]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/clang/lib/Lex/PPMacroExpansion.cpp
zfs: merge openzfs/zfs@21bd76613 (zfs-2.1-release) into stable/13
[FreeBSD/FreeBSD.git] / contrib / llvm-project / clang / lib / Lex / PPMacroExpansion.cpp
1 //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the top level handling of macro expansion for the
10 // preprocessor.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Basic/Attributes.h"
15 #include "clang/Basic/Builtins.h"
16 #include "clang/Basic/FileManager.h"
17 #include "clang/Basic/IdentifierTable.h"
18 #include "clang/Basic/LLVM.h"
19 #include "clang/Basic/LangOptions.h"
20 #include "clang/Basic/ObjCRuntime.h"
21 #include "clang/Basic/SourceLocation.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/Lex/CodeCompletionHandler.h"
24 #include "clang/Lex/DirectoryLookup.h"
25 #include "clang/Lex/ExternalPreprocessorSource.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/LexDiagnostic.h"
28 #include "clang/Lex/LiteralSupport.h"
29 #include "clang/Lex/MacroArgs.h"
30 #include "clang/Lex/MacroInfo.h"
31 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Lex/PreprocessorLexer.h"
33 #include "clang/Lex/PreprocessorOptions.h"
34 #include "clang/Lex/Token.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/DenseSet.h"
38 #include "llvm/ADT/FoldingSet.h"
39 #include "llvm/ADT/None.h"
40 #include "llvm/ADT/Optional.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/SmallString.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/StringRef.h"
45 #include "llvm/ADT/StringSwitch.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/Format.h"
49 #include "llvm/Support/Path.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstddef>
54 #include <cstring>
55 #include <ctime>
56 #include <string>
57 #include <tuple>
58 #include <utility>
59
60 using namespace clang;
61
62 MacroDirective *
63 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const {
64   if (!II->hadMacroDefinition())
65     return nullptr;
66   auto Pos = CurSubmoduleState->Macros.find(II);
67   return Pos == CurSubmoduleState->Macros.end() ? nullptr
68                                                 : Pos->second.getLatest();
69 }
70
71 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){
72   assert(MD && "MacroDirective should be non-zero!");
73   assert(!MD->getPrevious() && "Already attached to a MacroDirective history.");
74
75   MacroState &StoredMD = CurSubmoduleState->Macros[II];
76   auto *OldMD = StoredMD.getLatest();
77   MD->setPrevious(OldMD);
78   StoredMD.setLatest(MD);
79   StoredMD.overrideActiveModuleMacros(*this, II);
80
81   if (needModuleMacros()) {
82     // Track that we created a new macro directive, so we know we should
83     // consider building a ModuleMacro for it when we get to the end of
84     // the module.
85     PendingModuleMacroNames.push_back(II);
86   }
87
88   // Set up the identifier as having associated macro history.
89   II->setHasMacroDefinition(true);
90   if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
91     II->setHasMacroDefinition(false);
92   if (II->isFromAST())
93     II->setChangedSinceDeserialization();
94 }
95
96 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II,
97                                            MacroDirective *ED,
98                                            MacroDirective *MD) {
99   // Normally, when a macro is defined, it goes through appendMacroDirective()
100   // above, which chains a macro to previous defines, undefs, etc.
101   // However, in a pch, the whole macro history up to the end of the pch is
102   // stored, so ASTReader goes through this function instead.
103   // However, built-in macros are already registered in the Preprocessor
104   // ctor, and ASTWriter stops writing the macro chain at built-in macros,
105   // so in that case the chain from the pch needs to be spliced to the existing
106   // built-in.
107
108   assert(II && MD);
109   MacroState &StoredMD = CurSubmoduleState->Macros[II];
110
111   if (auto *OldMD = StoredMD.getLatest()) {
112     // shouldIgnoreMacro() in ASTWriter also stops at macros from the
113     // predefines buffer in module builds. However, in module builds, modules
114     // are loaded completely before predefines are processed, so StoredMD
115     // will be nullptr for them when they're loaded. StoredMD should only be
116     // non-nullptr for builtins read from a pch file.
117     assert(OldMD->getMacroInfo()->isBuiltinMacro() &&
118            "only built-ins should have an entry here");
119     assert(!OldMD->getPrevious() && "builtin should only have a single entry");
120     ED->setPrevious(OldMD);
121     StoredMD.setLatest(MD);
122   } else {
123     StoredMD = MD;
124   }
125
126   // Setup the identifier as having associated macro history.
127   II->setHasMacroDefinition(true);
128   if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
129     II->setHasMacroDefinition(false);
130 }
131
132 ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II,
133                                           MacroInfo *Macro,
134                                           ArrayRef<ModuleMacro *> Overrides,
135                                           bool &New) {
136   llvm::FoldingSetNodeID ID;
137   ModuleMacro::Profile(ID, Mod, II);
138
139   void *InsertPos;
140   if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) {
141     New = false;
142     return MM;
143   }
144
145   auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides);
146   ModuleMacros.InsertNode(MM, InsertPos);
147
148   // Each overridden macro is now overridden by one more macro.
149   bool HidAny = false;
150   for (auto *O : Overrides) {
151     HidAny |= (O->NumOverriddenBy == 0);
152     ++O->NumOverriddenBy;
153   }
154
155   // If we were the first overrider for any macro, it's no longer a leaf.
156   auto &LeafMacros = LeafModuleMacros[II];
157   if (HidAny) {
158     llvm::erase_if(LeafMacros,
159                    [](ModuleMacro *MM) { return MM->NumOverriddenBy != 0; });
160   }
161
162   // The new macro is always a leaf macro.
163   LeafMacros.push_back(MM);
164   // The identifier now has defined macros (that may or may not be visible).
165   II->setHasMacroDefinition(true);
166
167   New = true;
168   return MM;
169 }
170
171 ModuleMacro *Preprocessor::getModuleMacro(Module *Mod,
172                                           const IdentifierInfo *II) {
173   llvm::FoldingSetNodeID ID;
174   ModuleMacro::Profile(ID, Mod, II);
175
176   void *InsertPos;
177   return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos);
178 }
179
180 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II,
181                                          ModuleMacroInfo &Info) {
182   assert(Info.ActiveModuleMacrosGeneration !=
183              CurSubmoduleState->VisibleModules.getGeneration() &&
184          "don't need to update this macro name info");
185   Info.ActiveModuleMacrosGeneration =
186       CurSubmoduleState->VisibleModules.getGeneration();
187
188   auto Leaf = LeafModuleMacros.find(II);
189   if (Leaf == LeafModuleMacros.end()) {
190     // No imported macros at all: nothing to do.
191     return;
192   }
193
194   Info.ActiveModuleMacros.clear();
195
196   // Every macro that's locally overridden is overridden by a visible macro.
197   llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides;
198   for (auto *O : Info.OverriddenMacros)
199     NumHiddenOverrides[O] = -1;
200
201   // Collect all macros that are not overridden by a visible macro.
202   llvm::SmallVector<ModuleMacro *, 16> Worklist;
203   for (auto *LeafMM : Leaf->second) {
204     assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden");
205     if (NumHiddenOverrides.lookup(LeafMM) == 0)
206       Worklist.push_back(LeafMM);
207   }
208   while (!Worklist.empty()) {
209     auto *MM = Worklist.pop_back_val();
210     if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) {
211       // We only care about collecting definitions; undefinitions only act
212       // to override other definitions.
213       if (MM->getMacroInfo())
214         Info.ActiveModuleMacros.push_back(MM);
215     } else {
216       for (auto *O : MM->overrides())
217         if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros())
218           Worklist.push_back(O);
219     }
220   }
221   // Our reverse postorder walk found the macros in reverse order.
222   std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end());
223
224   // Determine whether the macro name is ambiguous.
225   MacroInfo *MI = nullptr;
226   bool IsSystemMacro = true;
227   bool IsAmbiguous = false;
228   if (auto *MD = Info.MD) {
229     while (MD && isa<VisibilityMacroDirective>(MD))
230       MD = MD->getPrevious();
231     if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) {
232       MI = DMD->getInfo();
233       IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation());
234     }
235   }
236   for (auto *Active : Info.ActiveModuleMacros) {
237     auto *NewMI = Active->getMacroInfo();
238
239     // Before marking the macro as ambiguous, check if this is a case where
240     // both macros are in system headers. If so, we trust that the system
241     // did not get it wrong. This also handles cases where Clang's own
242     // headers have a different spelling of certain system macros:
243     //   #define LONG_MAX __LONG_MAX__ (clang's limits.h)
244     //   #define LONG_MAX 0x7fffffffffffffffL (system's limits.h)
245     //
246     // FIXME: Remove the defined-in-system-headers check. clang's limits.h
247     // overrides the system limits.h's macros, so there's no conflict here.
