]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/clang/lib/CodeGen/CGExprAgg.cpp
MFV r366990: less v563.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / clang / lib / CodeGen / CGExprAgg.cpp
1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 using namespace clang;
30 using namespace CodeGen;
31
32 //===----------------------------------------------------------------------===//
33 //                        Aggregate Expression Emitter
34 //===----------------------------------------------------------------------===//
35
36 namespace  {
37 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
38   CodeGenFunction &CGF;
39   CGBuilderTy &Builder;
40   AggValueSlot Dest;
41   bool IsResultUnused;
42
43   AggValueSlot EnsureSlot(QualType T) {
44     if (!Dest.isIgnored()) return Dest;
45     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
46   }
47   void EnsureDest(QualType T) {
48     if (!Dest.isIgnored()) return;
49     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51
52   // Calls `Fn` with a valid return value slot, potentially creating a temporary
53   // to do so. If a temporary is created, an appropriate copy into `Dest` will
54   // be emitted, as will lifetime markers.
55   //
56   // The given function should take a ReturnValueSlot, and return an RValue that
57   // points to said slot.
58   void withReturnValueSlot(const Expr *E,
59                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
60
61 public:
62   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
63     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64     IsResultUnused(IsResultUnused) { }
65
66   //===--------------------------------------------------------------------===//
67   //                               Utilities
68   //===--------------------------------------------------------------------===//
69
70   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71   /// represents a value lvalue, this method emits the address of the lvalue,
72   /// then loads the result into DestPtr.
73   void EmitAggLoadOfLValue(const Expr *E);
74
75   enum ExprValueKind {
76     EVK_RValue,
77     EVK_NonRValue
78   };
79
80   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
81   /// SrcIsRValue is true if source comes from an RValue.
82   void EmitFinalDestCopy(QualType type, const LValue &src,
83                          ExprValueKind SrcValueKind = EVK_NonRValue);
84   void EmitFinalDestCopy(QualType type, RValue src);
85   void EmitCopy(QualType type, const AggValueSlot &dest,
86                 const AggValueSlot &src);
87
88   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
89
90   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
91                      QualType ArrayQTy, InitListExpr *E);
92
93   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
94     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
95       return AggValueSlot::NeedsGCBarriers;
96     return AggValueSlot::DoesNotNeedGCBarriers;
97   }
98
99   bool TypeRequiresGCollection(QualType T);
100
101   //===--------------------------------------------------------------------===//
102   //                            Visitor Methods
103   //===--------------------------------------------------------------------===//
104
105   void Visit(Expr *E) {
106     ApplyDebugLocation DL(CGF, E);
107     StmtVisitor<AggExprEmitter>::Visit(E);
108   }
109
110   void VisitStmt(Stmt *S) {
111     CGF.ErrorUnsupported(S, "aggregate expression");
112   }
113   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
114   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
115     Visit(GE->getResultExpr());
116   }
117   void VisitCoawaitExpr(CoawaitExpr *E) {
118     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
119   }
120   void VisitCoyieldExpr(CoyieldExpr *E) {
121     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
122   }
123   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
124   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
125   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
126     return Visit(E->getReplacement());
127   }
128
129   void VisitConstantExpr(ConstantExpr *E) {
130     if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
131       CGF.EmitAggregateStore(Result, Dest.getAddress(),
132                              E->getType().isVolatileQualified());
133       return;
134     }
135     return Visit(E->getSubExpr());
136   }
137
138   // l-values.
139   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
140   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
141   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
142   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
143   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
144   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
145     EmitAggLoadOfLValue(E);
146   }
147   void VisitPredefinedExpr(const PredefinedExpr *E) {
148     EmitAggLoadOfLValue(E);
149   }
150
151   // Operators.
152   void VisitCastExpr(CastExpr *E);
153   void VisitCallExpr(const CallExpr *E);
154   void VisitStmtExpr(const StmtExpr *E);
155   void VisitBinaryOperator(const BinaryOperator *BO);
156   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
157   void VisitBinAssign(const BinaryOperator *E);
158   void VisitBinComma(const BinaryOperator *E);
159   void VisitBinCmp(const BinaryOperator *E);
160   void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
161     Visit(E->getSemanticForm());
162   }
163
164   void VisitObjCMessageExpr(ObjCMessageExpr *E);
165   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
166     EmitAggLoadOfLValue(E);
167   }
168
169   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
170   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
171   void VisitChooseExpr(const ChooseExpr *CE);
172   void VisitInitListExpr(InitListExpr *E);
173   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
174                               llvm::Value *outerBegin = nullptr);
175   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
176   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
177   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
178     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
179     Visit(DAE->getExpr());
180   }
181   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
182     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
183     Visit(DIE->getExpr());
184   }
185   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
186   void VisitCXXConstructExpr(const CXXConstructExpr *E);
187   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
188   void VisitLambdaExpr(LambdaExpr *E);
189   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
190   void VisitExprWithCleanups(ExprWithCleanups *E);
191   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
192   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
193   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
194   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
195
196   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
197     if (E->isGLValue()) {
198       LValue LV = CGF.EmitPseudoObjectLValue(E);
199       return EmitFinalDestCopy(E->getType(), LV);
200     }
201
202     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
203   }
204
205   void VisitVAArgExpr(VAArgExpr *E);
206
207   void EmitInitializationToLValue(Expr *E, LValue Address);
208   void EmitNullInitializationToLValue(LValue Address);
209   //  case Expr::ChooseExprClass:
210   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
211   void VisitAtomicExpr(AtomicExpr *E) {
212     RValue Res = CGF.EmitAtomicExpr(E);
213     EmitFinalDestCopy(E->getType(), Res);
214   }
215 };
216 }  // end anonymous namespace.
217
218 //===----------------------------------------------------------------------===//
219 //                                Utilities
220 //===----------------------------------------------------------------------===//
221
222 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
223 /// represents a value lvalue, this method emits the address of the lvalue,
224 /// then loads the result into DestPtr.
225 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
226   LValue LV = CGF.EmitLValue(E);
227
228   // If the type of the l-value is atomic, then do an atomic load.
229   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
230     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
231     return;
232   }
233
234   EmitFinalDestCopy(E->getType(), LV);
235 }
236
237 /// True if the given aggregate type requires special GC API calls.
238 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
239   // Only record types have members that might require garbage collection.
240   const RecordType *RecordTy = T->getAs<RecordType>();
241   if (!RecordTy) return false;
242
243   // Don't mess with non-trivial C++ types.
244   RecordDecl *Record = RecordTy->getDecl();
245   if (isa<CXXRecordDecl>(Record) &&
246       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
247        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
248     return false;
249
250   // Check whether the type has an object member.
251   return Record->hasObjectMember();
252 }
253
254 void AggExprEmitter::withReturnValueSlot(
255     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
256   QualType RetTy = E->getType();
257   bool RequiresDestruction =
258       !Dest.isExternallyDestructed() &&
259       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
260
261   // If it makes no observable difference, save a memcpy + temporary.
262   //
263   // We need to always provide our own temporary if destruction is required.
264   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
265   // its lifetime before we have the chance to emit a proper destructor call.
266   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
267                  (RequiresDestruction && !Dest.getAddress().isValid());
268
269   Address RetAddr = Address::invalid();
270   Address RetAllocaAddr = Address::invalid();
271
272   EHScopeStack::stable_iterator LifetimeEndBlock;
273   llvm::Value *LifetimeSizePtr = nullptr;
274   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
275   if (!UseTemp) {
276     RetAddr = Dest.getAddress();
277   } else {
278     RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
279     uint64_t Size =
280         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
281     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
282     if (LifetimeSizePtr) {
283       LifetimeStartInst =
284           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
285       assert(LifetimeStartInst->getIntrinsicID() ==
286                  llvm::Intrinsic::lifetime_start &&
287              "Last insertion wasn't a lifetime.start?");
288
289       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
290           NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
291       LifetimeEndBlock = CGF.EHStack.stable_begin();
292     }
293   }
294
295   RValue Src =
296       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused,
297                                Dest.isExternallyDestructed()));
298
299   if (!UseTemp)
300     return;
301
302   assert(Dest.getPointer() != Src.getAggregatePointer());
303   EmitFinalDestCopy(E->getType(), Src);
304
305   if (!RequiresDestruction && LifetimeStartInst) {
306     // If there's no dtor to run, the copy was the last use of our temporary.
