()) {
2767       unsigned Discriminator =
2768           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2769       if (Discriminator)
2770         Name += "_" + Twine(Discriminator + 1).str();
2771       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2772       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2773     } else {
2774       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2775       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2776     }
2777   }
2778   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2779   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2780 }
2781
2782 /// Emit a type description suitable for use by a runtime sanitizer library. The
2783 /// format of a type descriptor is
2784 ///
2785 /// \code
2786 ///   { i16 TypeKind, i16 TypeInfo }
2787 /// \endcode
2788 ///
2789 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2790 /// integer, 1 for a floating point value, and -1 for anything else.
2791 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2792   // Only emit each type's descriptor once.
2793   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2794     return C;
2795
2796   uint16_t TypeKind = -1;
2797   uint16_t TypeInfo = 0;
2798
2799   if (T->isIntegerType()) {
2800     TypeKind = 0;
2801     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2802                (T->isSignedIntegerType() ? 1 : 0);
2803   } else if (T->isFloatingType()) {
2804     TypeKind = 1;
2805     TypeInfo = getContext().getTypeSize(T);
2806   }
2807
2808   // Format the type name as if for a diagnostic, including quotes and
2809   // optionally an 'aka'.
2810   SmallString<32> Buffer;
2811   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2812                                     (intptr_t)T.getAsOpaquePtr(),
2813                                     StringRef(), StringRef(), None, Buffer,
2814                                     None);
2815
2816   llvm::Constant *Components[] = {
2817     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2818     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2819   };
2820   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2821
2822   auto *GV = new llvm::GlobalVariable(
2823       CGM.getModule(), Descriptor->getType(),
2824       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2825   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2826   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2827
2828   // Remember the descriptor for this type.
2829   CGM.setTypeDescriptorInMap(T, GV);
2830
2831   return GV;
2832 }
2833
2834 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2835   llvm::Type *TargetTy = IntPtrTy;
2836
2837   if (V->getType() == TargetTy)
2838     return V;
2839
2840   // Floating-point types which fit into intptr_t are bitcast to integers
2841   // and then passed directly (after zero-extension, if necessary).
2842   if (V->getType()->isFloatingPointTy()) {
2843     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2844     if (Bits <= TargetTy->getIntegerBitWidth())
2845       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2846                                                          Bits));
2847   }
2848
2849   // Integers which fit in intptr_t are zero-extended and passed directly.
2850   if (V->getType()->isIntegerTy() &&
2851       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2852     return Builder.CreateZExt(V, TargetTy);
2853
2854   // Pointers are passed directly, everything else is passed by address.
2855   if (!V->getType()->isPointerTy()) {
2856     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2857     Builder.CreateStore(V, Ptr);
2858     V = Ptr.getPointer();
2859   }
2860   return Builder.CreatePtrToInt(V, TargetTy);
2861 }
2862
2863 /// Emit a representation of a SourceLocation for passing to a handler
2864 /// in a sanitizer runtime library. The format for this data is:
2865 /// \code
2866 ///   struct SourceLocation {
2867 ///     const char *Filename;
2868 ///     int32_t Line, Column;
2869 ///   };
2870 /// \endcode
2871 /// For an invalid SourceLocation, the Filename pointer is null.
2872 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2873   llvm::Constant *Filename;
2874   int Line, Column;
2875
2876   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2877   if (PLoc.isValid()) {
2878     StringRef FilenameString = PLoc.getFilename();
2879
2880     int PathComponentsToStrip =
2881         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2882     if (PathComponentsToStrip < 0) {
2883       assert(PathComponentsToStrip != INT_MIN);
2884       int PathComponentsToKeep = -PathComponentsToStrip;
2885       auto I = llvm::sys::path::rbegin(FilenameString);
2886       auto E = llvm::sys::path::rend(FilenameString);
2887       while (I != E && --PathComponentsToKeep)
2888         ++I;
2889
2890       FilenameString = FilenameString.substr(I - E);
2891     } else if (PathComponentsToStrip > 0) {
2892       auto I = llvm::sys::path::begin(FilenameString);
2893       auto E = llvm::sys::path::end(FilenameString);
2894       while (I != E && PathComponentsToStrip--)
2895         ++I;
2896
2897       if (I != E)
2898         FilenameString =
2899             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2900       else
2901         FilenameString = llvm::sys::path::filename(FilenameString);
2902     }
2903
2904     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2905     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2906                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2907     Filename = FilenameGV.getPointer();
2908     Line = PLoc.getLine();
2909     Column = PLoc.getColumn();
2910   } else {
2911     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2912     Line = Column = 0;
2913   }
2914
2915   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2916                             Builder.getInt32(Column)};
2917
2918   return llvm::ConstantStruct::getAnon(Data);
2919 }
2920
2921 namespace {
2922 /// Specify under what conditions this check can be recovered
2923 enum class CheckRecoverableKind {
2924   /// Always terminate program execution if this check fails.
2925   Unrecoverable,
2926   /// Check supports recovering, runtime has both fatal (noreturn) and
2927   /// non-fatal handlers for this check.
2928   Recoverable,
2929   /// Runtime conditionally aborts, always need to support recovery.
2930   AlwaysRecoverable
2931 };
2932 }
2933
2934 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2935   assert(Kind.countPopulation() == 1);
2936   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
2937     return CheckRecoverableKind::AlwaysRecoverable;
2938   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
2939     return CheckRecoverableKind::Unrecoverable;
2940   else
2941     return CheckRecoverableKind::Recoverable;
2942 }
2943
2944 namespace {
2945 struct SanitizerHandlerInfo {
2946   char const *const Name;
2947   unsigned Version;
2948 };
2949 }
2950
2951 const SanitizerHandlerInfo SanitizerHandlers[] = {
2952 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2953     LIST_SANITIZER_CHECKS
2954 #undef SANITIZER_CHECK
2955 };
2956
2957 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2958                                  llvm::FunctionType *FnType,
2959                                  ArrayRef<llvm::Value *> FnArgs,
2960                                  SanitizerHandler CheckHandler,
2961                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2962                                  llvm::BasicBlock *ContBB) {
2963   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2964   Optional<ApplyDebugLocation> DL;
2965   if (!CGF.Builder.getCurrentDebugLocation()) {
2966     // Ensure that the call has at least an artificial debug location.
2967     DL.emplace(CGF, SourceLocation());
2968   }
2969   bool NeedsAbortSuffix =
2970       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2971   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2972   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2973   const StringRef CheckName = CheckInfo.Name;
2974   std::string FnName = "__ubsan_handle_" + CheckName.str();
2975   if (CheckInfo.Version && !MinimalRuntime)
2976     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2977   if (MinimalRuntime)
2978     FnName += "_minimal";
2979   if (NeedsAbortSuffix)
2980     FnName += "_abort";
2981   bool MayReturn =
2982       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2983
2984   llvm::AttrBuilder B;
2985   if (!MayReturn) {
2986     B.addAttribute(llvm::Attribute::NoReturn)
2987         .addAttribute(llvm::Attribute::NoUnwind);
2988   }
2989   B.addAttribute(llvm::Attribute::UWTable);
2990
2991   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
2992       FnType, FnName,
2993       llvm::AttributeList::get(CGF.getLLVMContext(),
2994                                llvm::AttributeList::FunctionIndex, B),
2995       /*Local=*/true);
2996   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2997   if (!MayReturn) {
2998     HandlerCall->setDoesNotReturn();
2999     CGF.Builder.CreateUnreachable();
3000   } else {
3001     CGF.Builder.CreateBr(ContBB);
3002   }
3003 }
3004
3005 void CodeGenFunction::EmitCheck(
3006     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3007     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3008     ArrayRef<llvm::Value *> DynamicArgs) {
3009   assert(IsSanitizerScope);
3010   assert(Checked.size() > 0);
3011   assert(CheckHandler >= 0 &&
3012          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3013   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3014
3015   llvm::Value *FatalCond = nullptr;
3016   llvm::Value *RecoverableCond = nullptr;
3017   llvm::Value *TrapCond = nullptr;
3018   for (int i = 0, n = Checked.size(); i < n; ++i) {
3019     llvm::Value *Check = Checked[i].first;
3020     // -fsanitize-trap= overrides -fsanitize-recover=.
3021     llvm::Value *&Cond =
3022         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3023             ? TrapCond
3024             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3025                   ? RecoverableCond
3026                   : FatalCond;
3027     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3028   }
3029
3030   if (TrapCond)
3031     EmitTrapCheck(TrapCond);
3032   if (!FatalCond && !RecoverableCond)
3033     return;
3034
3035   llvm::Value *JointCond;
3036   if (FatalCond && RecoverableCond)
3037     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3038   else
3039     JointCond = FatalCond ? FatalCond : RecoverableCond;
3040   assert(JointCond);
3041
3042   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3043   assert(SanOpts.has(Checked[0].second));
3044 #ifndef NDEBUG
3045   for (int i = 1, n = Checked.size(); i < n; ++i) {
3046     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3047            "All recoverable kinds in a single check must be same!");
3048     assert(SanOpts.has(Checked[i].second));
3049   }
3050 #endif
3051
3052   llvm::BasicBlock *Cont = createBasicBlock("cont");
3053   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3054   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3055   // Give hint that we very much don't expect to execute the handler
3056   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3057   llvm::MDBuilder MDHelper(getLLVMContext());
3058   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3059   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3060   EmitBlock(Handlers);
3061
3062   // Handler functions take an i8* pointing to the (handler-specific) static
3063   // information block, followed by a sequence of intptr_t arguments
3064   // representing operand values.
