]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/clang/lib/CodeGen/CGStmt.cpp
Merge sendmail 8.16.1 to HEAD: See contrib/sendmail/RELEASE_NOTES for details
[FreeBSD/FreeBSD.git] / contrib / llvm-project / clang / lib / CodeGen / CGStmt.cpp
1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGDebugInfo.h"
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "TargetInfo.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/Builtins.h"
20 #include "clang/Basic/PrettyStackTrace.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/IR/MDBuilder.h"
27
28 using namespace clang;
29 using namespace CodeGen;
30
31 //===----------------------------------------------------------------------===//
32 //                              Statement Emission
33 //===----------------------------------------------------------------------===//
34
35 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
36   if (CGDebugInfo *DI = getDebugInfo()) {
37     SourceLocation Loc;
38     Loc = S->getBeginLoc();
39     DI->EmitLocation(Builder, Loc);
40
41     LastStopPoint = Loc;
42   }
43 }
44
45 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
46   assert(S && "Null statement?");
47   PGO.setCurrentStmt(S);
48
49   // These statements have their own debug info handling.
50   if (EmitSimpleStmt(S))
51     return;
52
53   // Check if we are generating unreachable code.
54   if (!HaveInsertPoint()) {
55     // If so, and the statement doesn't contain a label, then we do not need to
56     // generate actual code. This is safe because (1) the current point is
57     // unreachable, so we don't need to execute the code, and (2) we've already
58     // handled the statements which update internal data structures (like the
59     // local variable map) which could be used by subsequent statements.
60     if (!ContainsLabel(S)) {
61       // Verify that any decl statements were handled as simple, they may be in
62       // scope of subsequent reachable statements.
63       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
64       return;
65     }
66
67     // Otherwise, make a new block to hold the code.
68     EnsureInsertPoint();
69   }
70
71   // Generate a stoppoint if we are emitting debug info.
72   EmitStopPoint(S);
73
74   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
75   // enabled.
76   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
77     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
78       EmitSimpleOMPExecutableDirective(*D);
79       return;
80     }
81   }
82
83   switch (S->getStmtClass()) {
84   case Stmt::NoStmtClass:
85   case Stmt::CXXCatchStmtClass:
86   case Stmt::SEHExceptStmtClass:
87   case Stmt::SEHFinallyStmtClass:
88   case Stmt::MSDependentExistsStmtClass:
89     llvm_unreachable("invalid statement class to emit generically");
90   case Stmt::NullStmtClass:
91   case Stmt::CompoundStmtClass:
92   case Stmt::DeclStmtClass:
93   case Stmt::LabelStmtClass:
94   case Stmt::AttributedStmtClass:
95   case Stmt::GotoStmtClass:
96   case Stmt::BreakStmtClass:
97   case Stmt::ContinueStmtClass:
98   case Stmt::DefaultStmtClass:
99   case Stmt::CaseStmtClass:
100   case Stmt::SEHLeaveStmtClass:
101     llvm_unreachable("should have emitted these statements as simple");
102
103 #define STMT(Type, Base)
104 #define ABSTRACT_STMT(Op)
105 #define EXPR(Type, Base) \
106   case Stmt::Type##Class:
107 #include "clang/AST/StmtNodes.inc"
108   {
109     // Remember the block we came in on.
110     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
111     assert(incoming && "expression emission must have an insertion point");
112
113     EmitIgnoredExpr(cast<Expr>(S));
114
115     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
116     assert(outgoing && "expression emission cleared block!");
117
118     // The expression emitters assume (reasonably!) that the insertion
119     // point is always set.  To maintain that, the call-emission code
120     // for noreturn functions has to enter a new block with no
121     // predecessors.  We want to kill that block and mark the current
122     // insertion point unreachable in the common case of a call like
123     // "exit();".  Since expression emission doesn't otherwise create
124     // blocks with no predecessors, we can just test for that.
125     // However, we must be careful not to do this to our incoming
126     // block, because *statement* emission does sometimes create
127     // reachable blocks which will have no predecessors until later in
128     // the function.  This occurs with, e.g., labels that are not
129     // reachable by fallthrough.
130     if (incoming != outgoing && outgoing->use_empty()) {
131       outgoing->eraseFromParent();
132       Builder.ClearInsertionPoint();
133     }
134     break;
135   }
136
137   case Stmt::IndirectGotoStmtClass:
138     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
139
140   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
141   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
142   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
143   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
144
145   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
146
147   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
148   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
149   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
150   case Stmt::CoroutineBodyStmtClass:
151     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
152     break;
153   case Stmt::CoreturnStmtClass:
154     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
155     break;
156   case Stmt::CapturedStmtClass: {
157     const CapturedStmt *CS = cast<CapturedStmt>(S);
158     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
159     }
160     break;
161   case Stmt::ObjCAtTryStmtClass:
162     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
163     break;
164   case Stmt::ObjCAtCatchStmtClass:
165     llvm_unreachable(
166                     "@catch statements should be handled by EmitObjCAtTryStmt");
167   case Stmt::ObjCAtFinallyStmtClass:
168     llvm_unreachable(
169                   "@finally statements should be handled by EmitObjCAtTryStmt");
170   case Stmt::ObjCAtThrowStmtClass:
171     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
172     break;
173   case Stmt::ObjCAtSynchronizedStmtClass:
174     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
175     break;
176   case Stmt::ObjCForCollectionStmtClass:
177     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
178     break;
179   case Stmt::ObjCAutoreleasePoolStmtClass:
180     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
181     break;
182
183   case Stmt::CXXTryStmtClass:
184     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
185     break;
186   case Stmt::CXXForRangeStmtClass:
187     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
188     break;
189   case Stmt::SEHTryStmtClass:
190     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
191     break;
192   case Stmt::OMPParallelDirectiveClass:
193     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
194     break;
195   case Stmt::OMPSimdDirectiveClass:
196     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
197     break;
198   case Stmt::OMPForDirectiveClass:
199     EmitOMPForDirective(cast<OMPForDirective>(*S));
200     break;
201   case Stmt::OMPForSimdDirectiveClass:
202     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
203     break;
204   case Stmt::OMPSectionsDirectiveClass:
205     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
206     break;
207   case Stmt::OMPSectionDirectiveClass:
208     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
209     break;
210   case Stmt::OMPSingleDirectiveClass:
211     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
212     break;
213   case Stmt::OMPMasterDirectiveClass:
214     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
215     break;
216   case Stmt::OMPCriticalDirectiveClass:
217     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
218     break;
219   case Stmt::OMPParallelForDirectiveClass:
220     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
221     break;
222   case Stmt::OMPParallelForSimdDirectiveClass:
223     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
224     break;
225   case Stmt::OMPParallelMasterDirectiveClass:
226     EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
227     break;
228   case Stmt::OMPParallelSectionsDirectiveClass:
229     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
230     break;
231   case Stmt::OMPTaskDirectiveClass:
232     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
233     break;
234   case Stmt::OMPTaskyieldDirectiveClass:
235     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
236     break;
237   case Stmt::OMPBarrierDirectiveClass:
238     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
239     break;
240   case Stmt::OMPTaskwaitDirectiveClass:
241     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
242     break;
243   case Stmt::OMPTaskgroupDirectiveClass:
244     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
245     break;
246   case Stmt::OMPFlushDirectiveClass:
247     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
248     break;
249   case Stmt::OMPOrderedDirectiveClass:
250     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
251     break;
252   case Stmt::OMPAtomicDirectiveClass:
253     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
254     break;
255   case Stmt::OMPTargetDirectiveClass:
256     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
257     break;
258   case Stmt::OMPTeamsDirectiveClass:
259     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
260     break;
261   case Stmt::OMPCancellationPointDirectiveClass:
262     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
263     break;
264   case Stmt::OMPCancelDirectiveClass:
265     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
266     break;
267   case Stmt::OMPTargetDataDirectiveClass:
268     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
269     break;
270   case Stmt::OMPTargetEnterDataDirectiveClass:
271     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
272     break;
273   case Stmt::OMPTargetExitDataDirectiveClass:
274     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
275     break;
276   case Stmt::OMPTargetParallelDirectiveClass:
277     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
278     break;
279   case Stmt::OMPTargetParallelForDirectiveClass:
280     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
281     break;
282   case Stmt::OMPTaskLoopDirectiveClass:
283     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
284     break;
285   case Stmt::OMPTaskLoopSimdDirectiveClass:
286     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
287     break;
288   case Stmt::OMPMasterTaskLoopDirectiveClass:
289     EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
290     break;
291   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
292     EmitOMPMasterTaskLoopSimdDirective(
293         cast<OMPMasterTaskLoopSimdDirective>(*S));
294     break;
295   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
296     EmitOMPParallelMasterTaskLoopDirective(
297         cast<OMPParallelMasterTaskLoopDirective>(*S));
298     break;
299   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
300     EmitOMPParallelMasterTaskLoopSimdDirective(
301         cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
302     break;
303   case Stmt::OMPDistributeDirectiveClass:
304     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
305     break;
306   case Stmt::OMPTargetUpdateDirectiveClass:
307     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
308     break;
309   case Stmt::OMPDistributeParallelForDirectiveClass:
310     EmitOMPDistributeParallelForDirective(
311         cast<OMPDistributeParallelForDirective>(*S));
312     break;
313   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
314     EmitOMPDistributeParallelForSimdDirective(
315         cast<OMPDistributeParallelForSimdDirective>(*S));
316     break;
317   case Stmt::OMPDistributeSimdDirectiveClass:
318     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
319     break;
320   case Stmt::OMPTargetParallelForSimdDirectiveClass:
321     EmitOMPTargetParallelForSimdDirective(
322         cast<OMPTargetParallelForSimdDirective>(*S));
323     break;
324   case Stmt::OMPTargetSimdDirectiveClass:
325     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
326     break;
327   case Stmt::OMPTeamsDistributeDirectiveClass:
328     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
329     break;
330   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
331     EmitOMPTeamsDistributeSimdDirective(
332         cast<OMPTeamsDistributeSimdDirective>(*S));
333     break;
334   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
335     EmitOMPTeamsDistributeParallelForSimdDirective(
336         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
337     break;
338   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
339     EmitOMPTeamsDistributeParallelForDirective(
340         cast<OMPTeamsDistributeParallelForDirective>(*S));
341     break;
342   case Stmt::OMPTargetTeamsDirectiveClass:
343     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
344     break;
345   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
346     EmitOMPTargetTeamsDistributeDirective(
347         cast<OMPTargetTeamsDistributeDirective>(*S));
348     break;
349   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
350     EmitOMPTargetTeamsDistributeParallelForDirective(
351         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
352     break;
353   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
354     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
355         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
356     break;
357   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
358     EmitOMPTargetTeamsDistributeSimdDirective(
359         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
360     break;
361   }
362 }
363
364 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
365   switch (S->getStmtClass()) {
366   default: return false;
367   case Stmt::NullStmtClass: break;
368   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
369   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
370   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
371   case Stmt::AttributedStmtClass:
372                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
373   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
374   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
375   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
376   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
377   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
378   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
379   }
380
381   return true;
382 }
383
384 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
385 /// this captures the expression result of the last sub-statement and returns it
386 /// (for use by the statement expression extension).