248     if (MI && NewMI != MI &&
249         !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true))
250       IsAmbiguous = true;
251     IsSystemMacro &= Active->getOwningModule()->IsSystem ||
252                      SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc());
253     MI = NewMI;
254   }
255   Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro;
256 }
257
258 void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) {
259   ArrayRef<ModuleMacro*> Leaf;
260   auto LeafIt = LeafModuleMacros.find(II);
261   if (LeafIt != LeafModuleMacros.end())
262     Leaf = LeafIt->second;
263   const MacroState *State = nullptr;
264   auto Pos = CurSubmoduleState->Macros.find(II);
265   if (Pos != CurSubmoduleState->Macros.end())
266     State = &Pos->second;
267
268   llvm::errs() << "MacroState " << State << " " << II->getNameStart();
269   if (State && State->isAmbiguous(*this, II))
270     llvm::errs() << " ambiguous";
271   if (State && !State->getOverriddenMacros().empty()) {
272     llvm::errs() << " overrides";
273     for (auto *O : State->getOverriddenMacros())
274       llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
275   }
276   llvm::errs() << "\n";
277
278   // Dump local macro directives.
279   for (auto *MD = State ? State->getLatest() : nullptr; MD;
280        MD = MD->getPrevious()) {
281     llvm::errs() << " ";
282     MD->dump();
283   }
284
285   // Dump module macros.
286   llvm::DenseSet<ModuleMacro*> Active;
287   for (auto *MM : State ? State->getActiveModuleMacros(*this, II) : None)
288     Active.insert(MM);
289   llvm::DenseSet<ModuleMacro*> Visited;
290   llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end());
291   while (!Worklist.empty()) {
292     auto *MM = Worklist.pop_back_val();
293     llvm::errs() << " ModuleMacro " << MM << " "
294                  << MM->getOwningModule()->getFullModuleName();
295     if (!MM->getMacroInfo())
296       llvm::errs() << " undef";
297
298     if (Active.count(MM))
299       llvm::errs() << " active";
300     else if (!CurSubmoduleState->VisibleModules.isVisible(
301                  MM->getOwningModule()))
302       llvm::errs() << " hidden";
303     else if (MM->getMacroInfo())
304       llvm::errs() << " overridden";
305
306     if (!MM->overrides().empty()) {
307       llvm::errs() << " overrides";
308       for (auto *O : MM->overrides()) {
309         llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
310         if (Visited.insert(O).second)
311           Worklist.push_back(O);
312       }
313     }
314     llvm::errs() << "\n";
315     if (auto *MI = MM->getMacroInfo()) {
316       llvm::errs() << "  ";
317       MI->dump();
318       llvm::errs() << "\n";
319     }
320   }
321 }
322
323 /// RegisterBuiltinMacro - Register the specified identifier in the identifier
324 /// table and mark it as a builtin macro to be expanded.
325 static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){
326   // Get the identifier.
327   IdentifierInfo *Id = PP.getIdentifierInfo(Name);
328
329   // Mark it as being a macro that is builtin.
330   MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation());
331   MI->setIsBuiltinMacro();
332   PP.appendDefMacroDirective(Id, MI);
333   return Id;
334 }
335
336 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
337 /// identifier table.
338 void Preprocessor::RegisterBuiltinMacros() {
339   Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__");
340   Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__");
341   Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__");
342   Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__");
343   Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__");
344   Ident_Pragma  = RegisterBuiltinMacro(*this, "_Pragma");
345
346   // C++ Standing Document Extensions.
347   if (getLangOpts().CPlusPlus)
348     Ident__has_cpp_attribute =
349         RegisterBuiltinMacro(*this, "__has_cpp_attribute");
350   else
351     Ident__has_cpp_attribute = nullptr;
352
353   // GCC Extensions.
354   Ident__BASE_FILE__     = RegisterBuiltinMacro(*this, "__BASE_FILE__");
355   Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__");
356   Ident__TIMESTAMP__     = RegisterBuiltinMacro(*this, "__TIMESTAMP__");
357
358   // Microsoft Extensions.
359   if (getLangOpts().MicrosoftExt) {
360     Ident__identifier = RegisterBuiltinMacro(*this, "__identifier");
361     Ident__pragma = RegisterBuiltinMacro(*this, "__pragma");
362   } else {
363     Ident__identifier = nullptr;
364     Ident__pragma = nullptr;
365   }
366
367   // Clang Extensions.
368   Ident__FILE_NAME__      = RegisterBuiltinMacro(*this, "__FILE_NAME__");
369   Ident__has_feature      = RegisterBuiltinMacro(*this, "__has_feature");
370   Ident__has_extension    = RegisterBuiltinMacro(*this, "__has_extension");
371   Ident__has_builtin      = RegisterBuiltinMacro(*this, "__has_builtin");
372   Ident__has_attribute    = RegisterBuiltinMacro(*this, "__has_attribute");
373   if (!getLangOpts().CPlusPlus)
374     Ident__has_c_attribute = RegisterBuiltinMacro(*this, "__has_c_attribute");
375   else
376     Ident__has_c_attribute = nullptr;
377
378   Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute");
379   Ident__has_include      = RegisterBuiltinMacro(*this, "__has_include");
380   Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next");
381   Ident__has_warning      = RegisterBuiltinMacro(*this, "__has_warning");
382   Ident__is_identifier    = RegisterBuiltinMacro(*this, "__is_identifier");
383   Ident__is_target_arch   = RegisterBuiltinMacro(*this, "__is_target_arch");
384   Ident__is_target_vendor = RegisterBuiltinMacro(*this, "__is_target_vendor");
385   Ident__is_target_os     = RegisterBuiltinMacro(*this, "__is_target_os");
386   Ident__is_target_environment =
387       RegisterBuiltinMacro(*this, "__is_target_environment");
388
389   // Modules.
390   Ident__building_module  = RegisterBuiltinMacro(*this, "__building_module");
391   if (!getLangOpts().CurrentModule.empty())
392     Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__");
393   else
394     Ident__MODULE__ = nullptr;
395 }
396
397 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
398 /// in its expansion, currently expands to that token literally.
399 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
400                                           const IdentifierInfo *MacroIdent,
401                                           Preprocessor &PP) {
402   IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
403
404   // If the token isn't an identifier, it's always literally expanded.
405   if (!II) return true;
406
407   // If the information about this identifier is out of date, update it from
408   // the external source.
409   if (II->isOutOfDate())
410     PP.getExternalSource()->updateOutOfDateIdentifier(*II);
411
412   // If the identifier is a macro, and if that macro is enabled, it may be
413   // expanded so it's not a trivial expansion.
414   if (auto *ExpansionMI = PP.getMacroInfo(II))
415     if (ExpansionMI->isEnabled() &&
416         // Fast expanding "#define X X" is ok, because X would be disabled.
417         II != MacroIdent)
418       return false;
419
420   // If this is an object-like macro invocation, it is safe to trivially expand
421   // it.
422   if (MI->isObjectLike()) return true;
423
424   // If this is a function-like macro invocation, it's safe to trivially expand
425   // as long as the identifier is not a macro argument.
426   return !llvm::is_contained(MI->params(), II);
427 }
428
429 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be
430 /// lexed is a '('.  If so, consume the token and return true, if not, this
431 /// method should have no observable side-effect on the lexed tokens.
432 bool Preprocessor::isNextPPTokenLParen() {
433   // Do some quick tests for rejection cases.
434   unsigned Val;
435   if (CurLexer)
436     Val = CurLexer->isNextPPTokenLParen();
437   else
438     Val = CurTokenLexer->isNextTokenLParen();
439
440   if (Val == 2) {
441     // We have run off the end.  If it's a source file we don't
442     // examine enclosing ones (C99 5.1.1.2p4).  Otherwise walk up the
443     // macro stack.
444     if (CurPPLexer)
445       return false;
446     for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) {
447       if (Entry.TheLexer)
448         Val = Entry.TheLexer->isNextPPTokenLParen();
449       else
450         Val = Entry.TheTokenLexer->isNextTokenLParen();
451
452       if (Val != 2)
453         break;
454
455       // Ran off the end of a source file?
456       if (Entry.ThePPLexer)
457         return false;
458     }
459   }
460
461   // Okay, if we know that the token is a '(', lex it and return.  Otherwise we
462   // have found something that isn't a '(' or we found the end of the
463   // translation unit.  In either case, return false.
464   return Val == 1;
465 }
466
467 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
468 /// expanded as a macro, handle it and return the next token as 'Identifier'.
469 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
470                                                  const MacroDefinition &M) {
471   emitMacroExpansionWarnings(Identifier);
472
473   MacroInfo *MI = M.getMacroInfo();
474
475   // If this is a macro expansion in the "#if !defined(x)" line for the file,
476   // then the macro could expand to different things in other contexts, we need
477   // to disable the optimization in this case.
478   if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro();
479
480   // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
481   if (MI->isBuiltinMacro()) {
482     if (Callbacks)
483       Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(),
484                               /*Args=*/nullptr);
485     ExpandBuiltinMacro(Identifier);
486     return true;
487   }
488
489   /// Args - If this is a function-like macro expansion, this contains,
490   /// for each macro argument, the list of tokens that were provided to the
491   /// invocation.