307     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
308     // eagerly.
309     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
310     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
311   }
312 }
313
314 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
315 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
316   assert(src.isAggregate() && "value must be aggregate value!");
317   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
318   EmitFinalDestCopy(type, srcLV, EVK_RValue);
319 }
320
321 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
322 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
323                                        ExprValueKind SrcValueKind) {
324   // If Dest is ignored, then we're evaluating an aggregate expression
325   // in a context that doesn't care about the result.  Note that loads
326   // from volatile l-values force the existence of a non-ignored
327   // destination.
328   if (Dest.isIgnored())
329     return;
330
331   // Copy non-trivial C structs here.
332   LValue DstLV = CGF.MakeAddrLValue(
333       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
334
335   if (SrcValueKind == EVK_RValue) {
336     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
337       if (Dest.isPotentiallyAliased())
338         CGF.callCStructMoveAssignmentOperator(DstLV, src);
339       else
340         CGF.callCStructMoveConstructor(DstLV, src);
341       return;
342     }
343   } else {
344     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
345       if (Dest.isPotentiallyAliased())
346         CGF.callCStructCopyAssignmentOperator(DstLV, src);
347       else
348         CGF.callCStructCopyConstructor(DstLV, src);
349       return;
350     }
351   }
352
353   AggValueSlot srcAgg = AggValueSlot::forLValue(
354       src, CGF, AggValueSlot::IsDestructed, needsGC(type),
355       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
356   EmitCopy(type, Dest, srcAgg);
357 }
358
359 /// Perform a copy from the source into the destination.
360 ///
361 /// \param type - the type of the aggregate being copied; qualifiers are
362 ///   ignored
363 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
364                               const AggValueSlot &src) {
365   if (dest.requiresGCollection()) {
366     CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
367     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
368     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
369                                                       dest.getAddress(),
370                                                       src.getAddress(),
371                                                       size);
372     return;
373   }
374
375   // If the result of the assignment is used, copy the LHS there also.
376   // It's volatile if either side is.  Use the minimum alignment of
377   // the two sides.
378   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
379   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
380   CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
381                         dest.isVolatile() || src.isVolatile());
382 }
383
384 /// Emit the initializer for a std::initializer_list initialized with a
385 /// real initializer list.
386 void
387 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
388   // Emit an array containing the elements.  The array is externally destructed
389   // if the std::initializer_list object is.
390   ASTContext &Ctx = CGF.getContext();
391   LValue Array = CGF.EmitLValue(E->getSubExpr());
392   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
393   Address ArrayPtr = Array.getAddress(CGF);
394
395   const ConstantArrayType *ArrayType =
396       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
397   assert(ArrayType && "std::initializer_list constructed from non-array");
398
399   // FIXME: Perform the checks on the field types in SemaInit.
400   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
401   RecordDecl::field_iterator Field = Record->field_begin();
402   if (Field == Record->field_end()) {
403     CGF.ErrorUnsupported(E, "weird std::initializer_list");
404     return;
405   }
406
407   // Start pointer.
408   if (!Field->getType()->isPointerType() ||
409       !Ctx.hasSameType(Field->getType()->getPointeeType(),
410                        ArrayType->getElementType())) {
411     CGF.ErrorUnsupported(E, "weird std::initializer_list");
412     return;
413   }
414
415   AggValueSlot Dest = EnsureSlot(E->getType());
416   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
417   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
418   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
419   llvm::Value *IdxStart[] = { Zero, Zero };
420   llvm::Value *ArrayStart =
421       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
422   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
423   ++Field;
424
425   if (Field == Record->field_end()) {
426     CGF.ErrorUnsupported(E, "weird std::initializer_list");
427     return;
428   }
429
430   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
431   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
432   if (Field->getType()->isPointerType() &&
433       Ctx.hasSameType(Field->getType()->getPointeeType(),
434                       ArrayType->getElementType())) {
435     // End pointer.
436     llvm::Value *IdxEnd[] = { Zero, Size };
437     llvm::Value *ArrayEnd =
438         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
439     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
440   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
441     // Length.
442     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
443   } else {
444     CGF.ErrorUnsupported(E, "weird std::initializer_list");
445     return;
446   }
447 }
448
449 /// Determine if E is a trivial array filler, that is, one that is
450 /// equivalent to zero-initialization.
451 static bool isTrivialFiller(Expr *E) {
452   if (!E)
453     return true;
454
455   if (isa<ImplicitValueInitExpr>(E))
456     return true;
457
458   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
459     if (ILE->getNumInits())
460       return false;
461     return isTrivialFiller(ILE->getArrayFiller());
462   }
463
464   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
465     return Cons->getConstructor()->isDefaultConstructor() &&
466            Cons->getConstructor()->isTrivial();
467
468   // FIXME: Are there other cases where we can avoid emitting an initializer?
469   return false;
470 }
471
472 /// Emit initialization of an array from an initializer list.
473 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
474                                    QualType ArrayQTy, InitListExpr *E) {
475   uint64_t NumInitElements = E->getNumInits();
476
477   uint64_t NumArrayElements = AType->getNumElements();
478   assert(NumInitElements <= NumArrayElements);
479
480   QualType elementType =
481       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
482
483   // DestPtr is an array*.  Construct an elementType* by drilling
484   // down a level.
485   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
486   llvm::Value *indices[] = { zero, zero };
487   llvm::Value *begin =
488     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
489
490   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
491   CharUnits elementAlign =
492     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
493
494   // Consider initializing the array by copying from a global. For this to be
495   // more efficient than per-element initialization, the size of the elements
496   // with explicit initializers should be large enough.
497   if (NumInitElements * elementSize.getQuantity() > 16 &&
498       elementType.isTriviallyCopyableType(CGF.getContext())) {
499     CodeGen::CodeGenModule &CGM = CGF.CGM;
500     ConstantEmitter Emitter(CGF);
501     LangAS AS = ArrayQTy.getAddressSpace();
502     if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
503       auto GV = new llvm::GlobalVariable(
504           CGM.getModule(), C->getType(),
505           CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
506           llvm::GlobalValue::PrivateLinkage, C, "constinit",
507           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
508           CGM.getContext().getTargetAddressSpace(AS));
509       Emitter.finalize(GV);
510       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
511       GV->setAlignment(Align.getAsAlign());
512       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
513       return;
514     }
515   }
516
517   // Exception safety requires us to destroy all the
518   // already-constructed members if an initializer throws.
519   // For that, we'll need an EH cleanup.
520   QualType::DestructionKind dtorKind = elementType.isDestructedType();
521   Address endOfInit = Address::invalid();
522   EHScopeStack::stable_iterator cleanup;
523   llvm::Instruction *cleanupDominator = nullptr;
524   if (CGF.needsEHCleanup(dtorKind)) {
525     // In principle we could tell the cleanup where we are more
526     // directly, but the control flow can get so varied here that it
527     // would actually be quite complex.  Therefore we go through an
528     // alloca.
529     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
530                                      "arrayinit.endOfInit");
531     cleanupDominator = Builder.CreateStore(begin, endOfInit);
532     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
533                                          elementAlign,
534                                          CGF.getDestroyer(dtorKind));
535     cleanup = CGF.EHStack.stable_begin();
536
537   // Otherwise, remember that we didn't need a cleanup.
