]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/clang/lib/CodeGen/CGVTables.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / clang / lib / CodeGen / CGVTables.cpp
1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with C++ code generation of virtual tables.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGCXXABI.h"
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Basic/CodeGenOptions.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "clang/CodeGen/ConstantInitBuilder.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/Support/Format.h"
24 #include "llvm/Transforms/Utils/Cloning.h"
25 #include <algorithm>
26 #include <cstdio>
27
28 using namespace clang;
29 using namespace CodeGen;
30
31 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
32     : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}
33
34 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy,
35                                               GlobalDecl GD) {
36   return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true,
37                                  /*DontDefer=*/true, /*IsThunk=*/true);
38 }
39
40 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk,
41                                llvm::Function *ThunkFn, bool ForVTable,
42                                GlobalDecl GD) {
43   CGM.setFunctionLinkage(GD, ThunkFn);
44   CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
45                                   !Thunk.Return.isEmpty());
46
47   // Set the right visibility.
48   CGM.setGVProperties(ThunkFn, GD);
49
50   if (!CGM.getCXXABI().exportThunk()) {
51     ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
52     ThunkFn->setDSOLocal(true);
53   }
54
55   if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker())
56     ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
57 }
58
59 #ifndef NDEBUG
60 static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
61                     const ABIArgInfo &infoR, CanQualType typeR) {
62   return (infoL.getKind() == infoR.getKind() &&
63           (typeL == typeR ||
64            (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
65            (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
66 }
67 #endif
68
69 static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
70                                       QualType ResultType, RValue RV,
71                                       const ThunkInfo &Thunk) {
72   // Emit the return adjustment.
73   bool NullCheckValue = !ResultType->isReferenceType();
74
75   llvm::BasicBlock *AdjustNull = nullptr;
76   llvm::BasicBlock *AdjustNotNull = nullptr;
77   llvm::BasicBlock *AdjustEnd = nullptr;
78
79   llvm::Value *ReturnValue = RV.getScalarVal();
80
81   if (NullCheckValue) {
82     AdjustNull = CGF.createBasicBlock("adjust.null");
83     AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
84     AdjustEnd = CGF.createBasicBlock("adjust.end");
85
86     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
87     CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
88     CGF.EmitBlock(AdjustNotNull);
89   }
90
91   auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl();
92   auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl);
93   ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF,
94                                             Address(ReturnValue, ClassAlign),
95                                             Thunk.Return);
96
97   if (NullCheckValue) {
98     CGF.Builder.CreateBr(AdjustEnd);
99     CGF.EmitBlock(AdjustNull);
100     CGF.Builder.CreateBr(AdjustEnd);
101     CGF.EmitBlock(AdjustEnd);
102
103     llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
104     PHI->addIncoming(ReturnValue, AdjustNotNull);
105     PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
106                      AdjustNull);
107     ReturnValue = PHI;
108   }
109
110   return RValue::get(ReturnValue);
111 }
112
113 /// This function clones a function's DISubprogram node and enters it into
114 /// a value map with the intent that the map can be utilized by the cloner
115 /// to short-circuit Metadata node mapping.
116 /// Furthermore, the function resolves any DILocalVariable nodes referenced
117 /// by dbg.value intrinsics so they can be properly mapped during cloning.
118 static void resolveTopLevelMetadata(llvm::Function *Fn,
119                                     llvm::ValueToValueMapTy &VMap) {
120   // Clone the DISubprogram node and put it into the Value map.
121   auto *DIS = Fn->getSubprogram();
122   if (!DIS)
123     return;
124   auto *NewDIS = DIS->replaceWithDistinct(DIS->clone());
125   VMap.MD()[DIS].reset(NewDIS);
126
127   // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes
128   // they are referencing.
129   for (auto &BB : Fn->getBasicBlockList()) {
130     for (auto &I : BB) {
131       if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) {
132         auto *DILocal = DII->getVariable();
133         if (!DILocal->isResolved())
134           DILocal->resolve();
135       }
136     }
137   }
138 }
139
140 // This function does roughly the same thing as GenerateThunk, but in a
141 // very different way, so that va_start and va_end work correctly.
142 // FIXME: This function assumes "this" is the first non-sret LLVM argument of
143 //        a function, and that there is an alloca built in the entry block
144 //        for all accesses to "this".
145 // FIXME: This function assumes there is only one "ret" statement per function.
146 // FIXME: Cloning isn't correct in the presence of indirect goto!
147 // FIXME: This implementation of thunks bloats codesize by duplicating the
148 //        function definition.  There are alternatives:
149 //        1. Add some sort of stub support to LLVM for cases where we can
150 //           do a this adjustment, then a sibcall.
151 //        2. We could transform the definition to take a va_list instead of an
152 //           actual variable argument list, then have the thunks (including a
153 //           no-op thunk for the regular definition) call va_start/va_end.
154 //           There's a bit of per-call overhead for this solution, but it's
155 //           better for codesize if the definition is long.
156 llvm::Function *
157 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn,
158                                       const CGFunctionInfo &FnInfo,
159                                       GlobalDecl GD, const ThunkInfo &Thunk) {
160   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
161   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
162   QualType ResultType = FPT->getReturnType();
163
164   // Get the original function
165   assert(FnInfo.isVariadic());
166   llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
167   llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
168   llvm::Function *BaseFn = cast<llvm::Function>(Callee);
169
170   // Cloning can't work if we don't have a definition. The Microsoft ABI may
171   // require thunks when a definition is not available. Emit an error in these
172   // cases.
173   if (!MD->isDefined()) {
174     CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments");
175     return Fn;
176   }
177   assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method");
178
179   // Clone to thunk.
180   llvm::ValueToValueMapTy VMap;
181
182   // We are cloning a function while some Metadata nodes are still unresolved.
183   // Ensure that the value mapper does not encounter any of them.
184   resolveTopLevelMetadata(BaseFn, VMap);
185   llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap);
186   Fn->replaceAllUsesWith(NewFn);
187   NewFn->takeName(Fn);
188   Fn->eraseFromParent();
189   Fn = NewFn;
190
191   // "Initialize" CGF (minimally).
192   CurFn = Fn;
193
194   // Get the "this" value
195   llvm::Function::arg_iterator AI = Fn->arg_begin();
196   if (CGM.ReturnTypeUsesSRet(FnInfo))
197     ++AI;
198
199   // Find the first store of "this", which will be to the alloca associated
200   // with "this".