387 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
388                                           AggValueSlot AggSlot) {
389   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
390                              "LLVM IR generation of compound statement ('{}')");
391
392   // Keep track of the current cleanup stack depth, including debug scopes.
393   LexicalScope Scope(*this, S.getSourceRange());
394
395   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
396 }
397
398 Address
399 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
400                                               bool GetLast,
401                                               AggValueSlot AggSlot) {
402
403   const Stmt *ExprResult = S.getStmtExprResult();
404   assert((!GetLast || (GetLast && ExprResult)) &&
405          "If GetLast is true then the CompoundStmt must have a StmtExprResult");
406
407   Address RetAlloca = Address::invalid();
408
409   for (auto *CurStmt : S.body()) {
410     if (GetLast && ExprResult == CurStmt) {
411       // We have to special case labels here.  They are statements, but when put
412       // at the end of a statement expression, they yield the value of their
413       // subexpression.  Handle this by walking through all labels we encounter,
414       // emitting them before we evaluate the subexpr.
415       // Similar issues arise for attributed statements.
416       while (!isa<Expr>(ExprResult)) {
417         if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
418           EmitLabel(LS->getDecl());
419           ExprResult = LS->getSubStmt();
420         } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
421           // FIXME: Update this if we ever have attributes that affect the
422           // semantics of an expression.
423           ExprResult = AS->getSubStmt();
424         } else {
425           llvm_unreachable("unknown value statement");
426         }
427       }
428
429       EnsureInsertPoint();
430
431       const Expr *E = cast<Expr>(ExprResult);
432       QualType ExprTy = E->getType();
433       if (hasAggregateEvaluationKind(ExprTy)) {
434         EmitAggExpr(E, AggSlot);
435       } else {
436         // We can't return an RValue here because there might be cleanups at
437         // the end of the StmtExpr.  Because of that, we have to emit the result
438         // here into a temporary alloca.
439         RetAlloca = CreateMemTemp(ExprTy);
440         EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
441                          /*IsInit*/ false);
442       }
443     } else {
444       EmitStmt(CurStmt);
445     }
446   }
447
448   return RetAlloca;
449 }
450
451 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
452   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
453
454   // If there is a cleanup stack, then we it isn't worth trying to
455   // simplify this block (we would need to remove it from the scope map
456   // and cleanup entry).
457   if (!EHStack.empty())
458     return;
459
460   // Can only simplify direct branches.
461   if (!BI || !BI->isUnconditional())
462     return;
463
464   // Can only simplify empty blocks.
465   if (BI->getIterator() != BB->begin())
466     return;
467
468   BB->replaceAllUsesWith(BI->getSuccessor(0));
469   BI->eraseFromParent();
470   BB->eraseFromParent();
471 }
472
473 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
474   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
475
476   // Fall out of the current block (if necessary).
477   EmitBranch(BB);
478
479   if (IsFinished && BB->use_empty()) {
480     delete BB;
481     return;
482   }
483
484   // Place the block after the current block, if possible, or else at
485   // the end of the function.
486   if (CurBB && CurBB->getParent())
487     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
488   else
489     CurFn->getBasicBlockList().push_back(BB);
490   Builder.SetInsertPoint(BB);
491 }
492
493 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
494   // Emit a branch from the current block to the target one if this
495   // was a real block.  If this was just a fall-through block after a
496   // terminator, don't emit it.
497   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
498
499   if (!CurBB || CurBB->getTerminator()) {
500     // If there is no insert point or the previous block is already
501     // terminated, don't touch it.
502   } else {
503     // Otherwise, create a fall-through branch.
504     Builder.CreateBr(Target);
505   }
506
507   Builder.ClearInsertionPoint();
508 }
509
510 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
511   bool inserted = false;
512   for (llvm::User *u : block->users()) {
513     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
514       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
515                                              block);
516       inserted = true;
517       break;
518     }
519   }
520
521   if (!inserted)
522     CurFn->getBasicBlockList().push_back(block);
523
524   Builder.SetInsertPoint(block);
525 }
526
527 CodeGenFunction::JumpDest
528 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
529   JumpDest &Dest = LabelMap[D];
530   if (Dest.isValid()) return Dest;
531
532   // Create, but don't insert, the new block.
533   Dest = JumpDest(createBasicBlock(D->getName()),
534                   EHScopeStack::stable_iterator::invalid(),
535                   NextCleanupDestIndex++);
536   return Dest;
537 }
538
539 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
540   // Add this label to the current lexical scope if we're within any
541   // normal cleanups.  Jumps "in" to this label --- when permitted by
542   // the language --- may need to be routed around such cleanups.
543   if (EHStack.hasNormalCleanups() && CurLexicalScope)
544     CurLexicalScope->addLabel(D);
545
546   JumpDest &Dest = LabelMap[D];
547
548   // If we didn't need a forward reference to this label, just go
549   // ahead and create a destination at the current scope.
550   if (!Dest.isValid()) {
551     Dest = getJumpDestInCurrentScope(D->getName());
552
553   // Otherwise, we need to give this label a target depth and remove
554   // it from the branch-fixups list.
555   } else {
556     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
557     Dest.setScopeDepth(EHStack.stable_begin());
558     ResolveBranchFixups(Dest.getBlock());
559   }
560
561   EmitBlock(Dest.getBlock());
562
563   // Emit debug info for labels.
564   if (CGDebugInfo *DI = getDebugInfo()) {
565     if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
566       DI->setLocation(D->getLocation());
567       DI->EmitLabel(D, Builder);
568     }
569   }
570
571   incrementProfileCounter(D->getStmt());
572 }
573
574 /// Change the cleanup scope of the labels in this lexical scope to
575 /// match the scope of the enclosing context.
576 void CodeGenFunction::LexicalScope::rescopeLabels() {
577   assert(!Labels.empty());
578   EHScopeStack::stable_iterator innermostScope
579     = CGF.EHStack.getInnermostNormalCleanup();
580
581   // Change the scope depth of all the labels.
582   for (SmallVectorImpl<const LabelDecl*>::const_iterator
583          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
584     assert(CGF.LabelMap.count(*i));
585     JumpDest &dest = CGF.LabelMap.find(*i)->second;
586     assert(dest.getScopeDepth().isValid());
587     assert(innermostScope.encloses(dest.getScopeDepth()));
588     dest.setScopeDepth(innermostScope);
589   }
590
591   // Reparent the labels if the new scope also has cleanups.
592   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
593     ParentScope->Labels.append(Labels.begin(), Labels.end());
594   }
595 }
596
597
598 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
599   EmitLabel(S.getDecl());
600   EmitStmt(S.getSubStmt());
601 }
602
603 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
604   EmitStmt(S.getSubStmt(), S.getAttrs());
605 }
606
607 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
608   // If this code is reachable then emit a stop point (if generating
609   // debug info). We have to do this ourselves because we are on the
610   // "simple" statement path.
611   if (HaveInsertPoint())
612     EmitStopPoint(&S);
613
614   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
615 }
616
617
618 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
619   if (const LabelDecl *Target = S.getConstantTarget()) {
620     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
621     return;
622   }
623
624   // Ensure that we have an i8* for our PHI node.
625   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
626                                          Int8PtrTy, "addr");
627   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
628
629   // Get the basic block for the indirect goto.
630   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
631
632   // The first instruction in the block has to be the PHI for the switch dest,
633   // add an entry for this branch.
634   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
635
636   EmitBranch(IndGotoBB);
637 }
638
639 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
640   // C99 6.8.4.1: The first substatement is executed if the expression compares
641   // unequal to 0.  The condition must be a scalar type.
642   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
643
644   if (S.getInit())
645     EmitStmt(S.getInit());
646
647   if (S.getConditionVariable())
648     EmitDecl(*S.getConditionVariable());
649
650   // If the condition constant folds and can be elided, try to avoid emitting
651   // the condition and the dead arm of the if/else.
652   bool CondConstant;
653   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
654                                    S.isConstexpr())) {
655     // Figure out which block (then or else) is executed.
656     const Stmt *Executed = S.getThen();
657     const Stmt *Skipped  = S.getElse();
658     if (!CondConstant)  // Condition false?
659       std::swap(Executed, Skipped);
660
661     // If the skipped block has no labels in it, just emit the executed block.
662     // This avoids emitting dead code and simplifies the CFG substantially.
663     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
664       if (CondConstant)
665         incrementProfileCounter(&S);
666       if (Executed) {
667         RunCleanupsScope ExecutedScope(*this);
668         EmitStmt(Executed);
669       }
670       return;
671     }
672   }
673
674   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
675   // the conditional branch.