538   } else {
539     dtorKind = QualType::DK_none;
540   }
541
542   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
543
544   // The 'current element to initialize'.  The invariants on this
545   // variable are complicated.  Essentially, after each iteration of
546   // the loop, it points to the last initialized element, except
547   // that it points to the beginning of the array before any
548   // elements have been initialized.
549   llvm::Value *element = begin;
550
551   // Emit the explicit initializers.
552   for (uint64_t i = 0; i != NumInitElements; ++i) {
553     // Advance to the next element.
554     if (i > 0) {
555       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
556
557       // Tell the cleanup that it needs to destroy up to this
558       // element.  TODO: some of these stores can be trivially
559       // observed to be unnecessary.
560       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
561     }
562
563     LValue elementLV =
564       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
565     EmitInitializationToLValue(E->getInit(i), elementLV);
566   }
567
568   // Check whether there's a non-trivial array-fill expression.
569   Expr *filler = E->getArrayFiller();
570   bool hasTrivialFiller = isTrivialFiller(filler);
571
572   // Any remaining elements need to be zero-initialized, possibly
573   // using the filler expression.  We can skip this if the we're
574   // emitting to zeroed memory.
575   if (NumInitElements != NumArrayElements &&
576       !(Dest.isZeroed() && hasTrivialFiller &&
577         CGF.getTypes().isZeroInitializable(elementType))) {
578
579     // Use an actual loop.  This is basically
580     //   do { *array++ = filler; } while (array != end);
581
582     // Advance to the start of the rest of the array.
583     if (NumInitElements) {
584       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
585       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
586     }
587
588     // Compute the end of the array.
589     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
590                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
591                                                  "arrayinit.end");
592
593     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
594     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
595
596     // Jump into the body.
597     CGF.EmitBlock(bodyBB);
598     llvm::PHINode *currentElement =
599       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
600     currentElement->addIncoming(element, entryBB);
601
602     // Emit the actual filler expression.
603     {
604       // C++1z [class.temporary]p5:
605       //   when a default constructor is called to initialize an element of
606       //   an array with no corresponding initializer [...] the destruction of
607       //   every temporary created in a default argument is sequenced before
608       //   the construction of the next array element, if any
609       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
610       LValue elementLV =
611         CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
612       if (filler)
613         EmitInitializationToLValue(filler, elementLV);
614       else
615         EmitNullInitializationToLValue(elementLV);
616     }
617
618     // Move on to the next element.
619     llvm::Value *nextElement =
620       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
621
622     // Tell the EH cleanup that we finished with the last element.
623     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
624
625     // Leave the loop if we're done.
626     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
627                                              "arrayinit.done");
628     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
629     Builder.CreateCondBr(done, endBB, bodyBB);
630     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
631
632     CGF.EmitBlock(endBB);
633   }
634
635   // Leave the partial-array cleanup if we entered one.
636   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
637 }
638
639 //===----------------------------------------------------------------------===//
640 //                            Visitor Methods
641 //===----------------------------------------------------------------------===//
642
643 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
644   Visit(E->getSubExpr());
645 }
646
647 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
648   // If this is a unique OVE, just visit its source expression.
649   if (e->isUnique())
650     Visit(e->getSourceExpr());
651   else
652     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
653 }
654
655 void
656 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
657   if (Dest.isPotentiallyAliased() &&
658       E->getType().isPODType(CGF.getContext())) {
659     // For a POD type, just emit a load of the lvalue + a copy, because our
660     // compound literal might alias the destination.
661     EmitAggLoadOfLValue(E);
662     return;
663   }
664
665   AggValueSlot Slot = EnsureSlot(E->getType());
666
667   // Block-scope compound literals are destroyed at the end of the enclosing
668   // scope in C.
669   bool Destruct =
670       !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
671   if (Destruct)
672     Slot.setExternallyDestructed();
673
674   CGF.EmitAggExpr(E->getInitializer(), Slot);
675
676   if (Destruct)
677     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
678       CGF.pushLifetimeExtendedDestroy(
679           CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
680           CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
681 }
682
683 /// Attempt to look through various unimportant expressions to find a
684 /// cast of the given kind.
685 static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) {
686   op = op->IgnoreParenNoopCasts(ctx);
687   if (auto castE = dyn_cast<CastExpr>(op)) {
688     if (castE->getCastKind() == kind)
689       return castE->getSubExpr();
690   }
691   return nullptr;
692 }
693
694 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
695   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
696     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
697   switch (E->getCastKind()) {
698   case CK_Dynamic: {
699     // FIXME: Can this actually happen? We have no test coverage for it.
700     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
701     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
702                                       CodeGenFunction::TCK_Load);
703     // FIXME: Do we also need to handle property references here?
704     if (LV.isSimple())
705       CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E));
706     else
707       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
708
709     if (!Dest.isIgnored())
710       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
711     break;
712   }
713
714   case CK_ToUnion: {
715     // Evaluate even if the destination is ignored.
716     if (Dest.isIgnored()) {
717       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
718                       /*ignoreResult=*/true);
719       break;
720     }
721
722     // GCC union extension
723     QualType Ty = E->getSubExpr()->getType();
724     Address CastPtr =
725       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
726     EmitInitializationToLValue(E->getSubExpr(),
727                                CGF.MakeAddrLValue(CastPtr, Ty));
728     break;
729   }
730
731   case CK_LValueToRValueBitCast: {
732     if (Dest.isIgnored()) {
733       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
734                       /*ignoreResult=*/true);
735       break;
736     }
737
738     LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
739     Address SourceAddress =
740         Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty);
741     Address DestAddress =
742         Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty);
743     llvm::Value *SizeVal = llvm::ConstantInt::get(
744         CGF.SizeTy,
745         CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
746     Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
747     break;
748   }
749
750   case CK_DerivedToBase:
751   case CK_BaseToDerived:
752   case CK_UncheckedDerivedToBase: {
753     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
754                 "should have been unpacked before we got here");
755   }
756
757   case CK_NonAtomicToAtomic:
758   case CK_AtomicToNonAtomic: {
759     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
760
761     // Determine the atomic and value types.
762     QualType atomicType = E->getSubExpr()->getType();
763     QualType valueType = E->getType();
764     if (isToAtomic) std::swap(atomicType, valueType);
765
766     assert(atomicType->isAtomicType());
767     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
768                           atomicType->castAs<AtomicType>()->getValueType()));
769
770     // Just recurse normally if we're ignoring the result or the
771     // atomic type doesn't change representation.
772     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
773       return Visit(E->getSubExpr());
774     }
775
776     CastKind peepholeTarget =
777       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
778
779     // These two cases are reverses of each other; try to peephole them.
780     if (Expr *op =
781             findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) {
782       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
783                                                      E->getType()) &&
784            "peephole significantly changed types?");
785       return Visit(op);
786     }
787
788     // If we're converting an r-value of non-atomic type to an r-value
789     // of atomic type, just emit directly into the relevant sub-object.
790     if (isToAtomic) {
791       AggValueSlot valueDest = Dest;
792       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
793         // Zero-initialize.  (Strictly speaking, we only need to initialize
794         // the padding at the end, but this is simpler.)
795         if (!Dest.isZeroed())
796           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
797
798         // Build a GEP to refer to the subobject.
799         Address valueAddr =
800             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
801         valueDest = AggValueSlot::forAddr(valueAddr,
802                                           valueDest.getQualifiers(),
803                                           valueDest.isExternallyDestructed(),
804                                           valueDest.requiresGCollection(),
805                                           valueDest.isPotentiallyAliased(),
806                                           AggValueSlot::DoesNotOverlap,
807                                           AggValueSlot::IsZeroed);
808       }
809
810       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
811       return;
812     }
813
814     // Otherwise, we're converting an atomic type to a non-atomic type.
