]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/clang/lib/Parse/ParseDecl.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / clang / lib / Parse / ParseDecl.cpp
1 //===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the Declaration portions of the Parser interfaces.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/Parse/Parser.h"
14 #include "clang/Parse/RAIIObjectsForParser.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/PrettyDeclStackTrace.h"
18 #include "clang/Basic/AddressSpaces.h"
19 #include "clang/Basic/Attributes.h"
20 #include "clang/Basic/CharInfo.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Parse/ParseDiagnostic.h"
23 #include "clang/Sema/Lookup.h"
24 #include "clang/Sema/ParsedTemplate.h"
25 #include "clang/Sema/Scope.h"
26 #include "llvm/ADT/Optional.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/ADT/StringSwitch.h"
30
31 using namespace clang;
32
33 //===----------------------------------------------------------------------===//
34 // C99 6.7: Declarations.
35 //===----------------------------------------------------------------------===//
36
37 /// ParseTypeName
38 ///       type-name: [C99 6.7.6]
39 ///         specifier-qualifier-list abstract-declarator[opt]
40 ///
41 /// Called type-id in C++.
42 TypeResult Parser::ParseTypeName(SourceRange *Range,
43                                  DeclaratorContext Context,
44                                  AccessSpecifier AS,
45                                  Decl **OwnedType,
46                                  ParsedAttributes *Attrs) {
47   DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
48   if (DSC == DeclSpecContext::DSC_normal)
49     DSC = DeclSpecContext::DSC_type_specifier;
50
51   // Parse the common declaration-specifiers piece.
52   DeclSpec DS(AttrFactory);
53   if (Attrs)
54     DS.addAttributes(*Attrs);
55   ParseSpecifierQualifierList(DS, AS, DSC);
56   if (OwnedType)
57     *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
58
59   // Parse the abstract-declarator, if present.
60   Declarator DeclaratorInfo(DS, Context);
61   ParseDeclarator(DeclaratorInfo);
62   if (Range)
63     *Range = DeclaratorInfo.getSourceRange();
64
65   if (DeclaratorInfo.isInvalidType())
66     return true;
67
68   return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
69 }
70
71 /// Normalizes an attribute name by dropping prefixed and suffixed __.
72 static StringRef normalizeAttrName(StringRef Name) {
73   if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
74     return Name.drop_front(2).drop_back(2);
75   return Name;
76 }
77
78 /// isAttributeLateParsed - Return true if the attribute has arguments that
79 /// require late parsing.
80 static bool isAttributeLateParsed(const IdentifierInfo &II) {
81 #define CLANG_ATTR_LATE_PARSED_LIST
82     return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
83 #include "clang/Parse/AttrParserStringSwitches.inc"
84         .Default(false);
85 #undef CLANG_ATTR_LATE_PARSED_LIST
86 }
87
88 /// Check if the a start and end source location expand to the same macro.
89 bool FindLocsWithCommonFileID(Preprocessor &PP, SourceLocation StartLoc,
90                               SourceLocation EndLoc) {
91   if (!StartLoc.isMacroID() || !EndLoc.isMacroID())
92     return false;
93
94   SourceManager &SM = PP.getSourceManager();
95   if (SM.getFileID(StartLoc) != SM.getFileID(EndLoc))
96     return false;
97
98   bool AttrStartIsInMacro =
99       Lexer::isAtStartOfMacroExpansion(StartLoc, SM, PP.getLangOpts());
100   bool AttrEndIsInMacro =
101       Lexer::isAtEndOfMacroExpansion(EndLoc, SM, PP.getLangOpts());
102   return AttrStartIsInMacro && AttrEndIsInMacro;
103 }
104
105 /// ParseGNUAttributes - Parse a non-empty attributes list.
106 ///
107 /// [GNU] attributes:
108 ///         attribute
109 ///         attributes attribute
110 ///
111 /// [GNU]  attribute:
112 ///          '__attribute__' '(' '(' attribute-list ')' ')'
113 ///
114 /// [GNU]  attribute-list:
115 ///          attrib
116 ///          attribute_list ',' attrib
117 ///
118 /// [GNU]  attrib:
119 ///          empty
120 ///          attrib-name
121 ///          attrib-name '(' identifier ')'
122 ///          attrib-name '(' identifier ',' nonempty-expr-list ')'
123 ///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
124 ///
125 /// [GNU]  attrib-name:
126 ///          identifier
127 ///          typespec
128 ///          typequal
129 ///          storageclass
130 ///
131 /// Whether an attribute takes an 'identifier' is determined by the
132 /// attrib-name. GCC's behavior here is not worth imitating:
133 ///
134 ///  * In C mode, if the attribute argument list starts with an identifier
135 ///    followed by a ',' or an ')', and the identifier doesn't resolve to
136 ///    a type, it is parsed as an identifier. If the attribute actually
137 ///    wanted an expression, it's out of luck (but it turns out that no
138 ///    attributes work that way, because C constant expressions are very
139 ///    limited).
140 ///  * In C++ mode, if the attribute argument list starts with an identifier,
141 ///    and the attribute *wants* an identifier, it is parsed as an identifier.
142 ///    At block scope, any additional tokens between the identifier and the
143 ///    ',' or ')' are ignored, otherwise they produce a parse error.
144 ///
145 /// We follow the C++ model, but don't allow junk after the identifier.
146 void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
147                                 SourceLocation *endLoc,
148                                 LateParsedAttrList *LateAttrs,
149                                 Declarator *D) {
150   assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
151
152   while (Tok.is(tok::kw___attribute)) {
153     SourceLocation AttrTokLoc = ConsumeToken();
154     unsigned OldNumAttrs = attrs.size();
155     unsigned OldNumLateAttrs = LateAttrs ? LateAttrs->size() : 0;
156
157     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
158                          "attribute")) {
159       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
160       return;
161     }
162     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
163       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
164       return;
165     }
166     // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
167     do {
168       // Eat preceeding commas to allow __attribute__((,,,foo))
169       while (TryConsumeToken(tok::comma))
170         ;
171
172       // Expect an identifier or declaration specifier (const, int, etc.)
173       if (Tok.isAnnotation())
174         break;
175       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
176       if (!AttrName)
177         break;
178
179       SourceLocation AttrNameLoc = ConsumeToken();
180
181       if (Tok.isNot(tok::l_paren)) {
182         attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
183                      ParsedAttr::AS_GNU);
184         continue;
185       }
186
187       // Handle "parameterized" attributes
188       if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
189         ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
190                               SourceLocation(), ParsedAttr::AS_GNU, D);
191         continue;
192       }
193
194       // Handle attributes with arguments that require late parsing.
195       LateParsedAttribute *LA =
196           new LateParsedAttribute(this, *AttrName, AttrNameLoc);
197       LateAttrs->push_back(LA);
198
199       // Attributes in a class are parsed at the end of the class, along
200       // with other late-parsed declarations.
201       if (!ClassStack.empty() && !LateAttrs->parseSoon())
202         getCurrentClass().LateParsedDeclarations.push_back(LA);
203
204       // Be sure ConsumeAndStoreUntil doesn't see the start l_paren, since it
205       // recursively consumes balanced parens.
206       LA->Toks.push_back(Tok);
207       ConsumeParen();
208       // Consume everything up to and including the matching right parens.
209       ConsumeAndStoreUntil(tok::r_paren, LA->Toks, /*StopAtSemi=*/true);
210
211       Token Eof;
212       Eof.startToken();
213       Eof.setLocation(Tok.getLocation());
214       LA->Toks.push_back(Eof);
215     } while (Tok.is(tok::comma));
216
217     if (ExpectAndConsume(tok::r_paren))
218       SkipUntil(tok::r_paren, StopAtSemi);
219     SourceLocation Loc = Tok.getLocation();
220     if (ExpectAndConsume(tok::r_paren))
221       SkipUntil(tok::r_paren, StopAtSemi);
222     if (endLoc)
223       *endLoc = Loc;
224
225     // If this was declared in a macro, attach the macro IdentifierInfo to the
226     // parsed attribute.
227     auto &SM = PP.getSourceManager();
228     if (!SM.isWrittenInBuiltinFile(SM.getSpellingLoc(AttrTokLoc)) &&
229         FindLocsWithCommonFileID(PP, AttrTokLoc, Loc)) {
230       CharSourceRange ExpansionRange = SM.getExpansionRange(AttrTokLoc);
231       StringRef FoundName =
232           Lexer::getSourceText(ExpansionRange, SM, PP.getLangOpts());
233       IdentifierInfo *MacroII = PP.getIdentifierInfo(FoundName);
234
235       for (unsigned i = OldNumAttrs; i < attrs.size(); ++i)
236         attrs[i].setMacroIdentifier(MacroII, ExpansionRange.getBegin());
237
238       if (LateAttrs) {
239         for (unsigned i = OldNumLateAttrs; i < LateAttrs->size(); ++i)
240           (*LateAttrs)[i]->MacroII = MacroII;
241       }
242     }
243   }
244 }
245
246 /// Determine whether the given attribute has an identifier argument.
247 static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
248 #define CLANG_ATTR_IDENTIFIER_ARG_LIST
249   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
250 #include "clang/Parse/AttrParserStringSwitches.inc"
251            .Default(false);
252 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST
253 }
254
255 /// Determine whether the given attribute has a variadic identifier argument.
256 static bool attributeHasVariadicIdentifierArg(const IdentifierInfo &II) {
257 #define CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
258   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
259 #include "clang/Parse/AttrParserStringSwitches.inc"
260            .Default(false);
261 #undef CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
262 }
263
264 /// Determine whether the given attribute treats kw_this as an identifier.
265 static bool attributeTreatsKeywordThisAsIdentifier(const IdentifierInfo &II) {
266 #define CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
267   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
268 #include "clang/Parse/AttrParserStringSwitches.inc"
269            .Default(false);
270 #undef CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
271 }
272
273 /// Determine whether the given attribute parses a type argument.