676   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
677   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
678   llvm::BasicBlock *ElseBlock = ContBlock;
679   if (S.getElse())
680     ElseBlock = createBasicBlock("if.else");
681
682   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
683                        getProfileCount(S.getThen()));
684
685   // Emit the 'then' code.
686   EmitBlock(ThenBlock);
687   incrementProfileCounter(&S);
688   {
689     RunCleanupsScope ThenScope(*this);
690     EmitStmt(S.getThen());
691   }
692   EmitBranch(ContBlock);
693
694   // Emit the 'else' code if present.
695   if (const Stmt *Else = S.getElse()) {
696     {
697       // There is no need to emit line number for an unconditional branch.
698       auto NL = ApplyDebugLocation::CreateEmpty(*this);
699       EmitBlock(ElseBlock);
700     }
701     {
702       RunCleanupsScope ElseScope(*this);
703       EmitStmt(Else);
704     }
705     {
706       // There is no need to emit line number for an unconditional branch.
707       auto NL = ApplyDebugLocation::CreateEmpty(*this);
708       EmitBranch(ContBlock);
709     }
710   }
711
712   // Emit the continuation block for code after the if.
713   EmitBlock(ContBlock, true);
714 }
715
716 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
717                                     ArrayRef<const Attr *> WhileAttrs) {
718   // Emit the header for the loop, which will also become
719   // the continue target.
720   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
721   EmitBlock(LoopHeader.getBlock());
722
723   const SourceRange &R = S.getSourceRange();
724   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs,
725                  SourceLocToDebugLoc(R.getBegin()),
726                  SourceLocToDebugLoc(R.getEnd()));
727
728   // Create an exit block for when the condition fails, which will
729   // also become the break target.
730   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
731
732   // Store the blocks to use for break and continue.
733   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
734
735   // C++ [stmt.while]p2:
736   //   When the condition of a while statement is a declaration, the
737   //   scope of the variable that is declared extends from its point
738   //   of declaration (3.3.2) to the end of the while statement.
739   //   [...]
740   //   The object created in a condition is destroyed and created
741   //   with each iteration of the loop.
742   RunCleanupsScope ConditionScope(*this);
743
744   if (S.getConditionVariable())
745     EmitDecl(*S.getConditionVariable());
746
747   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
748   // evaluation of the controlling expression takes place before each
749   // execution of the loop body.
750   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
751
752   // while(1) is common, avoid extra exit blocks.  Be sure
753   // to correctly handle break/continue though.
754   bool EmitBoolCondBranch = true;
755   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
756     if (C->isOne())
757       EmitBoolCondBranch = false;
758
759   // As long as the condition is true, go to the loop body.
760   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
761   if (EmitBoolCondBranch) {
762     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
763     if (ConditionScope.requiresCleanups())
764       ExitBlock = createBasicBlock("while.exit");
765     Builder.CreateCondBr(
766         BoolCondVal, LoopBody, ExitBlock,
767         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
768
769     if (ExitBlock != LoopExit.getBlock()) {
770       EmitBlock(ExitBlock);
771       EmitBranchThroughCleanup(LoopExit);
772     }
773   }
774
775   // Emit the loop body.  We have to emit this in a cleanup scope
776   // because it might be a singleton DeclStmt.
777   {
778     RunCleanupsScope BodyScope(*this);
779     EmitBlock(LoopBody);
780     incrementProfileCounter(&S);
781     EmitStmt(S.getBody());
782   }
783
784   BreakContinueStack.pop_back();
785
786   // Immediately force cleanup.
787   ConditionScope.ForceCleanup();
788
789   EmitStopPoint(&S);
790   // Branch to the loop header again.
791   EmitBranch(LoopHeader.getBlock());
792
793   LoopStack.pop();
794
795   // Emit the exit block.
796   EmitBlock(LoopExit.getBlock(), true);
797
798   // The LoopHeader typically is just a branch if we skipped emitting
799   // a branch, try to erase it.
800   if (!EmitBoolCondBranch)
801     SimplifyForwardingBlocks(LoopHeader.getBlock());
802 }
803
804 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
805                                  ArrayRef<const Attr *> DoAttrs) {
806   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
807   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
808
809   uint64_t ParentCount = getCurrentProfileCount();
810
811   // Store the blocks to use for break and continue.
812   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
813
814   // Emit the body of the loop.
815   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
816
817   EmitBlockWithFallThrough(LoopBody, &S);
818   {
819     RunCleanupsScope BodyScope(*this);
820     EmitStmt(S.getBody());
821   }
822
823   EmitBlock(LoopCond.getBlock());
824
825   const SourceRange &R = S.getSourceRange();
826   LoopStack.push(LoopBody, CGM.getContext(), DoAttrs,
827                  SourceLocToDebugLoc(R.getBegin()),
828                  SourceLocToDebugLoc(R.getEnd()));
829
830   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
831   // after each execution of the loop body."
832
833   // Evaluate the conditional in the while header.
834   // C99 6.8.5p2/p4: The first substatement is executed if the expression
835   // compares unequal to 0.  The condition must be a scalar type.
836   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
837
838   BreakContinueStack.pop_back();
839
840   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
841   // to correctly handle break/continue though.
842   bool EmitBoolCondBranch = true;
843   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
844     if (C->isZero())
845       EmitBoolCondBranch = false;
846
847   // As long as the condition is true, iterate the loop.
848   if (EmitBoolCondBranch) {
849     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
850     Builder.CreateCondBr(
851         BoolCondVal, LoopBody, LoopExit.getBlock(),
852         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
853   }
854
855   LoopStack.pop();
856
857   // Emit the exit block.
858   EmitBlock(LoopExit.getBlock());
859
860   // The DoCond block typically is just a branch if we skipped
861   // emitting a branch, try to erase it.
862   if (!EmitBoolCondBranch)
863     SimplifyForwardingBlocks(LoopCond.getBlock());
864 }
865
866 void CodeGenFunction::EmitForStmt(const ForStmt &S,
867                                   ArrayRef<const Attr *> ForAttrs) {
868   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
869
870   LexicalScope ForScope(*this, S.getSourceRange());
871
872   // Evaluate the first part before the loop.
873   if (S.getInit())
874     EmitStmt(S.getInit());
875
876   // Start the loop with a block that tests the condition.
877   // If there's an increment, the continue scope will be overwritten
878   // later.
879   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
880   llvm::BasicBlock *CondBlock = Continue.getBlock();
881   EmitBlock(CondBlock);
882
883   const SourceRange &R = S.getSourceRange();
884   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs,
885                  SourceLocToDebugLoc(R.getBegin()),
886                  SourceLocToDebugLoc(R.getEnd()));
887
888   // If the for loop doesn't have an increment we can just use the
889   // condition as the continue block.  Otherwise we'll need to create
890   // a block for it (in the current scope, i.e. in the scope of the
891   // condition), and that we will become our continue block.
892   if (S.getInc())
893     Continue = getJumpDestInCurrentScope("for.inc");
894
895   // Store the blocks to use for break and continue.
896   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
897
898   // Create a cleanup scope for the condition variable cleanups.
899   LexicalScope ConditionScope(*this, S.getSourceRange());
900
901   if (S.getCond()) {
902     // If the for statement has a condition scope, emit the local variable
903     // declaration.
904     if (S.getConditionVariable()) {
905       EmitDecl(*S.getConditionVariable());
906     }
907
908     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
909     // If there are any cleanups between here and the loop-exit scope,
910     // create a block to stage a loop exit along.
911     if (ForScope.requiresCleanups())
912       ExitBlock = createBasicBlock("for.cond.cleanup");
913
914     // As long as the condition is true, iterate the loop.
915     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
916
917     // C99 6.8.5p2/p4: The first substatement is executed if the expression
918     // compares unequal to 0.  The condition must be a scalar type.
919     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
920     Builder.CreateCondBr(
921         BoolCondVal, ForBody, ExitBlock,
922         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
923
924     if (ExitBlock != LoopExit.getBlock()) {
925       EmitBlock(ExitBlock);
926       EmitBranchThroughCleanup(LoopExit);
927     }
928
929     EmitBlock(ForBody);
930   } else {
931     // Treat it as a non-zero constant.  Don't even create a new block for the
932     // body, just fall into it.
933   }
934   incrementProfileCounter(&S);
935
936   {
937     // Create a separate cleanup scope for the body, in case it is not
938     // a compound statement.
939     RunCleanupsScope BodyScope(*this);
940     EmitStmt(S.getBody());
941   }
942
943   // If there is an increment, emit it next.
944   if (S.getInc()) {
945     EmitBlock(Continue.getBlock());
946     EmitStmt(S.getInc());
947   }
948
949   BreakContinueStack.pop_back();
950
951   ConditionScope.ForceCleanup();
952
953   EmitStopPoint(&S);
954   EmitBranch(CondBlock);
955
956   ForScope.ForceCleanup();
957
958   LoopStack.pop();
959
960   // Emit the fall-through block.
961   EmitBlock(LoopExit.getBlock(), true);
962 }
963
964 void
965 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
966                                      ArrayRef<const Attr *> ForAttrs) {
967   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
968
969   LexicalScope ForScope(*this, S.getSourceRange());
970
971   // Evaluate the first pieces before the loop.
972   if (S.getInit())
973     EmitStmt(S.getInit());
974   EmitStmt(S.getRangeStmt());
975   EmitStmt(S.getBeginStmt());
976   EmitStmt(S.getEndStmt());
977
978   // Start the loop with a block that tests the condition.
979   // If there's an increment, the continue scope will be overwritten
980   // later.
981   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
982   EmitBlock(CondBlock);
983
984   const SourceRange &R = S.getSourceRange();
985   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs,
986                  SourceLocToDebugLoc(R.getBegin()),
987                  SourceLocToDebugLoc(R.getEnd()));
988
989   // If there are any cleanups between here and the loop-exit scope,
990   // create a block to stage a loop exit along.
991   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
992   if (ForScope.requiresCleanups())
993     ExitBlock = createBasicBlock("for.cond.cleanup");
994
995   // The loop body, consisting of the specified body and the loop variable.