3065   SmallVector<llvm::Value *, 4> Args;
3066   SmallVector<llvm::Type *, 4> ArgTypes;
3067   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3068     Args.reserve(DynamicArgs.size() + 1);
3069     ArgTypes.reserve(DynamicArgs.size() + 1);
3070
3071     // Emit handler arguments and create handler function type.
3072     if (!StaticArgs.empty()) {
3073       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3074       auto *InfoPtr =
3075           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3076                                    llvm::GlobalVariable::PrivateLinkage, Info);
3077       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3078       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3079       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3080       ArgTypes.push_back(Int8PtrTy);
3081     }
3082
3083     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3084       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3085       ArgTypes.push_back(IntPtrTy);
3086     }
3087   }
3088
3089   llvm::FunctionType *FnType =
3090     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3091
3092   if (!FatalCond || !RecoverableCond) {
3093     // Simple case: we need to generate a single handler call, either
3094     // fatal, or non-fatal.
3095     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3096                          (FatalCond != nullptr), Cont);
3097   } else {
3098     // Emit two handler calls: first one for set of unrecoverable checks,
3099     // another one for recoverable.
3100     llvm::BasicBlock *NonFatalHandlerBB =
3101         createBasicBlock("non_fatal." + CheckName);
3102     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3103     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3104     EmitBlock(FatalHandlerBB);
3105     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3106                          NonFatalHandlerBB);
3107     EmitBlock(NonFatalHandlerBB);
3108     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3109                          Cont);
3110   }
3111
3112   EmitBlock(Cont);
3113 }
3114
3115 void CodeGenFunction::EmitCfiSlowPathCheck(
3116     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3117     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3118   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3119
3120   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3121   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3122
3123   llvm::MDBuilder MDHelper(getLLVMContext());
3124   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3125   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3126
3127   EmitBlock(CheckBB);
3128
3129   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3130
3131   llvm::CallInst *CheckCall;
3132   llvm::FunctionCallee SlowPathFn;
3133   if (WithDiag) {
3134     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3135     auto *InfoPtr =
3136         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3137                                  llvm::GlobalVariable::PrivateLinkage, Info);
3138     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3139     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3140
3141     SlowPathFn = CGM.getModule().getOrInsertFunction(
3142         "__cfi_slowpath_diag",
3143         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3144                                 false));
3145     CheckCall = Builder.CreateCall(
3146         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3147   } else {
3148     SlowPathFn = CGM.getModule().getOrInsertFunction(
3149         "__cfi_slowpath",
3150         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3151     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3152   }
3153
3154   CGM.setDSOLocal(
3155       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3156   CheckCall->setDoesNotThrow();
3157
3158   EmitBlock(Cont);
3159 }
3160
3161 // Emit a stub for __cfi_check function so that the linker knows about this
3162 // symbol in LTO mode.
3163 void CodeGenFunction::EmitCfiCheckStub() {
3164   llvm::Module *M = &CGM.getModule();
3165   auto &Ctx = M->getContext();
3166   llvm::Function *F = llvm::Function::Create(
3167       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3168       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3169   CGM.setDSOLocal(F);
3170   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3171   // FIXME: consider emitting an intrinsic call like
3172   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3173   // which can be lowered in CrossDSOCFI pass to the actual contents of
3174   // __cfi_check. This would allow inlining of __cfi_check calls.
3175   llvm::CallInst::Create(
3176       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3177   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3178 }
3179
3180 // This function is basically a switch over the CFI failure kind, which is
3181 // extracted from CFICheckFailData (1st function argument). Each case is either
3182 // llvm.trap or a call to one of the two runtime handlers, based on
3183 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3184 // failure kind) traps, but this should really never happen.  CFICheckFailData
3185 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3186 // check kind; in this case __cfi_check_fail traps as well.
3187 void CodeGenFunction::EmitCfiCheckFail() {
3188   SanitizerScope SanScope(this);
3189   FunctionArgList Args;
3190   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3191                             ImplicitParamDecl::Other);
3192   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3193                             ImplicitParamDecl::Other);
3194   Args.push_back(&ArgData);
3195   Args.push_back(&ArgAddr);
3196
3197   const CGFunctionInfo &FI =
3198     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3199
3200   llvm::Function *F = llvm::Function::Create(
3201       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3202       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3203   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3204
3205   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3206                 SourceLocation());
3207
3208   // This function should not be affected by blacklist. This function does
3209   // not have a source location, but "src:*" would still apply. Revert any
3210   // changes to SanOpts made in StartFunction.
3211   SanOpts = CGM.getLangOpts().Sanitize;
3212
3213   llvm::Value *Data =
3214       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3215                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3216   llvm::Value *Addr =
3217       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3218                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3219
3220   // Data == nullptr means the calling module has trap behaviour for this check.
3221   llvm::Value *DataIsNotNullPtr =
3222       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3223   EmitTrapCheck(DataIsNotNullPtr);
3224
3225   llvm::StructType *SourceLocationTy =
3226       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3227   llvm::StructType *CfiCheckFailDataTy =
3228       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3229
3230   llvm::Value *V = Builder.CreateConstGEP2_32(
3231       CfiCheckFailDataTy,
3232       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3233       0);
3234   Address CheckKindAddr(V, getIntAlign());
3235   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3236
3237   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3238       CGM.getLLVMContext(),
3239       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3240   llvm::Value *ValidVtable = Builder.CreateZExt(
3241       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3242                          {Addr, AllVtables}),
3243       IntPtrTy);
3244
3245   const std::pair<int, SanitizerMask> CheckKinds[] = {
3246       {CFITCK_VCall, SanitizerKind::CFIVCall},
3247       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3248       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3249       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3250       {CFITCK_ICall, SanitizerKind::CFIICall}};
3251
3252   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3253   for (auto CheckKindMaskPair : CheckKinds) {
3254     int Kind = CheckKindMaskPair.first;
3255     SanitizerMask Mask = CheckKindMaskPair.second;
3256     llvm::Value *Cond =
3257         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3258     if (CGM.getLangOpts().Sanitize.has(Mask))
3259       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3260                 {Data, Addr, ValidVtable});
3261     else
3262       EmitTrapCheck(Cond);
3263   }
3264
3265   FinishFunction();
3266   // The only reference to this function will be created during LTO link.
3267   // Make sure it survives until then.
3268   CGM.addUsedGlobal(F);
3269 }
3270
3271 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3272   if (SanOpts.has(SanitizerKind::Unreachable)) {
3273     SanitizerScope SanScope(this);
3274     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3275                              SanitizerKind::Unreachable),
3276               SanitizerHandler::BuiltinUnreachable,
3277               EmitCheckSourceLocation(Loc), None);
3278   }
3279   Builder.CreateUnreachable();
3280 }
3281
3282 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3283   llvm::BasicBlock *Cont = createBasicBlock("cont");
3284
3285   // If we're optimizing, collapse all calls to trap down to just one per
3286   // function to save on code size.
3287   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3288     TrapBB = createBasicBlock("trap");
3289     Builder.CreateCondBr(Checked, Cont, TrapBB);
3290     EmitBlock(TrapBB);
3291     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3292     TrapCall->setDoesNotReturn();
3293     TrapCall->setDoesNotThrow();
3294     Builder.CreateUnreachable();
3295   } else {
3296     Builder.CreateCondBr(Checked, Cont, TrapBB);
3297   }
3298
3299   EmitBlock(Cont);
3300 }
3301
3302 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3303   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3304
3305   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3306     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3307                                   CGM.getCodeGenOpts().TrapFuncName);
3308     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3309   }
3310
3311   return TrapCall;
3312 }
3313
3314 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3315                                                  LValueBaseInfo *BaseInfo,
3316                                                  TBAAAccessInfo *TBAAInfo) {
3317   assert(E->getType()->isArrayType() &&
3318          "Array to pointer decay must have array source type!");
3319
3320   // Expressions of array type can't be bitfields or vector elements.
3321   LValue LV = EmitLValue(E);
3322   Address Addr = LV.getAddress();
3323
3324   // If the array type was an incomplete type, we need to make sure
3325   // the decay ends up being the right type.
3326   llvm::Type *NewTy = ConvertType(E->getType());
3327   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3328
3329   // Note that VLA pointers are always decayed, so we don't need to do
3330   // anything here.
3331   if (!E->getType()->isVariableArrayType()) {
3332     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3333            "Expected pointer to array");
3334     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3335   }
3336
3337   // The result of this decay conversion points to an array element within the
3338   // base lvalue. However, since TBAA currently does not support representing
3339   // accesses to elements of member arrays, we conservatively represent accesses
3340   // to the pointee object as if it had no any base lvalue specified.