274 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
275 #define CLANG_ATTR_TYPE_ARG_LIST
276   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
277 #include "clang/Parse/AttrParserStringSwitches.inc"
278            .Default(false);
279 #undef CLANG_ATTR_TYPE_ARG_LIST
280 }
281
282 /// Determine whether the given attribute requires parsing its arguments
283 /// in an unevaluated context or not.
284 static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
285 #define CLANG_ATTR_ARG_CONTEXT_LIST
286   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
287 #include "clang/Parse/AttrParserStringSwitches.inc"
288            .Default(false);
289 #undef CLANG_ATTR_ARG_CONTEXT_LIST
290 }
291
292 IdentifierLoc *Parser::ParseIdentifierLoc() {
293   assert(Tok.is(tok::identifier) && "expected an identifier");
294   IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
295                                             Tok.getLocation(),
296                                             Tok.getIdentifierInfo());
297   ConsumeToken();
298   return IL;
299 }
300
301 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
302                                        SourceLocation AttrNameLoc,
303                                        ParsedAttributes &Attrs,
304                                        SourceLocation *EndLoc,
305                                        IdentifierInfo *ScopeName,
306                                        SourceLocation ScopeLoc,
307                                        ParsedAttr::Syntax Syntax) {
308   BalancedDelimiterTracker Parens(*this, tok::l_paren);
309   Parens.consumeOpen();
310
311   TypeResult T;
312   if (Tok.isNot(tok::r_paren))
313     T = ParseTypeName();
314
315   if (Parens.consumeClose())
316     return;
317
318   if (T.isInvalid())
319     return;
320
321   if (T.isUsable())
322     Attrs.addNewTypeAttr(&AttrName,
323                          SourceRange(AttrNameLoc, Parens.getCloseLocation()),
324                          ScopeName, ScopeLoc, T.get(), Syntax);
325   else
326     Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
327                  ScopeName, ScopeLoc, nullptr, 0, Syntax);
328 }
329
330 unsigned Parser::ParseAttributeArgsCommon(
331     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
332     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
333     SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
334   // Ignore the left paren location for now.
335   ConsumeParen();
336
337   bool ChangeKWThisToIdent = attributeTreatsKeywordThisAsIdentifier(*AttrName);
338
339   // Interpret "kw_this" as an identifier if the attributed requests it.
340   if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
341     Tok.setKind(tok::identifier);
342
343   ArgsVector ArgExprs;
344   if (Tok.is(tok::identifier)) {
345     // If this attribute wants an 'identifier' argument, make it so.
346     bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName) ||
347                            attributeHasVariadicIdentifierArg(*AttrName);
348     ParsedAttr::Kind AttrKind =
349         ParsedAttr::getKind(AttrName, ScopeName, Syntax);
350
351     // If we don't know how to parse this attribute, but this is the only
352     // token in this argument, assume it's meant to be an identifier.
353     if (AttrKind == ParsedAttr::UnknownAttribute ||
354         AttrKind == ParsedAttr::IgnoredAttribute) {
355       const Token &Next = NextToken();
356       IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma);
357     }
358
359     if (IsIdentifierArg)
360       ArgExprs.push_back(ParseIdentifierLoc());
361   }
362
363   if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
364     // Eat the comma.
365     if (!ArgExprs.empty())
366       ConsumeToken();
367
368     // Parse the non-empty comma-separated list of expressions.
369     do {
370       // Interpret "kw_this" as an identifier if the attributed requests it.
371       if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
372         Tok.setKind(tok::identifier);
373
374       ExprResult ArgExpr;
375       if (Tok.is(tok::identifier) &&
376           attributeHasVariadicIdentifierArg(*AttrName)) {
377         ArgExprs.push_back(ParseIdentifierLoc());
378       } else {
379         bool Uneval = attributeParsedArgsUnevaluated(*AttrName);
380         EnterExpressionEvaluationContext Unevaluated(
381             Actions,
382             Uneval ? Sema::ExpressionEvaluationContext::Unevaluated
383                    : Sema::ExpressionEvaluationContext::ConstantEvaluated);
384
385         ExprResult ArgExpr(
386             Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
387         if (ArgExpr.isInvalid()) {
388           SkipUntil(tok::r_paren, StopAtSemi);
389           return 0;
390         }
391         ArgExprs.push_back(ArgExpr.get());
392       }
393       // Eat the comma, move to the next argument
394     } while (TryConsumeToken(tok::comma));
395   }
396
397   SourceLocation RParen = Tok.getLocation();
398   if (!ExpectAndConsume(tok::r_paren)) {
399     SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
400     Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
401                  ArgExprs.data(), ArgExprs.size(), Syntax);
402   }
403
404   if (EndLoc)
405     *EndLoc = RParen;
406
407   return static_cast<unsigned>(ArgExprs.size());
408 }
409
410 /// Parse the arguments to a parameterized GNU attribute or
411 /// a C++11 attribute in "gnu" namespace.
412 void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
413                                    SourceLocation AttrNameLoc,
414                                    ParsedAttributes &Attrs,
415                                    SourceLocation *EndLoc,
416                                    IdentifierInfo *ScopeName,
417                                    SourceLocation ScopeLoc,
418                                    ParsedAttr::Syntax Syntax,
419                                    Declarator *D) {
420
421   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
422
423   ParsedAttr::Kind AttrKind =
424       ParsedAttr::getKind(AttrName, ScopeName, Syntax);
425
426   if (AttrKind == ParsedAttr::AT_Availability) {
427     ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
428                                ScopeLoc, Syntax);
429     return;
430   } else if (AttrKind == ParsedAttr::AT_ExternalSourceSymbol) {
431     ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
432                                        ScopeName, ScopeLoc, Syntax);
433     return;
434   } else if (AttrKind == ParsedAttr::AT_ObjCBridgeRelated) {
435     ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
436                                     ScopeName, ScopeLoc, Syntax);
437     return;
438   } else if (AttrKind == ParsedAttr::AT_TypeTagForDatatype) {
439     ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
440                                      ScopeName, ScopeLoc, Syntax);
441     return;
442   } else if (attributeIsTypeArgAttr(*AttrName)) {
443     ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
444                               ScopeLoc, Syntax);
445     return;
446   }
447
448   // These may refer to the function arguments, but need to be parsed early to
449   // participate in determining whether it's a redeclaration.
450   llvm::Optional<ParseScope> PrototypeScope;
451   if (normalizeAttrName(AttrName->getName()) == "enable_if" &&
452       D && D->isFunctionDeclarator()) {
453     DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
454     PrototypeScope.emplace(this, Scope::FunctionPrototypeScope |
455                                      Scope::FunctionDeclarationScope |
456                                      Scope::DeclScope);
457     for (unsigned i = 0; i != FTI.NumParams; ++i) {
458       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
459       Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
460     }
461   }
462
463   ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
464                            ScopeLoc, Syntax);
465 }
466
467 unsigned Parser::ParseClangAttributeArgs(
468     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
469     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
470     SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
471   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
472
473   ParsedAttr::Kind AttrKind =
474       ParsedAttr::getKind(AttrName, ScopeName, Syntax);
475
476   switch (AttrKind) {
477   default:
478     return ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc,
479                                     ScopeName, ScopeLoc, Syntax);
480   case ParsedAttr::AT_ExternalSourceSymbol:
481     ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
482                                        ScopeName, ScopeLoc, Syntax);
483     break;
484   case ParsedAttr::AT_Availability:
485     ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
486                                ScopeLoc, Syntax);
487     break;
488   case ParsedAttr::AT_ObjCBridgeRelated:
489     ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
490                                     ScopeName, ScopeLoc, Syntax);
491     break;
492   case ParsedAttr::AT_TypeTagForDatatype:
493     ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
494                                      ScopeName, ScopeLoc, Syntax);
495     break;
496   }
497   return !Attrs.empty() ? Attrs.begin()->getNumArgs() : 0;
498 }
499
500 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
501                                         SourceLocation AttrNameLoc,
502                                         ParsedAttributes &Attrs) {
503   // If the attribute isn't known, we will not attempt to parse any
504   // arguments.
505   if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
506                     getTargetInfo(), getLangOpts())) {
507     // Eat the left paren, then skip to the ending right paren.
508     ConsumeParen();
509     SkipUntil(tok::r_paren);
510     return false;
511   }
512
513   SourceLocation OpenParenLoc = Tok.getLocation();
514
515   if (AttrName->getName() == "property") {
516     // The property declspec is more complex in that it can take one or two
517     // assignment expressions as a parameter, but the lhs of the assignment
518     // must be named get or put.
519
520     BalancedDelimiterTracker T(*this, tok::l_paren);
521     T.expectAndConsume(diag::err_expected_lparen_after,
522                        AttrName->getNameStart(), tok::r_paren);
523
524     enum AccessorKind {
525       AK_Invalid = -1,
526       AK_Put = 0,
527       AK_Get = 1 // indices into AccessorNames
528     };
529     IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
530     bool HasInvalidAccessor = false;
531
532     // Parse the accessor specifications.
533     while (true) {
534       // Stop if this doesn't look like an accessor spec.
535       if (!Tok.is(tok::identifier)) {
536         // If the user wrote a completely empty list, use a special diagnostic.
537         if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
538             AccessorNames[AK_Put] == nullptr &&
539             AccessorNames[AK_Get] == nullptr) {
540           Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
541           break;
542         }
543
544         Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
545         break;
546       }
547
548       AccessorKind Kind;
549       SourceLocation KindLoc = Tok.getLocation();
550       StringRef KindStr = Tok.getIdentifierInfo()->getName();
551       if (KindStr == "get") {
552         Kind = AK_Get;
553       } else if (KindStr == "put") {
554         Kind = AK_Put;
555
556         // Recover from the common mistake of using 'set' instead of 'put'.