996   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
997
998   // The body is executed if the expression, contextually converted
999   // to bool, is true.
1000   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1001   Builder.CreateCondBr(
1002       BoolCondVal, ForBody, ExitBlock,
1003       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
1004
1005   if (ExitBlock != LoopExit.getBlock()) {
1006     EmitBlock(ExitBlock);
1007     EmitBranchThroughCleanup(LoopExit);
1008   }
1009
1010   EmitBlock(ForBody);
1011   incrementProfileCounter(&S);
1012
1013   // Create a block for the increment. In case of a 'continue', we jump there.
1014   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1015
1016   // Store the blocks to use for break and continue.
1017   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1018
1019   {
1020     // Create a separate cleanup scope for the loop variable and body.
1021     LexicalScope BodyScope(*this, S.getSourceRange());
1022     EmitStmt(S.getLoopVarStmt());
1023     EmitStmt(S.getBody());
1024   }
1025
1026   EmitStopPoint(&S);
1027   // If there is an increment, emit it next.
1028   EmitBlock(Continue.getBlock());
1029   EmitStmt(S.getInc());
1030
1031   BreakContinueStack.pop_back();
1032
1033   EmitBranch(CondBlock);
1034
1035   ForScope.ForceCleanup();
1036
1037   LoopStack.pop();
1038
1039   // Emit the fall-through block.
1040   EmitBlock(LoopExit.getBlock(), true);
1041 }
1042
1043 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1044   if (RV.isScalar()) {
1045     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1046   } else if (RV.isAggregate()) {
1047     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1048     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1049     EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1050   } else {
1051     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1052                        /*init*/ true);
1053   }
1054   EmitBranchThroughCleanup(ReturnBlock);
1055 }
1056
1057 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1058 /// if the function returns void, or may be missing one if the function returns
1059 /// non-void.  Fun stuff :).
1060 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1061   if (requiresReturnValueCheck()) {
1062     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1063     auto *SLocPtr =
1064         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1065                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1066     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1067     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1068     assert(ReturnLocation.isValid() && "No valid return location");
1069     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1070                         ReturnLocation);
1071   }
1072
1073   // Returning from an outlined SEH helper is UB, and we already warn on it.
1074   if (IsOutlinedSEHHelper) {
1075     Builder.CreateUnreachable();
1076     Builder.ClearInsertionPoint();
1077   }
1078
1079   // Emit the result value, even if unused, to evaluate the side effects.
1080   const Expr *RV = S.getRetValue();
1081
1082   // Treat block literals in a return expression as if they appeared
1083   // in their own scope.  This permits a small, easily-implemented
1084   // exception to our over-conservative rules about not jumping to
1085   // statements following block literals with non-trivial cleanups.
1086   RunCleanupsScope cleanupScope(*this);
1087   if (const FullExpr *fe = dyn_cast_or_null<FullExpr>(RV)) {
1088     enterFullExpression(fe);
1089     RV = fe->getSubExpr();
1090   }
1091
1092   // FIXME: Clean this up by using an LValue for ReturnTemp,
1093   // EmitStoreThroughLValue, and EmitAnyExpr.
1094   if (getLangOpts().ElideConstructors &&
1095       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
1096     // Apply the named return value optimization for this return statement,
1097     // which means doing nothing: the appropriate result has already been
1098     // constructed into the NRVO variable.
1099
1100     // If there is an NRVO flag for this variable, set it to 1 into indicate
1101     // that the cleanup code should not destroy the variable.
1102     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1103       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1104   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1105     // Make sure not to return anything, but evaluate the expression
1106     // for side effects.
1107     if (RV)
1108       EmitAnyExpr(RV);
1109   } else if (!RV) {
1110     // Do nothing (return value is left uninitialized)
1111   } else if (FnRetTy->isReferenceType()) {
1112     // If this function returns a reference, take the address of the expression
1113     // rather than the value.
1114     RValue Result = EmitReferenceBindingToExpr(RV);
1115     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1116   } else {
1117     switch (getEvaluationKind(RV->getType())) {
1118     case TEK_Scalar:
1119       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1120       break;
1121     case TEK_Complex:
1122       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1123                                 /*isInit*/ true);
1124       break;
1125     case TEK_Aggregate:
1126       EmitAggExpr(RV, AggValueSlot::forAddr(
1127                           ReturnValue, Qualifiers(),
1128                           AggValueSlot::IsDestructed,
1129                           AggValueSlot::DoesNotNeedGCBarriers,
1130                           AggValueSlot::IsNotAliased,
1131                           getOverlapForReturnValue()));
1132       break;
1133     }
1134   }
1135
1136   ++NumReturnExprs;
1137   if (!RV || RV->isEvaluatable(getContext()))
1138     ++NumSimpleReturnExprs;
1139
1140   cleanupScope.ForceCleanup();
1141   EmitBranchThroughCleanup(ReturnBlock);
1142 }
1143
1144 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1145   // As long as debug info is modeled with instructions, we have to ensure we
1146   // have a place to insert here and write the stop point here.
1147   if (HaveInsertPoint())
1148     EmitStopPoint(&S);
1149
1150   for (const auto *I : S.decls())
1151     EmitDecl(*I);
1152 }
1153
1154 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1155   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1156
1157   // If this code is reachable then emit a stop point (if generating
1158   // debug info). We have to do this ourselves because we are on the
1159   // "simple" statement path.
1160   if (HaveInsertPoint())
1161     EmitStopPoint(&S);
1162
1163   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1164 }
1165
1166 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1167   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1168
1169   // If this code is reachable then emit a stop point (if generating
1170   // debug info). We have to do this ourselves because we are on the
1171   // "simple" statement path.
1172   if (HaveInsertPoint())
1173     EmitStopPoint(&S);
1174
1175   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1176 }
1177
1178 /// EmitCaseStmtRange - If case statement range is not too big then
1179 /// add multiple cases to switch instruction, one for each value within
1180 /// the range. If range is too big then emit "if" condition check.
1181 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1182   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1183
1184   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1185   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1186
1187   // Emit the code for this case. We do this first to make sure it is
1188   // properly chained from our predecessor before generating the
1189   // switch machinery to enter this block.
1190   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1191   EmitBlockWithFallThrough(CaseDest, &S);
1192   EmitStmt(S.getSubStmt());
1193
1194   // If range is empty, do nothing.
1195   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1196     return;
1197
1198   llvm::APInt Range = RHS - LHS;
1199   // FIXME: parameters such as this should not be hardcoded.
1200   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1201     // Range is small enough to add multiple switch instruction cases.
1202     uint64_t Total = getProfileCount(&S);
1203     unsigned NCases = Range.getZExtValue() + 1;
1204     // We only have one region counter for the entire set of cases here, so we
1205     // need to divide the weights evenly between the generated cases, ensuring
1206     // that the total weight is preserved. E.g., a weight of 5 over three cases
1207     // will be distributed as weights of 2, 2, and 1.
1208     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1209     for (unsigned I = 0; I != NCases; ++I) {
1210       if (SwitchWeights)
1211         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1212       if (Rem)
1213         Rem--;
1214       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1215       ++LHS;
1216     }
1217     return;
1218   }
1219
1220   // The range is too big. Emit "if" condition into a new block,
1221   // making sure to save and restore the current insertion point.
1222   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1223
1224   // Push this test onto the chain of range checks (which terminates
1225   // in the default basic block). The switch's default will be changed
1226   // to the top of this chain after switch emission is complete.
1227   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1228   CaseRangeBlock = createBasicBlock("sw.caserange");
1229
1230   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1231   Builder.SetInsertPoint(CaseRangeBlock);
1232
1233   // Emit range check.
1234   llvm::Value *Diff =
1235     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1236   llvm::Value *Cond =
1237     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1238
1239   llvm::MDNode *Weights = nullptr;
1240   if (SwitchWeights) {
1241     uint64_t ThisCount = getProfileCount(&S);
1242     uint64_t DefaultCount = (*SwitchWeights)[0];
1243     Weights = createProfileWeights(ThisCount, DefaultCount);
1244
1245     // Since we're chaining the switch default through each large case range, we
1246     // need to update the weight for the default, ie, the first case, to include
1247     // this case.
1248     (*SwitchWeights)[0] += ThisCount;
1249   }
1250   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1251
1252   // Restore the appropriate insertion point.
1253   if (RestoreBB)
1254     Builder.SetInsertPoint(RestoreBB);
1255   else
1256     Builder.ClearInsertionPoint();
1257 }
1258
1259 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1260   // If there is no enclosing switch instance that we're aware of, then this
1261   // case statement and its block can be elided.  This situation only happens
1262   // when we've constant-folded the switch, are emitting the constant case,
1263   // and part of the constant case includes another case statement.  For
1264   // instance: switch (4) { case 4: do { case 5: } while (1); }
1265   if (!SwitchInsn) {
1266     EmitStmt(S.getSubStmt());
1267     return;
1268   }
1269
1270   // Handle case ranges.
1271   if (S.getRHS()) {
1272     EmitCaseStmtRange(S);
1273     return;
1274   }
1275
1276   llvm::ConstantInt *CaseVal =
1277     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1278
1279   // If the body of the case is just a 'break', try to not emit an empty block.
1280   // If we're profiling or we're not optimizing, leave the block in for better
1281   // debug and coverage analysis.
1282   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1283       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1284       isa<BreakStmt>(S.getSubStmt())) {
1285     JumpDest Block = BreakContinueStack.back().BreakBlock;
1286
1287     // Only do this optimization if there are no cleanups that need emitting.
1288     if (isObviouslyBranchWithoutCleanups(Block)) {
1289       if (SwitchWeights)
1290         SwitchWeights->push_back(getProfileCount(&S));
1291       SwitchInsn->addCase(CaseVal, Block.getBlock());
1292
1293       // If there was a fallthrough into this case, make sure to redirect it to
1294       // the end of the switch as well.