3341   // TODO: Support TBAA for member arrays.
3342   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3343   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3344   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3345
3346   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3347 }
3348
3349 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3350 /// array to pointer, return the array subexpression.
3351 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3352   // If this isn't just an array->pointer decay, bail out.
3353   const auto *CE = dyn_cast<CastExpr>(E);
3354   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3355     return nullptr;
3356
3357   // If this is a decay from variable width array, bail out.
3358   const Expr *SubExpr = CE->getSubExpr();
3359   if (SubExpr->getType()->isVariableArrayType())
3360     return nullptr;
3361
3362   return SubExpr;
3363 }
3364
3365 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3366                                           llvm::Value *ptr,
3367                                           ArrayRef<llvm::Value*> indices,
3368                                           bool inbounds,
3369                                           bool signedIndices,
3370                                           SourceLocation loc,
3371                                     const llvm::Twine &name = "arrayidx") {
3372   if (inbounds) {
3373     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3374                                       CodeGenFunction::NotSubtraction, loc,
3375                                       name);
3376   } else {
3377     return CGF.Builder.CreateGEP(ptr, indices, name);
3378   }
3379 }
3380
3381 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3382                                       llvm::Value *idx,
3383                                       CharUnits eltSize) {
3384   // If we have a constant index, we can use the exact offset of the
3385   // element we're accessing.
3386   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3387     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3388     return arrayAlign.alignmentAtOffset(offset);
3389
3390   // Otherwise, use the worst-case alignment for any element.
3391   } else {
3392     return arrayAlign.alignmentOfArrayElement(eltSize);
3393   }
3394 }
3395
3396 static QualType getFixedSizeElementType(const ASTContext &ctx,
3397                                         const VariableArrayType *vla) {
3398   QualType eltType;
3399   do {
3400     eltType = vla->getElementType();
3401   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3402   return eltType;
3403 }
3404
3405 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3406                                      ArrayRef<llvm::Value *> indices,
3407                                      QualType eltType, bool inbounds,
3408                                      bool signedIndices, SourceLocation loc,
3409                                      QualType *arrayType = nullptr,
3410                                      const llvm::Twine &name = "arrayidx") {
3411   // All the indices except that last must be zero.
3412 #ifndef NDEBUG
3413   for (auto idx : indices.drop_back())
3414     assert(isa<llvm::ConstantInt>(idx) &&
3415            cast<llvm::ConstantInt>(idx)->isZero());
3416 #endif
3417
3418   // Determine the element size of the statically-sized base.  This is
3419   // the thing that the indices are expressed in terms of.
3420   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3421     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3422   }
3423
3424   // We can use that to compute the best alignment of the element.
3425   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3426   CharUnits eltAlign =
3427     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3428
3429   llvm::Value *eltPtr;
3430   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3431   if (!CGF.IsInPreservedAIRegion || !LastIndex) {
3432     eltPtr = emitArraySubscriptGEP(
3433         CGF, addr.getPointer(), indices, inbounds, signedIndices,
3434         loc, name);
3435   } else {
3436     // Remember the original array subscript for bpf target
3437     unsigned idx = LastIndex->getZExtValue();
3438     llvm::DIType *DbgInfo = nullptr;
3439     if (arrayType)
3440       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3441     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getPointer(),
3442                                                         indices.size() - 1,
3443                                                         idx, DbgInfo);
3444   }
3445
3446   return Address(eltPtr, eltAlign);
3447 }
3448
3449 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3450                                                bool Accessed) {
3451   // The index must always be an integer, which is not an aggregate.  Emit it
3452   // in lexical order (this complexity is, sadly, required by C++17).
3453   llvm::Value *IdxPre =
3454       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3455   bool SignedIndices = false;
3456   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3457     auto *Idx = IdxPre;
3458     if (E->getLHS() != E->getIdx()) {
3459       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3460       Idx = EmitScalarExpr(E->getIdx());
3461     }
3462
3463     QualType IdxTy = E->getIdx()->getType();
3464     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3465     SignedIndices |= IdxSigned;
3466
3467     if (SanOpts.has(SanitizerKind::ArrayBounds))
3468       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3469
3470     // Extend or truncate the index type to 32 or 64-bits.
3471     if (Promote && Idx->getType() != IntPtrTy)
3472       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3473
3474     return Idx;
3475   };
3476   IdxPre = nullptr;
3477
3478   // If the base is a vector type, then we are forming a vector element lvalue
3479   // with this subscript.
3480   if (E->getBase()->getType()->isVectorType() &&
3481       !isa<ExtVectorElementExpr>(E->getBase())) {
3482     // Emit the vector as an lvalue to get its address.
3483     LValue LHS = EmitLValue(E->getBase());
3484     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3485     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3486     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3487                                  LHS.getBaseInfo(), TBAAAccessInfo());
3488   }
3489
3490   // All the other cases basically behave like simple offsetting.
3491
3492   // Handle the extvector case we ignored above.
3493   if (isa<ExtVectorElementExpr>(E->getBase())) {
3494     LValue LV = EmitLValue(E->getBase());
3495     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3496     Address Addr = EmitExtVectorElementLValue(LV);
3497
3498     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3499     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3500                                  SignedIndices, E->getExprLoc());
3501     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3502                           CGM.getTBAAInfoForSubobject(LV, EltType));
3503   }
3504
3505   LValueBaseInfo EltBaseInfo;
3506   TBAAAccessInfo EltTBAAInfo;
3507   Address Addr = Address::invalid();
3508   if (const VariableArrayType *vla =
3509            getContext().getAsVariableArrayType(E->getType())) {
3510     // The base must be a pointer, which is not an aggregate.  Emit
3511     // it.  It needs to be emitted first in case it's what captures
3512     // the VLA bounds.
3513     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3514     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3515
3516     // The element count here is the total number of non-VLA elements.
3517     llvm::Value *numElements = getVLASize(vla).NumElts;
3518
3519     // Effectively, the multiply by the VLA size is part of the GEP.
3520     // GEP indexes are signed, and scaling an index isn't permitted to
3521     // signed-overflow, so we use the same semantics for our explicit
3522     // multiply.  We suppress this if overflow is not undefined behavior.
3523     if (getLangOpts().isSignedOverflowDefined()) {
3524       Idx = Builder.CreateMul(Idx, numElements);
3525     } else {
3526       Idx = Builder.CreateNSWMul(Idx, numElements);
3527     }
3528
3529     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3530                                  !getLangOpts().isSignedOverflowDefined(),
3531                                  SignedIndices, E->getExprLoc());
3532
3533   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3534     // Indexing over an interface, as in "NSString *P; P[4];"
3535
3536     // Emit the base pointer.
3537     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3538     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3539
3540     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3541     llvm::Value *InterfaceSizeVal =
3542         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3543
3544     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3545
3546     // We don't necessarily build correct LLVM struct types for ObjC
3547     // interfaces, so we can't rely on GEP to do this scaling
3548     // correctly, so we need to cast to i8*.  FIXME: is this actually
3549     // true?  A lot of other things in the fragile ABI would break...
3550     llvm::Type *OrigBaseTy = Addr.getType();
3551     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3552
3553     // Do the GEP.
3554     CharUnits EltAlign =
3555       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3556     llvm::Value *EltPtr =
3557         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3558                               SignedIndices, E->getExprLoc());
3559     Addr = Address(EltPtr, EltAlign);
3560
3561     // Cast back.
3562     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3563   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3564     // If this is A[i] where A is an array, the frontend will have decayed the
3565     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3566     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3567     // "gep x, i" here.  Emit one "gep A, 0, i".
3568     assert(Array->getType()->isArrayType() &&
3569            "Array to pointer decay must have array source type!");
3570     LValue ArrayLV;
3571     // For simple multidimensional array indexing, set the 'accessed' flag for
3572     // better bounds-checking of the base expression.
3573     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3574       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3575     else
3576       ArrayLV = EmitLValue(Array);
3577     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3578
3579     // Propagate the alignment from the array itself to the result.
3580     QualType arrayType = Array->getType();
3581     Addr = emitArraySubscriptGEP(
3582         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3583         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3584         E->getExprLoc(), &arrayType);
3585     EltBaseInfo = ArrayLV.getBaseInfo();
3586     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3587   } else {
3588     // The base must be a pointer; emit it with an estimate of its alignment.
3589     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3590     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3591     QualType ptrType = E->getBase()->getType();
3592     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3593                                  !getLangOpts().isSignedOverflowDefined(),
3594                                  SignedIndices, E->getExprLoc(), &ptrType);
3595   }
3596
3597   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3598
3599   if (getLangOpts().ObjC &&
3600       getLangOpts().getGC() != LangOptions::NonGC) {
3601     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3602     setObjCGCLValueClass(getContext(), E, LV);
3603   }
3604   return LV;
3605 }
3606
3607 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3608                                        LValueBaseInfo &BaseInfo,
3609                                        TBAAAccessInfo &TBAAInfo,
3610                                        QualType BaseTy, QualType ElTy,
3611                                        bool IsLowerBound) {
3612   LValue BaseLVal;
3613   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3614     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3615     if (BaseTy->isArrayType()) {
3616       Address Addr = BaseLVal.getAddress();
3617       BaseInfo = BaseLVal.getBaseInfo();
3618
3619       // If the array type was an incomplete type, we need to make sure
3620       // the decay ends up being the right type.