201   Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent()));
202   llvm::BasicBlock *EntryBB = &Fn->front();
203   llvm::BasicBlock::iterator ThisStore =
204       std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) {
205         return isa<llvm::StoreInst>(I) &&
206                I.getOperand(0) == ThisPtr.getPointer();
207       });
208   assert(ThisStore != EntryBB->end() &&
209          "Store of this should be in entry block?");
210   // Adjust "this", if necessary.
211   Builder.SetInsertPoint(&*ThisStore);
212   llvm::Value *AdjustedThisPtr =
213       CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
214   AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr,
215                                           ThisStore->getOperand(0)->getType());
216   ThisStore->setOperand(0, AdjustedThisPtr);
217
218   if (!Thunk.Return.isEmpty()) {
219     // Fix up the returned value, if necessary.
220     for (llvm::BasicBlock &BB : *Fn) {
221       llvm::Instruction *T = BB.getTerminator();
222       if (isa<llvm::ReturnInst>(T)) {
223         RValue RV = RValue::get(T->getOperand(0));
224         T->eraseFromParent();
225         Builder.SetInsertPoint(&BB);
226         RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
227         Builder.CreateRet(RV.getScalarVal());
228         break;
229       }
230     }
231   }
232
233   return Fn;
234 }
235
236 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
237                                  const CGFunctionInfo &FnInfo,
238                                  bool IsUnprototyped) {
239   assert(!CurGD.getDecl() && "CurGD was already set!");
240   CurGD = GD;
241   CurFuncIsThunk = true;
242
243   // Build FunctionArgs.
244   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
245   QualType ThisType = MD->getThisType();
246   QualType ResultType;
247   if (IsUnprototyped)
248     ResultType = CGM.getContext().VoidTy;
249   else if (CGM.getCXXABI().HasThisReturn(GD))
250     ResultType = ThisType;
251   else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
252     ResultType = CGM.getContext().VoidPtrTy;
253   else
254     ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType();
255   FunctionArgList FunctionArgs;
256
257   // Create the implicit 'this' parameter declaration.
258   CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
259
260   // Add the rest of the parameters, if we have a prototype to work with.
261   if (!IsUnprototyped) {
262     FunctionArgs.append(MD->param_begin(), MD->param_end());
263
264     if (isa<CXXDestructorDecl>(MD))
265       CGM.getCXXABI().addImplicitStructorParams(*this, ResultType,
266                                                 FunctionArgs);
267   }
268
269   // Start defining the function.
270   auto NL = ApplyDebugLocation::CreateEmpty(*this);
271   StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
272                 MD->getLocation());
273   // Create a scope with an artificial location for the body of this function.
274   auto AL = ApplyDebugLocation::CreateArtificial(*this);
275
276   // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
277   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
278   CXXThisValue = CXXABIThisValue;
279   CurCodeDecl = MD;
280   CurFuncDecl = MD;
281 }
282
283 void CodeGenFunction::FinishThunk() {
284   // Clear these to restore the invariants expected by
285   // StartFunction/FinishFunction.
286   CurCodeDecl = nullptr;
287   CurFuncDecl = nullptr;
288
289   FinishFunction();
290 }
291
292 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
293                                                 const ThunkInfo *Thunk,
294                                                 bool IsUnprototyped) {
295   assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
296          "Please use a new CGF for this thunk");
297   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());
298
299   // Adjust the 'this' pointer if necessary
300   llvm::Value *AdjustedThisPtr =
301     Thunk ? CGM.getCXXABI().performThisAdjustment(
302                           *this, LoadCXXThisAddress(), Thunk->This)
303           : LoadCXXThis();
304
305   // If perfect forwarding is required a variadic method, a method using
306   // inalloca, or an unprototyped thunk, use musttail. Emit an error if this
307   // thunk requires a return adjustment, since that is impossible with musttail.
308   if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) {
309     if (Thunk && !Thunk->Return.isEmpty()) {
310       if (IsUnprototyped)
311         CGM.ErrorUnsupported(
312             MD, "return-adjusting thunk with incomplete parameter type");
313       else if (CurFnInfo->isVariadic())
314         llvm_unreachable("shouldn't try to emit musttail return-adjusting "
315                          "thunks for variadic functions");
316       else
317         CGM.ErrorUnsupported(
318             MD, "non-trivial argument copy for return-adjusting thunk");
319     }
320     EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee);
321     return;
322   }
323
324   // Start building CallArgs.
325   CallArgList CallArgs;
326   QualType ThisType = MD->getThisType();
327   CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
328
329   if (isa<CXXDestructorDecl>(MD))
330     CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);
331
332 #ifndef NDEBUG
333   unsigned PrefixArgs = CallArgs.size() - 1;
334 #endif
335   // Add the rest of the arguments.
336   for (const ParmVarDecl *PD : MD->parameters())
337     EmitDelegateCallArg(CallArgs, PD, SourceLocation());
338
339   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
340
341 #ifndef NDEBUG
342   const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall(
343       CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs);
344   assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
345          CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
346          CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
347   assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
348          similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
349                  CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
350   assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
351   for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
352     assert(similar(CallFnInfo.arg_begin()[i].info,
353                    CallFnInfo.arg_begin()[i].type,
354                    CurFnInfo->arg_begin()[i].info,
355                    CurFnInfo->arg_begin()[i].type));
356 #endif
357
358   // Determine whether we have a return value slot to use.
359   QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
360                             ? ThisType
361                             : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
362                                   ? CGM.getContext().VoidPtrTy
363                                   : FPT->getReturnType();
364   ReturnValueSlot Slot;
365   if (!ResultType->isVoidType() &&
366       (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect ||
367        hasAggregateEvaluationKind(ResultType)))
368     Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified(),
369                            /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
370
371   // Now emit our call.
372   llvm::CallBase *CallOrInvoke;
373   RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot,
374                        CallArgs, &CallOrInvoke);
375
376   // Consider return adjustment if we have ThunkInfo.
377   if (Thunk && !Thunk->Return.isEmpty())
378     RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
379   else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke))
380     Call->setTailCallKind(llvm::CallInst::TCK_Tail);
381
382   // Emit return.
383   if (!ResultType->isVoidType() && Slot.isNull())
384     CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
385
386   // Disable the final ARC autorelease.