1295       if (Builder.GetInsertBlock()) {
1296         Builder.CreateBr(Block.getBlock());
1297         Builder.ClearInsertionPoint();
1298       }
1299       return;
1300     }
1301   }
1302
1303   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1304   EmitBlockWithFallThrough(CaseDest, &S);
1305   if (SwitchWeights)
1306     SwitchWeights->push_back(getProfileCount(&S));
1307   SwitchInsn->addCase(CaseVal, CaseDest);
1308
1309   // Recursively emitting the statement is acceptable, but is not wonderful for
1310   // code where we have many case statements nested together, i.e.:
1311   //  case 1:
1312   //    case 2:
1313   //      case 3: etc.
1314   // Handling this recursively will create a new block for each case statement
1315   // that falls through to the next case which is IR intensive.  It also causes
1316   // deep recursion which can run into stack depth limitations.  Handle
1317   // sequential non-range case statements specially.
1318   const CaseStmt *CurCase = &S;
1319   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1320
1321   // Otherwise, iteratively add consecutive cases to this switch stmt.
1322   while (NextCase && NextCase->getRHS() == nullptr) {
1323     CurCase = NextCase;
1324     llvm::ConstantInt *CaseVal =
1325       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1326
1327     if (SwitchWeights)
1328       SwitchWeights->push_back(getProfileCount(NextCase));
1329     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1330       CaseDest = createBasicBlock("sw.bb");
1331       EmitBlockWithFallThrough(CaseDest, &S);
1332     }
1333
1334     SwitchInsn->addCase(CaseVal, CaseDest);
1335     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1336   }
1337
1338   // Normal default recursion for non-cases.
1339   EmitStmt(CurCase->getSubStmt());
1340 }
1341
1342 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1343   // If there is no enclosing switch instance that we're aware of, then this
1344   // default statement can be elided. This situation only happens when we've
1345   // constant-folded the switch.
1346   if (!SwitchInsn) {
1347     EmitStmt(S.getSubStmt());
1348     return;
1349   }
1350
1351   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1352   assert(DefaultBlock->empty() &&
1353          "EmitDefaultStmt: Default block already defined?");
1354
1355   EmitBlockWithFallThrough(DefaultBlock, &S);
1356
1357   EmitStmt(S.getSubStmt());
1358 }
1359
1360 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1361 /// constant value that is being switched on, see if we can dead code eliminate
1362 /// the body of the switch to a simple series of statements to emit.  Basically,
1363 /// on a switch (5) we want to find these statements:
1364 ///    case 5:
1365 ///      printf(...);    <--
1366 ///      ++i;            <--
1367 ///      break;
1368 ///
1369 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1370 /// transformation (for example, one of the elided statements contains a label
1371 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1372 /// should include statements after it (e.g. the printf() line is a substmt of
1373 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1374 /// statement, then return CSFC_Success.
1375 ///
1376 /// If Case is non-null, then we are looking for the specified case, checking
1377 /// that nothing we jump over contains labels.  If Case is null, then we found
1378 /// the case and are looking for the break.
1379 ///
1380 /// If the recursive walk actually finds our Case, then we set FoundCase to
1381 /// true.
1382 ///
1383 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1384 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1385                                             const SwitchCase *Case,
1386                                             bool &FoundCase,
1387                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1388   // If this is a null statement, just succeed.
1389   if (!S)
1390     return Case ? CSFC_Success : CSFC_FallThrough;
1391
1392   // If this is the switchcase (case 4: or default) that we're looking for, then
1393   // we're in business.  Just add the substatement.
1394   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1395     if (S == Case) {
1396       FoundCase = true;
1397       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1398                                       ResultStmts);
1399     }
1400
1401     // Otherwise, this is some other case or default statement, just ignore it.
1402     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1403                                     ResultStmts);
1404   }
1405
1406   // If we are in the live part of the code and we found our break statement,
1407   // return a success!
1408   if (!Case && isa<BreakStmt>(S))
1409     return CSFC_Success;
1410
1411   // If this is a switch statement, then it might contain the SwitchCase, the
1412   // break, or neither.
1413   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1414     // Handle this as two cases: we might be looking for the SwitchCase (if so
1415     // the skipped statements must be skippable) or we might already have it.
1416     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1417     bool StartedInLiveCode = FoundCase;
1418     unsigned StartSize = ResultStmts.size();
1419
1420     // If we've not found the case yet, scan through looking for it.
1421     if (Case) {
1422       // Keep track of whether we see a skipped declaration.  The code could be
1423       // using the declaration even if it is skipped, so we can't optimize out
1424       // the decl if the kept statements might refer to it.
1425       bool HadSkippedDecl = false;
1426
1427       // If we're looking for the case, just see if we can skip each of the
1428       // substatements.
1429       for (; Case && I != E; ++I) {
1430         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1431
1432         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1433         case CSFC_Failure: return CSFC_Failure;
1434         case CSFC_Success:
1435           // A successful result means that either 1) that the statement doesn't
1436           // have the case and is skippable, or 2) does contain the case value
1437           // and also contains the break to exit the switch.  In the later case,
1438           // we just verify the rest of the statements are elidable.
1439           if (FoundCase) {
1440             // If we found the case and skipped declarations, we can't do the
1441             // optimization.
1442             if (HadSkippedDecl)
1443               return CSFC_Failure;
1444
1445             for (++I; I != E; ++I)
1446               if (CodeGenFunction::ContainsLabel(*I, true))
1447                 return CSFC_Failure;
1448             return CSFC_Success;
1449           }
1450           break;
1451         case CSFC_FallThrough:
1452           // If we have a fallthrough condition, then we must have found the
1453           // case started to include statements.  Consider the rest of the
1454           // statements in the compound statement as candidates for inclusion.
1455           assert(FoundCase && "Didn't find case but returned fallthrough?");
1456           // We recursively found Case, so we're not looking for it anymore.
1457           Case = nullptr;
1458
1459           // If we found the case and skipped declarations, we can't do the
1460           // optimization.
1461           if (HadSkippedDecl)
1462             return CSFC_Failure;
1463           break;
1464         }
1465       }
1466
1467       if (!FoundCase)
1468         return CSFC_Success;
1469
1470       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1471     }
1472
1473     // If we have statements in our range, then we know that the statements are
1474     // live and need to be added to the set of statements we're tracking.
1475     bool AnyDecls = false;
1476     for (; I != E; ++I) {
1477       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1478
1479       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1480       case CSFC_Failure: return CSFC_Failure;
1481       case CSFC_FallThrough:
1482         // A fallthrough result means that the statement was simple and just
1483         // included in ResultStmt, keep adding them afterwards.
1484         break;
1485       case CSFC_Success:
1486         // A successful result means that we found the break statement and
1487         // stopped statement inclusion.  We just ensure that any leftover stmts
1488         // are skippable and return success ourselves.
1489         for (++I; I != E; ++I)
1490           if (CodeGenFunction::ContainsLabel(*I, true))
1491             return CSFC_Failure;
1492         return CSFC_Success;
1493       }
1494     }
1495
1496     // If we're about to fall out of a scope without hitting a 'break;', we
1497     // can't perform the optimization if there were any decls in that scope
1498     // (we'd lose their end-of-lifetime).
1499     if (AnyDecls) {
1500       // If the entire compound statement was live, there's one more thing we
1501       // can try before giving up: emit the whole thing as a single statement.
1502       // We can do that unless the statement contains a 'break;'.
1503       // FIXME: Such a break must be at the end of a construct within this one.
1504       // We could emit this by just ignoring the BreakStmts entirely.
1505       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1506         ResultStmts.resize(StartSize);
1507         ResultStmts.push_back(S);
1508       } else {
1509         return CSFC_Failure;
1510       }
1511     }
1512
1513     return CSFC_FallThrough;
1514   }
1515
1516   // Okay, this is some other statement that we don't handle explicitly, like a
1517   // for statement or increment etc.  If we are skipping over this statement,
1518   // just verify it doesn't have labels, which would make it invalid to elide.
1519   if (Case) {
1520     if (CodeGenFunction::ContainsLabel(S, true))
1521       return CSFC_Failure;
1522     return CSFC_Success;
1523   }
1524
1525   // Otherwise, we want to include this statement.  Everything is cool with that
1526   // so long as it doesn't contain a break out of the switch we're in.
1527   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1528
1529   // Otherwise, everything is great.  Include the statement and tell the caller
1530   // that we fall through and include the next statement as well.
1531   ResultStmts.push_back(S);
1532   return CSFC_FallThrough;
1533 }
1534
1535 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1536 /// then invoke CollectStatementsForCase to find the list of statements to emit
1537 /// for a switch on constant.  See the comment above CollectStatementsForCase
1538 /// for more details.
1539 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1540                                        const llvm::APSInt &ConstantCondValue,
1541                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1542                                        ASTContext &C,
1543                                        const SwitchCase *&ResultCase) {
1544   // First step, find the switch case that is being branched to.  We can do this
1545   // efficiently by scanning the SwitchCase list.
1546   const SwitchCase *Case = S.getSwitchCaseList();
1547   const DefaultStmt *DefaultCase = nullptr;
1548
1549   for (; Case; Case = Case->getNextSwitchCase()) {
1550     // It's either a default or case.  Just remember the default statement in
1551     // case we're not jumping to any numbered cases.
1552     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1553       DefaultCase = DS;
1554       continue;
1555     }
1556
1557     // Check to see if this case is the one we're looking for.
1558     const CaseStmt *CS = cast<CaseStmt>(Case);
1559     // Don't handle case ranges yet.
1560     if (CS->getRHS()) return false;
1561
1562     // If we found our case, remember it as 'case'.
1563     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1564       break;
1565   }
1566
1567   // If we didn't find a matching case, we use a default if it exists, or we
1568   // elide the whole switch body!