492   MacroArgs *Args = nullptr;
493
494   // Remember where the end of the expansion occurred.  For an object-like
495   // macro, this is the identifier.  For a function-like macro, this is the ')'.
496   SourceLocation ExpansionEnd = Identifier.getLocation();
497
498   // If this is a function-like macro, read the arguments.
499   if (MI->isFunctionLike()) {
500     // Remember that we are now parsing the arguments to a macro invocation.
501     // Preprocessor directives used inside macro arguments are not portable, and
502     // this enables the warning.
503     InMacroArgs = true;
504     ArgMacro = &Identifier;
505
506     Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd);
507
508     // Finished parsing args.
509     InMacroArgs = false;
510     ArgMacro = nullptr;
511
512     // If there was an error parsing the arguments, bail out.
513     if (!Args) return true;
514
515     ++NumFnMacroExpanded;
516   } else {
517     ++NumMacroExpanded;
518   }
519
520   // Notice that this macro has been used.
521   markMacroAsUsed(MI);
522
523   // Remember where the token is expanded.
524   SourceLocation ExpandLoc = Identifier.getLocation();
525   SourceRange ExpansionRange(ExpandLoc, ExpansionEnd);
526
527   if (Callbacks) {
528     if (InMacroArgs) {
529       // We can have macro expansion inside a conditional directive while
530       // reading the function macro arguments. To ensure, in that case, that
531       // MacroExpands callbacks still happen in source order, queue this
532       // callback to have it happen after the function macro callback.
533       DelayedMacroExpandsCallbacks.push_back(
534           MacroExpandsInfo(Identifier, M, ExpansionRange));
535     } else {
536       Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args);
537       if (!DelayedMacroExpandsCallbacks.empty()) {
538         for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) {
539           // FIXME: We lose macro args info with delayed callback.
540           Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range,
541                                   /*Args=*/nullptr);
542         }
543         DelayedMacroExpandsCallbacks.clear();
544       }
545     }
546   }
547
548   // If the macro definition is ambiguous, complain.
549   if (M.isAmbiguous()) {
550     Diag(Identifier, diag::warn_pp_ambiguous_macro)
551       << Identifier.getIdentifierInfo();
552     Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen)
553       << Identifier.getIdentifierInfo();
554     M.forAllDefinitions([&](const MacroInfo *OtherMI) {
555       if (OtherMI != MI)
556         Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other)
557           << Identifier.getIdentifierInfo();
558     });
559   }
560
561   // If we started lexing a macro, enter the macro expansion body.
562
563   // If this macro expands to no tokens, don't bother to push it onto the
564   // expansion stack, only to take it right back off.
565   if (MI->getNumTokens() == 0) {
566     // No need for arg info.
567     if (Args) Args->destroy(*this);
568
569     // Propagate whitespace info as if we had pushed, then popped,
570     // a macro context.
571     Identifier.setFlag(Token::LeadingEmptyMacro);
572     PropagateLineStartLeadingSpaceInfo(Identifier);
573     ++NumFastMacroExpanded;
574     return false;
575   } else if (MI->getNumTokens() == 1 &&
576              isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(),
577                                            *this)) {
578     // Otherwise, if this macro expands into a single trivially-expanded
579     // token: expand it now.  This handles common cases like
580     // "#define VAL 42".
581
582     // No need for arg info.
583     if (Args) Args->destroy(*this);
584
585     // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
586     // identifier to the expanded token.
587     bool isAtStartOfLine = Identifier.isAtStartOfLine();
588     bool hasLeadingSpace = Identifier.hasLeadingSpace();
589
590     // Replace the result token.
591     Identifier = MI->getReplacementToken(0);
592
593     // Restore the StartOfLine/LeadingSpace markers.
594     Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
595     Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
596
597     // Update the tokens location to include both its expansion and physical
598     // locations.
599     SourceLocation Loc =
600       SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc,
601                                    ExpansionEnd,Identifier.getLength());
602     Identifier.setLocation(Loc);
603
604     // If this is a disabled macro or #define X X, we must mark the result as
605     // unexpandable.
606     if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) {
607       if (MacroInfo *NewMI = getMacroInfo(NewII))
608         if (!NewMI->isEnabled() || NewMI == MI) {
609           Identifier.setFlag(Token::DisableExpand);
610           // Don't warn for "#define X X" like "#define bool bool" from
611           // stdbool.h.
612           if (NewMI != MI || MI->isFunctionLike())
613             Diag(Identifier, diag::pp_disabled_macro_expansion);
614         }
615     }
616
617     // Since this is not an identifier token, it can't be macro expanded, so
618     // we're done.
619     ++NumFastMacroExpanded;
620     return true;
621   }
622
623   // Start expanding the macro.
624   EnterMacro(Identifier, ExpansionEnd, MI, Args);
625   return false;
626 }
627
628 enum Bracket {
629   Brace,
630   Paren
631 };
632
633 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the
634 /// token vector are properly nested.
635 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) {
636   SmallVector<Bracket, 8> Brackets;
637   for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(),
638                                               E = Tokens.end();
639        I != E; ++I) {
640     if (I->is(tok::l_paren)) {
641       Brackets.push_back(Paren);
642     } else if (I->is(tok::r_paren)) {
643       if (Brackets.empty() || Brackets.back() == Brace)
644         return false;
645       Brackets.pop_back();
646     } else if (I->is(tok::l_brace)) {
647       Brackets.push_back(Brace);
648     } else if (I->is(tok::r_brace)) {
649       if (Brackets.empty() || Brackets.back() == Paren)
650         return false;
651       Brackets.pop_back();
652     }
653   }
654   return Brackets.empty();
655 }
656
657 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new
658 /// vector of tokens in NewTokens.  The new number of arguments will be placed
659 /// in NumArgs and the ranges which need to surrounded in parentheses will be
660 /// in ParenHints.
661 /// Returns false if the token stream cannot be changed.  If this is because
662 /// of an initializer list starting a macro argument, the range of those
663 /// initializer lists will be place in InitLists.
664 static bool GenerateNewArgTokens(Preprocessor &PP,
665                                  SmallVectorImpl<Token> &OldTokens,
666                                  SmallVectorImpl<Token> &NewTokens,
667                                  unsigned &NumArgs,
668                                  SmallVectorImpl<SourceRange> &ParenHints,
669                                  SmallVectorImpl<SourceRange> &InitLists) {
670   if (!CheckMatchedBrackets(OldTokens))
671     return false;
672
673   // Once it is known that the brackets are matched, only a simple count of the
674   // braces is needed.
675   unsigned Braces = 0;
676
677   // First token of a new macro argument.
678   SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin();
679
680   // First closing brace in a new macro argument.  Used to generate
681   // SourceRanges for InitLists.
682   SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end();
683   NumArgs = 0;
684   Token TempToken;
685   // Set to true when a macro separator token is found inside a braced list.
686   // If true, the fixed argument spans multiple old arguments and ParenHints
687   // will be updated.
688   bool FoundSeparatorToken = false;
689   for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(),
690                                         E = OldTokens.end();
691        I != E; ++I) {
692     if (I->is(tok::l_brace)) {
693       ++Braces;
694     } else if (I->is(tok::r_brace)) {
695       --Braces;
696       if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken)
697         ClosingBrace = I;
698     } else if (I->is(tok::eof)) {
699       // EOF token is used to separate macro arguments
700       if (Braces != 0) {
701         // Assume comma separator is actually braced list separator and change
702         // it back to a comma.
703         FoundSeparatorToken = true;
704         I->setKind(tok::comma);
705         I->setLength(1);
706       } else { // Braces == 0
707         // Separator token still separates arguments.
708         ++NumArgs;
709
710         // If the argument starts with a brace, it can't be fixed with
711         // parentheses.  A different diagnostic will be given.
712         if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) {
713           InitLists.push_back(
714               SourceRange(ArgStartIterator->getLocation(),
715                           PP.getLocForEndOfToken(ClosingBrace->getLocation())));
716           ClosingBrace = E;
717         }
718
719         // Add left paren
720         if (FoundSeparatorToken) {
721           TempToken.startToken();
722           TempToken.setKind(tok::l_paren);
723           TempToken.setLocation(ArgStartIterator->getLocation());
724           TempToken.setLength(0);
725           NewTokens.push_back(TempToken);
726         }
727
728         // Copy over argument tokens
729         NewTokens.insert(NewTokens.end(), ArgStartIterator, I);
730
731         // Add right paren and store the paren locations in ParenHints
732         if (FoundSeparatorToken) {
733           SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation());
734           TempToken.startToken();
735           TempToken.setKind(tok::r_paren);
736           TempToken.setLocation(Loc);
737           TempToken.setLength(0);
738           NewTokens.push_back(TempToken);
739           ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(),
740                                            Loc));
741         }
742
743         // Copy separator token
744         NewTokens.push_back(*I);
745
746         // Reset values
747         ArgStartIterator = I + 1;
748         FoundSeparatorToken = false;
749       }
750     }
751   }
752
753   return !ParenHints.empty() && InitLists.empty();
754 }
755
756 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
757 /// token is the '(' of the macro, this method is invoked to read all of the
758 /// actual arguments specified for the macro invocation.  This returns null on
759 /// error.