557       } else if (KindStr == "set") {
558         Diag(KindLoc, diag::err_ms_property_has_set_accessor)
559             << FixItHint::CreateReplacement(KindLoc, "put");
560         Kind = AK_Put;
561
562         // Handle the mistake of forgetting the accessor kind by skipping
563         // this accessor.
564       } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
565         Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
566         ConsumeToken();
567         HasInvalidAccessor = true;
568         goto next_property_accessor;
569
570         // Otherwise, complain about the unknown accessor kind.
571       } else {
572         Diag(KindLoc, diag::err_ms_property_unknown_accessor);
573         HasInvalidAccessor = true;
574         Kind = AK_Invalid;
575
576         // Try to keep parsing unless it doesn't look like an accessor spec.
577         if (!NextToken().is(tok::equal))
578           break;
579       }
580
581       // Consume the identifier.
582       ConsumeToken();
583
584       // Consume the '='.
585       if (!TryConsumeToken(tok::equal)) {
586         Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
587             << KindStr;
588         break;
589       }
590
591       // Expect the method name.
592       if (!Tok.is(tok::identifier)) {
593         Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
594         break;
595       }
596
597       if (Kind == AK_Invalid) {
598         // Just drop invalid accessors.
599       } else if (AccessorNames[Kind] != nullptr) {
600         // Complain about the repeated accessor, ignore it, and keep parsing.
601         Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
602       } else {
603         AccessorNames[Kind] = Tok.getIdentifierInfo();
604       }
605       ConsumeToken();
606
607     next_property_accessor:
608       // Keep processing accessors until we run out.
609       if (TryConsumeToken(tok::comma))
610         continue;
611
612       // If we run into the ')', stop without consuming it.
613       if (Tok.is(tok::r_paren))
614         break;
615
616       Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
617       break;
618     }
619
620     // Only add the property attribute if it was well-formed.
621     if (!HasInvalidAccessor)
622       Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
623                                AccessorNames[AK_Get], AccessorNames[AK_Put],
624                                ParsedAttr::AS_Declspec);
625     T.skipToEnd();
626     return !HasInvalidAccessor;
627   }
628
629   unsigned NumArgs =
630       ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
631                                SourceLocation(), ParsedAttr::AS_Declspec);
632
633   // If this attribute's args were parsed, and it was expected to have
634   // arguments but none were provided, emit a diagnostic.
635   if (!Attrs.empty() && Attrs.begin()->getMaxArgs() && !NumArgs) {
636     Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
637     return false;
638   }
639   return true;
640 }
641
642 /// [MS] decl-specifier:
643 ///             __declspec ( extended-decl-modifier-seq )
644 ///
645 /// [MS] extended-decl-modifier-seq:
646 ///             extended-decl-modifier[opt]
647 ///             extended-decl-modifier extended-decl-modifier-seq
648 void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs,
649                                      SourceLocation *End) {
650   assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled");
651   assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
652
653   while (Tok.is(tok::kw___declspec)) {
654     ConsumeToken();
655     BalancedDelimiterTracker T(*this, tok::l_paren);
656     if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
657                            tok::r_paren))
658       return;
659
660     // An empty declspec is perfectly legal and should not warn.  Additionally,
661     // you can specify multiple attributes per declspec.
662     while (Tok.isNot(tok::r_paren)) {
663       // Attribute not present.
664       if (TryConsumeToken(tok::comma))
665         continue;
666
667       // We expect either a well-known identifier or a generic string.  Anything
668       // else is a malformed declspec.
669       bool IsString = Tok.getKind() == tok::string_literal;
670       if (!IsString && Tok.getKind() != tok::identifier &&
671           Tok.getKind() != tok::kw_restrict) {
672         Diag(Tok, diag::err_ms_declspec_type);
673         T.skipToEnd();
674         return;
675       }
676
677       IdentifierInfo *AttrName;
678       SourceLocation AttrNameLoc;
679       if (IsString) {
680         SmallString<8> StrBuffer;
681         bool Invalid = false;
682         StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
683         if (Invalid) {
684           T.skipToEnd();
685           return;
686         }
687         AttrName = PP.getIdentifierInfo(Str);
688         AttrNameLoc = ConsumeStringToken();
689       } else {
690         AttrName = Tok.getIdentifierInfo();
691         AttrNameLoc = ConsumeToken();
692       }
693
694       bool AttrHandled = false;
695
696       // Parse attribute arguments.
697       if (Tok.is(tok::l_paren))
698         AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
699       else if (AttrName->getName() == "property")
700         // The property attribute must have an argument list.
701         Diag(Tok.getLocation(), diag::err_expected_lparen_after)
702             << AttrName->getName();
703
704       if (!AttrHandled)
705         Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
706                      ParsedAttr::AS_Declspec);
707     }
708     T.consumeClose();
709     if (End)
710       *End = T.getCloseLocation();
711   }
712 }
713
714 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
715   // Treat these like attributes
716   while (true) {
717     switch (Tok.getKind()) {
718     case tok::kw___fastcall:
719     case tok::kw___stdcall:
720     case tok::kw___thiscall:
721     case tok::kw___regcall:
722     case tok::kw___cdecl:
723     case tok::kw___vectorcall:
724     case tok::kw___ptr64:
725     case tok::kw___w64:
726     case tok::kw___ptr32:
727     case tok::kw___sptr:
728     case tok::kw___uptr: {
729       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
730       SourceLocation AttrNameLoc = ConsumeToken();
731       attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
732                    ParsedAttr::AS_Keyword);
733       break;
734     }
735     default:
736       return;
737     }
738   }
739 }
740
741 void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
742   SourceLocation StartLoc = Tok.getLocation();
743   SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
744
745   if (EndLoc.isValid()) {
746     SourceRange Range(StartLoc, EndLoc);
747     Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
748   }
749 }
750
751 SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
752   SourceLocation EndLoc;
753
754   while (true) {
755     switch (Tok.getKind()) {
756     case tok::kw_const:
757     case tok::kw_volatile:
758     case tok::kw___fastcall:
759     case tok::kw___stdcall:
760     case tok::kw___thiscall:
761     case tok::kw___cdecl:
762     case tok::kw___vectorcall:
763     case tok::kw___ptr32:
764     case tok::kw___ptr64:
765     case tok::kw___w64:
766     case tok::kw___unaligned:
767     case tok::kw___sptr:
768     case tok::kw___uptr:
769       EndLoc = ConsumeToken();
770       break;
771     default:
772       return EndLoc;
773     }
774   }
775 }
776
777 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
778   // Treat these like attributes
779   while (Tok.is(tok::kw___pascal)) {
780     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
781     SourceLocation AttrNameLoc = ConsumeToken();
782     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
783                  ParsedAttr::AS_Keyword);
784   }
785 }
786
787 void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) {
788   // Treat these like attributes
789   while (Tok.is(tok::kw___kernel)) {
790     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
791     SourceLocation AttrNameLoc = ConsumeToken();
792     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
793                  ParsedAttr::AS_Keyword);
794   }
795 }
796
797 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
798   IdentifierInfo *AttrName = Tok.getIdentifierInfo();
799   SourceLocation AttrNameLoc = Tok.getLocation();
800   Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
801                ParsedAttr::AS_Keyword);
802 }
803
804 void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) {
805   // Treat these like attributes, even though they're type specifiers.
806   while (true) {
807     switch (Tok.getKind()) {
808     case tok::kw__Nonnull:
809     case tok::kw__Nullable:
810     case tok::kw__Null_unspecified: {
811       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
812       SourceLocation AttrNameLoc = ConsumeToken();
813       if (!getLangOpts().ObjC)
814         Diag(AttrNameLoc, diag::ext_nullability)
815           << AttrName;
816       attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
817                    ParsedAttr::AS_Keyword);
818       break;
819     }
820     default:
821       return;
822     }
823   }
824 }
825
826 static bool VersionNumberSeparator(const char Separator) {
827   return (Separator == '.' || Separator == '_');
828 }
829
830 /// Parse a version number.
831 ///
832 /// version:
833 ///   simple-integer
834 ///   simple-integer '.' simple-integer
835 ///   simple-integer '_' simple-integer
836 ///   simple-integer '.' simple-integer '.' simple-integer
837 ///   simple-integer '_' simple-integer '_' simple-integer
838 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
839   Range = SourceRange(Tok.getLocation(), Tok.getEndLoc());
840
841   if (!Tok.is(tok::numeric_constant)) {
842     Diag(Tok, diag::err_expected_version);
843     SkipUntil(tok::comma, tok::r_paren,
844               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
845     return VersionTuple();
846   }
847
848   // Parse the major (and possibly minor and subminor) versions, which
849   // are stored in the numeric constant. We utilize a quirk of the
850   // lexer, which is that it handles something like 1.2.3 as a single
851   // numeric constant, rather than two separate tokens.
852   SmallString<512> Buffer;
853   Buffer.resize(Tok.getLength()+1);
854   const char *ThisTokBegin = &Buffer[0];
855
856   // Get the spelling of the token, which eliminates trigraphs, etc.
857   bool Invalid = false;
858   unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
859   if (Invalid)
860     return VersionTuple();
861
862   // Parse the major version.
863   unsigned AfterMajor = 0;
864   unsigned Major = 0;
865   while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
866     Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
867     ++AfterMajor;
868   }
869
870   if (AfterMajor == 0) {
871     Diag(Tok, diag::err_expected_version);
872     SkipUntil(tok::comma, tok::r_paren,
873               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
874     return VersionTuple();
875   }
876
877   if (AfterMajor == ActualLength) {
878     ConsumeToken();
879
880     // We only had a single version component.
881     if (Major == 0) {
882       Diag(Tok, diag::err_zero_version);
883       return VersionTuple();
884     }
885
886     return VersionTuple(Major);
887   }
888
889   const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
890   if (!VersionNumberSeparator(AfterMajorSeparator)
891       || (AfterMajor + 1 == ActualLength)) {
892     Diag(Tok, diag::err_expected_version);
893     SkipUntil(tok::comma, tok::r_paren,
894               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
895     return VersionTuple();
896   }
897
898   // Parse the minor version.