1569   if (!Case) {
1570     // It is safe to elide the body of the switch if it doesn't contain labels
1571     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1572     if (!DefaultCase)
1573       return !CodeGenFunction::ContainsLabel(&S);
1574     Case = DefaultCase;
1575   }
1576
1577   // Ok, we know which case is being jumped to, try to collect all the
1578   // statements that follow it.  This can fail for a variety of reasons.  Also,
1579   // check to see that the recursive walk actually found our case statement.
1580   // Insane cases like this can fail to find it in the recursive walk since we
1581   // don't handle every stmt kind:
1582   // switch (4) {
1583   //   while (1) {
1584   //     case 4: ...
1585   bool FoundCase = false;
1586   ResultCase = Case;
1587   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1588                                   ResultStmts) != CSFC_Failure &&
1589          FoundCase;
1590 }
1591
1592 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1593   // Handle nested switch statements.
1594   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1595   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1596   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1597
1598   // See if we can constant fold the condition of the switch and therefore only
1599   // emit the live case statement (if any) of the switch.
1600   llvm::APSInt ConstantCondValue;
1601   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1602     SmallVector<const Stmt*, 4> CaseStmts;
1603     const SwitchCase *Case = nullptr;
1604     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1605                                    getContext(), Case)) {
1606       if (Case)
1607         incrementProfileCounter(Case);
1608       RunCleanupsScope ExecutedScope(*this);
1609
1610       if (S.getInit())
1611         EmitStmt(S.getInit());
1612
1613       // Emit the condition variable if needed inside the entire cleanup scope
1614       // used by this special case for constant folded switches.
1615       if (S.getConditionVariable())
1616         EmitDecl(*S.getConditionVariable());
1617
1618       // At this point, we are no longer "within" a switch instance, so
1619       // we can temporarily enforce this to ensure that any embedded case
1620       // statements are not emitted.
1621       SwitchInsn = nullptr;
1622
1623       // Okay, we can dead code eliminate everything except this case.  Emit the
1624       // specified series of statements and we're good.
1625       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1626         EmitStmt(CaseStmts[i]);
1627       incrementProfileCounter(&S);
1628
1629       // Now we want to restore the saved switch instance so that nested
1630       // switches continue to function properly
1631       SwitchInsn = SavedSwitchInsn;
1632
1633       return;
1634     }
1635   }
1636
1637   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1638
1639   RunCleanupsScope ConditionScope(*this);
1640
1641   if (S.getInit())
1642     EmitStmt(S.getInit());
1643
1644   if (S.getConditionVariable())
1645     EmitDecl(*S.getConditionVariable());
1646   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1647
1648   // Create basic block to hold stuff that comes after switch
1649   // statement. We also need to create a default block now so that
1650   // explicit case ranges tests can have a place to jump to on
1651   // failure.
1652   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1653   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1654   if (PGO.haveRegionCounts()) {
1655     // Walk the SwitchCase list to find how many there are.
1656     uint64_t DefaultCount = 0;
1657     unsigned NumCases = 0;
1658     for (const SwitchCase *Case = S.getSwitchCaseList();
1659          Case;
1660          Case = Case->getNextSwitchCase()) {
1661       if (isa<DefaultStmt>(Case))
1662         DefaultCount = getProfileCount(Case);
1663       NumCases += 1;
1664     }
1665     SwitchWeights = new SmallVector<uint64_t, 16>();
1666     SwitchWeights->reserve(NumCases);
1667     // The default needs to be first. We store the edge count, so we already
1668     // know the right weight.
1669     SwitchWeights->push_back(DefaultCount);
1670   }
1671   CaseRangeBlock = DefaultBlock;
1672
1673   // Clear the insertion point to indicate we are in unreachable code.
1674   Builder.ClearInsertionPoint();
1675
1676   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1677   // then reuse last ContinueBlock.
1678   JumpDest OuterContinue;
1679   if (!BreakContinueStack.empty())
1680     OuterContinue = BreakContinueStack.back().ContinueBlock;
1681
1682   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1683
1684   // Emit switch body.
1685   EmitStmt(S.getBody());
1686
1687   BreakContinueStack.pop_back();
1688
1689   // Update the default block in case explicit case range tests have
1690   // been chained on top.
1691   SwitchInsn->setDefaultDest(CaseRangeBlock);
1692
1693   // If a default was never emitted:
1694   if (!DefaultBlock->getParent()) {
1695     // If we have cleanups, emit the default block so that there's a
1696     // place to jump through the cleanups from.
1697     if (ConditionScope.requiresCleanups()) {
1698       EmitBlock(DefaultBlock);
1699
1700     // Otherwise, just forward the default block to the switch end.
1701     } else {
1702       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1703       delete DefaultBlock;
1704     }
1705   }
1706
1707   ConditionScope.ForceCleanup();
1708
1709   // Emit continuation.
1710   EmitBlock(SwitchExit.getBlock(), true);
1711   incrementProfileCounter(&S);
1712
1713   // If the switch has a condition wrapped by __builtin_unpredictable,
1714   // create metadata that specifies that the switch is unpredictable.
1715   // Don't bother if not optimizing because that metadata would not be used.
1716   auto *Call = dyn_cast<CallExpr>(S.getCond());
1717   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1718     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1719     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1720       llvm::MDBuilder MDHelper(getLLVMContext());
1721       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1722                               MDHelper.createUnpredictable());
1723     }
1724   }
1725
1726   if (SwitchWeights) {
1727     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1728            "switch weights do not match switch cases");
1729     // If there's only one jump destination there's no sense weighting it.
1730     if (SwitchWeights->size() > 1)
1731       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1732                               createProfileWeights(*SwitchWeights));
1733     delete SwitchWeights;
1734   }
1735   SwitchInsn = SavedSwitchInsn;
1736   SwitchWeights = SavedSwitchWeights;
1737   CaseRangeBlock = SavedCRBlock;
1738 }
1739
1740 static std::string
1741 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1742                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1743   std::string Result;
1744
1745   while (*Constraint) {
1746     switch (*Constraint) {
1747     default:
1748       Result += Target.convertConstraint(Constraint);
1749       break;
1750     // Ignore these
1751     case '*':
1752     case '?':
1753     case '!':
1754     case '=': // Will see this and the following in mult-alt constraints.
1755     case '+':
1756       break;
1757     case '#': // Ignore the rest of the constraint alternative.
1758       while (Constraint[1] && Constraint[1] != ',')
1759         Constraint++;
1760       break;
1761     case '&':
1762     case '%':
1763       Result += *Constraint;
1764       while (Constraint[1] && Constraint[1] == *Constraint)
1765         Constraint++;
1766       break;
1767     case ',':
1768       Result += "|";
1769       break;
1770     case 'g':
1771       Result += "imr";
1772       break;
1773     case '[': {
1774       assert(OutCons &&
1775              "Must pass output names to constraints with a symbolic name");
1776       unsigned Index;
1777       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1778       assert(result && "Could not resolve symbolic name"); (void)result;
1779       Result += llvm::utostr(Index);
1780       break;
1781     }
1782     }
1783
1784     Constraint++;
1785   }
1786
1787   return Result;
1788 }
1789
1790 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1791 /// as using a particular register add that as a constraint that will be used
1792 /// in this asm stmt.
1793 static std::string
1794 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1795                        const TargetInfo &Target, CodeGenModule &CGM,
1796                        const AsmStmt &Stmt, const bool EarlyClobber) {
1797   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1798   if (!AsmDeclRef)
1799     return Constraint;
1800   const ValueDecl &Value = *AsmDeclRef->getDecl();
1801   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1802   if (!Variable)
1803     return Constraint;
1804   if (Variable->getStorageClass() != SC_Register)
1805     return Constraint;
1806   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1807   if (!Attr)
1808     return Constraint;
1809   StringRef Register = Attr->getLabel();
1810   assert(Target.isValidGCCRegisterName(Register));
1811   // We're using validateOutputConstraint here because we only care if
1812   // this is a register constraint.
1813   TargetInfo::ConstraintInfo Info(Constraint, "");
1814   if (Target.validateOutputConstraint(Info) &&
1815       !Info.allowsRegister()) {
1816     CGM.ErrorUnsupported(&Stmt, "__asm__");
1817     return Constraint;
1818   }
1819   // Canonicalize the register here before returning it.
1820   Register = Target.getNormalizedGCCRegisterName(Register);
1821   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1822 }
1823
1824 llvm::Value*
1825 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1826                                     LValue InputValue, QualType InputType,
1827                                     std::string &ConstraintStr,
1828                                     SourceLocation Loc) {
1829   llvm::Value *Arg;
1830   if (Info.allowsRegister() || !Info.allowsMemory()) {
1831     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1832       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1833     } else {
1834       llvm::Type *Ty = ConvertType(InputType);
1835       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1836       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1837         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1838         Ty = llvm::PointerType::getUnqual(Ty);
1839
1840         Arg = Builder.CreateLoad(
1841             Builder.CreateBitCast(InputValue.getAddress(*this), Ty));
1842       } else {
1843         Arg = InputValue.getPointer(*this);
1844         ConstraintStr += '*';
1845       }
1846     }
1847   } else {
1848     Arg = InputValue.getPointer(*this);
1849     ConstraintStr += '*';
1850   }
1851
1852   return Arg;
1853 }
1854
1855 llvm::Value* CodeGenFunction::EmitAsmInput(
1856                                          const TargetInfo::ConstraintInfo &Info,
1857                                            const Expr *InputExpr,
1858                                            std::string &ConstraintStr) {
1859   // If this can't be a register or memory, i.e., has to be a constant
1860   // (immediate or symbolic), try to emit it as such.
1861   if (!Info.allowsRegister() && !Info.allowsMemory()) {
1862     if (Info.requiresImmediateConstant()) {
1863       Expr::EvalResult EVResult;
1864       InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
1865
1866       llvm::APSInt IntResult;
1867       if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
1868                                           getContext()))
1869         return llvm::ConstantInt::get(getLLVMContext(), IntResult);
1870     }
1871
1872     Expr::EvalResult Result;
1873     if (InputExpr->EvaluateAsInt(Result, getContext()))
1874       return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt());
1875   }
1876
1877   if (Info.allowsRegister() || !Info.allowsMemory())
1878     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1879       return EmitScalarExpr(InputExpr);
1880   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
1881     return EmitScalarExpr(InputExpr);
1882   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1883   LValue Dest = EmitLValue(InputExpr);
1884   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1885                             InputExpr->getExprLoc());
1886 }
1887
1888 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1889 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1890 /// integers which are the source locations of the start of each line in the
1891 /// asm.