760 MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName,
761                                                    MacroInfo *MI,
762                                                    SourceLocation &MacroEnd) {
763   // The number of fixed arguments to parse.
764   unsigned NumFixedArgsLeft = MI->getNumParams();
765   bool isVariadic = MI->isVariadic();
766
767   // Outer loop, while there are more arguments, keep reading them.
768   Token Tok;
769
770   // Read arguments as unexpanded tokens.  This avoids issues, e.g., where
771   // an argument value in a macro could expand to ',' or '(' or ')'.
772   LexUnexpandedToken(Tok);
773   assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?");
774
775   // ArgTokens - Build up a list of tokens that make up each argument.  Each
776   // argument is separated by an EOF token.  Use a SmallVector so we can avoid
777   // heap allocations in the common case.
778   SmallVector<Token, 64> ArgTokens;
779   bool ContainsCodeCompletionTok = false;
780   bool FoundElidedComma = false;
781
782   SourceLocation TooManyArgsLoc;
783
784   unsigned NumActuals = 0;
785   while (Tok.isNot(tok::r_paren)) {
786     if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod))
787       break;
788
789     assert(Tok.isOneOf(tok::l_paren, tok::comma) &&
790            "only expect argument separators here");
791
792     size_t ArgTokenStart = ArgTokens.size();
793     SourceLocation ArgStartLoc = Tok.getLocation();
794
795     // C99 6.10.3p11: Keep track of the number of l_parens we have seen.  Note
796     // that we already consumed the first one.
797     unsigned NumParens = 0;
798
799     while (true) {
800       // Read arguments as unexpanded tokens.  This avoids issues, e.g., where
801       // an argument value in a macro could expand to ',' or '(' or ')'.
802       LexUnexpandedToken(Tok);
803
804       if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n"
805         if (!ContainsCodeCompletionTok) {
806           Diag(MacroName, diag::err_unterm_macro_invoc);
807           Diag(MI->getDefinitionLoc(), diag::note_macro_here)
808             << MacroName.getIdentifierInfo();
809           // Do not lose the EOF/EOD.  Return it to the client.
810           MacroName = Tok;
811           return nullptr;
812         }
813         // Do not lose the EOF/EOD.
814         auto Toks = std::make_unique<Token[]>(1);
815         Toks[0] = Tok;
816         EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false);
817         break;
818       } else if (Tok.is(tok::r_paren)) {
819         // If we found the ) token, the macro arg list is done.
820         if (NumParens-- == 0) {
821           MacroEnd = Tok.getLocation();
822           if (!ArgTokens.empty() &&
823               ArgTokens.back().commaAfterElided()) {
824             FoundElidedComma = true;
825           }
826           break;
827         }
828       } else if (Tok.is(tok::l_paren)) {
829         ++NumParens;
830       } else if (Tok.is(tok::comma)) {
831         // In Microsoft-compatibility mode, single commas from nested macro
832         // expansions should not be considered as argument separators. We test
833         // for this with the IgnoredComma token flag.
834         if (Tok.getFlags() & Token::IgnoredComma) {
835           // However, in MSVC's preprocessor, subsequent expansions do treat
836           // these commas as argument separators. This leads to a common
837           // workaround used in macros that need to work in both MSVC and
838           // compliant preprocessors. Therefore, the IgnoredComma flag can only
839           // apply once to any given token.
840           Tok.clearFlag(Token::IgnoredComma);
841         } else if (NumParens == 0) {
842           // Comma ends this argument if there are more fixed arguments
843           // expected. However, if this is a variadic macro, and this is part of
844           // the variadic part, then the comma is just an argument token.
845           if (!isVariadic)
846             break;
847           if (NumFixedArgsLeft > 1)
848             break;
849         }
850       } else if (Tok.is(tok::comment) && !KeepMacroComments) {
851         // If this is a comment token in the argument list and we're just in
852         // -C mode (not -CC mode), discard the comment.
853         continue;
854       } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) {
855         // Reading macro arguments can cause macros that we are currently
856         // expanding from to be popped off the expansion stack.  Doing so causes
857         // them to be reenabled for expansion.  Here we record whether any
858         // identifiers we lex as macro arguments correspond to disabled macros.
859         // If so, we mark the token as noexpand.  This is a subtle aspect of
860         // C99 6.10.3.4p2.
861         if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo()))
862           if (!MI->isEnabled())
863             Tok.setFlag(Token::DisableExpand);
864       } else if (Tok.is(tok::code_completion)) {
865         ContainsCodeCompletionTok = true;
866         if (CodeComplete)
867           CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(),
868                                                   MI, NumActuals);
869         // Don't mark that we reached the code-completion point because the
870         // parser is going to handle the token and there will be another
871         // code-completion callback.
872       }
873
874       ArgTokens.push_back(Tok);
875     }
876
877     // If this was an empty argument list foo(), don't add this as an empty
878     // argument.
879     if (ArgTokens.empty() && Tok.getKind() == tok::r_paren)
880       break;
881
882     // If this is not a variadic macro, and too many args were specified, emit
883     // an error.
884     if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) {
885       if (ArgTokens.size() != ArgTokenStart)
886         TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation();
887       else
888         TooManyArgsLoc = ArgStartLoc;
889     }
890
891     // Empty arguments are standard in C99 and C++0x, and are supported as an
892     // extension in other modes.
893     if (ArgTokens.size() == ArgTokenStart && !getLangOpts().C99)
894       Diag(Tok, getLangOpts().CPlusPlus11
895                     ? diag::warn_cxx98_compat_empty_fnmacro_arg
896                     : diag::ext_empty_fnmacro_arg);
897
898     // Add a marker EOF token to the end of the token list for this argument.
899     Token EOFTok;
900     EOFTok.startToken();
901     EOFTok.setKind(tok::eof);
902     EOFTok.setLocation(Tok.getLocation());
903     EOFTok.setLength(0);
904     ArgTokens.push_back(EOFTok);
905     ++NumActuals;
906     if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0)
907       --NumFixedArgsLeft;
908   }
909
910   // Okay, we either found the r_paren.  Check to see if we parsed too few
911   // arguments.
912   unsigned MinArgsExpected = MI->getNumParams();
913
914   // If this is not a variadic macro, and too many args were specified, emit
915   // an error.
916   if (!isVariadic && NumActuals > MinArgsExpected &&
917       !ContainsCodeCompletionTok) {
918     // Emit the diagnostic at the macro name in case there is a missing ).
919     // Emitting it at the , could be far away from the macro name.
920     Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc);
921     Diag(MI->getDefinitionLoc(), diag::note_macro_here)
922       << MacroName.getIdentifierInfo();
923
924     // Commas from braced initializer lists will be treated as argument
925     // separators inside macros.  Attempt to correct for this with parentheses.
926     // TODO: See if this can be generalized to angle brackets for templates
927     // inside macro arguments.
928
929     SmallVector<Token, 4> FixedArgTokens;
930     unsigned FixedNumArgs = 0;
931     SmallVector<SourceRange, 4> ParenHints, InitLists;
932     if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs,
933                               ParenHints, InitLists)) {
934       if (!InitLists.empty()) {
935         DiagnosticBuilder DB =
936             Diag(MacroName,
937                  diag::note_init_list_at_beginning_of_macro_argument);
938         for (SourceRange Range : InitLists)
939           DB << Range;
940       }
941       return nullptr;
942     }
943     if (FixedNumArgs != MinArgsExpected)
944       return nullptr;
945
946     DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro);
947     for (SourceRange ParenLocation : ParenHints) {
948       DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "(");
949       DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")");
950     }
951     ArgTokens.swap(FixedArgTokens);
952     NumActuals = FixedNumArgs;
953   }
954
955   // See MacroArgs instance var for description of this.
956   bool isVarargsElided = false;
957
958   if (ContainsCodeCompletionTok) {
959     // Recover from not-fully-formed macro invocation during code-completion.
960     Token EOFTok;
961     EOFTok.startToken();
962     EOFTok.setKind(tok::eof);
963     EOFTok.setLocation(Tok.getLocation());
964     EOFTok.setLength(0);
965     for (; NumActuals < MinArgsExpected; ++NumActuals)
966       ArgTokens.push_back(EOFTok);
967   }
968
969   if (NumActuals < MinArgsExpected) {
970     // There are several cases where too few arguments is ok, handle them now.
971     if (NumActuals == 0 && MinArgsExpected == 1) {
972       // #define A(X)  or  #define A(...)   ---> A()
973
974       // If there is exactly one argument, and that argument is missing,
975       // then we have an empty "()" argument empty list.  This is fine, even if
976       // the macro expects one argument (the argument is just empty).