899   unsigned AfterMinor = AfterMajor + 1;
900   unsigned Minor = 0;
901   while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
902     Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
903     ++AfterMinor;
904   }
905
906   if (AfterMinor == ActualLength) {
907     ConsumeToken();
908
909     // We had major.minor.
910     if (Major == 0 && Minor == 0) {
911       Diag(Tok, diag::err_zero_version);
912       return VersionTuple();
913     }
914
915     return VersionTuple(Major, Minor);
916   }
917
918   const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
919   // If what follows is not a '.' or '_', we have a problem.
920   if (!VersionNumberSeparator(AfterMinorSeparator)) {
921     Diag(Tok, diag::err_expected_version);
922     SkipUntil(tok::comma, tok::r_paren,
923               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
924     return VersionTuple();
925   }
926
927   // Warn if separators, be it '.' or '_', do not match.
928   if (AfterMajorSeparator != AfterMinorSeparator)
929     Diag(Tok, diag::warn_expected_consistent_version_separator);
930
931   // Parse the subminor version.
932   unsigned AfterSubminor = AfterMinor + 1;
933   unsigned Subminor = 0;
934   while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
935     Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
936     ++AfterSubminor;
937   }
938
939   if (AfterSubminor != ActualLength) {
940     Diag(Tok, diag::err_expected_version);
941     SkipUntil(tok::comma, tok::r_paren,
942               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
943     return VersionTuple();
944   }
945   ConsumeToken();
946   return VersionTuple(Major, Minor, Subminor);
947 }
948
949 /// Parse the contents of the "availability" attribute.
950 ///
951 /// availability-attribute:
952 ///   'availability' '(' platform ',' opt-strict version-arg-list,
953 ///                      opt-replacement, opt-message')'
954 ///
955 /// platform:
956 ///   identifier
957 ///
958 /// opt-strict:
959 ///   'strict' ','
960 ///
961 /// version-arg-list:
962 ///   version-arg
963 ///   version-arg ',' version-arg-list
964 ///
965 /// version-arg:
966 ///   'introduced' '=' version
967 ///   'deprecated' '=' version
968 ///   'obsoleted' = version
969 ///   'unavailable'
970 /// opt-replacement:
971 ///   'replacement' '=' <string>
972 /// opt-message:
973 ///   'message' '=' <string>
974 void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
975                                         SourceLocation AvailabilityLoc,
976                                         ParsedAttributes &attrs,
977                                         SourceLocation *endLoc,
978                                         IdentifierInfo *ScopeName,
979                                         SourceLocation ScopeLoc,
980                                         ParsedAttr::Syntax Syntax) {
981   enum { Introduced, Deprecated, Obsoleted, Unknown };
982   AvailabilityChange Changes[Unknown];
983   ExprResult MessageExpr, ReplacementExpr;
984
985   // Opening '('.
986   BalancedDelimiterTracker T(*this, tok::l_paren);
987   if (T.consumeOpen()) {
988     Diag(Tok, diag::err_expected) << tok::l_paren;
989     return;
990   }
991
992   // Parse the platform name.
993   if (Tok.isNot(tok::identifier)) {
994     Diag(Tok, diag::err_availability_expected_platform);
995     SkipUntil(tok::r_paren, StopAtSemi);
996     return;
997   }
998   IdentifierLoc *Platform = ParseIdentifierLoc();
999   if (const IdentifierInfo *const Ident = Platform->Ident) {
1000     // Canonicalize platform name from "macosx" to "macos".
1001     if (Ident->getName() == "macosx")
1002       Platform->Ident = PP.getIdentifierInfo("macos");
1003     // Canonicalize platform name from "macosx_app_extension" to
1004     // "macos_app_extension".
1005     else if (Ident->getName() == "macosx_app_extension")
1006       Platform->Ident = PP.getIdentifierInfo("macos_app_extension");
1007     else
1008       Platform->Ident = PP.getIdentifierInfo(
1009           AvailabilityAttr::canonicalizePlatformName(Ident->getName()));
1010   }
1011
1012   // Parse the ',' following the platform name.
1013   if (ExpectAndConsume(tok::comma)) {
1014     SkipUntil(tok::r_paren, StopAtSemi);
1015     return;
1016   }
1017
1018   // If we haven't grabbed the pointers for the identifiers
1019   // "introduced", "deprecated", and "obsoleted", do so now.
1020   if (!Ident_introduced) {
1021     Ident_introduced = PP.getIdentifierInfo("introduced");
1022     Ident_deprecated = PP.getIdentifierInfo("deprecated");
1023     Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
1024     Ident_unavailable = PP.getIdentifierInfo("unavailable");
1025     Ident_message = PP.getIdentifierInfo("message");
1026     Ident_strict = PP.getIdentifierInfo("strict");
1027     Ident_replacement = PP.getIdentifierInfo("replacement");
1028   }
1029
1030   // Parse the optional "strict", the optional "replacement" and the set of
1031   // introductions/deprecations/removals.
1032   SourceLocation UnavailableLoc, StrictLoc;
1033   do {
1034     if (Tok.isNot(tok::identifier)) {
1035       Diag(Tok, diag::err_availability_expected_change);
1036       SkipUntil(tok::r_paren, StopAtSemi);
1037       return;
1038     }
1039     IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1040     SourceLocation KeywordLoc = ConsumeToken();
1041
1042     if (Keyword == Ident_strict) {
1043       if (StrictLoc.isValid()) {
1044         Diag(KeywordLoc, diag::err_availability_redundant)
1045           << Keyword << SourceRange(StrictLoc);
1046       }
1047       StrictLoc = KeywordLoc;
1048       continue;
1049     }
1050
1051     if (Keyword == Ident_unavailable) {
1052       if (UnavailableLoc.isValid()) {
1053         Diag(KeywordLoc, diag::err_availability_redundant)
1054           << Keyword << SourceRange(UnavailableLoc);
1055       }
1056       UnavailableLoc = KeywordLoc;
1057       continue;
1058     }
1059
1060     if (Keyword == Ident_deprecated && Platform->Ident &&
1061         Platform->Ident->isStr("swift")) {
1062       // For swift, we deprecate for all versions.
1063       if (Changes[Deprecated].KeywordLoc.isValid()) {
1064         Diag(KeywordLoc, diag::err_availability_redundant)
1065           << Keyword
1066           << SourceRange(Changes[Deprecated].KeywordLoc);
1067       }
1068
1069       Changes[Deprecated].KeywordLoc = KeywordLoc;
1070       // Use a fake version here.
1071       Changes[Deprecated].Version = VersionTuple(1);
1072       continue;
1073     }
1074
1075     if (Tok.isNot(tok::equal)) {
1076       Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
1077       SkipUntil(tok::r_paren, StopAtSemi);
1078       return;
1079     }
1080     ConsumeToken();
1081     if (Keyword == Ident_message || Keyword == Ident_replacement) {
1082       if (Tok.isNot(tok::string_literal)) {
1083         Diag(Tok, diag::err_expected_string_literal)
1084           << /*Source='availability attribute'*/2;
1085         SkipUntil(tok::r_paren, StopAtSemi);
1086         return;
1087       }
1088       if (Keyword == Ident_message)
1089         MessageExpr = ParseStringLiteralExpression();
1090       else
1091         ReplacementExpr = ParseStringLiteralExpression();
1092       // Also reject wide string literals.
1093       if (StringLiteral *MessageStringLiteral =
1094               cast_or_null<StringLiteral>(MessageExpr.get())) {
1095         if (MessageStringLiteral->getCharByteWidth() != 1) {
1096           Diag(MessageStringLiteral->getSourceRange().getBegin(),
1097                diag::err_expected_string_literal)
1098             << /*Source='availability attribute'*/ 2;
1099           SkipUntil(tok::r_paren, StopAtSemi);
1100           return;
1101         }
1102       }
1103       if (Keyword == Ident_message)
1104         break;
1105       else
1106         continue;
1107     }
1108
1109     // Special handling of 'NA' only when applied to introduced or
1110     // deprecated.
1111     if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
1112         Tok.is(tok::identifier)) {
1113       IdentifierInfo *NA = Tok.getIdentifierInfo();
1114       if (NA->getName() == "NA") {
1115         ConsumeToken();
1116         if (Keyword == Ident_introduced)
1117           UnavailableLoc = KeywordLoc;
1118         continue;
1119       }
1120     }
1121
1122     SourceRange VersionRange;
1123     VersionTuple Version = ParseVersionTuple(VersionRange);
1124
1125     if (Version.empty()) {
1126       SkipUntil(tok::r_paren, StopAtSemi);
1127       return;
1128     }
1129
1130     unsigned Index;
1131     if (Keyword == Ident_introduced)
1132       Index = Introduced;
1133     else if (Keyword == Ident_deprecated)
1134       Index = Deprecated;
1135     else if (Keyword == Ident_obsoleted)
1136       Index = Obsoleted;
1137     else
1138       Index = Unknown;
1139
1140     if (Index < Unknown) {
1141       if (!Changes[Index].KeywordLoc.isInvalid()) {
1142         Diag(KeywordLoc, diag::err_availability_redundant)
1143           << Keyword
1144           << SourceRange(Changes[Index].KeywordLoc,
1145                          Changes[Index].VersionRange.getEnd());
1146       }
1147
1148       Changes[Index].KeywordLoc = KeywordLoc;
1149       Changes[Index].Version = Version;
1150       Changes[Index].VersionRange = VersionRange;
1151     } else {
1152       Diag(KeywordLoc, diag::err_availability_unknown_change)
1153         << Keyword << VersionRange;
1154     }
1155
1156   } while (TryConsumeToken(tok::comma));
1157
1158   // Closing ')'.