387   AutoreleaseResult = false;
388
389   FinishThunk();
390 }
391
392 void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD,
393                                         llvm::Value *AdjustedThisPtr,
394                                         llvm::FunctionCallee Callee) {
395   // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
396   // to translate AST arguments into LLVM IR arguments.  For thunks, we know
397   // that the caller prototype more or less matches the callee prototype with
398   // the exception of 'this'.
399   SmallVector<llvm::Value *, 8> Args;
400   for (llvm::Argument &A : CurFn->args())
401     Args.push_back(&A);
402
403   // Set the adjusted 'this' pointer.
404   const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
405   if (ThisAI.isDirect()) {
406     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
407     int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
408     llvm::Type *ThisType = Args[ThisArgNo]->getType();
409     if (ThisType != AdjustedThisPtr->getType())
410       AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
411     Args[ThisArgNo] = AdjustedThisPtr;
412   } else {
413     assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
414     Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
415     llvm::Type *ThisType = ThisAddr.getElementType();
416     if (ThisType != AdjustedThisPtr->getType())
417       AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
418     Builder.CreateStore(AdjustedThisPtr, ThisAddr);
419   }
420
421   // Emit the musttail call manually.  Even if the prologue pushed cleanups, we
422   // don't actually want to run them.
423   llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
424   Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
425
426   // Apply the standard set of call attributes.
427   unsigned CallingConv;
428   llvm::AttributeList Attrs;
429   CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD,
430                              Attrs, CallingConv, /*AttrOnCallSite=*/true);
431   Call->setAttributes(Attrs);
432   Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
433
434   if (Call->getType()->isVoidTy())
435     Builder.CreateRetVoid();
436   else
437     Builder.CreateRet(Call);
438
439   // Finish the function to maintain CodeGenFunction invariants.
440   // FIXME: Don't emit unreachable code.
441   EmitBlock(createBasicBlock());
442
443   FinishThunk();
444 }
445
446 void CodeGenFunction::generateThunk(llvm::Function *Fn,
447                                     const CGFunctionInfo &FnInfo, GlobalDecl GD,
448                                     const ThunkInfo &Thunk,
449                                     bool IsUnprototyped) {
450   StartThunk(Fn, GD, FnInfo, IsUnprototyped);
451   // Create a scope with an artificial location for the body of this function.
452   auto AL = ApplyDebugLocation::CreateArtificial(*this);
453
454   // Get our callee. Use a placeholder type if this method is unprototyped so
455   // that CodeGenModule doesn't try to set attributes.
456   llvm::Type *Ty;
457   if (IsUnprototyped)
458     Ty = llvm::StructType::get(getLLVMContext());
459   else
460     Ty = CGM.getTypes().GetFunctionType(FnInfo);
461
462   llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
463
464   // Fix up the function type for an unprototyped musttail call.
465   if (IsUnprototyped)
466     Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType());
467
468   // Make the call and return the result.
469   EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee),
470                             &Thunk, IsUnprototyped);
471 }
472
473 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD,
474                                   bool IsUnprototyped, bool ForVTable) {
475   // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to
476   // provide thunks for us.
477   if (CGM.getTarget().getCXXABI().isMicrosoft())
478     return true;
479
480   // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide
481   // definitions of the main method. Therefore, emitting thunks with the vtable
482   // is purely an optimization. Emit the thunk if optimizations are enabled and
483   // all of the parameter types are complete.
484   if (ForVTable)
485     return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped;
486
487   // Always emit thunks along with the method definition.
488   return true;
489 }
490
491 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD,
492                                                const ThunkInfo &TI,
493                                                bool ForVTable) {
494   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
495
496   // First, get a declaration. Compute the mangled name. Don't worry about
497   // getting the function prototype right, since we may only need this
498   // declaration to fill in a vtable slot.
499   SmallString<256> Name;
500   MangleContext &MCtx = CGM.getCXXABI().getMangleContext();
501   llvm::raw_svector_ostream Out(Name);
502   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD))
503     MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out);
504   else
505     MCtx.mangleThunk(MD, TI, Out);
506   llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
507   llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD);
508
509   // If we don't need to emit a definition, return this declaration as is.
510   bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible(
511       MD->getType()->castAs<FunctionType>());
512   if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable))
513     return Thunk;
514
515   // Arrange a function prototype appropriate for a function definition. In some
516   // cases in the MS ABI, we may need to build an unprototyped musttail thunk.
517   const CGFunctionInfo &FnInfo =
518       IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD)
519                      : CGM.getTypes().arrangeGlobalDeclaration(GD);
520   llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo);
521
522   // If the type of the underlying GlobalValue is wrong, we'll have to replace
523   // it. It should be a declaration.
524   llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts());
525   if (ThunkFn->getFunctionType() != ThunkFnTy) {
526     llvm::GlobalValue *OldThunkFn = ThunkFn;
527
528     assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration");
529
530     // Remove the name from the old thunk function and get a new thunk.
531     OldThunkFn->setName(StringRef());
532     ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage,
533                                      Name.str(), &CGM.getModule());
534     CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
535
536     // If needed, replace the old thunk with a bitcast.
537     if (!OldThunkFn->use_empty()) {
538       llvm::Constant *NewPtrForOldDecl =
539           llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType());
540       OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
541     }
542
543     // Remove the old thunk.
544     OldThunkFn->eraseFromParent();
545   }
546
547   bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
548   bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
549
550   if (!ThunkFn->isDeclaration()) {
551     if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
552       // There is already a thunk emitted for this function, do nothing.
553       return ThunkFn;
554     }
555
556     setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
557     return ThunkFn;
558   }
559
560   // If this will be unprototyped, add the "thunk" attribute so that LLVM knows
561   // that the return type is meaningless. These thunks can be used to call
562   // functions with differing return types, and the caller is required to cast
563   // the prototype appropriately to extract the correct value.
564   if (IsUnprototyped)
565     ThunkFn->addFnAttr("thunk");
566
567   CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
568
569   // Thunks for variadic methods are special because in general variadic
570   // arguments cannot be perfectly forwarded. In the general case, clang
571   // implements such thunks by cloning the original function body. However, for
572   // thunks with no return adjustment on targets that support musttail, we can
573   // use musttail to perfectly forward the variadic arguments.