977       isVarargsElided = MI->isVariadic();
978     } else if ((FoundElidedComma || MI->isVariadic()) &&
979                (NumActuals+1 == MinArgsExpected ||  // A(x, ...) -> A(X)
980                 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A()
981       // Varargs where the named vararg parameter is missing: OK as extension.
982       //   #define A(x, ...)
983       //   A("blah")
984       //
985       // If the macro contains the comma pasting extension, the diagnostic
986       // is suppressed; we know we'll get another diagnostic later.
987       if (!MI->hasCommaPasting()) {
988         // C++20 allows this construct, but standards before C++20 and all C
989         // standards do not allow the construct (we allow it as an extension).
990         Diag(Tok, getLangOpts().CPlusPlus20
991                       ? diag::warn_cxx17_compat_missing_varargs_arg
992                       : diag::ext_missing_varargs_arg);
993         Diag(MI->getDefinitionLoc(), diag::note_macro_here)
994           << MacroName.getIdentifierInfo();
995       }
996
997       // Remember this occurred, allowing us to elide the comma when used for
998       // cases like:
999       //   #define A(x, foo...) blah(a, ## foo)
1000       //   #define B(x, ...) blah(a, ## __VA_ARGS__)
1001       //   #define C(...) blah(a, ## __VA_ARGS__)
1002       //  A(x) B(x) C()
1003       isVarargsElided = true;
1004     } else if (!ContainsCodeCompletionTok) {
1005       // Otherwise, emit the error.
1006       Diag(Tok, diag::err_too_few_args_in_macro_invoc);
1007       Diag(MI->getDefinitionLoc(), diag::note_macro_here)
1008         << MacroName.getIdentifierInfo();
1009       return nullptr;
1010     }
1011
1012     // Add a marker EOF token to the end of the token list for this argument.
1013     SourceLocation EndLoc = Tok.getLocation();
1014     Tok.startToken();
1015     Tok.setKind(tok::eof);
1016     Tok.setLocation(EndLoc);
1017     Tok.setLength(0);
1018     ArgTokens.push_back(Tok);
1019
1020     // If we expect two arguments, add both as empty.
1021     if (NumActuals == 0 && MinArgsExpected == 2)
1022       ArgTokens.push_back(Tok);
1023
1024   } else if (NumActuals > MinArgsExpected && !MI->isVariadic() &&
1025              !ContainsCodeCompletionTok) {
1026     // Emit the diagnostic at the macro name in case there is a missing ).
1027     // Emitting it at the , could be far away from the macro name.
1028     Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
1029     Diag(MI->getDefinitionLoc(), diag::note_macro_here)
1030       << MacroName.getIdentifierInfo();
1031     return nullptr;
1032   }
1033
1034   return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this);
1035 }
1036
1037 /// Keeps macro expanded tokens for TokenLexers.
1038 //
1039 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
1040 /// going to lex in the cache and when it finishes the tokens are removed
1041 /// from the end of the cache.
1042 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer,
1043                                               ArrayRef<Token> tokens) {
1044   assert(tokLexer);
1045   if (tokens.empty())
1046     return nullptr;
1047
1048   size_t newIndex = MacroExpandedTokens.size();
1049   bool cacheNeedsToGrow = tokens.size() >
1050                       MacroExpandedTokens.capacity()-MacroExpandedTokens.size();
1051   MacroExpandedTokens.append(tokens.begin(), tokens.end());
1052
1053   if (cacheNeedsToGrow) {
1054     // Go through all the TokenLexers whose 'Tokens' pointer points in the
1055     // buffer and update the pointers to the (potential) new buffer array.
1056     for (const auto &Lexer : MacroExpandingLexersStack) {
1057       TokenLexer *prevLexer;
1058       size_t tokIndex;
1059       std::tie(prevLexer, tokIndex) = Lexer;
1060       prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex;
1061     }
1062   }
1063
1064   MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex));
1065   return MacroExpandedTokens.data() + newIndex;
1066 }
1067
1068 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() {
1069   assert(!MacroExpandingLexersStack.empty());
1070   size_t tokIndex = MacroExpandingLexersStack.back().second;
1071   assert(tokIndex < MacroExpandedTokens.size());
1072   // Pop the cached macro expanded tokens from the end.
1073   MacroExpandedTokens.resize(tokIndex);
1074   MacroExpandingLexersStack.pop_back();
1075 }
1076
1077 /// ComputeDATE_TIME - Compute the current time, enter it into the specified
1078 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of
1079 /// the identifier tokens inserted.
1080 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
1081                              Preprocessor &PP) {
1082   time_t TT = time(nullptr);
1083   struct tm *TM = localtime(&TT);
1084
1085   static const char * const Months[] = {
1086     "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
1087   };
1088
1089   {
1090     SmallString<32> TmpBuffer;
1091     llvm::raw_svector_ostream TmpStream(TmpBuffer);
1092     TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon],
1093                               TM->tm_mday, TM->tm_year + 1900);
1094     Token TmpTok;
1095     TmpTok.startToken();
1096     PP.CreateString(TmpStream.str(), TmpTok);
1097     DATELoc = TmpTok.getLocation();
1098   }
1099
1100   {
1101     SmallString<32> TmpBuffer;
1102     llvm::raw_svector_ostream TmpStream(TmpBuffer);
1103     TmpStream << llvm::format("\"%02d:%02d:%02d\"",
1104                               TM->tm_hour, TM->tm_min, TM->tm_sec);
1105     Token TmpTok;
1106     TmpTok.startToken();
1107     PP.CreateString(TmpStream.str(), TmpTok);
1108     TIMELoc = TmpTok.getLocation();
1109   }
1110 }
1111
1112 /// HasFeature - Return true if we recognize and implement the feature
1113 /// specified by the identifier as a standard language feature.
1114 static bool HasFeature(const Preprocessor &PP, StringRef Feature) {
1115   const LangOptions &LangOpts = PP.getLangOpts();
1116
1117   // Normalize the feature name, __foo__ becomes foo.
1118   if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4)
1119     Feature = Feature.substr(2, Feature.size() - 4);
1120
1121 #define FEATURE(Name, Predicate) .Case(#Name, Predicate)
1122   return llvm::StringSwitch<bool>(Feature)
1123 #include "clang/Basic/Features.def"
1124       .Default(false);
1125 #undef FEATURE
1126 }
1127
1128 /// HasExtension - Return true if we recognize and implement the feature
1129 /// specified by the identifier, either as an extension or a standard language
1130 /// feature.
1131 static bool HasExtension(const Preprocessor &PP, StringRef Extension) {
1132   if (HasFeature(PP, Extension))
1133     return true;
1134
1135   // If the use of an extension results in an error diagnostic, extensions are
1136   // effectively unavailable, so just return false here.
1137   if (PP.getDiagnostics().getExtensionHandlingBehavior() >=
1138       diag::Severity::Error)
1139     return false;
1140
1141   const LangOptions &LangOpts = PP.getLangOpts();
1142
1143   // Normalize the extension name, __foo__ becomes foo.
1144   if (Extension.startswith("__") && Extension.endswith("__") &&
1145       Extension.size() >= 4)
1146     Extension = Extension.substr(2, Extension.size() - 4);
1147
1148     // Because we inherit the feature list from HasFeature, this string switch
1149     // must be less restrictive than HasFeature's.
1150 #define EXTENSION(Name, Predicate) .Case(#Name, Predicate)
1151   return llvm::StringSwitch<bool>(Extension)
1152 #include "clang/Basic/Features.def"
1153       .Default(false);
1154 #undef EXTENSION
1155 }
1156
1157 /// EvaluateHasIncludeCommon - Process a '__has_include("path")'
1158 /// or '__has_include_next("path")' expression.
1159 /// Returns true if successful.
1160 static bool EvaluateHasIncludeCommon(Token &Tok,
1161                                      IdentifierInfo *II, Preprocessor &PP,
1162                                      const DirectoryLookup *LookupFrom,
1163                                      const FileEntry *LookupFromFile) {
1164   // Save the location of the current token.  If a '(' is later found, use
1165   // that location.  If not, use the end of this location instead.
1166   SourceLocation LParenLoc = Tok.getLocation();
1167
1168   // These expressions are only allowed within a preprocessor directive.
1169   if (!PP.isParsingIfOrElifDirective()) {
1170     PP.Diag(LParenLoc, diag::err_pp_directive_required) << II;
1171     // Return a valid identifier token.
1172     assert(Tok.is(tok::identifier));
1173     Tok.setIdentifierInfo(II);
1174     return false;
1175   }
1176
1177   // Get '('. If we don't have a '(', try to form a header-name token.
1178   do {
1179     if (PP.LexHeaderName(Tok))
1180       return false;
1181   } while (Tok.getKind() == tok::comment);
1182
1183   // Ensure we have a '('.
1184   if (Tok.isNot(tok::l_paren)) {
1185     // No '(', use end of last token.
1186     LParenLoc = PP.getLocForEndOfToken(LParenLoc);
1187     PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren;
1188     // If the next token looks like a filename or the start of one,
1189     // assume it is and process it as such.