1159   if (T.consumeClose())
1160     return;
1161
1162   if (endLoc)
1163     *endLoc = T.getCloseLocation();
1164
1165   // The 'unavailable' availability cannot be combined with any other
1166   // availability changes. Make sure that hasn't happened.
1167   if (UnavailableLoc.isValid()) {
1168     bool Complained = false;
1169     for (unsigned Index = Introduced; Index != Unknown; ++Index) {
1170       if (Changes[Index].KeywordLoc.isValid()) {
1171         if (!Complained) {
1172           Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
1173             << SourceRange(Changes[Index].KeywordLoc,
1174                            Changes[Index].VersionRange.getEnd());
1175           Complained = true;
1176         }
1177
1178         // Clear out the availability.
1179         Changes[Index] = AvailabilityChange();
1180       }
1181     }
1182   }
1183
1184   // Record this attribute
1185   attrs.addNew(&Availability,
1186                SourceRange(AvailabilityLoc, T.getCloseLocation()),
1187                ScopeName, ScopeLoc,
1188                Platform,
1189                Changes[Introduced],
1190                Changes[Deprecated],
1191                Changes[Obsoleted],
1192                UnavailableLoc, MessageExpr.get(),
1193                Syntax, StrictLoc, ReplacementExpr.get());
1194 }
1195
1196 /// Parse the contents of the "external_source_symbol" attribute.
1197 ///
1198 /// external-source-symbol-attribute:
1199 ///   'external_source_symbol' '(' keyword-arg-list ')'
1200 ///
1201 /// keyword-arg-list:
1202 ///   keyword-arg
1203 ///   keyword-arg ',' keyword-arg-list
1204 ///
1205 /// keyword-arg:
1206 ///   'language' '=' <string>
1207 ///   'defined_in' '=' <string>
1208 ///   'generated_declaration'
1209 void Parser::ParseExternalSourceSymbolAttribute(
1210     IdentifierInfo &ExternalSourceSymbol, SourceLocation Loc,
1211     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1212     SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
1213   // Opening '('.
1214   BalancedDelimiterTracker T(*this, tok::l_paren);
1215   if (T.expectAndConsume())
1216     return;
1217
1218   // Initialize the pointers for the keyword identifiers when required.
1219   if (!Ident_language) {
1220     Ident_language = PP.getIdentifierInfo("language");
1221     Ident_defined_in = PP.getIdentifierInfo("defined_in");
1222     Ident_generated_declaration = PP.getIdentifierInfo("generated_declaration");
1223   }
1224
1225   ExprResult Language;
1226   bool HasLanguage = false;
1227   ExprResult DefinedInExpr;
1228   bool HasDefinedIn = false;
1229   IdentifierLoc *GeneratedDeclaration = nullptr;
1230
1231   // Parse the language/defined_in/generated_declaration keywords
1232   do {
1233     if (Tok.isNot(tok::identifier)) {
1234       Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1235       SkipUntil(tok::r_paren, StopAtSemi);
1236       return;
1237     }
1238
1239     SourceLocation KeywordLoc = Tok.getLocation();
1240     IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1241     if (Keyword == Ident_generated_declaration) {
1242       if (GeneratedDeclaration) {
1243         Diag(Tok, diag::err_external_source_symbol_duplicate_clause) << Keyword;
1244         SkipUntil(tok::r_paren, StopAtSemi);
1245         return;
1246       }
1247       GeneratedDeclaration = ParseIdentifierLoc();
1248       continue;
1249     }
1250
1251     if (Keyword != Ident_language && Keyword != Ident_defined_in) {
1252       Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1253       SkipUntil(tok::r_paren, StopAtSemi);
1254       return;
1255     }
1256
1257     ConsumeToken();
1258     if (ExpectAndConsume(tok::equal, diag::err_expected_after,
1259                          Keyword->getName())) {
1260       SkipUntil(tok::r_paren, StopAtSemi);
1261       return;
1262     }
1263
1264     bool HadLanguage = HasLanguage, HadDefinedIn = HasDefinedIn;
1265     if (Keyword == Ident_language)
1266       HasLanguage = true;
1267     else
1268       HasDefinedIn = true;
1269
1270     if (Tok.isNot(tok::string_literal)) {
1271       Diag(Tok, diag::err_expected_string_literal)
1272           << /*Source='external_source_symbol attribute'*/ 3
1273           << /*language | source container*/ (Keyword != Ident_language);
1274       SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
1275       continue;
1276     }
1277     if (Keyword == Ident_language) {
1278       if (HadLanguage) {
1279         Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1280             << Keyword;
1281         ParseStringLiteralExpression();
1282         continue;
1283       }
1284       Language = ParseStringLiteralExpression();
1285     } else {
1286       assert(Keyword == Ident_defined_in && "Invalid clause keyword!");
1287       if (HadDefinedIn) {
1288         Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1289             << Keyword;
1290         ParseStringLiteralExpression();
1291         continue;
1292       }
1293       DefinedInExpr = ParseStringLiteralExpression();
1294     }
1295   } while (TryConsumeToken(tok::comma));
1296
1297   // Closing ')'.
1298   if (T.consumeClose())
1299     return;
1300   if (EndLoc)
1301     *EndLoc = T.getCloseLocation();
1302
1303   ArgsUnion Args[] = {Language.get(), DefinedInExpr.get(),
1304                       GeneratedDeclaration};
1305   Attrs.addNew(&ExternalSourceSymbol, SourceRange(Loc, T.getCloseLocation()),
1306                ScopeName, ScopeLoc, Args, llvm::array_lengthof(Args), Syntax);
1307 }
1308
1309 /// Parse the contents of the "objc_bridge_related" attribute.
1310 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
1311 /// related_class:
1312 ///     Identifier
1313 ///
1314 /// opt-class_method:
1315 ///     Identifier: | <empty>
1316 ///
1317 /// opt-instance_method:
1318 ///     Identifier | <empty>
1319 ///
1320 void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
1321                                 SourceLocation ObjCBridgeRelatedLoc,
1322                                 ParsedAttributes &attrs,
1323                                 SourceLocation *endLoc,
1324                                 IdentifierInfo *ScopeName,
1325                                 SourceLocation ScopeLoc,
1326                                 ParsedAttr::Syntax Syntax) {
1327   // Opening '('.
1328   BalancedDelimiterTracker T(*this, tok::l_paren);
1329   if (T.consumeOpen()) {
1330     Diag(Tok, diag::err_expected) << tok::l_paren;
1331     return;
1332   }
1333
1334   // Parse the related class name.
1335   if (Tok.isNot(tok::identifier)) {
1336     Diag(Tok, diag::err_objcbridge_related_expected_related_class);
1337     SkipUntil(tok::r_paren, StopAtSemi);
1338     return;
1339   }
1340   IdentifierLoc *RelatedClass = ParseIdentifierLoc();
1341   if (ExpectAndConsume(tok::comma)) {
1342     SkipUntil(tok::r_paren, StopAtSemi);
1343     return;
1344   }
1345
1346   // Parse class method name.  It's non-optional in the sense that a trailing
1347   // comma is required, but it can be the empty string, and then we record a
1348   // nullptr.
1349   IdentifierLoc *ClassMethod = nullptr;
1350   if (Tok.is(tok::identifier)) {
1351     ClassMethod = ParseIdentifierLoc();
1352     if (!TryConsumeToken(tok::colon)) {
1353       Diag(Tok, diag::err_objcbridge_related_selector_name);
1354       SkipUntil(tok::r_paren, StopAtSemi);
1355       return;
1356     }
1357   }
1358   if (!TryConsumeToken(tok::comma)) {
1359     if (Tok.is(tok::colon))
1360       Diag(Tok, diag::err_objcbridge_related_selector_name);
1361     else
1362       Diag(Tok, diag::err_expected) << tok::comma;
1363     SkipUntil(tok::r_paren, StopAtSemi);
1364     return;
1365   }
1366
1367   // Parse instance method name.  Also non-optional but empty string is
1368   // permitted.
1369   IdentifierLoc *InstanceMethod = nullptr;
1370   if (Tok.is(tok::identifier))
1371     InstanceMethod = ParseIdentifierLoc();
1372   else if (Tok.isNot(tok::r_paren)) {
1373     Diag(Tok, diag::err_expected) << tok::r_paren;
1374     SkipUntil(tok::r_paren, StopAtSemi);
1375     return;
1376   }
1377
1378   // Closing ')'.
1379   if (T.consumeClose())
1380     return;
1381
1382   if (endLoc)
1383     *endLoc = T.getCloseLocation();
1384
1385   // Record this attribute
1386   attrs.addNew(&ObjCBridgeRelated,
1387                SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
1388                ScopeName, ScopeLoc,
1389                RelatedClass,
1390                ClassMethod,
1391                InstanceMethod,
1392                Syntax);
1393 }
1394
1395 // Late Parsed Attributes:
1396 // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
1397
1398 void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
1399
1400 void Parser::LateParsedClass::ParseLexedAttributes() {
1401   Self->ParseLexedAttributes(*Class);
1402 }
1403
1404 void Parser::LateParsedAttribute::ParseLexedAttributes() {
1405   Self->ParseLexedAttribute(*this, true, false);
1406 }
1407
1408 /// Wrapper class which calls ParseLexedAttribute, after setting up the
1409 /// scope appropriately.
1410 void Parser::ParseLexedAttributes(ParsingClass &Class) {
1411   // Deal with templates
1412   // FIXME: Test cases to make sure this does the right thing for templates.
1413   bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
1414   ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
1415                                 HasTemplateScope);
1416   if (HasTemplateScope)
1417     Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
1418
1419   // Set or update the scope flags.