3621       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3622       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3623
3624       // Note that VLA pointers are always decayed, so we don't need to do
3625       // anything here.
3626       if (!BaseTy->isVariableArrayType()) {
3627         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3628                "Expected pointer to array");
3629         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3630       }
3631
3632       return CGF.Builder.CreateElementBitCast(Addr,
3633                                               CGF.ConvertTypeForMem(ElTy));
3634     }
3635     LValueBaseInfo TypeBaseInfo;
3636     TBAAAccessInfo TypeTBAAInfo;
3637     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3638                                                   &TypeTBAAInfo);
3639     BaseInfo.mergeForCast(TypeBaseInfo);
3640     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3641     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3642   }
3643   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3644 }
3645
3646 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3647                                                 bool IsLowerBound) {
3648   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3649   QualType ResultExprTy;
3650   if (auto *AT = getContext().getAsArrayType(BaseTy))
3651     ResultExprTy = AT->getElementType();
3652   else
3653     ResultExprTy = BaseTy->getPointeeType();
3654   llvm::Value *Idx = nullptr;
3655   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3656     // Requesting lower bound or upper bound, but without provided length and
3657     // without ':' symbol for the default length -> length = 1.
3658     // Idx = LowerBound ?: 0;
3659     if (auto *LowerBound = E->getLowerBound()) {
3660       Idx = Builder.CreateIntCast(
3661           EmitScalarExpr(LowerBound), IntPtrTy,
3662           LowerBound->getType()->hasSignedIntegerRepresentation());
3663     } else
3664       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3665   } else {
3666     // Try to emit length or lower bound as constant. If this is possible, 1
3667     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3668     // IR (LB + Len) - 1.
3669     auto &C = CGM.getContext();
3670     auto *Length = E->getLength();
3671     llvm::APSInt ConstLength;
3672     if (Length) {
3673       // Idx = LowerBound + Length - 1;
3674       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3675         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3676         Length = nullptr;
3677       }
3678       auto *LowerBound = E->getLowerBound();
3679       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3680       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3681         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3682         LowerBound = nullptr;
3683       }
3684       if (!Length)
3685         --ConstLength;
3686       else if (!LowerBound)
3687         --ConstLowerBound;
3688
3689       if (Length || LowerBound) {
3690         auto *LowerBoundVal =
3691             LowerBound
3692                 ? Builder.CreateIntCast(
3693                       EmitScalarExpr(LowerBound), IntPtrTy,
3694                       LowerBound->getType()->hasSignedIntegerRepresentation())
3695                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3696         auto *LengthVal =
3697             Length
3698                 ? Builder.CreateIntCast(
3699                       EmitScalarExpr(Length), IntPtrTy,
3700                       Length->getType()->hasSignedIntegerRepresentation())
3701                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3702         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3703                                 /*HasNUW=*/false,
3704                                 !getLangOpts().isSignedOverflowDefined());
3705         if (Length && LowerBound) {
3706           Idx = Builder.CreateSub(
3707               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3708               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3709         }
3710       } else
3711         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3712     } else {
3713       // Idx = ArraySize - 1;
3714       QualType ArrayTy = BaseTy->isPointerType()
3715                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3716                              : BaseTy;
3717       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3718         Length = VAT->getSizeExpr();
3719         if (Length->isIntegerConstantExpr(ConstLength, C))
3720           Length = nullptr;
3721       } else {
3722         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3723         ConstLength = CAT->getSize();
3724       }
3725       if (Length) {
3726         auto *LengthVal = Builder.CreateIntCast(
3727             EmitScalarExpr(Length), IntPtrTy,
3728             Length->getType()->hasSignedIntegerRepresentation());
3729         Idx = Builder.CreateSub(
3730             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3731             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3732       } else {
3733         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3734         --ConstLength;
3735         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3736       }
3737     }
3738   }
3739   assert(Idx);
3740
3741   Address EltPtr = Address::invalid();
3742   LValueBaseInfo BaseInfo;
3743   TBAAAccessInfo TBAAInfo;
3744   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3745     // The base must be a pointer, which is not an aggregate.  Emit
3746     // it.  It needs to be emitted first in case it's what captures
3747     // the VLA bounds.
3748     Address Base =
3749         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3750                                 BaseTy, VLA->getElementType(), IsLowerBound);
3751     // The element count here is the total number of non-VLA elements.
3752     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3753
3754     // Effectively, the multiply by the VLA size is part of the GEP.
3755     // GEP indexes are signed, and scaling an index isn't permitted to
3756     // signed-overflow, so we use the same semantics for our explicit
3757     // multiply.  We suppress this if overflow is not undefined behavior.
3758     if (getLangOpts().isSignedOverflowDefined())
3759       Idx = Builder.CreateMul(Idx, NumElements);
3760     else
3761       Idx = Builder.CreateNSWMul(Idx, NumElements);
3762     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3763                                    !getLangOpts().isSignedOverflowDefined(),
3764                                    /*signedIndices=*/false, E->getExprLoc());
3765   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3766     // If this is A[i] where A is an array, the frontend will have decayed the
3767     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3768     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3769     // "gep x, i" here.  Emit one "gep A, 0, i".
3770     assert(Array->getType()->isArrayType() &&
3771            "Array to pointer decay must have array source type!");
3772     LValue ArrayLV;
3773     // For simple multidimensional array indexing, set the 'accessed' flag for
3774     // better bounds-checking of the base expression.
3775     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3776       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3777     else
3778       ArrayLV = EmitLValue(Array);
3779
3780     // Propagate the alignment from the array itself to the result.
3781     EltPtr = emitArraySubscriptGEP(
3782         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3783         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3784         /*signedIndices=*/false, E->getExprLoc());
3785     BaseInfo = ArrayLV.getBaseInfo();
3786     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3787   } else {
3788     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3789                                            TBAAInfo, BaseTy, ResultExprTy,
3790                                            IsLowerBound);
3791     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3792                                    !getLangOpts().isSignedOverflowDefined(),
3793                                    /*signedIndices=*/false, E->getExprLoc());
3794   }
3795
3796   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3797 }
3798
3799 LValue CodeGenFunction::
3800 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3801   // Emit the base vector as an l-value.
3802   LValue Base;
3803
3804   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3805   if (E->isArrow()) {
3806     // If it is a pointer to a vector, emit the address and form an lvalue with
3807     // it.
3808     LValueBaseInfo BaseInfo;
3809     TBAAAccessInfo TBAAInfo;
3810     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3811     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3812     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3813     Base.getQuals().removeObjCGCAttr();
3814   } else if (E->getBase()->isGLValue()) {
3815     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3816     // emit the base as an lvalue.
3817     assert(E->getBase()->getType()->isVectorType());
3818     Base = EmitLValue(E->getBase());
3819   } else {
3820     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3821     assert(E->getBase()->getType()->isVectorType() &&
3822            "Result must be a vector");
3823     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3824
3825     // Store the vector to memory (because LValue wants an address).
3826     Address VecMem = CreateMemTemp(E->getBase()->getType());
3827     Builder.CreateStore(Vec, VecMem);
3828     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3829                           AlignmentSource::Decl);
3830   }
3831
3832   QualType type =
3833     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3834
3835   // Encode the element access list into a vector of unsigned indices.
3836   SmallVector<uint32_t, 4> Indices;
3837   E->getEncodedElementAccess(Indices);
3838
3839   if (Base.isSimple()) {
3840     llvm::Constant *CV =
3841         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3842     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3843                                     Base.getBaseInfo(), TBAAAccessInfo());
3844   }
3845   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3846
3847   llvm::Constant *BaseElts = Base.getExtVectorElts();
3848   SmallVector<llvm::Constant *, 4> CElts;
3849
3850   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3851     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3852   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3853   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3854                                   Base.getBaseInfo(), TBAAAccessInfo());
3855 }
3856
3857 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3858   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3859     EmitIgnoredExpr(E->getBase());
3860     return EmitDeclRefLValue(DRE);
3861   }
3862
3863   Expr *BaseExpr = E->getBase();
3864   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3865   LValue BaseLV;
3866   if (E->isArrow()) {
3867     LValueBaseInfo BaseInfo;
3868     TBAAAccessInfo TBAAInfo;
3869     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3870     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3871     SanitizerSet SkippedChecks;
3872     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3873     if (IsBaseCXXThis)
3874       SkippedChecks.set(SanitizerKind::Alignment, true);
3875     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3876       SkippedChecks.set(SanitizerKind::Null, true);
3877     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3878                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3879     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3880   } else
3881     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3882
3883   NamedDecl *ND = E->getMemberDecl();
3884   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3885     LValue LV = EmitLValueForField(BaseLV, Field);
3886     setObjCGCLValueClass(getContext(), E, LV);
3887     return LV;
3888   }
3889
3890   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3891     return EmitFunctionDeclLValue(*this, E, FD);
3892
3893   llvm_unreachable("Unhandled member declaration!");
3894 }
3895
3896 /// Given that we are currently emitting a lambda, emit an l-value for
3897 /// one of its members.