1190     if (Tok.isNot(tok::header_name))
1191       return false;
1192   } else {
1193     // Save '(' location for possible missing ')' message.
1194     LParenLoc = Tok.getLocation();
1195     if (PP.LexHeaderName(Tok))
1196       return false;
1197   }
1198
1199   if (Tok.isNot(tok::header_name)) {
1200     PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename);
1201     return false;
1202   }
1203
1204   // Reserve a buffer to get the spelling.
1205   SmallString<128> FilenameBuffer;
1206   bool Invalid = false;
1207   StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
1208   if (Invalid)
1209     return false;
1210
1211   SourceLocation FilenameLoc = Tok.getLocation();
1212
1213   // Get ')'.
1214   PP.LexNonComment(Tok);
1215
1216   // Ensure we have a trailing ).
1217   if (Tok.isNot(tok::r_paren)) {
1218     PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after)
1219         << II << tok::r_paren;
1220     PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1221     return false;
1222   }
1223
1224   bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
1225   // If GetIncludeFilenameSpelling set the start ptr to null, there was an
1226   // error.
1227   if (Filename.empty())
1228     return false;
1229
1230   // Search include directories.
1231   Optional<FileEntryRef> File =
1232       PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile,
1233                     nullptr, nullptr, nullptr, nullptr, nullptr, nullptr);
1234
1235   if (PPCallbacks *Callbacks = PP.getPPCallbacks()) {
1236     SrcMgr::CharacteristicKind FileType = SrcMgr::C_User;
1237     if (File)
1238       FileType =
1239           PP.getHeaderSearchInfo().getFileDirFlavor(&File->getFileEntry());
1240     Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType);
1241   }
1242
1243   // Get the result value.  A result of true means the file exists.
1244   return File.hasValue();
1245 }
1246
1247 /// EvaluateHasInclude - Process a '__has_include("path")' expression.
1248 /// Returns true if successful.
1249 static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II,
1250                                Preprocessor &PP) {
1251   return EvaluateHasIncludeCommon(Tok, II, PP, nullptr, nullptr);
1252 }
1253
1254 /// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression.
1255 /// Returns true if successful.
1256 static bool EvaluateHasIncludeNext(Token &Tok,
1257                                    IdentifierInfo *II, Preprocessor &PP) {
1258   // __has_include_next is like __has_include, except that we start
1259   // searching after the current found directory.  If we can't do this,
1260   // issue a diagnostic.
1261   // FIXME: Factor out duplication with
1262   // Preprocessor::HandleIncludeNextDirective.
1263   const DirectoryLookup *Lookup = PP.GetCurDirLookup();
1264   const FileEntry *LookupFromFile = nullptr;
1265   if (PP.isInPrimaryFile() && PP.getLangOpts().IsHeaderFile) {
1266     // If the main file is a header, then it's either for PCH/AST generation,
1267     // or libclang opened it. Either way, handle it as a normal include below
1268     // and do not complain about __has_include_next.
1269   } else if (PP.isInPrimaryFile()) {
1270     Lookup = nullptr;
1271     PP.Diag(Tok, diag::pp_include_next_in_primary);
1272   } else if (PP.getCurrentLexerSubmodule()) {
1273     // Start looking up in the directory *after* the one in which the current
1274     // file would be found, if any.
1275     assert(PP.getCurrentLexer() && "#include_next directive in macro?");
1276     LookupFromFile = PP.getCurrentLexer()->getFileEntry();
1277     Lookup = nullptr;
1278   } else if (!Lookup) {
1279     PP.Diag(Tok, diag::pp_include_next_absolute_path);
1280   } else {
1281     // Start looking up in the next directory.
1282     ++Lookup;
1283   }
1284
1285   return EvaluateHasIncludeCommon(Tok, II, PP, Lookup, LookupFromFile);
1286 }
1287
1288 /// Process single-argument builtin feature-like macros that return
1289 /// integer values.
1290 static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS,
1291                                             Token &Tok, IdentifierInfo *II,
1292                                             Preprocessor &PP, bool ExpandArgs,
1293                                             llvm::function_ref<
1294                                               int(Token &Tok,
1295                                                   bool &HasLexedNextTok)> Op) {
1296   // Parse the initial '('.
1297   PP.LexUnexpandedToken(Tok);
1298   if (Tok.isNot(tok::l_paren)) {
1299     PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II
1300                                                             << tok::l_paren;
1301
1302     // Provide a dummy '0' value on output stream to elide further errors.
1303     if (!Tok.isOneOf(tok::eof, tok::eod)) {
1304       OS << 0;
1305       Tok.setKind(tok::numeric_constant);
1306     }
1307     return;
1308   }
1309
1310   unsigned ParenDepth = 1;
1311   SourceLocation LParenLoc = Tok.getLocation();
1312   llvm::Optional<int> Result;
1313
1314   Token ResultTok;
1315   bool SuppressDiagnostic = false;
1316   while (true) {
1317     // Parse next token.
1318     if (ExpandArgs)
1319       PP.Lex(Tok);
1320     else
1321       PP.LexUnexpandedToken(Tok);
1322
1323 already_lexed:
1324     switch (Tok.getKind()) {
1325       case tok::eof:
1326       case tok::eod:
1327         // Don't provide even a dummy value if the eod or eof marker is
1328         // reached.  Simply provide a diagnostic.
1329         PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc);
1330         return;
1331
1332       case tok::comma:
1333         if (!SuppressDiagnostic) {
1334           PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc);
1335           SuppressDiagnostic = true;
1336         }
1337         continue;
1338
1339       case tok::l_paren:
1340         ++ParenDepth;
1341         if (Result.hasValue())
1342           break;
1343         if (!SuppressDiagnostic) {
1344           PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II;
1345           SuppressDiagnostic = true;
1346         }
1347         continue;
1348
1349       case tok::r_paren:
1350         if (--ParenDepth > 0)
1351           continue;
1352
1353         // The last ')' has been reached; return the value if one found or
1354         // a diagnostic and a dummy value.
1355         if (Result.hasValue()) {
1356           OS << Result.getValue();
1357           // For strict conformance to __has_cpp_attribute rules, use 'L'
1358           // suffix for dated literals.
1359           if (Result.getValue() > 1)
1360             OS << 'L';
1361         } else {
1362           OS << 0;
1363           if (!SuppressDiagnostic)
1364             PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc);
1365         }
1366         Tok.setKind(tok::numeric_constant);
1367         return;
1368
1369       default: {
1370         // Parse the macro argument, if one not found so far.
1371         if (Result.hasValue())
1372           break;
1373
1374         bool HasLexedNextToken = false;
1375         Result = Op(Tok, HasLexedNextToken);
1376         ResultTok = Tok;
1377         if (HasLexedNextToken)
1378           goto already_lexed;
1379         continue;
1380       }
1381     }
1382
1383     // Diagnose missing ')'.
1384     if (!SuppressDiagnostic) {
1385       if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) {
1386         if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo())
1387           Diag << LastII;
1388         else
1389           Diag << ResultTok.getKind();
1390         Diag << tok::r_paren << ResultTok.getLocation();
1391       }
1392       PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1393       SuppressDiagnostic = true;
1394     }
1395   }
1396 }
1397
1398 /// Helper function to return the IdentifierInfo structure of a Token
1399 /// or generate a diagnostic if none available.
1400 static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok,
1401                                                    Preprocessor &PP,
1402                                                    signed DiagID) {
1403   IdentifierInfo *II;
1404   if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo()))
1405     return II;
1406
1407   PP.Diag(Tok.getLocation(), DiagID);
1408   return nullptr;
1409 }
1410
1411 /// Implements the __is_target_arch builtin macro.
1412 static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) {
1413   std::string ArchName = II->getName().lower() + "--";
1414   llvm::Triple Arch(ArchName);
1415   const llvm::Triple &TT = TI.getTriple();
1416   if (TT.isThumb()) {
1417     // arm matches thumb or thumbv7. armv7 matches thumbv7.
1418     if ((Arch.getSubArch() == llvm::Triple::NoSubArch ||
1419          Arch.getSubArch() == TT.getSubArch()) &&
1420         ((TT.getArch() == llvm::Triple::thumb &&
1421           Arch.getArch() == llvm::Triple::arm) ||
1422          (TT.getArch() == llvm::Triple::thumbeb &&
1423           Arch.getArch() == llvm::Triple::armeb)))
1424       return true;
1425   }
1426   // Check the parsed arch when it has no sub arch to allow Clang to
1427   // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7.
1428   return (Arch.getSubArch() == llvm::Triple::NoSubArch ||
1429           Arch.getSubArch() == TT.getSubArch()) &&
1430          Arch.getArch() == TT.getArch();
1431 }
1432
1433 /// Implements the __is_target_vendor builtin macro.
1434 static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) {
1435   StringRef VendorName = TI.getTriple().getVendorName();
1436   if (VendorName.empty())
1437     VendorName = "unknown";
1438   return VendorName.equals_insensitive(II->getName());
1439 }
1440
1441 /// Implements the __is_target_os builtin macro.