1420   bool AlreadyHasClassScope = Class.TopLevelClass;
1421   unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
1422   ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
1423   ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
1424
1425   // Enter the scope of nested classes
1426   if (!AlreadyHasClassScope)
1427     Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
1428                                                 Class.TagOrTemplate);
1429   if (!Class.LateParsedDeclarations.empty()) {
1430     for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
1431       Class.LateParsedDeclarations[i]->ParseLexedAttributes();
1432     }
1433   }
1434
1435   if (!AlreadyHasClassScope)
1436     Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
1437                                                  Class.TagOrTemplate);
1438 }
1439
1440 /// Parse all attributes in LAs, and attach them to Decl D.
1441 void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
1442                                      bool EnterScope, bool OnDefinition) {
1443   assert(LAs.parseSoon() &&
1444          "Attribute list should be marked for immediate parsing.");
1445   for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
1446     if (D)
1447       LAs[i]->addDecl(D);
1448     ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
1449     delete LAs[i];
1450   }
1451   LAs.clear();
1452 }
1453
1454 /// Finish parsing an attribute for which parsing was delayed.
1455 /// This will be called at the end of parsing a class declaration
1456 /// for each LateParsedAttribute. We consume the saved tokens and
1457 /// create an attribute with the arguments filled in. We add this
1458 /// to the Attribute list for the decl.
1459 void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
1460                                  bool EnterScope, bool OnDefinition) {
1461   // Create a fake EOF so that attribute parsing won't go off the end of the
1462   // attribute.
1463   Token AttrEnd;
1464   AttrEnd.startToken();
1465   AttrEnd.setKind(tok::eof);
1466   AttrEnd.setLocation(Tok.getLocation());
1467   AttrEnd.setEofData(LA.Toks.data());
1468   LA.Toks.push_back(AttrEnd);
1469
1470   // Append the current token at the end of the new token stream so that it
1471   // doesn't get lost.
1472   LA.Toks.push_back(Tok);
1473   PP.EnterTokenStream(LA.Toks, true, /*IsReinject=*/true);
1474   // Consume the previously pushed token.
1475   ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
1476
1477   ParsedAttributes Attrs(AttrFactory);
1478   SourceLocation endLoc;
1479
1480   if (LA.Decls.size() > 0) {
1481     Decl *D = LA.Decls[0];
1482     NamedDecl *ND  = dyn_cast<NamedDecl>(D);
1483     RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
1484
1485     // Allow 'this' within late-parsed attributes.
1486     Sema::CXXThisScopeRAII ThisScope(Actions, RD, Qualifiers(),
1487                                      ND && ND->isCXXInstanceMember());
1488
1489     if (LA.Decls.size() == 1) {
1490       // If the Decl is templatized, add template parameters to scope.
1491       bool HasTemplateScope = EnterScope && D->isTemplateDecl();
1492       ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
1493       if (HasTemplateScope)
1494         Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
1495
1496       // If the Decl is on a function, add function parameters to the scope.
1497       bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
1498       ParseScope FnScope(
1499           this, Scope::FnScope | Scope::DeclScope | Scope::CompoundStmtScope,
1500           HasFunScope);
1501       if (HasFunScope)
1502         Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
1503
1504       ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1505                             nullptr, SourceLocation(), ParsedAttr::AS_GNU,
1506                             nullptr);
1507
1508       if (HasFunScope) {
1509         Actions.ActOnExitFunctionContext();
1510         FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
1511       }
1512       if (HasTemplateScope) {
1513         TempScope.Exit();
1514       }
1515     } else {
1516       // If there are multiple decls, then the decl cannot be within the
1517       // function scope.
1518       ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1519                             nullptr, SourceLocation(), ParsedAttr::AS_GNU,
1520                             nullptr);
1521     }
1522   } else {
1523     Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
1524   }
1525
1526   if (OnDefinition && !Attrs.empty() && !Attrs.begin()->isCXX11Attribute() &&
1527       Attrs.begin()->isKnownToGCC())
1528     Diag(Tok, diag::warn_attribute_on_function_definition)
1529       << &LA.AttrName;
1530
1531   for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
1532     Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
1533
1534   // Due to a parsing error, we either went over the cached tokens or
1535   // there are still cached tokens left, so we skip the leftover tokens.
1536   while (Tok.isNot(tok::eof))
1537     ConsumeAnyToken();
1538
1539   if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())
1540     ConsumeAnyToken();
1541 }
1542
1543 void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
1544                                               SourceLocation AttrNameLoc,
1545                                               ParsedAttributes &Attrs,
1546                                               SourceLocation *EndLoc,
1547                                               IdentifierInfo *ScopeName,
1548                                               SourceLocation ScopeLoc,
1549                                               ParsedAttr::Syntax Syntax) {
1550   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1551
1552   BalancedDelimiterTracker T(*this, tok::l_paren);
1553   T.consumeOpen();
1554
1555   if (Tok.isNot(tok::identifier)) {
1556     Diag(Tok, diag::err_expected) << tok::identifier;
1557     T.skipToEnd();
1558     return;
1559   }
1560   IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1561
1562   if (ExpectAndConsume(tok::comma)) {
1563     T.skipToEnd();
1564     return;
1565   }
1566
1567   SourceRange MatchingCTypeRange;
1568   TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1569   if (MatchingCType.isInvalid()) {
1570     T.skipToEnd();
1571     return;
1572   }
1573
1574   bool LayoutCompatible = false;
1575   bool MustBeNull = false;
1576   while (TryConsumeToken(tok::comma)) {
1577     if (Tok.isNot(tok::identifier)) {
1578       Diag(Tok, diag::err_expected) << tok::identifier;
1579       T.skipToEnd();
1580       return;
1581     }
1582     IdentifierInfo *Flag = Tok.getIdentifierInfo();
1583     if (Flag->isStr("layout_compatible"))
1584       LayoutCompatible = true;
1585     else if (Flag->isStr("must_be_null"))
1586       MustBeNull = true;
1587     else {
1588       Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1589       T.skipToEnd();
1590       return;
1591     }
1592     ConsumeToken(); // consume flag
1593   }
1594
1595   if (!T.consumeClose()) {
1596     Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
1597                                    ArgumentKind, MatchingCType.get(),
1598                                    LayoutCompatible, MustBeNull, Syntax);
1599   }
1600
1601   if (EndLoc)
1602     *EndLoc = T.getCloseLocation();
1603 }
1604
1605 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1606 /// of a C++11 attribute-specifier in a location where an attribute is not
1607 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1608 /// situation.
1609 ///
1610 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1611 /// this doesn't appear to actually be an attribute-specifier, and the caller
1612 /// should try to parse it.
1613 bool Parser::DiagnoseProhibitedCXX11Attribute() {
1614   assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1615
1616   switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1617   case CAK_NotAttributeSpecifier:
1618     // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1619     return false;
1620
1621   case CAK_InvalidAttributeSpecifier:
1622     Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1623     return false;
1624
1625   case CAK_AttributeSpecifier:
1626     // Parse and discard the attributes.
1627     SourceLocation BeginLoc = ConsumeBracket();
1628     ConsumeBracket();
1629     SkipUntil(tok::r_square);
1630     assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1631     SourceLocation EndLoc = ConsumeBracket();
1632     Diag(BeginLoc, diag::err_attributes_not_allowed)
1633       << SourceRange(BeginLoc, EndLoc);
1634     return true;
1635   }
1636   llvm_unreachable("All cases handled above.");
1637 }
1638
1639 /// We have found the opening square brackets of a C++11
1640 /// attribute-specifier in a location where an attribute is not permitted, but
1641 /// we know where the attributes ought to be written. Parse them anyway, and
1642 /// provide a fixit moving them to the right place.
1643 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
1644                                              SourceLocation CorrectLocation) {
1645   assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1646          Tok.is(tok::kw_alignas));
1647
1648   // Consume the attributes.
1649   SourceLocation Loc = Tok.getLocation();
1650   ParseCXX11Attributes(Attrs);
1651   CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1652   // FIXME: use err_attributes_misplaced
1653   Diag(Loc, diag::err_attributes_not_allowed)
1654     << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1655     << FixItHint::CreateRemoval(AttrRange);
1656 }
1657
1658 void Parser::DiagnoseProhibitedAttributes(
1659     const SourceRange &Range, const SourceLocation CorrectLocation) {
1660   if (CorrectLocation.isValid()) {
1661     CharSourceRange AttrRange(Range, true);
1662     Diag(CorrectLocation, diag::err_attributes_misplaced)
1663         << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1664         << FixItHint::CreateRemoval(AttrRange);
1665   } else
1666     Diag(Range.getBegin(), diag::err_attributes_not_allowed) << Range;
1667 }
1668
1669 void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &Attrs,
1670                                      unsigned DiagID) {
1671   for (const ParsedAttr &AL : Attrs) {
1672     if (!AL.isCXX11Attribute() && !AL.isC2xAttribute())
1673       continue;
1674     if (AL.getKind() == ParsedAttr::UnknownAttribute)
1675       Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL.getName();
1676     else {
1677       Diag(AL.getLoc(), DiagID) << AL.getName();
1678       AL.setInvalid();
1679     }
1680   }
1681 }
1682
1683 // Usually, `__attribute__((attrib)) class Foo {} var` means that attribute
1684 // applies to var, not the type Foo.
1685 // As an exception to the rule, __declspec(align(...)) before the
1686 // class-key affects the type instead of the variable.
1687 // Also, Microsoft-style [attributes] seem to affect the type instead of the
1688 // variable.
1689 // This function moves attributes that should apply to the type off DS to Attrs.
1690 void Parser::stripTypeAttributesOffDeclSpec(ParsedAttributesWithRange &Attrs,
1691                                             DeclSpec &DS,
1692                                             Sema::TagUseKind TUK) {
1693   if (TUK == Sema::TUK_Reference)
1694     return;
1695
1696   llvm::SmallVector<ParsedAttr *, 1> ToBeMoved;
1697
1698   for (ParsedAttr &AL : DS.getAttributes()) {
1699     if ((AL.getKind() == ParsedAttr::AT_Aligned &&
1700          AL.isDeclspecAttribute()) ||
1701         AL.isMicrosoftAttribute())
1702       ToBeMoved.push_back(&AL);
1703   }
1704
1705   for (ParsedAttr *AL : ToBeMoved) {
1706     DS.getAttributes().remove(AL);
1707     Attrs.addAtEnd(AL);
1708   }
1709 }
1710
1711 /// ParseDeclaration - Parse a full 'declaration', which consists of
1712 /// declaration-specifiers, some number of declarators, and a semicolon.