3898 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3899   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3900   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3901   QualType LambdaTagType =
3902     getContext().getTagDeclType(Field->getParent());
3903   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3904   return EmitLValueForField(LambdaLV, Field);
3905 }
3906
3907 /// Get the field index in the debug info. The debug info structure/union
3908 /// will ignore the unnamed bitfields.
3909 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
3910                                              unsigned FieldIndex) {
3911   unsigned I = 0, Skipped = 0;
3912
3913   for (auto F : Rec->getDefinition()->fields()) {
3914     if (I == FieldIndex)
3915       break;
3916     if (F->isUnnamedBitfield())
3917       Skipped++;
3918     I++;
3919   }
3920
3921   return FieldIndex - Skipped;
3922 }
3923
3924 /// Get the address of a zero-sized field within a record. The resulting
3925 /// address doesn't necessarily have the right type.
3926 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
3927                                        const FieldDecl *Field) {
3928   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
3929       CGF.getContext().getFieldOffset(Field));
3930   if (Offset.isZero())
3931     return Base;
3932   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
3933   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
3934 }
3935
3936 /// Drill down to the storage of a field without walking into
3937 /// reference types.
3938 ///
3939 /// The resulting address doesn't necessarily have the right type.
3940 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3941                                       const FieldDecl *field) {
3942   if (field->isZeroSize(CGF.getContext()))
3943     return emitAddrOfZeroSizeField(CGF, base, field);
3944
3945   const RecordDecl *rec = field->getParent();
3946
3947   unsigned idx =
3948     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3949
3950   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
3951 }
3952
3953 static Address emitPreserveStructAccess(CodeGenFunction &CGF, Address base,
3954                                         const FieldDecl *field) {
3955   const RecordDecl *rec = field->getParent();
3956   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateRecordType(
3957       CGF.getContext().getRecordType(rec), rec->getLocation());
3958
3959   unsigned idx =
3960       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3961
3962   return CGF.Builder.CreatePreserveStructAccessIndex(
3963       base, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
3964 }
3965
3966 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3967   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3968   if (!RD)
3969     return false;
3970
3971   if (RD->isDynamicClass())
3972     return true;
3973
3974   for (const auto &Base : RD->bases())
3975     if (hasAnyVptr(Base.getType(), Context))
3976       return true;
3977
3978   for (const FieldDecl *Field : RD->fields())
3979     if (hasAnyVptr(Field->getType(), Context))
3980       return true;
3981
3982   return false;
3983 }
3984
3985 LValue CodeGenFunction::EmitLValueForField(LValue base,
3986                                            const FieldDecl *field) {
3987   LValueBaseInfo BaseInfo = base.getBaseInfo();
3988
3989   if (field->isBitField()) {
3990     const CGRecordLayout &RL =
3991       CGM.getTypes().getCGRecordLayout(field->getParent());
3992     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3993     Address Addr = base.getAddress();
3994     unsigned Idx = RL.getLLVMFieldNo(field);
3995     if (!IsInPreservedAIRegion) {
3996       if (Idx != 0)
3997         // For structs, we GEP to the field that the record layout suggests.
3998         Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
3999     } else {
4000       const RecordDecl *rec = field->getParent();
4001       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4002           getContext().getRecordType(rec), rec->getLocation());
4003       Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx,
4004           getDebugInfoFIndex(rec, field->getFieldIndex()),
4005           DbgInfo);
4006     }
4007
4008     // Get the access type.
4009     llvm::Type *FieldIntTy =
4010       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
4011     if (Addr.getElementType() != FieldIntTy)
4012       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4013
4014     QualType fieldType =
4015       field->getType().withCVRQualifiers(base.getVRQualifiers());
4016     // TODO: Support TBAA for bit fields.
4017     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4018     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4019                                 TBAAAccessInfo());
4020   }
4021
4022   // Fields of may-alias structures are may-alias themselves.
4023   // FIXME: this should get propagated down through anonymous structs
4024   // and unions.
4025   QualType FieldType = field->getType();
4026   const RecordDecl *rec = field->getParent();
4027   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4028   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4029   TBAAAccessInfo FieldTBAAInfo;
4030   if (base.getTBAAInfo().isMayAlias() ||
4031           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4032     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4033   } else if (rec->isUnion()) {
4034     // TODO: Support TBAA for unions.
4035     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4036   } else {
4037     // If no base type been assigned for the base access, then try to generate
4038     // one for this base lvalue.
4039     FieldTBAAInfo = base.getTBAAInfo();
4040     if (!FieldTBAAInfo.BaseType) {
4041         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4042         assert(!FieldTBAAInfo.Offset &&
4043                "Nonzero offset for an access with no base type!");
4044     }
4045
4046     // Adjust offset to be relative to the base type.
4047     const ASTRecordLayout &Layout =
4048         getContext().getASTRecordLayout(field->getParent());
4049     unsigned CharWidth = getContext().getCharWidth();
4050     if (FieldTBAAInfo.BaseType)
4051       FieldTBAAInfo.Offset +=
4052           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4053
4054     // Update the final access type and size.
4055     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4056     FieldTBAAInfo.Size =
4057         getContext().getTypeSizeInChars(FieldType).getQuantity();
4058   }
4059
4060   Address addr = base.getAddress();
4061   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4062     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4063         ClassDef->isDynamicClass()) {
4064       // Getting to any field of dynamic object requires stripping dynamic
4065       // information provided by invariant.group.  This is because accessing
4066       // fields may leak the real address of dynamic object, which could result
4067       // in miscompilation when leaked pointer would be compared.
4068       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4069       addr = Address(stripped, addr.getAlignment());
4070     }
4071   }
4072
4073   unsigned RecordCVR = base.getVRQualifiers();
4074   if (rec->isUnion()) {
4075     // For unions, there is no pointer adjustment.
4076     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4077         hasAnyVptr(FieldType, getContext()))
4078       // Because unions can easily skip invariant.barriers, we need to add
4079       // a barrier every time CXXRecord field with vptr is referenced.
4080       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4081                      addr.getAlignment());
4082
4083     if (IsInPreservedAIRegion) {
4084       // Remember the original union field index
4085       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4086           getContext().getRecordType(rec), rec->getLocation());
4087       addr = Address(
4088           Builder.CreatePreserveUnionAccessIndex(
4089               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4090           addr.getAlignment());
4091     }
4092
4093     if (FieldType->isReferenceType())
4094       addr = Builder.CreateElementBitCast(
4095           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4096   } else {
4097     if (!IsInPreservedAIRegion)
4098       // For structs, we GEP to the field that the record layout suggests.
4099       addr = emitAddrOfFieldStorage(*this, addr, field);
4100     else
4101       // Remember the original struct field index
4102       addr = emitPreserveStructAccess(*this, addr, field);
4103   }
4104
4105   // If this is a reference field, load the reference right now.
4106   if (FieldType->isReferenceType()) {
4107     LValue RefLVal =
4108         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4109     if (RecordCVR & Qualifiers::Volatile)
4110       RefLVal.getQuals().addVolatile();
4111     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4112
4113     // Qualifiers on the struct don't apply to the referencee.
4114     RecordCVR = 0;
4115     FieldType = FieldType->getPointeeType();
4116   }
4117
4118   // Make sure that the address is pointing to the right type.  This is critical
4119   // for both unions and structs.  A union needs a bitcast, a struct element
4120   // will need a bitcast if the LLVM type laid out doesn't match the desired
4121   // type.
4122   addr = Builder.CreateElementBitCast(
4123       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4124
4125   if (field->hasAttr<AnnotateAttr>())
4126     addr = EmitFieldAnnotations(field, addr);
4127
4128   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4129   LV.getQuals().addCVRQualifiers(RecordCVR);
4130
4131   // __weak attribute on a field is ignored.
4132   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4133     LV.getQuals().removeObjCGCAttr();
4134
4135   return LV;
4136 }
4137
4138 LValue
4139 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4140                                                   const FieldDecl *Field) {
4141   QualType FieldType = Field->getType();
4142
4143   if (!FieldType->isReferenceType())
4144     return EmitLValueForField(Base, Field);
4145
4146   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
4147
4148   // Make sure that the address is pointing to the right type.
4149   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4150   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4151
4152   // TODO: Generate TBAA information that describes this access as a structure
4153   // member access and not just an access to an object of the field's type. This
4154   // should be similar to what we do in EmitLValueForField().
4155   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4156   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4157   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4158   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4159                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4160 }
4161
4162 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4163   if (E->isFileScope()) {
4164     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4165     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4166   }
4167   if (E->getType()->isVariablyModifiedType())
4168     // make sure to emit the VLA size.
4169     EmitVariablyModifiedType(E->getType());
4170
4171   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4172   const Expr *InitExpr = E->getInitializer();
4173   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4174
4175   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4176                    /*Init*/ true);
4177
4178   return Result;
4179 }
4180
4181 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4182   if (!E->isGLValue())
4183     // Initializing an aggregate temporary in C++11: T{...}.