574   bool ShouldCloneVarArgs = false;
575   if (!IsUnprototyped && ThunkFn->isVarArg()) {
576     ShouldCloneVarArgs = true;
577     if (TI.Return.isEmpty()) {
578       switch (CGM.getTriple().getArch()) {
579       case llvm::Triple::x86_64:
580       case llvm::Triple::x86:
581       case llvm::Triple::aarch64:
582         ShouldCloneVarArgs = false;
583         break;
584       default:
585         break;
586       }
587     }
588   }
589
590   if (ShouldCloneVarArgs) {
591     if (UseAvailableExternallyLinkage)
592       return ThunkFn;
593     ThunkFn =
594         CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI);
595   } else {
596     // Normal thunk body generation.
597     CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped);
598   }
599
600   setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
601   return ThunkFn;
602 }
603
604 void CodeGenVTables::EmitThunks(GlobalDecl GD) {
605   const CXXMethodDecl *MD =
606     cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
607
608   // We don't need to generate thunks for the base destructor.
609   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
610     return;
611
612   const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
613       VTContext->getThunkInfo(GD);
614
615   if (!ThunkInfoVector)
616     return;
617
618   for (const ThunkInfo& Thunk : *ThunkInfoVector)
619     maybeEmitThunk(GD, Thunk, /*ForVTable=*/false);
620 }
621
622 void CodeGenVTables::addRelativeComponent(ConstantArrayBuilder &builder,
623                                           llvm::Constant *component,
624                                           unsigned vtableAddressPoint,
625                                           bool vtableHasLocalLinkage,
626                                           bool isCompleteDtor) const {
627   // No need to get the offset of a nullptr.
628   if (component->isNullValue())
629     return builder.add(llvm::ConstantInt::get(CGM.Int32Ty, 0));
630
631   auto *globalVal =
632       cast<llvm::GlobalValue>(component->stripPointerCastsAndAliases());
633   llvm::Module &module = CGM.getModule();
634
635   // We don't want to copy the linkage of the vtable exactly because we still
636   // want the stub/proxy to be emitted for properly calculating the offset.
637   // Examples where there would be no symbol emitted are available_externally
638   // and private linkages.
639   auto stubLinkage = vtableHasLocalLinkage ? llvm::GlobalValue::InternalLinkage
640                                            : llvm::GlobalValue::ExternalLinkage;
641
642   llvm::Constant *target;
643   if (auto *func = dyn_cast<llvm::Function>(globalVal)) {
644     target = getOrCreateRelativeStub(func, stubLinkage, isCompleteDtor);
645   } else {
646     llvm::SmallString<16> rttiProxyName(globalVal->getName());
647     rttiProxyName.append(".rtti_proxy");
648
649     // The RTTI component may not always be emitted in the same linkage unit as
650     // the vtable. As a general case, we can make a dso_local proxy to the RTTI
651     // that points to the actual RTTI struct somewhere. This will result in a
652     // GOTPCREL relocation when taking the relative offset to the proxy.
653     llvm::GlobalVariable *proxy = module.getNamedGlobal(rttiProxyName);
654     if (!proxy) {
655       proxy = new llvm::GlobalVariable(module, globalVal->getType(),
656                                        /*isConstant=*/true, stubLinkage,
657                                        globalVal, rttiProxyName);
658       proxy->setDSOLocal(true);
659       proxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
660       if (!proxy->hasLocalLinkage()) {
661         proxy->setVisibility(llvm::GlobalValue::HiddenVisibility);
662         proxy->setComdat(module.getOrInsertComdat(rttiProxyName));
663       }
664     }
665     target = proxy;
666   }
667
668   builder.addRelativeOffsetToPosition(CGM.Int32Ty, target,
669                                       /*position=*/vtableAddressPoint);
670 }
671
672 llvm::Function *CodeGenVTables::getOrCreateRelativeStub(
673     llvm::Function *func, llvm::GlobalValue::LinkageTypes stubLinkage,
674     bool isCompleteDtor) const {
675   // A complete object destructor can later be substituted in the vtable for an
676   // appropriate base object destructor when optimizations are enabled. This can
677   // happen for child classes that don't have their own destructor. In the case
678   // where a parent virtual destructor is not guaranteed to be in the same
679   // linkage unit as the child vtable, it's possible for an external reference
680   // for this destructor to be substituted into the child vtable, preventing it
681   // from being in rodata. If this function is a complete virtual destructor, we
682   // can just force a stub to be emitted for it.
683   if (func->isDSOLocal() && !isCompleteDtor)
684     return func;
685
686   llvm::SmallString<16> stubName(func->getName());
687   stubName.append(".stub");
688
689   // Instead of taking the offset between the vtable and virtual function
690   // directly, we emit a dso_local stub that just contains a tail call to the
691   // original virtual function and take the offset between that and the
692   // vtable. We do this because there are some cases where the original
693   // function that would've been inserted into the vtable is not dso_local
694   // which may require some kind of dynamic relocation which prevents the
695   // vtable from being readonly. On x86_64, taking the offset between the
696   // function and the vtable gets lowered to the offset between the PLT entry
697   // for the function and the vtable which gives us a PLT32 reloc. On AArch64,
698   // right now only CALL26 and JUMP26 instructions generate PLT relocations,
699   // so we manifest them with stubs that are just jumps to the original
700   // function.
701   auto &module = CGM.getModule();
702   llvm::Function *stub = module.getFunction(stubName);
703   if (stub) {
704     assert(stub->isDSOLocal() &&
705            "The previous definition of this stub should've been dso_local.");
706     return stub;
707   }
708
709   stub = llvm::Function::Create(func->getFunctionType(), stubLinkage, stubName,
710                                 module);
711
712   // Propogate function attributes.
713   stub->setAttributes(func->getAttributes());
714
715   stub->setDSOLocal(true);
716   stub->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
717   if (!stub->hasLocalLinkage()) {
718     stub->setVisibility(llvm::GlobalValue::HiddenVisibility);
719     stub->setComdat(module.getOrInsertComdat(stubName));
720   }
721
722   // Fill the stub with a tail call that will be optimized.