1713 /// 'Context' should be a DeclaratorContext value.  This returns the
1714 /// location of the semicolon in DeclEnd.
1715 ///
1716 ///       declaration: [C99 6.7]
1717 ///         block-declaration ->
1718 ///           simple-declaration
1719 ///           others                   [FIXME]
1720 /// [C++]   template-declaration
1721 /// [C++]   namespace-definition
1722 /// [C++]   using-directive
1723 /// [C++]   using-declaration
1724 /// [C++11/C11] static_assert-declaration
1725 ///         others... [FIXME]
1726 ///
1727 Parser::DeclGroupPtrTy Parser::ParseDeclaration(DeclaratorContext Context,
1728                                                 SourceLocation &DeclEnd,
1729                                           ParsedAttributesWithRange &attrs) {
1730   ParenBraceBracketBalancer BalancerRAIIObj(*this);
1731   // Must temporarily exit the objective-c container scope for
1732   // parsing c none objective-c decls.
1733   ObjCDeclContextSwitch ObjCDC(*this);
1734
1735   Decl *SingleDecl = nullptr;
1736   switch (Tok.getKind()) {
1737   case tok::kw_template:
1738   case tok::kw_export:
1739     ProhibitAttributes(attrs);
1740     SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd, attrs);
1741     break;
1742   case tok::kw_inline:
1743     // Could be the start of an inline namespace. Allowed as an ext in C++03.
1744     if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
1745       ProhibitAttributes(attrs);
1746       SourceLocation InlineLoc = ConsumeToken();
1747       return ParseNamespace(Context, DeclEnd, InlineLoc);
1748     }
1749     return ParseSimpleDeclaration(Context, DeclEnd, attrs,
1750                                   true);
1751   case tok::kw_namespace:
1752     ProhibitAttributes(attrs);
1753     return ParseNamespace(Context, DeclEnd);
1754   case tok::kw_using:
1755     return ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
1756                                             DeclEnd, attrs);
1757   case tok::kw_static_assert:
1758   case tok::kw__Static_assert:
1759     ProhibitAttributes(attrs);
1760     SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1761     break;
1762   default:
1763     return ParseSimpleDeclaration(Context, DeclEnd, attrs, true);
1764   }
1765
1766   // This routine returns a DeclGroup, if the thing we parsed only contains a
1767   // single decl, convert it now.
1768   return Actions.ConvertDeclToDeclGroup(SingleDecl);
1769 }
1770
1771 ///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1772 ///         declaration-specifiers init-declarator-list[opt] ';'
1773 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
1774 ///             init-declarator-list ';'
1775 ///[C90/C++]init-declarator-list ';'                             [TODO]
1776 /// [OMP]   threadprivate-directive
1777 /// [OMP]   allocate-directive                                   [TODO]
1778 ///
1779 ///       for-range-declaration: [C++11 6.5p1: stmt.ranged]
1780 ///         attribute-specifier-seq[opt] type-specifier-seq declarator
1781 ///
1782 /// If RequireSemi is false, this does not check for a ';' at the end of the
1783 /// declaration.  If it is true, it checks for and eats it.
1784 ///
1785 /// If FRI is non-null, we might be parsing a for-range-declaration instead
1786 /// of a simple-declaration. If we find that we are, we also parse the
1787 /// for-range-initializer, and place it here.
1788 Parser::DeclGroupPtrTy
1789 Parser::ParseSimpleDeclaration(DeclaratorContext Context,
1790                                SourceLocation &DeclEnd,
1791                                ParsedAttributesWithRange &Attrs,
1792                                bool RequireSemi, ForRangeInit *FRI) {
1793   // Parse the common declaration-specifiers piece.
1794   ParsingDeclSpec DS(*this);
1795
1796   DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
1797   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
1798
1799   // If we had a free-standing type definition with a missing semicolon, we
1800   // may get this far before the problem becomes obvious.
1801   if (DS.hasTagDefinition() &&
1802       DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
1803     return nullptr;
1804
1805   // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
1806   // declaration-specifiers init-declarator-list[opt] ';'
1807   if (Tok.is(tok::semi)) {
1808     ProhibitAttributes(Attrs);
1809     DeclEnd = Tok.getLocation();
1810     if (RequireSemi) ConsumeToken();
1811     RecordDecl *AnonRecord = nullptr;
1812     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1813                                                        DS, AnonRecord);
1814     DS.complete(TheDecl);
1815     if (AnonRecord) {
1816       Decl* decls[] = {AnonRecord, TheDecl};
1817       return Actions.BuildDeclaratorGroup(decls);
1818     }
1819     return Actions.ConvertDeclToDeclGroup(TheDecl);
1820   }
1821
1822   DS.takeAttributesFrom(Attrs);
1823   return ParseDeclGroup(DS, Context, &DeclEnd, FRI);
1824 }
1825
1826 /// Returns true if this might be the start of a declarator, or a common typo
1827 /// for a declarator.
1828 bool Parser::MightBeDeclarator(DeclaratorContext Context) {
1829   switch (Tok.getKind()) {
1830   case tok::annot_cxxscope:
1831   case tok::annot_template_id:
1832   case tok::caret:
1833   case tok::code_completion:
1834   case tok::coloncolon:
1835   case tok::ellipsis:
1836   case tok::kw___attribute:
1837   case tok::kw_operator:
1838   case tok::l_paren:
1839   case tok::star:
1840     return true;
1841
1842   case tok::amp:
1843   case tok::ampamp:
1844     return getLangOpts().CPlusPlus;
1845
1846   case tok::l_square: // Might be an attribute on an unnamed bit-field.
1847     return Context == DeclaratorContext::MemberContext &&
1848            getLangOpts().CPlusPlus11 && NextToken().is(tok::l_square);
1849
1850   case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1851     return Context == DeclaratorContext::MemberContext ||
1852            getLangOpts().CPlusPlus;
1853
1854   case tok::identifier:
1855     switch (NextToken().getKind()) {
1856     case tok::code_completion:
1857     case tok::coloncolon:
1858     case tok::comma:
1859     case tok::equal:
1860     case tok::equalequal: // Might be a typo for '='.
1861     case tok::kw_alignas:
1862     case tok::kw_asm:
1863     case tok::kw___attribute:
1864     case tok::l_brace:
1865     case tok::l_paren:
1866     case tok::l_square:
1867     case tok::less:
1868     case tok::r_brace:
1869     case tok::r_paren:
1870     case tok::r_square:
1871     case tok::semi:
1872       return true;
1873
1874     case tok::colon:
1875       // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1876       // and in block scope it's probably a label. Inside a class definition,
1877       // this is a bit-field.
1878       return Context == DeclaratorContext::MemberContext ||
1879              (getLangOpts().CPlusPlus &&
1880               Context == DeclaratorContext::FileContext);
1881
1882     case tok::identifier: // Possible virt-specifier.
1883       return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
1884
1885     default:
1886       return false;
1887     }
1888
1889   default:
1890     return false;
1891   }
1892 }
1893
1894 /// Skip until we reach something which seems like a sensible place to pick
1895 /// up parsing after a malformed declaration. This will sometimes stop sooner
1896 /// than SkipUntil(tok::r_brace) would, but will never stop later.
1897 void Parser::SkipMalformedDecl() {
1898   while (true) {
1899     switch (Tok.getKind()) {
1900     case tok::l_brace:
1901       // Skip until matching }, then stop. We've probably skipped over
1902       // a malformed class or function definition or similar.
1903       ConsumeBrace();
1904       SkipUntil(tok::r_brace);
1905       if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) {
1906         // This declaration isn't over yet. Keep skipping.
1907         continue;
1908       }
1909       TryConsumeToken(tok::semi);
1910       return;
1911
1912     case tok::l_square:
1913       ConsumeBracket();
1914       SkipUntil(tok::r_square);
1915       continue;
1916
1917     case tok::l_paren:
1918       ConsumeParen();
1919       SkipUntil(tok::r_paren);
1920       continue;
1921
1922     case tok::r_brace:
1923       return;
1924
1925     case tok::semi:
1926       ConsumeToken();
1927       return;
1928
1929     case tok::kw_inline:
1930       // 'inline namespace' at the start of a line is almost certainly
1931       // a good place to pick back up parsing, except in an Objective-C
1932       // @interface context.
1933       if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
1934           (!ParsingInObjCContainer || CurParsedObjCImpl))
1935         return;
1936       break;
1937
1938     case tok::kw_namespace:
1939       // 'namespace' at the start of a line is almost certainly a good
1940       // place to pick back up parsing, except in an Objective-C
1941       // @interface context.
1942       if (Tok.isAtStartOfLine() &&
1943           (!ParsingInObjCContainer || CurParsedObjCImpl))
1944         return;
1945       break;
1946
1947     case tok::at:
1948       // @end is very much like } in Objective-C contexts.
1949       if (NextToken().isObjCAtKeyword(tok::objc_end) &&
1950           ParsingInObjCContainer)
1951         return;
1952       break;
1953
1954     case tok::minus:
1955     case tok::plus:
1956       // - and + probably start new method declarations in Objective-C contexts.
1957       if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
1958         return;
1959       break;
1960
1961     case tok::eof:
1962     case tok::annot_module_begin:
1963     case tok::annot_module_end:
1964     case tok::annot_module_include:
1965       return;
1966
1967     default:
1968       break;
1969     }
1970
1971     ConsumeAnyToken();
1972   }
1973 }
1974
1975 /// ParseDeclGroup - Having concluded that this is either a function
1976 /// definition or a group of object declarations, actually parse the
1977 /// result.