1892 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1893                                       CodeGenFunction &CGF) {
1894   SmallVector<llvm::Metadata *, 8> Locs;
1895   // Add the location of the first line to the MDNode.
1896   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1897       CGF.Int32Ty, Str->getBeginLoc().getRawEncoding())));
1898   StringRef StrVal = Str->getString();
1899   if (!StrVal.empty()) {
1900     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1901     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1902     unsigned StartToken = 0;
1903     unsigned ByteOffset = 0;
1904
1905     // Add the location of the start of each subsequent line of the asm to the
1906     // MDNode.
1907     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
1908       if (StrVal[i] != '\n') continue;
1909       SourceLocation LineLoc = Str->getLocationOfByte(
1910           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
1911       Locs.push_back(llvm::ConstantAsMetadata::get(
1912           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1913     }
1914   }
1915
1916   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1917 }
1918
1919 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
1920                               bool ReadOnly, bool ReadNone, const AsmStmt &S,
1921                               const std::vector<llvm::Type *> &ResultRegTypes,
1922                               CodeGenFunction &CGF,
1923                               std::vector<llvm::Value *> &RegResults) {
1924   Result.addAttribute(llvm::AttributeList::FunctionIndex,
1925                       llvm::Attribute::NoUnwind);
1926   // Attach readnone and readonly attributes.
1927   if (!HasSideEffect) {
1928     if (ReadNone)
1929       Result.addAttribute(llvm::AttributeList::FunctionIndex,
1930                           llvm::Attribute::ReadNone);
1931     else if (ReadOnly)
1932       Result.addAttribute(llvm::AttributeList::FunctionIndex,
1933                           llvm::Attribute::ReadOnly);
1934   }
1935
1936   // Slap the source location of the inline asm into a !srcloc metadata on the
1937   // call.
1938   if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
1939     Result.setMetadata("srcloc",
1940                        getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
1941   else {
1942     // At least put the line number on MS inline asm blobs.
1943     llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty,
1944                                         S.getAsmLoc().getRawEncoding());
1945     Result.setMetadata("srcloc",
1946                        llvm::MDNode::get(CGF.getLLVMContext(),
1947                                          llvm::ConstantAsMetadata::get(Loc)));
1948   }
1949
1950   if (CGF.getLangOpts().assumeFunctionsAreConvergent())
1951     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
1952     // convergent (meaning, they may call an intrinsically convergent op, such
1953     // as bar.sync, and so can't have certain optimizations applied around
1954     // them).
1955     Result.addAttribute(llvm::AttributeList::FunctionIndex,
1956                         llvm::Attribute::Convergent);
1957   // Extract all of the register value results from the asm.
1958   if (ResultRegTypes.size() == 1) {
1959     RegResults.push_back(&Result);
1960   } else {
1961     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1962       llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
1963       RegResults.push_back(Tmp);
1964     }
1965   }
1966 }
1967
1968 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1969   // Assemble the final asm string.
1970   std::string AsmString = S.generateAsmString(getContext());
1971
1972   // Get all the output and input constraints together.
1973   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1974   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1975
1976   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1977     StringRef Name;
1978     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1979       Name = GAS->getOutputName(i);
1980     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1981     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1982     assert(IsValid && "Failed to parse output constraint");
1983     OutputConstraintInfos.push_back(Info);
1984   }
1985
1986   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1987     StringRef Name;
1988     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1989       Name = GAS->getInputName(i);
1990     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1991     bool IsValid =
1992       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
1993     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1994     InputConstraintInfos.push_back(Info);
1995   }
1996
1997   std::string Constraints;
1998
1999   std::vector<LValue> ResultRegDests;
2000   std::vector<QualType> ResultRegQualTys;
2001   std::vector<llvm::Type *> ResultRegTypes;
2002   std::vector<llvm::Type *> ResultTruncRegTypes;
2003   std::vector<llvm::Type *> ArgTypes;
2004   std::vector<llvm::Value*> Args;
2005   llvm::BitVector ResultTypeRequiresCast;
2006
2007   // Keep track of inout constraints.
2008   std::string InOutConstraints;
2009   std::vector<llvm::Value*> InOutArgs;
2010   std::vector<llvm::Type*> InOutArgTypes;
2011
2012   // Keep track of out constraints for tied input operand.
2013   std::vector<std::string> OutputConstraints;
2014
2015   // An inline asm can be marked readonly if it meets the following conditions:
2016   //  - it doesn't have any sideeffects
2017   //  - it doesn't clobber memory
2018   //  - it doesn't return a value by-reference
2019   // It can be marked readnone if it doesn't have any input memory constraints
2020   // in addition to meeting the conditions listed above.
2021   bool ReadOnly = true, ReadNone = true;
2022
2023   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2024     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2025
2026     // Simplify the output constraint.
2027     std::string OutputConstraint(S.getOutputConstraint(i));
2028     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2029                                           getTarget(), &OutputConstraintInfos);
2030
2031     const Expr *OutExpr = S.getOutputExpr(i);
2032     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2033
2034     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2035                                               getTarget(), CGM, S,
2036                                               Info.earlyClobber());
2037     OutputConstraints.push_back(OutputConstraint);
2038     LValue Dest = EmitLValue(OutExpr);
2039     if (!Constraints.empty())
2040       Constraints += ',';
2041
2042     // If this is a register output, then make the inline asm return it
2043     // by-value.  If this is a memory result, return the value by-reference.
2044     bool isScalarizableAggregate =
2045         hasAggregateEvaluationKind(OutExpr->getType());
2046     if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) ||
2047                                  isScalarizableAggregate)) {
2048       Constraints += "=" + OutputConstraint;
2049       ResultRegQualTys.push_back(OutExpr->getType());
2050       ResultRegDests.push_back(Dest);
2051       ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
2052       if (Info.allowsRegister() && isScalarizableAggregate) {
2053         ResultTypeRequiresCast.push_back(true);
2054         unsigned Size = getContext().getTypeSize(OutExpr->getType());
2055         llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size);
2056         ResultRegTypes.push_back(ConvTy);
2057       } else {
2058         ResultTypeRequiresCast.push_back(false);
2059         ResultRegTypes.push_back(ResultTruncRegTypes.back());
2060       }
2061       // If this output is tied to an input, and if the input is larger, then
2062       // we need to set the actual result type of the inline asm node to be the
2063       // same as the input type.
2064       if (Info.hasMatchingInput()) {
2065         unsigned InputNo;
2066         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2067           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2068           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2069             break;
2070         }
2071         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2072
2073         QualType InputTy = S.getInputExpr(InputNo)->getType();
2074         QualType OutputType = OutExpr->getType();
2075
2076         uint64_t InputSize = getContext().getTypeSize(InputTy);
2077         if (getContext().getTypeSize(OutputType) < InputSize) {
2078           // Form the asm to return the value as a larger integer or fp type.
2079           ResultRegTypes.back() = ConvertType(InputTy);
2080         }
2081       }
2082       if (llvm::Type* AdjTy =
2083             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2084                                                  ResultRegTypes.back()))
2085         ResultRegTypes.back() = AdjTy;
2086       else {
2087         CGM.getDiags().Report(S.getAsmLoc(),
2088                               diag::err_asm_invalid_type_in_input)
2089             << OutExpr->getType() << OutputConstraint;
2090       }
2091
2092       // Update largest vector width for any vector types.
2093       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2094         LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
2095                                    VT->getPrimitiveSizeInBits().getFixedSize());
2096     } else {
2097       ArgTypes.push_back(Dest.getAddress(*this).getType());
2098       Args.push_back(Dest.getPointer(*this));
2099       Constraints += "=*";
2100       Constraints += OutputConstraint;
2101       ReadOnly = ReadNone = false;
2102     }
2103
2104     if (Info.isReadWrite()) {
2105       InOutConstraints += ',';
2106
2107       const Expr *InputExpr = S.getOutputExpr(i);
2108       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
2109                                             InOutConstraints,
2110                                             InputExpr->getExprLoc());
2111
2112       if (llvm::Type* AdjTy =
2113           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2114                                                Arg->getType()))
2115         Arg = Builder.CreateBitCast(Arg, AdjTy);
2116
2117       // Update largest vector width for any vector types.
2118       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2119         LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
2120                                    VT->getPrimitiveSizeInBits().getFixedSize());
2121       if (Info.allowsRegister())
2122         InOutConstraints += llvm::utostr(i);
2123       else
2124         InOutConstraints += OutputConstraint;
2125
2126       InOutArgTypes.push_back(Arg->getType());
2127       InOutArgs.push_back(Arg);
2128     }
2129   }
2130
2131   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2132   // to the return value slot. Only do this when returning in registers.
2133   if (isa<MSAsmStmt>(&S)) {
2134     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2135     if (RetAI.isDirect() || RetAI.isExtend()) {
2136       // Make a fake lvalue for the return value slot.
2137       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
2138       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2139           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2140           ResultRegDests, AsmString, S.getNumOutputs());
2141       SawAsmBlock = true;
2142     }
2143   }
2144
2145   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2146     const Expr *InputExpr = S.getInputExpr(i);
2147
2148     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2149
2150     if (Info.allowsMemory())
2151       ReadNone = false;
2152
2153     if (!Constraints.empty())
2154       Constraints += ',';
2155
2156     // Simplify the input constraint.