723   llvm::BasicBlock *block =
724       llvm::BasicBlock::Create(module.getContext(), "entry", stub);
725   llvm::IRBuilder<> block_builder(block);
726   llvm::SmallVector<llvm::Value *, 8> args;
727   for (auto &arg : stub->args())
728     args.push_back(&arg);
729   llvm::CallInst *call = block_builder.CreateCall(func, args);
730   call->setAttributes(func->getAttributes());
731   call->setTailCall();
732   if (call->getType()->isVoidTy())
733     block_builder.CreateRetVoid();
734   else
735     block_builder.CreateRet(call);
736
737   return stub;
738 }
739
740 bool CodeGenVTables::useRelativeLayout() const {
741   return CGM.getTarget().getCXXABI().isItaniumFamily() &&
742          CGM.getItaniumVTableContext().isRelativeLayout();
743 }
744
745 llvm::Type *CodeGenVTables::getVTableComponentType() const {
746   if (useRelativeLayout())
747     return CGM.Int32Ty;
748   return CGM.Int8PtrTy;
749 }
750
751 static void AddPointerLayoutOffset(const CodeGenModule &CGM,
752                                    ConstantArrayBuilder &builder,
753                                    CharUnits offset) {
754   builder.add(llvm::ConstantExpr::getIntToPtr(
755       llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()),
756       CGM.Int8PtrTy));
757 }
758
759 static void AddRelativeLayoutOffset(const CodeGenModule &CGM,
760                                     ConstantArrayBuilder &builder,
761                                     CharUnits offset) {
762   builder.add(llvm::ConstantInt::get(CGM.Int32Ty, offset.getQuantity()));
763 }
764
765 void CodeGenVTables::addVTableComponent(ConstantArrayBuilder &builder,
766                                         const VTableLayout &layout,
767                                         unsigned componentIndex,
768                                         llvm::Constant *rtti,
769                                         unsigned &nextVTableThunkIndex,
770                                         unsigned vtableAddressPoint,
771                                         bool vtableHasLocalLinkage) {
772   auto &component = layout.vtable_components()[componentIndex];
773
774   auto addOffsetConstant =
775       useRelativeLayout() ? AddRelativeLayoutOffset : AddPointerLayoutOffset;
776
777   switch (component.getKind()) {
778   case VTableComponent::CK_VCallOffset:
779     return addOffsetConstant(CGM, builder, component.getVCallOffset());
780
781   case VTableComponent::CK_VBaseOffset:
782     return addOffsetConstant(CGM, builder, component.getVBaseOffset());
783
784   case VTableComponent::CK_OffsetToTop:
785     return addOffsetConstant(CGM, builder, component.getOffsetToTop());
786
787   case VTableComponent::CK_RTTI:
788     if (useRelativeLayout())
789       return addRelativeComponent(builder, rtti, vtableAddressPoint,
790                                   vtableHasLocalLinkage,
791                                   /*isCompleteDtor=*/false);
792     else
793       return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy));
794
795   case VTableComponent::CK_FunctionPointer:
796   case VTableComponent::CK_CompleteDtorPointer:
797   case VTableComponent::CK_DeletingDtorPointer: {
798     GlobalDecl GD;
799
800     // Get the right global decl.
801     switch (component.getKind()) {
802     default:
803       llvm_unreachable("Unexpected vtable component kind");
804     case VTableComponent::CK_FunctionPointer:
805       GD = component.getFunctionDecl();
806       break;
807     case VTableComponent::CK_CompleteDtorPointer:
808       GD = GlobalDecl(component.getDestructorDecl(), Dtor_Complete);
809       break;
810     case VTableComponent::CK_DeletingDtorPointer:
811       GD = GlobalDecl(component.getDestructorDecl(), Dtor_Deleting);
812       break;
813     }
814
815     if (CGM.getLangOpts().CUDA) {
816       // Emit NULL for methods we can't codegen on this
817       // side. Otherwise we'd end up with vtable with unresolved
818       // references.
819       const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
820       // OK on device side: functions w/ __device__ attribute
821       // OK on host side: anything except __device__-only functions.
822       bool CanEmitMethod =
823           CGM.getLangOpts().CUDAIsDevice
824               ? MD->hasAttr<CUDADeviceAttr>()
825               : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>());
826       if (!CanEmitMethod)
827         return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int8PtrTy));
828       // Method is acceptable, continue processing as usual.
829     }
830
831     auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * {
832       // FIXME(PR43094): When merging comdat groups, lld can select a local
833       // symbol as the signature symbol even though it cannot be accessed
834       // outside that symbol's TU. The relative vtables ABI would make
835       // __cxa_pure_virtual and __cxa_deleted_virtual local symbols, and
836       // depending on link order, the comdat groups could resolve to the one
837       // with the local symbol. As a temporary solution, fill these components
838       // with zero. We shouldn't be calling these in the first place anyway.
839       if (useRelativeLayout())
840         return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
841
842       // For NVPTX devices in OpenMP emit special functon as null pointers,
843       // otherwise linking ends up with unresolved references.
844       if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsDevice &&
845           CGM.getTriple().isNVPTX())
846         return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
847       llvm::FunctionType *fnTy =
848           llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
849       llvm::Constant *fn = cast<llvm::Constant>(
850           CGM.CreateRuntimeFunction(fnTy, name).getCallee());
851       if (auto f = dyn_cast<llvm::Function>(fn))
852         f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
853       return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy);
854     };
855
856     llvm::Constant *fnPtr;
857
858     // Pure virtual member functions.
859     if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
860       if (!PureVirtualFn)
861         PureVirtualFn =
862             getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName());
863       fnPtr = PureVirtualFn;
864
865     // Deleted virtual member functions.
866     } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
867       if (!DeletedVirtualFn)
868         DeletedVirtualFn =
869             getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName());
870       fnPtr = DeletedVirtualFn;
871
872     // Thunks.
873     } else if (nextVTableThunkIndex < layout.vtable_thunks().size() &&
874                layout.vtable_thunks()[nextVTableThunkIndex].first ==
875                    componentIndex) {
876       auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second;
877
878       nextVTableThunkIndex++;
879       fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true);
880
881     // Otherwise we can use the method definition directly.