4184     return EmitAggExprToLValue(E);
4185
4186   // An lvalue initializer list must be initializing a reference.
4187   assert(E->isTransparent() && "non-transparent glvalue init list");
4188   return EmitLValue(E->getInit(0));
4189 }
4190
4191 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4192 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4193 /// LValue is returned and the current block has been terminated.
4194 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4195                                                     const Expr *Operand) {
4196   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4197     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4198     return None;
4199   }
4200
4201   return CGF.EmitLValue(Operand);
4202 }
4203
4204 LValue CodeGenFunction::
4205 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4206   if (!expr->isGLValue()) {
4207     // ?: here should be an aggregate.
4208     assert(hasAggregateEvaluationKind(expr->getType()) &&
4209            "Unexpected conditional operator!");
4210     return EmitAggExprToLValue(expr);
4211   }
4212
4213   OpaqueValueMapping binding(*this, expr);
4214
4215   const Expr *condExpr = expr->getCond();
4216   bool CondExprBool;
4217   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4218     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4219     if (!CondExprBool) std::swap(live, dead);
4220
4221     if (!ContainsLabel(dead)) {
4222       // If the true case is live, we need to track its region.
4223       if (CondExprBool)
4224         incrementProfileCounter(expr);
4225       return EmitLValue(live);
4226     }
4227   }
4228
4229   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4230   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4231   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4232
4233   ConditionalEvaluation eval(*this);
4234   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4235
4236   // Any temporaries created here are conditional.
4237   EmitBlock(lhsBlock);
4238   incrementProfileCounter(expr);
4239   eval.begin(*this);
4240   Optional<LValue> lhs =
4241       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4242   eval.end(*this);
4243
4244   if (lhs && !lhs->isSimple())
4245     return EmitUnsupportedLValue(expr, "conditional operator");
4246
4247   lhsBlock = Builder.GetInsertBlock();
4248   if (lhs)
4249     Builder.CreateBr(contBlock);
4250
4251   // Any temporaries created here are conditional.
4252   EmitBlock(rhsBlock);
4253   eval.begin(*this);
4254   Optional<LValue> rhs =
4255       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4256   eval.end(*this);
4257   if (rhs && !rhs->isSimple())
4258     return EmitUnsupportedLValue(expr, "conditional operator");
4259   rhsBlock = Builder.GetInsertBlock();
4260
4261   EmitBlock(contBlock);
4262
4263   if (lhs && rhs) {
4264     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
4265                                            2, "cond-lvalue");
4266     phi->addIncoming(lhs->getPointer(), lhsBlock);
4267     phi->addIncoming(rhs->getPointer(), rhsBlock);
4268     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4269     AlignmentSource alignSource =
4270       std::max(lhs->getBaseInfo().getAlignmentSource(),
4271                rhs->getBaseInfo().getAlignmentSource());
4272     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4273         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4274     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4275                           TBAAInfo);
4276   } else {
4277     assert((lhs || rhs) &&
4278            "both operands of glvalue conditional are throw-expressions?");
4279     return lhs ? *lhs : *rhs;
4280   }
4281 }
4282
4283 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4284 /// type. If the cast is to a reference, we can have the usual lvalue result,
4285 /// otherwise if a cast is needed by the code generator in an lvalue context,
4286 /// then it must mean that we need the address of an aggregate in order to
4287 /// access one of its members.  This can happen for all the reasons that casts
4288 /// are permitted with aggregate result, including noop aggregate casts, and
4289 /// cast from scalar to union.
4290 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4291   switch (E->getCastKind()) {
4292   case CK_ToVoid:
4293   case CK_BitCast:
4294   case CK_LValueToRValueBitCast:
4295   case CK_ArrayToPointerDecay:
4296   case CK_FunctionToPointerDecay:
4297   case CK_NullToMemberPointer:
4298   case CK_NullToPointer:
4299   case CK_IntegralToPointer:
4300   case CK_PointerToIntegral:
4301   case CK_PointerToBoolean:
4302   case CK_VectorSplat:
4303   case CK_IntegralCast:
4304   case CK_BooleanToSignedIntegral:
4305   case CK_IntegralToBoolean:
4306   case CK_IntegralToFloating:
4307   case CK_FloatingToIntegral:
4308   case CK_FloatingToBoolean:
4309   case CK_FloatingCast:
4310   case CK_FloatingRealToComplex:
4311   case CK_FloatingComplexToReal:
4312   case CK_FloatingComplexToBoolean:
4313   case CK_FloatingComplexCast:
4314   case CK_FloatingComplexToIntegralComplex:
4315   case CK_IntegralRealToComplex:
4316   case CK_IntegralComplexToReal:
4317   case CK_IntegralComplexToBoolean:
4318   case CK_IntegralComplexCast:
4319   case CK_IntegralComplexToFloatingComplex:
4320   case CK_DerivedToBaseMemberPointer:
4321   case CK_BaseToDerivedMemberPointer:
4322   case CK_MemberPointerToBoolean:
4323   case CK_ReinterpretMemberPointer:
4324   case CK_AnyPointerToBlockPointerCast:
4325   case CK_ARCProduceObject:
4326   case CK_ARCConsumeObject:
4327   case CK_ARCReclaimReturnedObject:
4328   case CK_ARCExtendBlockObject:
4329   case CK_CopyAndAutoreleaseBlockObject:
4330   case CK_IntToOCLSampler:
4331   case CK_FixedPointCast:
4332   case CK_FixedPointToBoolean:
4333   case CK_FixedPointToIntegral:
4334   case CK_IntegralToFixedPoint:
4335     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4336
4337   case CK_Dependent:
4338     llvm_unreachable("dependent cast kind in IR gen!");
4339
4340   case CK_BuiltinFnToFnPtr:
4341     llvm_unreachable("builtin functions are handled elsewhere");
4342
4343   // These are never l-values; just use the aggregate emission code.
4344   case CK_NonAtomicToAtomic:
4345   case CK_AtomicToNonAtomic:
4346     return EmitAggExprToLValue(E);
4347
4348   case CK_Dynamic: {
4349     LValue LV = EmitLValue(E->getSubExpr());
4350     Address V = LV.getAddress();
4351     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4352     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4353   }
4354
4355   case CK_ConstructorConversion:
4356   case CK_UserDefinedConversion:
4357   case CK_CPointerToObjCPointerCast:
4358   case CK_BlockPointerToObjCPointerCast:
4359   case CK_NoOp:
4360   case CK_LValueToRValue:
4361     return EmitLValue(E->getSubExpr());
4362
4363   case CK_UncheckedDerivedToBase:
4364   case CK_DerivedToBase: {
4365     const RecordType *DerivedClassTy =
4366       E->getSubExpr()->getType()->getAs<RecordType>();
4367     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4368
4369     LValue LV = EmitLValue(E->getSubExpr());
4370     Address This = LV.getAddress();
4371
4372     // Perform the derived-to-base conversion
4373     Address Base = GetAddressOfBaseClass(
4374         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4375         /*NullCheckValue=*/false, E->getExprLoc());
4376
4377     // TODO: Support accesses to members of base classes in TBAA. For now, we
4378     // conservatively pretend that the complete object is of the base class
4379     // type.
4380     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4381                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4382   }
4383   case CK_ToUnion:
4384     return EmitAggExprToLValue(E);
4385   case CK_BaseToDerived: {
4386     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4387     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4388
4389     LValue LV = EmitLValue(E->getSubExpr());
4390
4391     // Perform the base-to-derived conversion
4392     Address Derived =
4393       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4394                                E->path_begin(), E->path_end(),
4395                                /*NullCheckValue=*/false);
4396
4397     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4398     // performed and the object is not of the derived type.
4399     if (sanitizePerformTypeCheck())
4400       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4401                     Derived.getPointer(), E->getType());
4402
4403     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4404       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4405                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4406                                 E->getBeginLoc());
4407
4408     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4409                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4410   }
4411   case CK_LValueBitCast: {
4412     // This must be a reinterpret_cast (or c-style equivalent).