815     // Make an atomic temporary, emit into that, and then copy the value out.
816     AggValueSlot atomicSlot =
817       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
818     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
819
820     Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
821     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
822     return EmitFinalDestCopy(valueType, rvalue);
823   }
824   case CK_AddressSpaceConversion:
825      return Visit(E->getSubExpr());
826
827   case CK_LValueToRValue:
828     // If we're loading from a volatile type, force the destination
829     // into existence.
830     if (E->getSubExpr()->getType().isVolatileQualified()) {
831       bool Destruct =
832           !Dest.isExternallyDestructed() &&
833           E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
834       if (Destruct)
835         Dest.setExternallyDestructed();
836       EnsureDest(E->getType());
837       Visit(E->getSubExpr());
838
839       if (Destruct)
840         CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
841                         E->getType());
842
843       return;
844     }
845
846     LLVM_FALLTHROUGH;
847
848
849   case CK_NoOp:
850   case CK_UserDefinedConversion:
851   case CK_ConstructorConversion:
852     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
853                                                    E->getType()) &&
854            "Implicit cast types must be compatible");
855     Visit(E->getSubExpr());
856     break;
857
858   case CK_LValueBitCast:
859     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
860
861   case CK_Dependent:
862   case CK_BitCast:
863   case CK_ArrayToPointerDecay:
864   case CK_FunctionToPointerDecay:
865   case CK_NullToPointer:
866   case CK_NullToMemberPointer:
867   case CK_BaseToDerivedMemberPointer:
868   case CK_DerivedToBaseMemberPointer:
869   case CK_MemberPointerToBoolean:
870   case CK_ReinterpretMemberPointer:
871   case CK_IntegralToPointer:
872   case CK_PointerToIntegral:
873   case CK_PointerToBoolean:
874   case CK_ToVoid:
875   case CK_VectorSplat:
876   case CK_IntegralCast:
877   case CK_BooleanToSignedIntegral:
878   case CK_IntegralToBoolean:
879   case CK_IntegralToFloating:
880   case CK_FloatingToIntegral:
881   case CK_FloatingToBoolean:
882   case CK_FloatingCast:
883   case CK_CPointerToObjCPointerCast:
884   case CK_BlockPointerToObjCPointerCast:
885   case CK_AnyPointerToBlockPointerCast:
886   case CK_ObjCObjectLValueCast:
887   case CK_FloatingRealToComplex:
888   case CK_FloatingComplexToReal:
889   case CK_FloatingComplexToBoolean:
890   case CK_FloatingComplexCast:
891   case CK_FloatingComplexToIntegralComplex:
892   case CK_IntegralRealToComplex:
893   case CK_IntegralComplexToReal:
894   case CK_IntegralComplexToBoolean:
895   case CK_IntegralComplexCast:
896   case CK_IntegralComplexToFloatingComplex:
897   case CK_ARCProduceObject:
898   case CK_ARCConsumeObject:
899   case CK_ARCReclaimReturnedObject:
900   case CK_ARCExtendBlockObject:
901   case CK_CopyAndAutoreleaseBlockObject:
902   case CK_BuiltinFnToFnPtr:
903   case CK_ZeroToOCLOpaqueType:
904
905   case CK_IntToOCLSampler:
906   case CK_FixedPointCast:
907   case CK_FixedPointToBoolean:
908   case CK_FixedPointToIntegral:
909   case CK_IntegralToFixedPoint:
910     llvm_unreachable("cast kind invalid for aggregate types");
911   }
912 }
913
914 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
915   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
916     EmitAggLoadOfLValue(E);
917     return;
918   }
919
920   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
921     return CGF.EmitCallExpr(E, Slot);
922   });
923 }
924
925 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
926   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
927     return CGF.EmitObjCMessageExpr(E, Slot);
928   });
929 }
930
931 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
932   CGF.EmitIgnoredExpr(E->getLHS());
933   Visit(E->getRHS());
934 }
935
936 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
937   CodeGenFunction::StmtExprEvaluation eval(CGF);
938   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
939 }
940
941 enum CompareKind {
942   CK_Less,
943   CK_Greater,
944   CK_Equal,
945 };
946
947 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
948                                 const BinaryOperator *E, llvm::Value *LHS,
949                                 llvm::Value *RHS, CompareKind Kind,
950                                 const char *NameSuffix = "") {
951   QualType ArgTy = E->getLHS()->getType();
952   if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
953     ArgTy = CT->getElementType();
954
955   if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
956     assert(Kind == CK_Equal &&
957            "member pointers may only be compared for equality");
958     return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
959         CGF, LHS, RHS, MPT, /*IsInequality*/ false);
960   }
961
962   // Compute the comparison instructions for the specified comparison kind.
963   struct CmpInstInfo {
964     const char *Name;
965     llvm::CmpInst::Predicate FCmp;
966     llvm::CmpInst::Predicate SCmp;
967     llvm::CmpInst::Predicate UCmp;
968   };
969   CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
970     using FI = llvm::FCmpInst;
971     using II = llvm::ICmpInst;
972     switch (Kind) {
973     case CK_Less:
974       return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
975     case CK_Greater:
976       return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
977     case CK_Equal:
978       return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
979     }
980     llvm_unreachable("Unrecognised CompareKind enum");
981   }();
982
983   if (ArgTy->hasFloatingRepresentation())
984     return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
985                               llvm::Twine(InstInfo.Name) + NameSuffix);
986   if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
987     auto Inst =
988         ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
989     return Builder.CreateICmp(Inst, LHS, RHS,
990                               llvm::Twine(InstInfo.Name) + NameSuffix);
991   }
992
993   llvm_unreachable("unsupported aggregate binary expression should have "
994                    "already been handled");
995 }
996
997 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
998   using llvm::BasicBlock;
999   using llvm::PHINode;
1000   using llvm::Value;
1001   assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
1002                                       E->getRHS()->getType()));
1003   const ComparisonCategoryInfo &CmpInfo =
1004       CGF.getContext().CompCategories.getInfoForType(E->getType());
1005   assert(CmpInfo.Record->isTriviallyCopyable() &&
1006          "cannot copy non-trivially copyable aggregate");
1007
1008   QualType ArgTy = E->getLHS()->getType();
1009
1010   if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
1011       !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1012       !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1013     return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1014   }
1015   bool IsComplex = ArgTy->isAnyComplexType();
1016
1017   // Evaluate the operands to the expression and extract their values.
1018   auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1019     RValue RV = CGF.EmitAnyExpr(E);
1020     if (RV.isScalar())
1021       return {RV.getScalarVal(), nullptr};
1022     if (RV.isAggregate())
1023       return {RV.getAggregatePointer(), nullptr};
1024     assert(RV.isComplex());
1025     return RV.getComplexVal();
1026   };
1027   auto LHSValues = EmitOperand(E->getLHS()),
1028        RHSValues = EmitOperand(E->getRHS());
1029
1030   auto EmitCmp = [&](CompareKind K) {
1031     Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1032                              K, IsComplex ? ".r" : "");
1033     if (!IsComplex)
1034       return Cmp;
1035     assert(K == CompareKind::CK_Equal);
1036     Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1037                                  RHSValues.second, K, ".i");
1038     return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1039   };
1040   auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1041     return Builder.getInt(VInfo->getIntValue());
1042   };
1043
1044   Value *Select;
1045   if (ArgTy->isNullPtrType()) {
1046     Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1047   } else if (!CmpInfo.isPartial()) {
1048     Value *SelectOne =
1049         Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1050                              EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1051     Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1052                                   EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1053                                   SelectOne, "sel.eq");
1054   } else {
1055     Value *SelectEq = Builder.CreateSelect(
1056         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1057         EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1058     Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1059                                            EmitCmpRes(CmpInfo.getGreater()),
1060                                            SelectEq, "sel.gt");
1061     Select = Builder.CreateSelect(
1062         EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1063   }
1064   // Create the return value in the destination slot.