2157     std::string InputConstraint(S.getInputConstraint(i));
2158     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2159                                          &OutputConstraintInfos);
2160
2161     InputConstraint = AddVariableConstraints(
2162         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2163         getTarget(), CGM, S, false /* No EarlyClobber */);
2164
2165     std::string ReplaceConstraint (InputConstraint);
2166     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
2167
2168     // If this input argument is tied to a larger output result, extend the
2169     // input to be the same size as the output.  The LLVM backend wants to see
2170     // the input and output of a matching constraint be the same size.  Note
2171     // that GCC does not define what the top bits are here.  We use zext because
2172     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2173     if (Info.hasTiedOperand()) {
2174       unsigned Output = Info.getTiedOperand();
2175       QualType OutputType = S.getOutputExpr(Output)->getType();
2176       QualType InputTy = InputExpr->getType();
2177
2178       if (getContext().getTypeSize(OutputType) >
2179           getContext().getTypeSize(InputTy)) {
2180         // Use ptrtoint as appropriate so that we can do our extension.
2181         if (isa<llvm::PointerType>(Arg->getType()))
2182           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2183         llvm::Type *OutputTy = ConvertType(OutputType);
2184         if (isa<llvm::IntegerType>(OutputTy))
2185           Arg = Builder.CreateZExt(Arg, OutputTy);
2186         else if (isa<llvm::PointerType>(OutputTy))
2187           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2188         else {
2189           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
2190           Arg = Builder.CreateFPExt(Arg, OutputTy);
2191         }
2192       }
2193       // Deal with the tied operands' constraint code in adjustInlineAsmType.
2194       ReplaceConstraint = OutputConstraints[Output];
2195     }
2196     if (llvm::Type* AdjTy =
2197           getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2198                                                    Arg->getType()))
2199       Arg = Builder.CreateBitCast(Arg, AdjTy);
2200     else
2201       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2202           << InputExpr->getType() << InputConstraint;
2203
2204     // Update largest vector width for any vector types.
2205     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2206       LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
2207                                    VT->getPrimitiveSizeInBits().getFixedSize());
2208
2209     ArgTypes.push_back(Arg->getType());
2210     Args.push_back(Arg);
2211     Constraints += InputConstraint;
2212   }
2213
2214   // Append the "input" part of inout constraints last.
2215   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2216     ArgTypes.push_back(InOutArgTypes[i]);
2217     Args.push_back(InOutArgs[i]);
2218   }
2219   Constraints += InOutConstraints;
2220
2221   // Labels
2222   SmallVector<llvm::BasicBlock *, 16> Transfer;
2223   llvm::BasicBlock *Fallthrough = nullptr;
2224   bool IsGCCAsmGoto = false;
2225   if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
2226     IsGCCAsmGoto = GS->isAsmGoto();
2227     if (IsGCCAsmGoto) {
2228       for (auto *E : GS->labels()) {
2229         JumpDest Dest = getJumpDestForLabel(E->getLabel());
2230         Transfer.push_back(Dest.getBlock());
2231         llvm::BlockAddress *BA =
2232             llvm::BlockAddress::get(CurFn, Dest.getBlock());
2233         Args.push_back(BA);
2234         ArgTypes.push_back(BA->getType());
2235         if (!Constraints.empty())
2236           Constraints += ',';
2237         Constraints += 'X';
2238       }
2239       StringRef Name = "asm.fallthrough";
2240       Fallthrough = createBasicBlock(Name);
2241     }
2242   }
2243
2244   // Clobbers
2245   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2246     StringRef Clobber = S.getClobber(i);
2247
2248     if (Clobber == "memory")
2249       ReadOnly = ReadNone = false;
2250     else if (Clobber != "cc")
2251       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2252
2253     if (!Constraints.empty())
2254       Constraints += ',';
2255
2256     Constraints += "~{";
2257     Constraints += Clobber;
2258     Constraints += '}';
2259   }
2260
2261   // Add machine specific clobbers
2262   std::string MachineClobbers = getTarget().getClobbers();
2263   if (!MachineClobbers.empty()) {
2264     if (!Constraints.empty())
2265       Constraints += ',';
2266     Constraints += MachineClobbers;
2267   }
2268
2269   llvm::Type *ResultType;
2270   if (ResultRegTypes.empty())
2271     ResultType = VoidTy;
2272   else if (ResultRegTypes.size() == 1)
2273     ResultType = ResultRegTypes[0];
2274   else
2275     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2276
2277   llvm::FunctionType *FTy =
2278     llvm::FunctionType::get(ResultType, ArgTypes, false);
2279
2280   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2281   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2282     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2283   llvm::InlineAsm *IA =
2284     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2285                          /* IsAlignStack */ false, AsmDialect);
2286   std::vector<llvm::Value*> RegResults;
2287   if (IsGCCAsmGoto) {
2288     llvm::CallBrInst *Result =
2289         Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2290     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2291                       ReadNone, S, ResultRegTypes, *this, RegResults);
2292     EmitBlock(Fallthrough);
2293   } else {
2294     llvm::CallInst *Result =
2295         Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2296     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2297                       ReadNone, S, ResultRegTypes, *this, RegResults);
2298   }
2299
2300   assert(RegResults.size() == ResultRegTypes.size());
2301   assert(RegResults.size() == ResultTruncRegTypes.size());
2302   assert(RegResults.size() == ResultRegDests.size());
2303   // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2304   // in which case its size may grow.
2305   assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2306   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2307     llvm::Value *Tmp = RegResults[i];
2308
2309     // If the result type of the LLVM IR asm doesn't match the result type of
2310     // the expression, do the conversion.
2311     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2312       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2313
2314       // Truncate the integer result to the right size, note that TruncTy can be
2315       // a pointer.
2316       if (TruncTy->isFloatingPointTy())
2317         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2318       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2319         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2320         Tmp = Builder.CreateTrunc(Tmp,
2321                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2322         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2323       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2324         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2325         Tmp = Builder.CreatePtrToInt(Tmp,
2326                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2327         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2328       } else if (TruncTy->isIntegerTy()) {
2329         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2330       } else if (TruncTy->isVectorTy()) {
2331         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2332       }
2333     }
2334
2335     LValue Dest = ResultRegDests[i];
2336     // ResultTypeRequiresCast elements correspond to the first
2337     // ResultTypeRequiresCast.size() elements of RegResults.
2338     if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2339       unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2340       Address A = Builder.CreateBitCast(Dest.getAddress(*this),
2341                                         ResultRegTypes[i]->getPointerTo());
2342       QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2343       if (Ty.isNull()) {
2344         const Expr *OutExpr = S.getOutputExpr(i);
2345         CGM.Error(
2346             OutExpr->getExprLoc(),
2347             "impossible constraint in asm: can't store value into a register");
2348         return;
2349       }
2350       Dest = MakeAddrLValue(A, Ty);
2351     }
2352     EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2353   }
2354 }
2355
2356 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2357   const RecordDecl *RD = S.getCapturedRecordDecl();
2358   QualType RecordTy = getContext().getRecordType(RD);
2359
2360   // Initialize the captured struct.
2361   LValue SlotLV =
2362     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2363
2364   RecordDecl::field_iterator CurField = RD->field_begin();
2365   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2366                                                  E = S.capture_init_end();
2367        I != E; ++I, ++CurField) {
2368     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2369     if (CurField->hasCapturedVLAType()) {
2370       auto VAT = CurField->getCapturedVLAType();
2371       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2372     } else {
2373       EmitInitializerForField(*CurField, LV, *I);
2374     }
2375   }
2376
2377   return SlotLV;
2378 }
2379
2380 /// Generate an outlined function for the body of a CapturedStmt, store any
2381 /// captured variables into the captured struct, and call the outlined function.
2382 llvm::Function *
2383 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2384   LValue CapStruct = InitCapturedStruct(S);
2385
2386   // Emit the CapturedDecl
2387   CodeGenFunction CGF(CGM, true);
2388   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2389   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2390   delete CGF.CapturedStmtInfo;
2391
2392   // Emit call to the helper function.
2393   EmitCallOrInvoke(F, CapStruct.getPointer(*this));
2394
2395   return F;
2396 }
2397
2398 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2399   LValue CapStruct = InitCapturedStruct(S);
2400   return CapStruct.getAddress(*this);
2401 }
2402
2403 /// Creates the outlined function for a CapturedStmt.
2404 llvm::Function *
2405 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2406   assert(CapturedStmtInfo &&
2407     "CapturedStmtInfo should be set when generating the captured function");
2408   const CapturedDecl *CD = S.getCapturedDecl();
2409   const RecordDecl *RD = S.getCapturedRecordDecl();
2410   SourceLocation Loc = S.getBeginLoc();
2411   assert(CD->hasBody() && "missing CapturedDecl body");
2412
2413   // Build the argument list.
2414   ASTContext &Ctx = CGM.getContext();
2415   FunctionArgList Args;
2416   Args.append(CD->param_begin(), CD->param_end());
2417
2418   // Create the function declaration.
2419   const CGFunctionInfo &FuncInfo =
2420     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2421   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2422
2423   llvm::Function *F =
2424     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2425                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2426   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2427   if (CD->isNothrow())
2428     F->addFnAttr(llvm::Attribute::NoUnwind);
2429
2430   // Generate the function.
2431   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2432                 CD->getBody()->getBeginLoc());
2433   // Set the context parameter in CapturedStmtInfo.
2434   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2435   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2436
2437   // Initialize variable-length arrays.
2438   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2439                                            Ctx.getTagDeclType(RD));
2440   for (auto *FD : RD->fields()) {
2441     if (FD->hasCapturedVLAType()) {
2442       auto *ExprArg =
2443           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2444               .getScalarVal();
2445       auto VAT = FD->getCapturedVLAType();
2446       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2447     }
2448   }
2449
2450   // If 'this' is captured, load it into CXXThisValue.
2451   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2452     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2453     LValue ThisLValue = EmitLValueForField(Base, FD);
2454     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2455   }
2456
2457   PGO.assignRegionCounters(GlobalDecl(CD), F);
2458   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2459   FinishFunction(CD->getBodyRBrace());
2460
2461   return F;
2462 }