4413     const auto *CE = cast<ExplicitCastExpr>(E);
4414
4415     CGM.EmitExplicitCastExprType(CE, this);
4416     LValue LV = EmitLValue(E->getSubExpr());
4417     Address V = Builder.CreateBitCast(LV.getAddress(),
4418                                       ConvertType(CE->getTypeAsWritten()));
4419
4420     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4421       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4422                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4423                                 E->getBeginLoc());
4424
4425     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4426                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4427   }
4428   case CK_AddressSpaceConversion: {
4429     LValue LV = EmitLValue(E->getSubExpr());
4430     QualType DestTy = getContext().getPointerType(E->getType());
4431     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4432         *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(),
4433         E->getType().getAddressSpace(), ConvertType(DestTy));
4434     return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()),
4435                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4436   }
4437   case CK_ObjCObjectLValueCast: {
4438     LValue LV = EmitLValue(E->getSubExpr());
4439     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4440                                              ConvertType(E->getType()));
4441     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4442                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4443   }
4444   case CK_ZeroToOCLOpaqueType:
4445     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4446   }
4447
4448   llvm_unreachable("Unhandled lvalue cast kind?");
4449 }
4450
4451 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4452   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4453   return getOrCreateOpaqueLValueMapping(e);
4454 }
4455
4456 LValue
4457 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4458   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4459
4460   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4461       it = OpaqueLValues.find(e);
4462
4463   if (it != OpaqueLValues.end())
4464     return it->second;
4465
4466   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4467   return EmitLValue(e->getSourceExpr());
4468 }
4469
4470 RValue
4471 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4472   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4473
4474   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4475       it = OpaqueRValues.find(e);
4476
4477   if (it != OpaqueRValues.end())
4478     return it->second;
4479
4480   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4481   return EmitAnyExpr(e->getSourceExpr());
4482 }
4483
4484 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4485                                            const FieldDecl *FD,
4486                                            SourceLocation Loc) {
4487   QualType FT = FD->getType();
4488   LValue FieldLV = EmitLValueForField(LV, FD);
4489   switch (getEvaluationKind(FT)) {
4490   case TEK_Complex:
4491     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4492   case TEK_Aggregate:
4493     return FieldLV.asAggregateRValue();
4494   case TEK_Scalar:
4495     // This routine is used to load fields one-by-one to perform a copy, so
4496     // don't load reference fields.
4497     if (FD->getType()->isReferenceType())
4498       return RValue::get(FieldLV.getPointer());
4499     return EmitLoadOfLValue(FieldLV, Loc);
4500   }
4501   llvm_unreachable("bad evaluation kind");
4502 }
4503
4504 //===--------------------------------------------------------------------===//
4505 //                             Expression Emission
4506 //===--------------------------------------------------------------------===//
4507
4508 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4509                                      ReturnValueSlot ReturnValue) {
4510   // Builtins never have block type.
4511   if (E->getCallee()->getType()->isBlockPointerType())
4512     return EmitBlockCallExpr(E, ReturnValue);
4513
4514   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4515     return EmitCXXMemberCallExpr(CE, ReturnValue);
4516
4517   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4518     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4519
4520   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4521     if (const CXXMethodDecl *MD =
4522           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4523       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4524
4525   CGCallee callee = EmitCallee(E->getCallee());
4526
4527   if (callee.isBuiltin()) {
4528     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4529                            E, ReturnValue);
4530   }
4531
4532   if (callee.isPseudoDestructor()) {
4533     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4534   }
4535
4536   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4537 }
4538
4539 /// Emit a CallExpr without considering whether it might be a subclass.
4540 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4541                                            ReturnValueSlot ReturnValue) {
4542   CGCallee Callee = EmitCallee(E->getCallee());
4543   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4544 }
4545
4546 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4547   if (auto builtinID = FD->getBuiltinID()) {
4548     return CGCallee::forBuiltin(builtinID, FD);
4549   }
4550
4551   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4552   return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
4553 }
4554
4555 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4556   E = E->IgnoreParens();
4557
4558   // Look through function-to-pointer decay.
4559   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4560     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4561         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4562       return EmitCallee(ICE->getSubExpr());
4563     }
4564
4565   // Resolve direct calls.
4566   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4567     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4568       return EmitDirectCallee(*this, FD);
4569     }
4570   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4571     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4572       EmitIgnoredExpr(ME->getBase());
4573       return EmitDirectCallee(*this, FD);
4574     }
4575
4576   // Look through template substitutions.
4577   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4578     return EmitCallee(NTTP->getReplacement());
4579
4580   // Treat pseudo-destructor calls differently.
4581   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4582     return CGCallee::forPseudoDestructor(PDE);
4583   }
4584
4585   // Otherwise, we have an indirect reference.
4586   llvm::Value *calleePtr;
4587   QualType functionType;
4588   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4589     calleePtr = EmitScalarExpr(E);
4590     functionType = ptrType->getPointeeType();
4591   } else {
4592     functionType = E->getType();
4593     calleePtr = EmitLValue(E).getPointer();
4594   }
4595   assert(functionType->isFunctionType());
4596
4597   GlobalDecl GD;
4598   if (const auto *VD =
4599           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4600     GD = GlobalDecl(VD);
4601
4602   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4603   CGCallee callee(calleeInfo, calleePtr);
4604   return callee;
4605 }
4606
4607 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4608   // Comma expressions just emit their LHS then their RHS as an l-value.
4609   if (E->getOpcode() == BO_Comma) {
4610     EmitIgnoredExpr(E->getLHS());
4611     EnsureInsertPoint();
4612     return EmitLValue(E->getRHS());
4613   }
4614
4615   if (E->getOpcode() == BO_PtrMemD ||
4616       E->getOpcode() == BO_PtrMemI)
4617     return EmitPointerToDataMemberBinaryExpr(E);
4618
4619   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4620
4621   // Note that in all of these cases, __block variables need the RHS
4622   // evaluated first just in case the variable gets moved by the RHS.
4623
4624   switch (getEvaluationKind(E->getType())) {
4625   case TEK_Scalar: {
4626     switch (E->getLHS()->getType().getObjCLifetime()) {
4627     case Qualifiers::OCL_Strong:
4628       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4629
4630     case Qualifiers::OCL_Autoreleasing:
4631       return EmitARCStoreAutoreleasing(E).first;
4632
4633     // No reason to do any of these differently.
4634     case Qualifiers::OCL_None:
4635     case Qualifiers::OCL_ExplicitNone:
4636     case Qualifiers::OCL_Weak:
4637       break;
4638     }
4639
4640     RValue RV = EmitAnyExpr(E->getRHS());
4641     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4642     if (RV.isScalar())
4643       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4644     EmitStoreThroughLValue(RV, LV);
4645     return LV;
4646   }
4647
4648   case TEK_Complex:
4649     return EmitComplexAssignmentLValue(E);
4650
4651   case TEK_Aggregate:
4652     return EmitAggExprToLValue(E);
4653   }
4654   llvm_unreachable("bad evaluation kind");
4655 }
4656
4657 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4658   RValue RV = EmitCallExpr(E);
4659
4660   if (!RV.isScalar())
4661     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4662                           AlignmentSource::Decl);
4663
4664   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4665          "Can't have a scalar return unless the return type is a "
4666          "reference type!");
4667
4668   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4669 }
4670
4671 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4672   // FIXME: This shouldn't require another copy.
4673   return EmitAggExprToLValue(E);
4674 }
4675
4676 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4677   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4678          && "binding l-value to type which needs a temporary");
4679   AggValueSlot Slot = CreateAggTemp(E->getType());
4680   EmitCXXConstructExpr(E, Slot);
4681   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4682 }
4683
4684 LValue
4685 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4686   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4687 }
4688
4689 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4690   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4691                                       ConvertType(E->getType()));
4692 }
4693
4694 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4695   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4696                         AlignmentSource::Decl);
4697 }
4698
4699 LValue
4700 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4701   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4702   Slot.setExternallyDestructed();
4703   EmitAggExpr(E->getSubExpr(), Slot);
4704   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4705   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4706 }
4707
4708 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4709   RValue RV = EmitObjCMessageExpr(E);
4710
4711   if (!RV.isScalar())
4712     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4713                           AlignmentSource::Decl);
4714
4715   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4716          "Can't have a scalar return unless the return type is a "
4717          "reference type!");
4718
4719   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4720 }
4721
4722 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4723   Address V =
4724     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4725   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4726 }
4727
4728 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4729                                              const ObjCIvarDecl *Ivar) {
4730   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4731 }
4732
4733 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4734                                           llvm::Value *BaseValue,
4735                                           const ObjCIvarDecl *Ivar,
4736                                           unsigned CVRQualifiers) {
4737   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4738                                                    Ivar, CVRQualifiers);
4739 }
4740
4741 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4742   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4743   llvm::Value *BaseValue = nullptr;
4744   const Expr *BaseExpr = E->getBase();
4745   Qualifiers BaseQuals;
4746   QualType ObjectTy;
4747   if (E->isArrow()) {
4748     BaseValue = EmitScalarExpr(BaseExpr);
4749     ObjectTy = BaseExpr->getType()->getPointeeType();
4750     BaseQuals = ObjectTy.getQualifiers();
4751   } else {
4752     LValue BaseLV = EmitLValue(BaseExpr);
4753     BaseValue = BaseLV.getPointer();
4754     ObjectTy = BaseExpr->getType();
4755     BaseQuals = ObjectTy.getQualifiers();
4756   }
4757
4758   LValue LV =
4759     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4760                       BaseQuals.getCVRQualifiers());
4761   setObjCGCLValueClass(getContext(), E, LV);
4762   return LV;
4763 }
4764
4765 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4766   // Can only get l-value for message expression returning aggregate type
4767   RValue RV = EmitAnyExprToTemp(E);
4768   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4769                         AlignmentSource::Decl);
4770 }
4771
4772 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4773                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4774                                  llvm::Value *Chain) {
4775   // Get the actual function type. The callee type will always be a pointer to
4776   // function type or a block pointer type.