1442 static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) {
1443   std::string OSName =
1444       (llvm::Twine("unknown-unknown-") + II->getName().lower()).str();
1445   llvm::Triple OS(OSName);
1446   if (OS.getOS() == llvm::Triple::Darwin) {
1447     // Darwin matches macos, ios, etc.
1448     return TI.getTriple().isOSDarwin();
1449   }
1450   return TI.getTriple().getOS() == OS.getOS();
1451 }
1452
1453 /// Implements the __is_target_environment builtin macro.
1454 static bool isTargetEnvironment(const TargetInfo &TI,
1455                                 const IdentifierInfo *II) {
1456   std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str();
1457   llvm::Triple Env(EnvName);
1458   return TI.getTriple().getEnvironment() == Env.getEnvironment();
1459 }
1460
1461 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
1462 /// as a builtin macro, handle it and return the next token as 'Tok'.
1463 void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
1464   // Figure out which token this is.
1465   IdentifierInfo *II = Tok.getIdentifierInfo();
1466   assert(II && "Can't be a macro without id info!");
1467
1468   // If this is an _Pragma or Microsoft __pragma directive, expand it,
1469   // invoke the pragma handler, then lex the token after it.
1470   if (II == Ident_Pragma)
1471     return Handle_Pragma(Tok);
1472   else if (II == Ident__pragma) // in non-MS mode this is null
1473     return HandleMicrosoft__pragma(Tok);
1474
1475   ++NumBuiltinMacroExpanded;
1476
1477   SmallString<128> TmpBuffer;
1478   llvm::raw_svector_ostream OS(TmpBuffer);
1479
1480   // Set up the return result.
1481   Tok.setIdentifierInfo(nullptr);
1482   Tok.clearFlag(Token::NeedsCleaning);
1483   bool IsAtStartOfLine = Tok.isAtStartOfLine();
1484   bool HasLeadingSpace = Tok.hasLeadingSpace();
1485
1486   if (II == Ident__LINE__) {
1487     // C99 6.10.8: "__LINE__: The presumed line number (within the current
1488     // source file) of the current source line (an integer constant)".  This can
1489     // be affected by #line.
1490     SourceLocation Loc = Tok.getLocation();
1491
1492     // Advance to the location of the first _, this might not be the first byte
1493     // of the token if it starts with an escaped newline.
1494     Loc = AdvanceToTokenCharacter(Loc, 0);
1495
1496     // One wrinkle here is that GCC expands __LINE__ to location of the *end* of
1497     // a macro expansion.  This doesn't matter for object-like macros, but
1498     // can matter for a function-like macro that expands to contain __LINE__.
1499     // Skip down through expansion points until we find a file loc for the
1500     // end of the expansion history.
1501     Loc = SourceMgr.getExpansionRange(Loc).getEnd();
1502     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc);
1503
1504     // __LINE__ expands to a simple numeric value.
1505     OS << (PLoc.isValid()? PLoc.getLine() : 1);
1506     Tok.setKind(tok::numeric_constant);
1507   } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ ||
1508              II == Ident__FILE_NAME__) {
1509     // C99 6.10.8: "__FILE__: The presumed name of the current source file (a
1510     // character string literal)". This can be affected by #line.
1511     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1512
1513     // __BASE_FILE__ is a GNU extension that returns the top of the presumed
1514     // #include stack instead of the current file.
1515     if (II == Ident__BASE_FILE__ && PLoc.isValid()) {
1516       SourceLocation NextLoc = PLoc.getIncludeLoc();
1517       while (NextLoc.isValid()) {
1518         PLoc = SourceMgr.getPresumedLoc(NextLoc);
1519         if (PLoc.isInvalid())
1520           break;
1521
1522         NextLoc = PLoc.getIncludeLoc();
1523       }
1524     }
1525
1526     // Escape this filename.  Turn '\' -> '\\' '"' -> '\"'
1527     SmallString<256> FN;
1528     if (PLoc.isValid()) {
1529       // __FILE_NAME__ is a Clang-specific extension that expands to the
1530       // the last part of __FILE__.
1531       if (II == Ident__FILE_NAME__) {
1532         // Try to get the last path component, failing that return the original
1533         // presumed location.
1534         StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename());
1535         if (PLFileName != "")
1536           FN += PLFileName;
1537         else
1538           FN += PLoc.getFilename();
1539       } else {
1540         FN += PLoc.getFilename();
1541       }
1542       getLangOpts().remapPathPrefix(FN);
1543       Lexer::Stringify(FN);
1544       OS << '"' << FN << '"';
1545     }
1546     Tok.setKind(tok::string_literal);
1547   } else if (II == Ident__DATE__) {
1548     Diag(Tok.getLocation(), diag::warn_pp_date_time);
1549     if (!DATELoc.isValid())
1550       ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1551     Tok.setKind(tok::string_literal);
1552     Tok.setLength(strlen("\"Mmm dd yyyy\""));
1553     Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(),
1554                                                  Tok.getLocation(),
1555                                                  Tok.getLength()));
1556     return;
1557   } else if (II == Ident__TIME__) {
1558     Diag(Tok.getLocation(), diag::warn_pp_date_time);
1559     if (!TIMELoc.isValid())
1560       ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1561     Tok.setKind(tok::string_literal);
1562     Tok.setLength(strlen("\"hh:mm:ss\""));
1563     Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(),
1564                                                  Tok.getLocation(),
1565                                                  Tok.getLength()));
1566     return;
1567   } else if (II == Ident__INCLUDE_LEVEL__) {
1568     // Compute the presumed include depth of this token.  This can be affected
1569     // by GNU line markers.
1570     unsigned Depth = 0;
1571
1572     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1573     if (PLoc.isValid()) {
1574       PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1575       for (; PLoc.isValid(); ++Depth)
1576         PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1577     }
1578
1579     // __INCLUDE_LEVEL__ expands to a simple numeric value.
1580     OS << Depth;
1581     Tok.setKind(tok::numeric_constant);
1582   } else if (II == Ident__TIMESTAMP__) {
1583     Diag(Tok.getLocation(), diag::warn_pp_date_time);
1584     // MSVC, ICC, GCC, VisualAge C++ extension.  The generated string should be
1585     // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
1586
1587     // Get the file that we are lexing out of.  If we're currently lexing from
1588     // a macro, dig into the include stack.
1589     const FileEntry *CurFile = nullptr;
1590     PreprocessorLexer *TheLexer = getCurrentFileLexer();
1591
1592     if (TheLexer)
1593       CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID());
1594
1595     const char *Result;
1596     if (CurFile) {
1597       time_t TT = CurFile->getModificationTime();
1598       struct tm *TM = localtime(&TT);
1599       Result = asctime(TM);
1600     } else {
1601       Result = "??? ??? ?? ??:??:?? ????\n";
1602     }
1603     // Surround the string with " and strip the trailing newline.
1604     OS << '"' << StringRef(Result).drop_back() << '"';
1605     Tok.setKind(tok::string_literal);
1606   } else if (II == Ident__COUNTER__) {
1607     // __COUNTER__ expands to a simple numeric value.
1608     OS << CounterValue++;
1609     Tok.setKind(tok::numeric_constant);
1610   } else if (II == Ident__has_feature) {
1611     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1612       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1613         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1614                                            diag::err_feature_check_malformed);
1615         return II && HasFeature(*this, II->getName());
1616       });
1617   } else if (II == Ident__has_extension) {
1618     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1619       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1620         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1621                                            diag::err_feature_check_malformed);
1622         return II && HasExtension(*this, II->getName());
1623       });
1624   } else if (II == Ident__has_builtin) {
1625     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1626       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1627         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1628                                            diag::err_feature_check_malformed);
1629         if (!II)
1630           return false;
1631         else if (II->getBuiltinID() != 0) {
1632           switch (II->getBuiltinID()) {
1633           case Builtin::BI__builtin_operator_new:
1634           case Builtin::BI__builtin_operator_delete:
1635             // denotes date of behavior change to support calling arbitrary
1636             // usual allocation and deallocation functions. Required by libc++
1637             return 201802;
1638           default:
1639             return true;
1640           }
1641           return true;
1642         } else if (II->getTokenID() != tok::identifier ||
1643                    II->hasRevertedTokenIDToIdentifier()) {
1644           // Treat all keywords that introduce a custom syntax of the form
1645           //
1646           //   '__some_keyword' '(' [...] ')'
1647           //
1648           // as being "builtin functions", even if the syntax isn't a valid
1649           // function call (for example, because the builtin takes a type
1650           // argument).
1651           if (II->getName().startswith("__builtin_") ||
1652               II->getName().startswith("__is_") ||
1653               II->getName().startswith("__has_"))
1654             return true;
1655           return llvm::StringSwitch<bool>(II->getName())
1656               .Case("__array_rank", true)
1657               .Case("__array_extent", true)
1658               .Case("__reference_binds_to_temporary", true)
1659               .Case("__underlying_type", true)
1660               .Default(false);
1661         } else {
1662           return llvm::StringSwitch<bool>(II->getName())
1663               // Report builtin templates as being builtins.