1065   EnsureDest(E->getType());
1066   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1067
1068   // Emit the address of the first (and only) field in the comparison category
1069   // type, and initialize it from the constant integer value selected above.
1070   LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1071       DestLV, *CmpInfo.Record->field_begin());
1072   CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1073
1074   // All done! The result is in the Dest slot.
1075 }
1076
1077 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1078   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1079     VisitPointerToDataMemberBinaryOperator(E);
1080   else
1081     CGF.ErrorUnsupported(E, "aggregate binary expression");
1082 }
1083
1084 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1085                                                     const BinaryOperator *E) {
1086   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1087   EmitFinalDestCopy(E->getType(), LV);
1088 }
1089
1090 /// Is the value of the given expression possibly a reference to or
1091 /// into a __block variable?
1092 static bool isBlockVarRef(const Expr *E) {
1093   // Make sure we look through parens.
1094   E = E->IgnoreParens();
1095
1096   // Check for a direct reference to a __block variable.
1097   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1098     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1099     return (var && var->hasAttr<BlocksAttr>());
1100   }
1101
1102   // More complicated stuff.
1103
1104   // Binary operators.
1105   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1106     // For an assignment or pointer-to-member operation, just care
1107     // about the LHS.
1108     if (op->isAssignmentOp() || op->isPtrMemOp())
1109       return isBlockVarRef(op->getLHS());
1110
1111     // For a comma, just care about the RHS.
1112     if (op->getOpcode() == BO_Comma)
1113       return isBlockVarRef(op->getRHS());
1114
1115     // FIXME: pointer arithmetic?
1116     return false;
1117
1118   // Check both sides of a conditional operator.
1119   } else if (const AbstractConditionalOperator *op
1120                = dyn_cast<AbstractConditionalOperator>(E)) {
1121     return isBlockVarRef(op->getTrueExpr())
1122         || isBlockVarRef(op->getFalseExpr());
1123
1124   // OVEs are required to support BinaryConditionalOperators.
1125   } else if (const OpaqueValueExpr *op
1126                = dyn_cast<OpaqueValueExpr>(E)) {
1127     if (const Expr *src = op->getSourceExpr())
1128       return isBlockVarRef(src);
1129
1130   // Casts are necessary to get things like (*(int*)&var) = foo().
1131   // We don't really care about the kind of cast here, except
1132   // we don't want to look through l2r casts, because it's okay
1133   // to get the *value* in a __block variable.
1134   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1135     if (cast->getCastKind() == CK_LValueToRValue)
1136       return false;
1137     return isBlockVarRef(cast->getSubExpr());
1138
1139   // Handle unary operators.  Again, just aggressively look through
1140   // it, ignoring the operation.
1141   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1142     return isBlockVarRef(uop->getSubExpr());
1143
1144   // Look into the base of a field access.
1145   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1146     return isBlockVarRef(mem->getBase());
1147
1148   // Look into the base of a subscript.
1149   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1150     return isBlockVarRef(sub->getBase());
1151   }
1152
1153   return false;
1154 }
1155
1156 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1157   // For an assignment to work, the value on the right has
1158   // to be compatible with the value on the left.
1159   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1160                                                  E->getRHS()->getType())
1161          && "Invalid assignment");
1162
1163   // If the LHS might be a __block variable, and the RHS can
1164   // potentially cause a block copy, we need to evaluate the RHS first
1165   // so that the assignment goes the right place.
1166   // This is pretty semantically fragile.
1167   if (isBlockVarRef(E->getLHS()) &&
1168       E->getRHS()->HasSideEffects(CGF.getContext())) {
1169     // Ensure that we have a destination, and evaluate the RHS into that.
1170     EnsureDest(E->getRHS()->getType());
1171     Visit(E->getRHS());
1172
1173     // Now emit the LHS and copy into it.
1174     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1175
1176     // That copy is an atomic copy if the LHS is atomic.
1177     if (LHS.getType()->isAtomicType() ||
1178         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1179       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1180       return;
1181     }
1182
1183     EmitCopy(E->getLHS()->getType(),
1184              AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed,
1185                                      needsGC(E->getLHS()->getType()),
1186                                      AggValueSlot::IsAliased,
1187                                      AggValueSlot::MayOverlap),
1188              Dest);
1189     return;
1190   }
1191
1192   LValue LHS = CGF.EmitLValue(E->getLHS());
1193
1194   // If we have an atomic type, evaluate into the destination and then
1195   // do an atomic copy.
1196   if (LHS.getType()->isAtomicType() ||
1197       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1198     EnsureDest(E->getRHS()->getType());
1199     Visit(E->getRHS());
1200     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1201     return;
1202   }
1203
1204   // Codegen the RHS so that it stores directly into the LHS.
1205   AggValueSlot LHSSlot = AggValueSlot::forLValue(
1206       LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1207       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1208   // A non-volatile aggregate destination might have volatile member.
1209   if (!LHSSlot.isVolatile() &&
1210       CGF.hasVolatileMember(E->getLHS()->getType()))
1211     LHSSlot.setVolatile(true);
1212
1213   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1214
1215   // Copy into the destination if the assignment isn't ignored.
1216   EmitFinalDestCopy(E->getType(), LHS);
1217 }
1218
1219 void AggExprEmitter::
1220 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1221   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1222   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1223   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1224
1225   // Bind the common expression if necessary.
1226   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1227
1228   CodeGenFunction::ConditionalEvaluation eval(CGF);
1229   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1230                            CGF.getProfileCount(E));
1231
1232   // Save whether the destination's lifetime is externally managed.
1233   bool isExternallyDestructed = Dest.isExternallyDestructed();
1234
1235   eval.begin(CGF);
1236   CGF.EmitBlock(LHSBlock);
1237   CGF.incrementProfileCounter(E);
1238   Visit(E->getTrueExpr());
1239   eval.end(CGF);
1240
1241   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1242   CGF.Builder.CreateBr(ContBlock);
1243
1244   // If the result of an agg expression is unused, then the emission
1245   // of the LHS might need to create a destination slot.  That's fine
1246   // with us, and we can safely emit the RHS into the same slot, but
1247   // we shouldn't claim that it's already being destructed.
1248   Dest.setExternallyDestructed(isExternallyDestructed);
1249
1250   eval.begin(CGF);
1251   CGF.EmitBlock(RHSBlock);
1252   Visit(E->getFalseExpr());
1253   eval.end(CGF);
1254
1255   CGF.EmitBlock(ContBlock);
1256 }
1257
1258 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1259   Visit(CE->getChosenSubExpr());
1260 }
1261
1262 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1263   Address ArgValue = Address::invalid();
1264   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1265
1266   // If EmitVAArg fails, emit an error.
1267   if (!ArgPtr.isValid()) {
1268     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1269     return;
1270   }
1271
1272   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1273 }
1274
1275 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1276   // Ensure that we have a slot, but if we already do, remember
1277   // whether it was externally destructed.
1278   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1279   EnsureDest(E->getType());
1280
1281   // We're going to push a destructor if there isn't already one.
1282   Dest.setExternallyDestructed();
1283
1284   Visit(E->getSubExpr());
1285
1286   // Push that destructor we promised.
1287   if (!wasExternallyDestructed)
1288     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1289 }
1290
1291 void
1292 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1293   AggValueSlot Slot = EnsureSlot(E->getType());
1294   CGF.EmitCXXConstructExpr(E, Slot);
1295 }
1296
1297 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1298     const CXXInheritedCtorInitExpr *E) {
1299   AggValueSlot Slot = EnsureSlot(E->getType());
1300   CGF.EmitInheritedCXXConstructorCall(
1301       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1302       E->inheritedFromVBase(), E);
1303 }
1304
1305 void
1306 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1307   AggValueSlot Slot = EnsureSlot(E->getType());
1308   LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1309
1310   // We'll need to enter cleanup scopes in case any of the element
1311   // initializers throws an exception.