882     } else {
883       llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
884       fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true);
885     }
886
887     if (useRelativeLayout()) {
888       return addRelativeComponent(
889           builder, fnPtr, vtableAddressPoint, vtableHasLocalLinkage,
890           component.getKind() == VTableComponent::CK_CompleteDtorPointer);
891     } else
892       return builder.add(llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy));
893   }
894
895   case VTableComponent::CK_UnusedFunctionPointer:
896     if (useRelativeLayout())
897       return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int32Ty));
898     else
899       return builder.addNullPointer(CGM.Int8PtrTy);
900   }
901
902   llvm_unreachable("Unexpected vtable component kind");
903 }
904
905 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) {
906   SmallVector<llvm::Type *, 4> tys;
907   llvm::Type *componentType = getVTableComponentType();
908   for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i)
909     tys.push_back(llvm::ArrayType::get(componentType, layout.getVTableSize(i)));
910
911   return llvm::StructType::get(CGM.getLLVMContext(), tys);
912 }
913
914 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder,
915                                              const VTableLayout &layout,
916                                              llvm::Constant *rtti,
917                                              bool vtableHasLocalLinkage) {
918   llvm::Type *componentType = getVTableComponentType();
919
920   const auto &addressPoints = layout.getAddressPointIndices();
921   unsigned nextVTableThunkIndex = 0;
922   for (unsigned vtableIndex = 0, endIndex = layout.getNumVTables();
923        vtableIndex != endIndex; ++vtableIndex) {
924     auto vtableElem = builder.beginArray(componentType);
925
926     size_t vtableStart = layout.getVTableOffset(vtableIndex);
927     size_t vtableEnd = vtableStart + layout.getVTableSize(vtableIndex);
928     for (size_t componentIndex = vtableStart; componentIndex < vtableEnd;
929          ++componentIndex) {
930       addVTableComponent(vtableElem, layout, componentIndex, rtti,
931                          nextVTableThunkIndex, addressPoints[vtableIndex],
932                          vtableHasLocalLinkage);
933     }
934     vtableElem.finishAndAddTo(builder);
935   }
936 }
937
938 llvm::GlobalVariable *CodeGenVTables::GenerateConstructionVTable(
939     const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual,
940     llvm::GlobalVariable::LinkageTypes Linkage,
941     VTableAddressPointsMapTy &AddressPoints) {
942   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
943     DI->completeClassData(Base.getBase());
944
945   std::unique_ptr<VTableLayout> VTLayout(
946       getItaniumVTableContext().createConstructionVTableLayout(
947           Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
948
949   // Add the address points.
950   AddressPoints = VTLayout->getAddressPoints();
951
952   // Get the mangled construction vtable name.
953   SmallString<256> OutName;
954   llvm::raw_svector_ostream Out(OutName);
955   cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
956       .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
957                            Base.getBase(), Out);
958   SmallString<256> Name(OutName);
959
960   bool UsingRelativeLayout = getItaniumVTableContext().isRelativeLayout();
961   bool VTableAliasExists =
962       UsingRelativeLayout && CGM.getModule().getNamedAlias(Name);
963   if (VTableAliasExists) {
964     // We previously made the vtable hidden and changed its name.
965     Name.append(".local");
966   }
967
968   llvm::Type *VTType = getVTableType(*VTLayout);
969
970   // Construction vtable symbols are not part of the Itanium ABI, so we cannot
971   // guarantee that they actually will be available externally. Instead, when
972   // emitting an available_externally VTT, we provide references to an internal
973   // linkage construction vtable. The ABI only requires complete-object vtables
974   // to be the same for all instances of a type, not construction vtables.
975   if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
976     Linkage = llvm::GlobalVariable::InternalLinkage;
977
978   unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType);
979
980   // Create the variable that will hold the construction vtable.
981   llvm::GlobalVariable *VTable =
982       CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align);
983
984   // V-tables are always unnamed_addr.
985   VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
986
987   llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
988       CGM.getContext().getTagDeclType(Base.getBase()));
989
990   // Create and set the initializer.
991   ConstantInitBuilder builder(CGM);
992   auto components = builder.beginStruct();
993   createVTableInitializer(components, *VTLayout, RTTI,
994                           VTable->hasLocalLinkage());
995   components.finishAndSetAsInitializer(VTable);
996
997   // Set properties only after the initializer has been set to ensure that the
998   // GV is treated as definition and not declaration.
999   assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration");
1000   CGM.setGVProperties(VTable, RD);
1001
1002   CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get());
1003
1004   if (UsingRelativeLayout && !VTable->isDSOLocal())
1005     GenerateRelativeVTableAlias(VTable, OutName);
1006
1007   return VTable;
1008 }
1009
1010 // If the VTable is not dso_local, then we will not be able to indicate that
1011 // the VTable does not need a relocation and move into rodata. A frequent
1012 // time this can occur is for classes that should be made public from a DSO
1013 // (like in libc++). For cases like these, we can make the vtable hidden or
1014 // private and create a public alias with the same visibility and linkage as
1015 // the original vtable type.
1016 void CodeGenVTables::GenerateRelativeVTableAlias(llvm::GlobalVariable *VTable,
1017                                                  llvm::StringRef AliasNameRef) {
1018   assert(getItaniumVTableContext().isRelativeLayout() &&
1019          "Can only use this if the relative vtable ABI is used");
1020   assert(!VTable->isDSOLocal() && "This should be called only if the vtable is "
1021                                   "not guaranteed to be dso_local");
1022
1023   // If the vtable is available_externally, we shouldn't (or need to) generate
1024   // an alias for it in the first place since the vtable won't actually by
1025   // emitted in this compilation unit.
1026   if (VTable->hasAvailableExternallyLinkage())
1027     return;
1028
1029   // Create a new string in the event the alias is already the name of the
1030   // vtable. Using the reference directly could lead to use of an inititialized
1031   // value in the module's StringMap.
1032   llvm::SmallString<256> AliasName(AliasNameRef);
1033   VTable->setName(AliasName + ".local");
1034
1035   auto Linkage = VTable->getLinkage();
1036   assert(llvm::GlobalAlias::isValidLinkage(Linkage) &&
1037          "Invalid vtable alias linkage");
1038
1039   llvm::GlobalAlias *VTableAlias = CGM.getModule().getNamedAlias(AliasName);
1040   if (!VTableAlias) {
1041     VTableAlias = llvm::GlobalAlias::create(VTable->getValueType(),
1042                                             VTable->getAddressSpace(), Linkage,
1043                                             AliasName, &CGM.getModule());
1044   } else {
1045     assert(VTableAlias->getValueType() == VTable->getValueType());
1046     assert(VTableAlias->getLinkage() == Linkage);
1047   }
1048   VTableAlias->setVisibility(VTable->getVisibility());
1049   VTableAlias->setUnnamedAddr(VTable->getUnnamedAddr());
1050
1051   // Both of these imply dso_local for the vtable.
1052   if (!VTable->hasComdat()) {
1053     // If this is in a comdat, then we shouldn't make the linkage private due to
1054     // an issue in lld where private symbols can be used as the key symbol when
1055     // choosing the prevelant group. This leads to "relocation refers to a
1056     // symbol in a discarded section".