1664               .Case("__make_integer_seq", getLangOpts().CPlusPlus)
1665               .Case("__type_pack_element", getLangOpts().CPlusPlus)
1666               // Likewise for some builtin preprocessor macros.
1667               // FIXME: This is inconsistent; we usually suggest detecting
1668               // builtin macros via #ifdef. Don't add more cases here.
1669               .Case("__is_target_arch", true)
1670               .Case("__is_target_vendor", true)
1671               .Case("__is_target_os", true)
1672               .Case("__is_target_environment", true)
1673               .Default(false);
1674         }
1675       });
1676   } else if (II == Ident__is_identifier) {
1677     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1678       [](Token &Tok, bool &HasLexedNextToken) -> int {
1679         return Tok.is(tok::identifier);
1680       });
1681   } else if (II == Ident__has_attribute) {
1682     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true,
1683       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1684         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1685                                            diag::err_feature_check_malformed);
1686         return II ? hasAttribute(AttrSyntax::GNU, nullptr, II,
1687                                  getTargetInfo(), getLangOpts()) : 0;
1688       });
1689   } else if (II == Ident__has_declspec) {
1690     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true,
1691       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1692         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1693                                            diag::err_feature_check_malformed);
1694         if (II) {
1695           const LangOptions &LangOpts = getLangOpts();
1696           return LangOpts.DeclSpecKeyword &&
1697                  hasAttribute(AttrSyntax::Declspec, nullptr, II,
1698                               getTargetInfo(), LangOpts);
1699         }
1700
1701         return false;
1702       });
1703   } else if (II == Ident__has_cpp_attribute ||
1704              II == Ident__has_c_attribute) {
1705     bool IsCXX = II == Ident__has_cpp_attribute;
1706     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true,
1707         [&](Token &Tok, bool &HasLexedNextToken) -> int {
1708           IdentifierInfo *ScopeII = nullptr;
1709           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1710               Tok, *this, diag::err_feature_check_malformed);
1711           if (!II)
1712             return false;
1713
1714           // It is possible to receive a scope token.  Read the "::", if it is
1715           // available, and the subsequent identifier.
1716           LexUnexpandedToken(Tok);
1717           if (Tok.isNot(tok::coloncolon))
1718             HasLexedNextToken = true;
1719           else {
1720             ScopeII = II;
1721             // Lex an expanded token for the attribute name.
1722             Lex(Tok);
1723             II = ExpectFeatureIdentifierInfo(Tok, *this,
1724                                              diag::err_feature_check_malformed);
1725           }
1726
1727           AttrSyntax Syntax = IsCXX ? AttrSyntax::CXX : AttrSyntax::C;
1728           return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(),
1729                                    getLangOpts())
1730                     : 0;
1731         });
1732   } else if (II == Ident__has_include ||
1733              II == Ident__has_include_next) {
1734     // The argument to these two builtins should be a parenthesized
1735     // file name string literal using angle brackets (<>) or
1736     // double-quotes ("").
1737     bool Value;
1738     if (II == Ident__has_include)
1739       Value = EvaluateHasInclude(Tok, II, *this);
1740     else
1741       Value = EvaluateHasIncludeNext(Tok, II, *this);
1742
1743     if (Tok.isNot(tok::r_paren))
1744       return;
1745     OS << (int)Value;
1746     Tok.setKind(tok::numeric_constant);
1747   } else if (II == Ident__has_warning) {
1748     // The argument should be a parenthesized string literal.
1749     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1750       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1751         std::string WarningName;
1752         SourceLocation StrStartLoc = Tok.getLocation();
1753
1754         HasLexedNextToken = Tok.is(tok::string_literal);
1755         if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'",
1756                                     /*AllowMacroExpansion=*/false))
1757           return false;
1758
1759         // FIXME: Should we accept "-R..." flags here, or should that be
1760         // handled by a separate __has_remark?
1761         if (WarningName.size() < 3 || WarningName[0] != '-' ||
1762             WarningName[1] != 'W') {
1763           Diag(StrStartLoc, diag::warn_has_warning_invalid_option);
1764           return false;
1765         }
1766
1767         // Finally, check if the warning flags maps to a diagnostic group.
1768         // We construct a SmallVector here to talk to getDiagnosticIDs().
1769         // Although we don't use the result, this isn't a hot path, and not
1770         // worth special casing.
1771         SmallVector<diag::kind, 10> Diags;
1772         return !getDiagnostics().getDiagnosticIDs()->
1773                 getDiagnosticsInGroup(diag::Flavor::WarningOrError,
1774                                       WarningName.substr(2), Diags);
1775       });
1776   } else if (II == Ident__building_module) {
1777     // The argument to this builtin should be an identifier. The
1778     // builtin evaluates to 1 when that identifier names the module we are
1779     // currently building.
1780     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1781       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1782         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1783                                        diag::err_expected_id_building_module);
1784         return getLangOpts().isCompilingModule() && II &&
1785                (II->getName() == getLangOpts().CurrentModule);
1786       });
1787   } else if (II == Ident__MODULE__) {
1788     // The current module as an identifier.
1789     OS << getLangOpts().CurrentModule;
1790     IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule);
1791     Tok.setIdentifierInfo(ModuleII);
1792     Tok.setKind(ModuleII->getTokenID());
1793   } else if (II == Ident__identifier) {
1794     SourceLocation Loc = Tok.getLocation();
1795
1796     // We're expecting '__identifier' '(' identifier ')'. Try to recover
1797     // if the parens are missing.
1798     LexNonComment(Tok);
1799     if (Tok.isNot(tok::l_paren)) {
1800       // No '(', use end of last token.
1801       Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after)
1802         << II << tok::l_paren;
1803       // If the next token isn't valid as our argument, we can't recover.
1804       if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
1805         Tok.setKind(tok::identifier);
1806       return;
1807     }
1808
1809     SourceLocation LParenLoc = Tok.getLocation();
1810     LexNonComment(Tok);
1811
1812     if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
1813       Tok.setKind(tok::identifier);
1814     else if (Tok.is(tok::string_literal) && !Tok.hasUDSuffix()) {
1815       StringLiteralParser Literal(Tok, *this);
1816       if (Literal.hadError)
1817         return;
1818
1819       Tok.setIdentifierInfo(getIdentifierInfo(Literal.GetString()));
1820       Tok.setKind(tok::identifier);
1821     } else {
1822       Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier)
1823         << Tok.getKind();
1824       // Don't walk past anything that's not a real token.
1825       if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation())
1826         return;
1827     }
1828
1829     // Discard the ')', preserving 'Tok' as our result.
1830     Token RParen;
1831     LexNonComment(RParen);
1832     if (RParen.isNot(tok::r_paren)) {
1833       Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after)
1834         << Tok.getKind() << tok::r_paren;
1835       Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1836     }
1837     return;
1838   } else if (II == Ident__is_target_arch) {
1839     EvaluateFeatureLikeBuiltinMacro(
1840         OS, Tok, II, *this, false,
1841         [this](Token &Tok, bool &HasLexedNextToken) -> int {
1842           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1843               Tok, *this, diag::err_feature_check_malformed);
1844           return II && isTargetArch(getTargetInfo(), II);
1845         });
1846   } else if (II == Ident__is_target_vendor) {
1847     EvaluateFeatureLikeBuiltinMacro(
1848         OS, Tok, II, *this, false,
1849         [this](Token &Tok, bool &HasLexedNextToken) -> int {
1850           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1851               Tok, *this, diag::err_feature_check_malformed);
1852           return II && isTargetVendor(getTargetInfo(), II);
1853         });
1854   } else if (II == Ident__is_target_os) {
1855     EvaluateFeatureLikeBuiltinMacro(
1856         OS, Tok, II, *this, false,
1857         [this](Token &Tok, bool &HasLexedNextToken) -> int {
1858           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1859               Tok, *this, diag::err_feature_check_malformed);
1860           return II && isTargetOS(getTargetInfo(), II);
1861         });
1862   } else if (II == Ident__is_target_environment) {
1863     EvaluateFeatureLikeBuiltinMacro(
1864         OS, Tok, II, *this, false,
1865         [this](Token &Tok, bool &HasLexedNextToken) -> int {
1866           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1867               Tok, *this, diag::err_feature_check_malformed);
1868           return II && isTargetEnvironment(getTargetInfo(), II);
1869         });
1870   } else {
1871     llvm_unreachable("Unknown identifier!");
1872   }
1873   CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation());
1874   Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine);
1875   Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
1876 }
1877
1878 void Preprocessor::markMacroAsUsed(MacroInfo *MI) {
1879   // If the 'used' status changed, and the macro requires 'unused' warning,
1880   // remove its SourceLocation from the warn-for-unused-macro locations.
1881   if (MI->isWarnIfUnused() && !MI->isUsed())
1882     WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
1883   MI->setIsUsed(true);
1884 }