1312   SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1313   llvm::Instruction *CleanupDominator = nullptr;
1314
1315   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1316   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1317                                                e = E->capture_init_end();
1318        i != e; ++i, ++CurField) {
1319     // Emit initialization
1320     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1321     if (CurField->hasCapturedVLAType()) {
1322       CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1323       continue;
1324     }
1325
1326     EmitInitializationToLValue(*i, LV);
1327
1328     // Push a destructor if necessary.
1329     if (QualType::DestructionKind DtorKind =
1330             CurField->getType().isDestructedType()) {
1331       assert(LV.isSimple());
1332       if (CGF.needsEHCleanup(DtorKind)) {
1333         if (!CleanupDominator)
1334           CleanupDominator = CGF.Builder.CreateAlignedLoad(
1335               CGF.Int8Ty,
1336               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1337               CharUnits::One()); // placeholder
1338
1339         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(),
1340                         CGF.getDestroyer(DtorKind), false);
1341         Cleanups.push_back(CGF.EHStack.stable_begin());
1342       }
1343     }
1344   }
1345
1346   // Deactivate all the partial cleanups in reverse order, which
1347   // generally means popping them.
1348   for (unsigned i = Cleanups.size(); i != 0; --i)
1349     CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1350
1351   // Destroy the placeholder if we made one.
1352   if (CleanupDominator)
1353     CleanupDominator->eraseFromParent();
1354 }
1355
1356 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1357   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1358   Visit(E->getSubExpr());
1359 }
1360
1361 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1362   QualType T = E->getType();
1363   AggValueSlot Slot = EnsureSlot(T);
1364   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1365 }
1366
1367 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1368   QualType T = E->getType();
1369   AggValueSlot Slot = EnsureSlot(T);
1370   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1371 }
1372
1373 /// isSimpleZero - If emitting this value will obviously just cause a store of
1374 /// zero to memory, return true.  This can return false if uncertain, so it just
1375 /// handles simple cases.
1376 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1377   E = E->IgnoreParens();
1378
1379   // 0
1380   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1381     return IL->getValue() == 0;
1382   // +0.0
1383   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1384     return FL->getValue().isPosZero();
1385   // int()
1386   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1387       CGF.getTypes().isZeroInitializable(E->getType()))
1388     return true;
1389   // (int*)0 - Null pointer expressions.
1390   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1391     return ICE->getCastKind() == CK_NullToPointer &&
1392            CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1393            !E->HasSideEffects(CGF.getContext());
1394   // '\0'
1395   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1396     return CL->getValue() == 0;
1397
1398   // Otherwise, hard case: conservatively return false.
1399   return false;
1400 }
1401
1402
1403 void
1404 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1405   QualType type = LV.getType();
1406   // FIXME: Ignore result?
1407   // FIXME: Are initializers affected by volatile?
1408   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1409     // Storing "i32 0" to a zero'd memory location is a noop.
1410     return;
1411   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1412     return EmitNullInitializationToLValue(LV);
1413   } else if (isa<NoInitExpr>(E)) {
1414     // Do nothing.
1415     return;
1416   } else if (type->isReferenceType()) {
1417     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1418     return CGF.EmitStoreThroughLValue(RV, LV);
1419   }
1420
1421   switch (CGF.getEvaluationKind(type)) {
1422   case TEK_Complex:
1423     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1424     return;
1425   case TEK_Aggregate:
1426     CGF.EmitAggExpr(
1427         E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed,
1428                                    AggValueSlot::DoesNotNeedGCBarriers,
1429                                    AggValueSlot::IsNotAliased,
1430                                    AggValueSlot::MayOverlap, Dest.isZeroed()));
1431     return;
1432   case TEK_Scalar:
1433     if (LV.isSimple()) {
1434       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1435     } else {
1436       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1437     }
1438     return;
1439   }
1440   llvm_unreachable("bad evaluation kind");
1441 }
1442
1443 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1444   QualType type = lv.getType();
1445
1446   // If the destination slot is already zeroed out before the aggregate is
1447   // copied into it, we don't have to emit any zeros here.
1448   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1449     return;
1450
1451   if (CGF.hasScalarEvaluationKind(type)) {
1452     // For non-aggregates, we can store the appropriate null constant.
1453     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1454     // Note that the following is not equivalent to
1455     // EmitStoreThroughBitfieldLValue for ARC types.
1456     if (lv.isBitField()) {
1457       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1458     } else {
1459       assert(lv.isSimple());
1460       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1461     }
1462   } else {
1463     // There's a potential optimization opportunity in combining
1464     // memsets; that would be easy for arrays, but relatively
1465     // difficult for structures with the current code.
1466     CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType());
1467   }
1468 }
1469
1470 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1471 #if 0
1472   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1473   // (Length of globals? Chunks of zeroed-out space?).
1474   //
1475   // If we can, prefer a copy from a global; this is a lot less code for long
1476   // globals, and it's easier for the current optimizers to analyze.
1477   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1478     llvm::GlobalVariable* GV =
1479     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1480                              llvm::GlobalValue::InternalLinkage, C, "");
1481     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1482     return;
1483   }
1484 #endif
1485   if (E->hadArrayRangeDesignator())
1486     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1487
1488   if (E->isTransparent())
1489     return Visit(E->getInit(0));
1490
1491   AggValueSlot Dest = EnsureSlot(E->getType());
1492
1493   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1494
1495   // Handle initialization of an array.
1496   if (E->getType()->isArrayType()) {
1497     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1498     EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1499     return;
1500   }
1501
1502   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1503
1504   // Do struct initialization; this code just sets each individual member
1505   // to the approprate value.  This makes bitfield support automatic;
1506   // the disadvantage is that the generated code is more difficult for
1507   // the optimizer, especially with bitfields.
1508   unsigned NumInitElements = E->getNumInits();
1509   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1510
1511   // We'll need to enter cleanup scopes in case any of the element
1512   // initializers throws an exception.
1513   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1514   llvm::Instruction *cleanupDominator = nullptr;
1515   auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1516     cleanups.push_back(cleanup);
1517     if (!cleanupDominator) // create placeholder once needed
1518       cleanupDominator = CGF.Builder.CreateAlignedLoad(
1519           CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1520           CharUnits::One());
1521   };
1522
1523   unsigned curInitIndex = 0;
1524
1525   // Emit initialization of base classes.
1526   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1527     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1528            "missing initializer for base class");
1529     for (auto &Base : CXXRD->bases()) {
1530       assert(!Base.isVirtual() && "should not see vbases here");
1531       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1532       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1533           Dest.getAddress(), CXXRD, BaseRD,
1534           /*isBaseVirtual*/ false);
1535       AggValueSlot AggSlot = AggValueSlot::forAddr(
1536           V, Qualifiers(),
1537           AggValueSlot::IsDestructed,
1538           AggValueSlot::DoesNotNeedGCBarriers,
1539           AggValueSlot::IsNotAliased,
1540           CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1541       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1542
1543       if (QualType::DestructionKind dtorKind =
1544               Base.getType().isDestructedType()) {
1545         CGF.pushDestroy(dtorKind, V, Base.getType());
1546         addCleanup(CGF.EHStack.stable_begin());
1547       }
1548     }
1549   }
1550
1551   // Prepare a 'this' for CXXDefaultInitExprs.
1552   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1553
1554   if (record->isUnion()) {
1555     // Only initialize one field of a union. The field itself is
1556     // specified by the initializer list.
1557     if (!E->getInitializedFieldInUnion()) {
1558       // Empty union; we have nothing to do.