4777   assert(CalleeType->isFunctionPointerType() &&
4778          "Call must have function pointer type!");
4779
4780   const Decl *TargetDecl =
4781       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4782
4783   CalleeType = getContext().getCanonicalType(CalleeType);
4784
4785   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4786
4787   CGCallee Callee = OrigCallee;
4788
4789   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4790       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4791     if (llvm::Constant *PrefixSig =
4792             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4793       SanitizerScope SanScope(this);
4794       // Remove any (C++17) exception specifications, to allow calling e.g. a
4795       // noexcept function through a non-noexcept pointer.
4796       auto ProtoTy =
4797         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4798       llvm::Constant *FTRTTIConst =
4799           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4800       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4801       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4802           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4803
4804       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4805
4806       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4807           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4808       llvm::Value *CalleeSigPtr =
4809           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4810       llvm::Value *CalleeSig =
4811           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4812       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4813
4814       llvm::BasicBlock *Cont = createBasicBlock("cont");
4815       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4816       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4817
4818       EmitBlock(TypeCheck);
4819       llvm::Value *CalleeRTTIPtr =
4820           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4821       llvm::Value *CalleeRTTIEncoded =
4822           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4823       llvm::Value *CalleeRTTI =
4824           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4825       llvm::Value *CalleeRTTIMatch =
4826           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4827       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4828                                       EmitCheckTypeDescriptor(CalleeType)};
4829       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4830                 SanitizerHandler::FunctionTypeMismatch, StaticData,
4831                 {CalleePtr, CalleeRTTI, FTRTTIConst});
4832
4833       Builder.CreateBr(Cont);
4834       EmitBlock(Cont);
4835     }
4836   }
4837
4838   const auto *FnType = cast<FunctionType>(PointeeType);
4839
4840   // If we are checking indirect calls and this call is indirect, check that the
4841   // function pointer is a member of the bit set for the function type.
4842   if (SanOpts.has(SanitizerKind::CFIICall) &&
4843       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4844     SanitizerScope SanScope(this);
4845     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4846
4847     llvm::Metadata *MD;
4848     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4849       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4850     else
4851       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4852
4853     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4854
4855     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4856     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4857     llvm::Value *TypeTest = Builder.CreateCall(
4858         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4859
4860     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4861     llvm::Constant *StaticData[] = {
4862         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4863         EmitCheckSourceLocation(E->getBeginLoc()),
4864         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4865     };
4866     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4867       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4868                            CastedCallee, StaticData);
4869     } else {
4870       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4871                 SanitizerHandler::CFICheckFail, StaticData,
4872                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4873     }
4874   }
4875
4876   CallArgList Args;
4877   if (Chain)
4878     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4879              CGM.getContext().VoidPtrTy);
4880
4881   // C++17 requires that we evaluate arguments to a call using assignment syntax
4882   // right-to-left, and that we evaluate arguments to certain other operators
4883   // left-to-right. Note that we allow this to override the order dictated by
4884   // the calling convention on the MS ABI, which means that parameter
4885   // destruction order is not necessarily reverse construction order.
4886   // FIXME: Revisit this based on C++ committee response to unimplementability.
4887   EvaluationOrder Order = EvaluationOrder::Default;
4888   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4889     if (OCE->isAssignmentOp())
4890       Order = EvaluationOrder::ForceRightToLeft;
4891     else {
4892       switch (OCE->getOperator()) {
4893       case OO_LessLess:
4894       case OO_GreaterGreater:
4895       case OO_AmpAmp:
4896       case OO_PipePipe:
4897       case OO_Comma:
4898       case OO_ArrowStar:
4899         Order = EvaluationOrder::ForceLeftToRight;
4900         break;
4901       default:
4902         break;
4903       }
4904     }
4905   }
4906
4907   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4908                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4909
4910   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4911       Args, FnType, /*ChainCall=*/Chain);
4912
4913   // C99 6.5.2.2p6:
4914   //   If the expression that denotes the called function has a type
4915   //   that does not include a prototype, [the default argument
4916   //   promotions are performed]. If the number of arguments does not
4917   //   equal the number of parameters, the behavior is undefined. If
4918   //   the function is defined with a type that includes a prototype,
4919   //   and either the prototype ends with an ellipsis (, ...) or the
4920   //   types of the arguments after promotion are not compatible with
4921   //   the types of the parameters, the behavior is undefined. If the
4922   //   function is defined with a type that does not include a
4923   //   prototype, and the types of the arguments after promotion are
4924   //   not compatible with those of the parameters after promotion,
4925   //   the behavior is undefined [except in some trivial cases].
4926   // That is, in the general case, we should assume that a call
4927   // through an unprototyped function type works like a *non-variadic*
4928   // call.  The way we make this work is to cast to the exact type
4929   // of the promoted arguments.
4930   //
4931   // Chain calls use this same code path to add the invisible chain parameter
4932   // to the function type.
4933   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4934     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4935     CalleeTy = CalleeTy->getPointerTo();
4936
4937     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4938     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4939     Callee.setFunctionPointer(CalleePtr);
4940   }
4941
4942   llvm::CallBase *CallOrInvoke = nullptr;
4943   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
4944                          E->getExprLoc());
4945
4946   // Generate function declaration DISuprogram in order to be used
4947   // in debug info about call sites.
4948   if (CGDebugInfo *DI = getDebugInfo()) {
4949     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4950       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
4951                                   CalleeDecl);
4952   }
4953
4954   return Call;
4955 }
4956
4957 LValue CodeGenFunction::
4958 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4959   Address BaseAddr = Address::invalid();
4960   if (E->getOpcode() == BO_PtrMemI) {
4961     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4962   } else {
4963     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4964   }
4965
4966   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4967
4968   const MemberPointerType *MPT
4969     = E->getRHS()->getType()->getAs<MemberPointerType>();
4970
4971   LValueBaseInfo BaseInfo;
4972   TBAAAccessInfo TBAAInfo;
4973   Address MemberAddr =
4974     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4975                                     &TBAAInfo);
4976
4977   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4978 }
4979
4980 /// Given the address of a temporary variable, produce an r-value of
4981 /// its type.
4982 RValue CodeGenFunction::convertTempToRValue(Address addr,
4983                                             QualType type,
4984                                             SourceLocation loc) {
4985   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4986   switch (getEvaluationKind(type)) {
4987   case TEK_Complex:
4988     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4989   case TEK_Aggregate:
4990     return lvalue.asAggregateRValue();
4991   case TEK_Scalar:
4992     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4993   }
4994   llvm_unreachable("bad evaluation kind");
4995 }
4996
4997 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4998   assert(Val->getType()->isFPOrFPVectorTy());
4999   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5000     return;
5001
5002   llvm::MDBuilder MDHelper(getLLVMContext());
5003   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5004
5005   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5006 }
5007
5008 namespace {
5009   struct LValueOrRValue {
5010     LValue LV;
5011     RValue RV;
5012   };
5013 }
5014
5015 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5016                                            const PseudoObjectExpr *E,
5017                                            bool forLValue,
5018                                            AggValueSlot slot) {
5019   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5020
5021   // Find the result expression, if any.
5022   const Expr *resultExpr = E->getResultExpr();
5023   LValueOrRValue result;
5024
5025   for (PseudoObjectExpr::const_semantics_iterator
5026          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5027     const Expr *semantic = *i;
5028
5029     // If this semantic expression is an opaque value, bind it
5030     // to the result of its source expression.
5031     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5032       // Skip unique OVEs.
5033       if (ov->isUnique()) {
5034         assert(ov != resultExpr &&
5035                "A unique OVE cannot be used as the result expression");
5036         continue;
5037       }
5038
5039       // If this is the result expression, we may need to evaluate
5040       // directly into the slot.
5041       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5042       OVMA opaqueData;
5043       if (ov == resultExpr && ov->isRValue() && !forLValue &&
5044           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5045         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5046         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5047                                        AlignmentSource::Decl);
5048         opaqueData = OVMA::bind(CGF, ov, LV);
5049         result.RV = slot.asRValue();
5050
5051       // Otherwise, emit as normal.
5052       } else {
5053         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5054
5055         // If this is the result, also evaluate the result now.
5056         if (ov == resultExpr) {
5057           if (forLValue)
5058             result.LV = CGF.EmitLValue(ov);
5059           else
5060             result.RV = CGF.EmitAnyExpr(ov, slot);
5061         }
5062       }
5063
5064       opaques.push_back(opaqueData);
5065
5066     // Otherwise, if the expression is the result, evaluate it
5067     // and remember the result.
5068     } else if (semantic == resultExpr) {
5069       if (forLValue)
5070         result.LV = CGF.EmitLValue(semantic);
5071       else
5072         result.RV = CGF.EmitAnyExpr(semantic, slot);
5073
5074     // Otherwise, evaluate the expression in an ignored context.
5075     } else {
5076       CGF.EmitIgnoredExpr(semantic);
5077     }
5078   }
5079
5080   // Unbind all the opaques now.
5081   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5082     opaques[i].unbind(CGF);
5083
5084   return result;
5085 }
5086
5087 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5088                                                AggValueSlot slot) {
5089   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5090 }
5091
5092 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5093   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5094 }