1057     VTable->setLinkage(llvm::GlobalValue::PrivateLinkage);
1058   } else {
1059     // We should at least make this hidden since we don't want to expose it.
1060     VTable->setVisibility(llvm::GlobalValue::HiddenVisibility);
1061   }
1062
1063   VTableAlias->setAliasee(VTable);
1064 }
1065
1066 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM,
1067                                                 const CXXRecordDecl *RD) {
1068   return CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1069          CGM.getCXXABI().canSpeculativelyEmitVTable(RD);
1070 }
1071
1072 /// Compute the required linkage of the vtable for the given class.
1073 ///
1074 /// Note that we only call this at the end of the translation unit.
1075 llvm::GlobalVariable::LinkageTypes
1076 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1077   if (!RD->isExternallyVisible())
1078     return llvm::GlobalVariable::InternalLinkage;
1079
1080   // We're at the end of the translation unit, so the current key
1081   // function is fully correct.
1082   const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
1083   if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
1084     // If this class has a key function, use that to determine the
1085     // linkage of the vtable.
1086     const FunctionDecl *def = nullptr;
1087     if (keyFunction->hasBody(def))
1088       keyFunction = cast<CXXMethodDecl>(def);
1089
1090     switch (keyFunction->getTemplateSpecializationKind()) {
1091       case TSK_Undeclared:
1092       case TSK_ExplicitSpecialization:
1093         assert((def || CodeGenOpts.OptimizationLevel > 0 ||
1094                 CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) &&
1095                "Shouldn't query vtable linkage without key function, "
1096                "optimizations, or debug info");
1097         if (!def && CodeGenOpts.OptimizationLevel > 0)
1098           return llvm::GlobalVariable::AvailableExternallyLinkage;
1099
1100         if (keyFunction->isInlined())
1101           return !Context.getLangOpts().AppleKext ?
1102                    llvm::GlobalVariable::LinkOnceODRLinkage :
1103                    llvm::Function::InternalLinkage;
1104
1105         return llvm::GlobalVariable::ExternalLinkage;
1106
1107       case TSK_ImplicitInstantiation:
1108         return !Context.getLangOpts().AppleKext ?
1109                  llvm::GlobalVariable::LinkOnceODRLinkage :
1110                  llvm::Function::InternalLinkage;
1111
1112       case TSK_ExplicitInstantiationDefinition:
1113         return !Context.getLangOpts().AppleKext ?
1114                  llvm::GlobalVariable::WeakODRLinkage :
1115                  llvm::Function::InternalLinkage;
1116
1117       case TSK_ExplicitInstantiationDeclaration:
1118         llvm_unreachable("Should not have been asked to emit this");
1119     }
1120   }
1121
1122   // -fapple-kext mode does not support weak linkage, so we must use
1123   // internal linkage.
1124   if (Context.getLangOpts().AppleKext)
1125     return llvm::Function::InternalLinkage;
1126
1127   llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
1128       llvm::GlobalValue::LinkOnceODRLinkage;
1129   llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
1130       llvm::GlobalValue::WeakODRLinkage;
1131   if (RD->hasAttr<DLLExportAttr>()) {
1132     // Cannot discard exported vtables.
1133     DiscardableODRLinkage = NonDiscardableODRLinkage;
1134   } else if (RD->hasAttr<DLLImportAttr>()) {
1135     // Imported vtables are available externally.
1136     DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
1137     NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
1138   }
1139
1140   switch (RD->getTemplateSpecializationKind()) {
1141     case TSK_Undeclared:
1142     case TSK_ExplicitSpecialization:
1143     case TSK_ImplicitInstantiation:
1144       return DiscardableODRLinkage;
1145
1146     case TSK_ExplicitInstantiationDeclaration:
1147       // Explicit instantiations in MSVC do not provide vtables, so we must emit
1148       // our own.
1149       if (getTarget().getCXXABI().isMicrosoft())
1150         return DiscardableODRLinkage;
1151       return shouldEmitAvailableExternallyVTable(*this, RD)
1152                  ? llvm::GlobalVariable::AvailableExternallyLinkage
1153                  : llvm::GlobalVariable::ExternalLinkage;
1154
1155     case TSK_ExplicitInstantiationDefinition:
1156       return NonDiscardableODRLinkage;
1157   }
1158
1159   llvm_unreachable("Invalid TemplateSpecializationKind!");
1160 }
1161
1162 /// This is a callback from Sema to tell us that a particular vtable is
1163 /// required to be emitted in this translation unit.
1164 ///
1165 /// This is only called for vtables that _must_ be emitted (mainly due to key
1166 /// functions).  For weak vtables, CodeGen tracks when they are needed and
1167 /// emits them as-needed.
1168 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
1169   VTables.GenerateClassData(theClass);
1170 }
1171
1172 void
1173 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
1174   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
1175     DI->completeClassData(RD);
1176
1177   if (RD->getNumVBases())
1178     CGM.getCXXABI().emitVirtualInheritanceTables(RD);
1179
1180   CGM.getCXXABI().emitVTableDefinitions(*this, RD);
1181 }
1182
1183 /// At this point in the translation unit, does it appear that can we
1184 /// rely on the vtable being defined elsewhere in the program?
1185 ///
1186 /// The response is really only definitive when called at the end of
1187 /// the translation unit.
1188 ///
1189 /// The only semantic restriction here is that the object file should
1190 /// not contain a vtable definition when that vtable is defined
1191 /// strongly elsewhere.  Otherwise, we'd just like to avoid emitting
1192 /// vtables when unnecessary.
1193 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
1194   assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
1195
1196   // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't
1197   // emit them even if there is an explicit template instantiation.
1198   if (CGM.getTarget().getCXXABI().isMicrosoft())
1199     return false;
1200
1201   // If we have an explicit instantiation declaration (and not a
1202   // definition), the vtable is defined elsewhere.
1203   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
1204   if (TSK == TSK_ExplicitInstantiationDeclaration)
1205     return true;
1206
1207   // Otherwise, if the class is an instantiated template, the
1208   // vtable must be defined here.
1209   if (TSK == TSK_ImplicitInstantiation ||
1210       TSK == TSK_ExplicitInstantiationDefinition)
1211     return false;
1212
1213   // Otherwise, if the class doesn't have a key function (possibly
1214   // anymore), the vtable must be defined here.