1559
1560 #ifndef NDEBUG
1561       // Make sure that it's really an empty and not a failure of
1562       // semantic analysis.
1563       for (const auto *Field : record->fields())
1564         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1565 #endif
1566       return;
1567     }
1568
1569     // FIXME: volatility
1570     FieldDecl *Field = E->getInitializedFieldInUnion();
1571
1572     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1573     if (NumInitElements) {
1574       // Store the initializer into the field
1575       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1576     } else {
1577       // Default-initialize to null.
1578       EmitNullInitializationToLValue(FieldLoc);
1579     }
1580
1581     return;
1582   }
1583
1584   // Here we iterate over the fields; this makes it simpler to both
1585   // default-initialize fields and skip over unnamed fields.
1586   for (const auto *field : record->fields()) {
1587     // We're done once we hit the flexible array member.
1588     if (field->getType()->isIncompleteArrayType())
1589       break;
1590
1591     // Always skip anonymous bitfields.
1592     if (field->isUnnamedBitfield())
1593       continue;
1594
1595     // We're done if we reach the end of the explicit initializers, we
1596     // have a zeroed object, and the rest of the fields are
1597     // zero-initializable.
1598     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1599         CGF.getTypes().isZeroInitializable(E->getType()))
1600       break;
1601
1602
1603     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1604     // We never generate write-barries for initialized fields.
1605     LV.setNonGC(true);
1606
1607     if (curInitIndex < NumInitElements) {
1608       // Store the initializer into the field.
1609       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1610     } else {
1611       // We're out of initializers; default-initialize to null
1612       EmitNullInitializationToLValue(LV);
1613     }
1614
1615     // Push a destructor if necessary.
1616     // FIXME: if we have an array of structures, all explicitly
1617     // initialized, we can end up pushing a linear number of cleanups.
1618     bool pushedCleanup = false;
1619     if (QualType::DestructionKind dtorKind
1620           = field->getType().isDestructedType()) {
1621       assert(LV.isSimple());
1622       if (CGF.needsEHCleanup(dtorKind)) {
1623         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(),
1624                         CGF.getDestroyer(dtorKind), false);
1625         addCleanup(CGF.EHStack.stable_begin());
1626         pushedCleanup = true;
1627       }
1628     }
1629
1630     // If the GEP didn't get used because of a dead zero init or something
1631     // else, clean it up for -O0 builds and general tidiness.
1632     if (!pushedCleanup && LV.isSimple())
1633       if (llvm::GetElementPtrInst *GEP =
1634               dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF)))
1635         if (GEP->use_empty())
1636           GEP->eraseFromParent();
1637   }
1638
1639   // Deactivate all the partial cleanups in reverse order, which
1640   // generally means popping them.
1641   assert((cleanupDominator || cleanups.empty()) &&
1642          "Missing cleanupDominator before deactivating cleanup blocks");
1643   for (unsigned i = cleanups.size(); i != 0; --i)
1644     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1645
1646   // Destroy the placeholder if we made one.
1647   if (cleanupDominator)
1648     cleanupDominator->eraseFromParent();
1649 }
1650
1651 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1652                                             llvm::Value *outerBegin) {
1653   // Emit the common subexpression.
1654   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1655
1656   Address destPtr = EnsureSlot(E->getType()).getAddress();
1657   uint64_t numElements = E->getArraySize().getZExtValue();
1658
1659   if (!numElements)
1660     return;
1661
1662   // destPtr is an array*. Construct an elementType* by drilling down a level.
1663   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1664   llvm::Value *indices[] = {zero, zero};
1665   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1666                                                  "arrayinit.begin");
1667
1668   // Prepare to special-case multidimensional array initialization: we avoid
1669   // emitting multiple destructor loops in that case.
1670   if (!outerBegin)
1671     outerBegin = begin;
1672   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1673
1674   QualType elementType =
1675       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1676   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1677   CharUnits elementAlign =
1678       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1679
1680   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1681   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1682
1683   // Jump into the body.
1684   CGF.EmitBlock(bodyBB);
1685   llvm::PHINode *index =
1686       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1687   index->addIncoming(zero, entryBB);
1688   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1689
1690   // Prepare for a cleanup.
1691   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1692   EHScopeStack::stable_iterator cleanup;
1693   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1694     if (outerBegin->getType() != element->getType())
1695       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1696     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1697                                        elementAlign,
1698                                        CGF.getDestroyer(dtorKind));
1699     cleanup = CGF.EHStack.stable_begin();
1700   } else {
1701     dtorKind = QualType::DK_none;
1702   }
1703
1704   // Emit the actual filler expression.
1705   {
1706     // Temporaries created in an array initialization loop are destroyed
1707     // at the end of each iteration.
1708     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1709     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1710     LValue elementLV =
1711         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1712
1713     if (InnerLoop) {
1714       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1715       auto elementSlot = AggValueSlot::forLValue(
1716           elementLV, CGF, AggValueSlot::IsDestructed,
1717           AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1718           AggValueSlot::DoesNotOverlap);
1719       AggExprEmitter(CGF, elementSlot, false)
1720           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1721     } else
1722       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1723   }
1724
1725   // Move on to the next element.
1726   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1727       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1728   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1729
1730   // Leave the loop if we're done.
1731   llvm::Value *done = Builder.CreateICmpEQ(
1732       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1733       "arrayinit.done");
1734   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1735   Builder.CreateCondBr(done, endBB, bodyBB);
1736
1737   CGF.EmitBlock(endBB);
1738
1739   // Leave the partial-array cleanup if we entered one.
1740   if (dtorKind)
1741     CGF.DeactivateCleanupBlock(cleanup, index);
1742 }
1743
1744 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1745   AggValueSlot Dest = EnsureSlot(E->getType());
1746
1747   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1748   EmitInitializationToLValue(E->getBase(), DestLV);
1749   VisitInitListExpr(E->getUpdater());
1750 }
1751
1752 //===----------------------------------------------------------------------===//
1753 //                        Entry Points into this File
1754 //===----------------------------------------------------------------------===//
1755
1756 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1757 /// non-zero bytes that will be stored when outputting the initializer for the
1758 /// specified initializer expression.
1759 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1760   E = E->IgnoreParens();
1761
1762   // 0 and 0.0 won't require any non-zero stores!
1763   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1764
1765   // If this is an initlist expr, sum up the size of sizes of the (present)
1766   // elements.  If this is something weird, assume the whole thing is non-zero.
1767   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1768   while (ILE && ILE->isTransparent())
1769     ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1770   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1771     return CGF.getContext().getTypeSizeInChars(E->getType());
1772
1773   // InitListExprs for structs have to be handled carefully.  If there are
1774   // reference members, we need to consider the size of the reference, not the
1775   // referencee.  InitListExprs for unions and arrays can't have references.
1776   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1777     if (!RT->isUnionType()) {
1778       RecordDecl *SD = RT->getDecl();
1779       CharUnits NumNonZeroBytes = CharUnits::Zero();
1780
1781       unsigned ILEElement = 0;
1782       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1783         while (ILEElement != CXXRD->getNumBases())
1784           NumNonZeroBytes +=
1785               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1786       for (const auto *Field : SD->fields()) {
1787         // We're done once we hit the flexible array member or run out of
1788         // InitListExpr elements.
1789         if (Field->getType()->isIncompleteArrayType() ||
1790             ILEElement == ILE->getNumInits())
1791           break;
1792         if (Field->isUnnamedBitfield())
1793           continue;
1794
1795         const Expr *E = ILE->getInit(ILEElement++);
1796
1797         // Reference values are always non-null and have the width of a pointer.
1798         if (Field->getType()->isReferenceType())
1799           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1800               CGF.getTarget().getPointerWidth(0));
1801         else
1802           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1803       }
1804
1805       return NumNonZeroBytes;
1806     }
1807   }
1808
1809
1810   CharUnits NumNonZeroBytes = CharUnits::Zero();
1811   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1812     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1813   return NumNonZeroBytes;
1814 }
1815
1816 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1817 /// zeros in it, emit a memset and avoid storing the individual zeros.
1818 ///
1819 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1820                                      CodeGenFunction &CGF) {
1821   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1822   // volatile stores.
1823   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1824     return;
1825
1826   // C++ objects with a user-declared constructor don't need zero'ing.
1827   if (CGF.getLangOpts().CPlusPlus)
1828     if (const RecordType *RT = CGF.getContext()
1829                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1830       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1831       if (RD->hasUserDeclaredConstructor())
1832         return;
1833     }
1834
1835   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1836   CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1837   if (Size <= CharUnits::fromQuantity(16))
1838     return;
1839
1840   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1841   // we prefer to emit memset + individual stores for the rest.
1842   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1843   if (NumNonZeroBytes*4 > Size)
1844     return;
1845
1846   // Okay, it seems like a good idea to use an initial memset, emit the call.
1847   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1848
1849   Address Loc = Slot.getAddress();
1850   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1851   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1852
1853   // Tell the AggExprEmitter that the slot is known zero.
1854   Slot.setZeroed();
1855 }
1856
1857
1858
1859
1860 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1861 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1862 /// the value of the aggregate expression is not needed.  If VolatileDest is
1863 /// true, DestPtr cannot be 0.
1864 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1865   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1866          "Invalid aggregate expression to emit");
1867   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1868          "slot has bits but no address");
1869
1870   // Optimize the slot if possible.
1871   CheckAggExprForMemSetUse(Slot, E, *this);
1872
1873   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1874 }
1875
1876 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1877   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1878   Address Temp = CreateMemTemp(E->getType());
1879   LValue LV = MakeAddrLValue(Temp, E->getType());
1880   EmitAggExpr(E, AggValueSlot::forLValue(
1881                      LV, *this, AggValueSlot::IsNotDestructed,
1882                      AggValueSlot::DoesNotNeedGCBarriers,
1883                      AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
1884   return LV;
1885 }
1886
1887 AggValueSlot::Overlap_t
1888 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
1889   if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
1890     return AggValueSlot::DoesNotOverlap;
1891
1892   // If the field lies entirely within the enclosing class's nvsize, its tail
1893   // padding cannot overlap any already-initialized object. (The only subobjects
1894   // with greater addresses that might already be initialized are vbases.)
1895   const RecordDecl *ClassRD = FD->getParent();
1896   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
1897   if (Layout.getFieldOffset(FD->getFieldIndex()) +
1898           getContext().getTypeSize(FD->getType()) <=
1899       (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
1900     return AggValueSlot::DoesNotOverlap;
1901
1902   // The tail padding may contain values we need to preserve.
1903   return AggValueSlot::MayOverlap;
1904 }
1905
1906 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
1907     const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
1908   // If the most-derived object is a field declared with [[no_unique_address]],
1909   // the tail padding of any virtual base could be reused for other subobjects
1910   // of that field's class.
1911   if (IsVirtual)
1912     return AggValueSlot::MayOverlap;
1913
1914   // If the base class is laid out entirely within the nvsize of the derived
1915   // class, its tail padding cannot yet be initialized, so we can issue
1916   // stores at the full width of the base class.
1917   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1918   if (Layout.getBaseClassOffset(BaseRD) +
1919           getContext().getASTRecordLayout(BaseRD).getSize() <=
1920       Layout.getNonVirtualSize())
1921     return AggValueSlot::DoesNotOverlap;
1922
1923   // The tail padding may contain values we need to preserve.
1924   return AggValueSlot::MayOverlap;
1925 }
1926
1927 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
1928                                         AggValueSlot::Overlap_t MayOverlap,
1929                                         bool isVolatile) {
1930   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1931
1932   Address DestPtr = Dest.getAddress(*this);
1933   Address SrcPtr = Src.getAddress(*this);
1934
1935   if (getLangOpts().CPlusPlus) {
1936     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1937       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1938       assert((Record->hasTrivialCopyConstructor() ||
1939               Record->hasTrivialCopyAssignment() ||
1940               Record->hasTrivialMoveConstructor() ||
1941               Record->hasTrivialMoveAssignment() ||
1942               Record->isUnion()) &&
1943              "Trying to aggregate-copy a type without a trivial copy/move "
1944              "constructor or assignment operator");
1945       // Ignore empty classes in C++.
1946       if (Record->isEmpty())
1947         return;
1948     }
1949   }
1950
1951   if (getLangOpts().CUDAIsDevice) {
1952     if (Ty->isCUDADeviceBuiltinSurfaceType()) {
1953       if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest,
1954                                                                   Src))
1955         return;
1956     } else if (Ty->isCUDADeviceBuiltinTextureType()) {
1957       if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest,
1958                                                                   Src))
1959         return;
1960     }
1961   }
1962
1963   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1964   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1965   // read from another object that overlaps in anyway the storage of the first
1966   // object, then the overlap shall be exact and the two objects shall have
1967   // qualified or unqualified versions of a compatible type."
1968   //
1969   // memcpy is not defined if the source and destination pointers are exactly
1970   // equal, but other compilers do this optimization, and almost every memcpy
1971   // implementation handles this case safely.  If there is a libc that does not
1972   // safely handle this, we can add a target hook.
1973
1974   // Get data size info for this aggregate. Don't copy the tail padding if this
1975   // might be a potentially-overlapping subobject, since the tail padding might
1976   // be occupied by a different object. Otherwise, copying it is fine.
1977   std::pair<CharUnits, CharUnits> TypeInfo;
1978   if (MayOverlap)
1979     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1980   else
1981     TypeInfo = getContext().getTypeInfoInChars(Ty);
1982
1983   llvm::Value *SizeVal = nullptr;
1984   if (TypeInfo.first.isZero()) {
1985     // But note that getTypeInfo returns 0 for a VLA.
1986     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1987             getContext().getAsArrayType(Ty))) {
1988       QualType BaseEltTy;
1989       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1990       TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1991       assert(!TypeInfo.first.isZero());
1992       SizeVal = Builder.CreateNUWMul(
1993           SizeVal,
1994           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1995     }
1996   }
1997   if (!SizeVal) {
1998     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1999   }
2000
2001   // FIXME: If we have a volatile struct, the optimizer can remove what might
2002   // appear to be `extra' memory ops:
2003   //
2004   // volatile struct { int i; } a, b;
2005   //
2006   // int main() {
2007   //   a = b;
2008   //   a = b;
2009   // }
2010   //
2011   // we need to use a different call here.  We use isVolatile to indicate when
2012   // either the source or the destination is volatile.
2013
2014   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
2015   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
2016
2017   // Don't do any of the memmove_collectable tests if GC isn't set.
2018   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
2019     // fall through
2020   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
2021     RecordDecl *Record = RecordTy->getDecl();
2022     if (Record->hasObjectMember()) {
2023       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2024                                                     SizeVal);
2025       return;
2026     }
2027   } else if (Ty->isArrayType()) {
2028     QualType BaseType = getContext().getBaseElementType(Ty);
2029     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2030       if (RecordTy->getDecl()->hasObjectMember()) {
2031         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2032                                                       SizeVal);
2033         return;
2034       }
2035     }
2036   }
2037
2038   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2039
2040   // Determine the metadata to describe the position of any padding in this
2041   // memcpy, as well as the TBAA tags for the members of the struct, in case
2042   // the optimizer wishes to expand it in to scalar memory operations.
2043   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2044     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2045
2046   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2047     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2048         Dest.getTBAAInfo(), Src.getTBAAInfo());
2049     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2050   }
2051 }