1215   const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
1216   if (!keyFunction)
1217     return false;
1218
1219   // Otherwise, if we don't have a definition of the key function, the
1220   // vtable must be defined somewhere else.
1221   return !keyFunction->hasBody();
1222 }
1223
1224 /// Given that we're currently at the end of the translation unit, and
1225 /// we've emitted a reference to the vtable for this class, should
1226 /// we define that vtable?
1227 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
1228                                                    const CXXRecordDecl *RD) {
1229   // If vtable is internal then it has to be done.
1230   if (!CGM.getVTables().isVTableExternal(RD))
1231     return true;
1232
1233   // If it's external then maybe we will need it as available_externally.
1234   return shouldEmitAvailableExternallyVTable(CGM, RD);
1235 }
1236
1237 /// Given that at some point we emitted a reference to one or more
1238 /// vtables, and that we are now at the end of the translation unit,
1239 /// decide whether we should emit them.
1240 void CodeGenModule::EmitDeferredVTables() {
1241 #ifndef NDEBUG
1242   // Remember the size of DeferredVTables, because we're going to assume
1243   // that this entire operation doesn't modify it.
1244   size_t savedSize = DeferredVTables.size();
1245 #endif
1246
1247   for (const CXXRecordDecl *RD : DeferredVTables)
1248     if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
1249       VTables.GenerateClassData(RD);
1250     else if (shouldOpportunisticallyEmitVTables())
1251       OpportunisticVTables.push_back(RD);
1252
1253   assert(savedSize == DeferredVTables.size() &&
1254          "deferred extra vtables during vtable emission?");
1255   DeferredVTables.clear();
1256 }
1257
1258 bool CodeGenModule::HasLTOVisibilityPublicStd(const CXXRecordDecl *RD) {
1259   if (!getCodeGenOpts().LTOVisibilityPublicStd)
1260     return false;
1261
1262   const DeclContext *DC = RD;
1263   while (1) {
1264     auto *D = cast<Decl>(DC);
1265     DC = DC->getParent();
1266     if (isa<TranslationUnitDecl>(DC->getRedeclContext())) {
1267       if (auto *ND = dyn_cast<NamespaceDecl>(D))
1268         if (const IdentifierInfo *II = ND->getIdentifier())
1269           if (II->isStr("std") || II->isStr("stdext"))
1270             return true;
1271       break;
1272     }
1273   }
1274
1275   return false;
1276 }
1277
1278 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) {
1279   LinkageInfo LV = RD->getLinkageAndVisibility();
1280   if (!isExternallyVisible(LV.getLinkage()))
1281     return true;
1282
1283   if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>())
1284     return false;
1285
1286   if (getTriple().isOSBinFormatCOFF()) {
1287     if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>())
1288       return false;
1289   } else {
1290     if (LV.getVisibility() != HiddenVisibility)
1291       return false;
1292   }
1293
1294   return !HasLTOVisibilityPublicStd(RD);
1295 }
1296
1297 llvm::GlobalObject::VCallVisibility
1298 CodeGenModule::GetVCallVisibilityLevel(const CXXRecordDecl *RD) {
1299   LinkageInfo LV = RD->getLinkageAndVisibility();
1300   llvm::GlobalObject::VCallVisibility TypeVis;
1301   if (!isExternallyVisible(LV.getLinkage()))
1302     TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit;
1303   else if (HasHiddenLTOVisibility(RD))
1304     TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit;
1305   else
1306     TypeVis = llvm::GlobalObject::VCallVisibilityPublic;
1307
1308   for (auto B : RD->bases())
1309     if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
1310       TypeVis = std::min(TypeVis,
1311                     GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl()));
1312
1313   for (auto B : RD->vbases())
1314     if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
1315       TypeVis = std::min(TypeVis,
1316                     GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl()));
1317
1318   return TypeVis;
1319 }
1320
1321 void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD,
1322                                            llvm::GlobalVariable *VTable,
1323                                            const VTableLayout &VTLayout) {
1324   if (!getCodeGenOpts().LTOUnit)
1325     return;
1326
1327   CharUnits PointerWidth =
1328       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1329
1330   typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint;
1331   std::vector<AddressPoint> AddressPoints;
1332   for (auto &&AP : VTLayout.getAddressPoints())
1333     AddressPoints.push_back(std::make_pair(
1334         AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) +
1335                                 AP.second.AddressPointIndex));
1336
1337   // Sort the address points for determinism.
1338   llvm::sort(AddressPoints, [this](const AddressPoint &AP1,
1339                                    const AddressPoint &AP2) {
1340     if (&AP1 == &AP2)
1341       return false;
1342
1343     std::string S1;
1344     llvm::raw_string_ostream O1(S1);
1345     getCXXABI().getMangleContext().mangleTypeName(
1346         QualType(AP1.first->getTypeForDecl(), 0), O1);
1347     O1.flush();
1348
1349     std::string S2;
1350     llvm::raw_string_ostream O2(S2);
1351     getCXXABI().getMangleContext().mangleTypeName(
1352         QualType(AP2.first->getTypeForDecl(), 0), O2);
1353     O2.flush();
1354
1355     if (S1 < S2)
1356       return true;
1357     if (S1 != S2)
1358       return false;
1359
1360     return AP1.second < AP2.second;
1361   });
1362
1363   ArrayRef<VTableComponent> Comps = VTLayout.vtable_components();
1364   for (auto AP : AddressPoints) {
1365     // Create type metadata for the address point.
1366     AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first);
1367
1368     // The class associated with each address point could also potentially be
1369     // used for indirect calls via a member function pointer, so we need to
1370     // annotate the address of each function pointer with the appropriate member
1371     // function pointer type.
1372     for (unsigned I = 0; I != Comps.size(); ++I) {
1373       if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer)
1374         continue;
1375       llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType(
1376           Context.getMemberPointerType(
1377               Comps[I].getFunctionDecl()->getType(),
1378               Context.getRecordType(AP.first).getTypePtr()));
1379       VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD);
1380     }
1381   }
1382
1383   if (getCodeGenOpts().VirtualFunctionElimination ||
1384       getCodeGenOpts().WholeProgramVTables) {
1385     llvm::GlobalObject::VCallVisibility TypeVis = GetVCallVisibilityLevel(RD);
1386     if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic)
1387       VTable->setVCallVisibilityMetadata(TypeVis);
1388   }
1389 }