1978 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1979                                               DeclaratorContext Context,
1980                                               SourceLocation *DeclEnd,
1981                                               ForRangeInit *FRI) {
1982   // Parse the first declarator.
1983   ParsingDeclarator D(*this, DS, Context);
1984   ParseDeclarator(D);
1985
1986   // Bail out if the first declarator didn't seem well-formed.
1987   if (!D.hasName() && !D.mayOmitIdentifier()) {
1988     SkipMalformedDecl();
1989     return nullptr;
1990   }
1991
1992   // Save late-parsed attributes for now; they need to be parsed in the
1993   // appropriate function scope after the function Decl has been constructed.
1994   // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
1995   LateParsedAttrList LateParsedAttrs(true);
1996   if (D.isFunctionDeclarator()) {
1997     MaybeParseGNUAttributes(D, &LateParsedAttrs);
1998
1999     // The _Noreturn keyword can't appear here, unlike the GNU noreturn
2000     // attribute. If we find the keyword here, tell the user to put it
2001     // at the start instead.
2002     if (Tok.is(tok::kw__Noreturn)) {
2003       SourceLocation Loc = ConsumeToken();
2004       const char *PrevSpec;
2005       unsigned DiagID;
2006
2007       // We can offer a fixit if it's valid to mark this function as _Noreturn
2008       // and we don't have any other declarators in this declaration.
2009       bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
2010       MaybeParseGNUAttributes(D, &LateParsedAttrs);
2011       Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try);
2012
2013       Diag(Loc, diag::err_c11_noreturn_misplaced)
2014           << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
2015           << (Fixit ? FixItHint::CreateInsertion(D.getBeginLoc(), "_Noreturn ")
2016                     : FixItHint());
2017     }
2018   }
2019
2020   // Check to see if we have a function *definition* which must have a body.
2021   if (D.isFunctionDeclarator() &&
2022       // Look at the next token to make sure that this isn't a function
2023       // declaration.  We have to check this because __attribute__ might be the
2024       // start of a function definition in GCC-extended K&R C.
2025       !isDeclarationAfterDeclarator()) {
2026
2027     // Function definitions are only allowed at file scope and in C++ classes.
2028     // The C++ inline method definition case is handled elsewhere, so we only
2029     // need to handle the file scope definition case.
2030     if (Context == DeclaratorContext::FileContext) {
2031       if (isStartOfFunctionDefinition(D)) {
2032         if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
2033           Diag(Tok, diag::err_function_declared_typedef);
2034
2035           // Recover by treating the 'typedef' as spurious.
2036           DS.ClearStorageClassSpecs();
2037         }
2038
2039         Decl *TheDecl =
2040           ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
2041         return Actions.ConvertDeclToDeclGroup(TheDecl);
2042       }
2043
2044       if (isDeclarationSpecifier()) {
2045         // If there is an invalid declaration specifier right after the
2046         // function prototype, then we must be in a missing semicolon case
2047         // where this isn't actually a body.  Just fall through into the code
2048         // that handles it as a prototype, and let the top-level code handle
2049         // the erroneous declspec where it would otherwise expect a comma or
2050         // semicolon.
2051       } else {
2052         Diag(Tok, diag::err_expected_fn_body);
2053         SkipUntil(tok::semi);
2054         return nullptr;
2055       }
2056     } else {
2057       if (Tok.is(tok::l_brace)) {
2058         Diag(Tok, diag::err_function_definition_not_allowed);
2059         SkipMalformedDecl();
2060         return nullptr;
2061       }
2062     }
2063   }
2064
2065   if (ParseAsmAttributesAfterDeclarator(D))
2066     return nullptr;
2067
2068   // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
2069   // must parse and analyze the for-range-initializer before the declaration is
2070   // analyzed.
2071   //
2072   // Handle the Objective-C for-in loop variable similarly, although we
2073   // don't need to parse the container in advance.
2074   if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
2075     bool IsForRangeLoop = false;
2076     if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
2077       IsForRangeLoop = true;
2078       if (Tok.is(tok::l_brace))
2079         FRI->RangeExpr = ParseBraceInitializer();
2080       else
2081         FRI->RangeExpr = ParseExpression();
2082     }
2083
2084     Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2085     if (IsForRangeLoop) {
2086       Actions.ActOnCXXForRangeDecl(ThisDecl);
2087     } else {
2088       // Obj-C for loop
2089       if (auto *VD = dyn_cast_or_null<VarDecl>(ThisDecl))
2090         VD->setObjCForDecl(true);
2091     }
2092     Actions.FinalizeDeclaration(ThisDecl);
2093     D.complete(ThisDecl);
2094     return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
2095   }
2096
2097   SmallVector<Decl *, 8> DeclsInGroup;
2098   Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
2099       D, ParsedTemplateInfo(), FRI);
2100   if (LateParsedAttrs.size() > 0)
2101     ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
2102   D.complete(FirstDecl);
2103   if (FirstDecl)
2104     DeclsInGroup.push_back(FirstDecl);
2105
2106   bool ExpectSemi = Context != DeclaratorContext::ForContext;
2107
2108   // If we don't have a comma, it is either the end of the list (a ';') or an
2109   // error, bail out.
2110   SourceLocation CommaLoc;
2111   while (TryConsumeToken(tok::comma, CommaLoc)) {
2112     if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
2113       // This comma was followed by a line-break and something which can't be
2114       // the start of a declarator. The comma was probably a typo for a
2115       // semicolon.
2116       Diag(CommaLoc, diag::err_expected_semi_declaration)
2117         << FixItHint::CreateReplacement(CommaLoc, ";");
2118       ExpectSemi = false;
2119       break;
2120     }
2121
2122     // Parse the next declarator.
2123     D.clear();
2124     D.setCommaLoc(CommaLoc);
2125
2126     // Accept attributes in an init-declarator.  In the first declarator in a
2127     // declaration, these would be part of the declspec.  In subsequent
2128     // declarators, they become part of the declarator itself, so that they
2129     // don't apply to declarators after *this* one.  Examples:
2130     //    short __attribute__((common)) var;    -> declspec
2131     //    short var __attribute__((common));    -> declarator
2132     //    short x, __attribute__((common)) var;    -> declarator
2133     MaybeParseGNUAttributes(D);
2134
2135     // MSVC parses but ignores qualifiers after the comma as an extension.
2136     if (getLangOpts().MicrosoftExt)
2137       DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
2138
2139     ParseDeclarator(D);
2140     if (!D.isInvalidType()) {
2141       Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
2142       D.complete(ThisDecl);
2143       if (ThisDecl)
2144         DeclsInGroup.push_back(ThisDecl);
2145     }
2146   }
2147
2148   if (DeclEnd)
2149     *DeclEnd = Tok.getLocation();
2150
2151   if (ExpectSemi &&
2152       ExpectAndConsumeSemi(Context == DeclaratorContext::FileContext
2153                            ? diag::err_invalid_token_after_toplevel_declarator
2154                            : diag::err_expected_semi_declaration)) {
2155     // Okay, there was no semicolon and one was expected.  If we see a
2156     // declaration specifier, just assume it was missing and continue parsing.
2157     // Otherwise things are very confused and we skip to recover.
2158     if (!isDeclarationSpecifier()) {
2159       SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
2160       TryConsumeToken(tok::semi);
2161     }
2162   }
2163
2164   return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
2165 }
2166
2167 /// Parse an optional simple-asm-expr and attributes, and attach them to a
2168 /// declarator. Returns true on an error.
2169 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
2170   // If a simple-asm-expr is present, parse it.
2171   if (Tok.is(tok::kw_asm)) {
2172     SourceLocation Loc;
2173     ExprResult AsmLabel(ParseSimpleAsm(&Loc));
2174     if (AsmLabel.isInvalid()) {
2175       SkipUntil(tok::semi, StopBeforeMatch);
2176       return true;
2177     }
2178
2179     D.setAsmLabel(AsmLabel.get());
2180     D.SetRangeEnd(Loc);
2181   }
2182
2183   MaybeParseGNUAttributes(D);
2184   return false;
2185 }
2186
2187 /// Parse 'declaration' after parsing 'declaration-specifiers
2188 /// declarator'. This method parses the remainder of the declaration
2189 /// (including any attributes or initializer, among other things) and
2190 /// finalizes the declaration.
2191 ///
2192 ///       init-declarator: [C99 6.7]
2193 ///         declarator
2194 ///         declarator '=' initializer
2195 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
2196 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
2197 /// [C++]   declarator initializer[opt]
2198 ///
2199 /// [C++] initializer:
2200 /// [C++]   '=' initializer-clause
2201 /// [C++]   '(' expression-list ')'
2202 /// [C++0x] '=' 'default'                                                [TODO]
2203 /// [C++0x] '=' 'delete'
2204 /// [C++0x] braced-init-list
2205 ///
2206 /// According to the standard grammar, =default and =delete are function
2207 /// definitions, but that definitely doesn't fit with the parser here.
2208 ///
2209 Decl *Parser::ParseDeclarationAfterDeclarator(
2210     Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
2211   if (ParseAsmAttributesAfterDeclarator(D))
2212     return nullptr;
2213
2214   return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
2215 }
2216
2217 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
2218     Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
2219   // RAII type used to track whether we're inside an initializer.
2220   struct InitializerScopeRAII {
2221     Parser &P;
2222     Declarator &D;
2223     Decl *ThisDecl;
2224
2225     InitializerScopeRAII(Parser &P, Declarator &D, Decl *ThisDecl)
2226         : P(P), D(D), ThisDecl(ThisDecl) {
2227       if (ThisDecl && P.getLangOpts().CPlusPlus) {
2228         Scope *S = nullptr;
2229         if (D.getCXXScopeSpec().isSet()) {
2230           P.EnterScope(0);
2231           S = P.getCurScope();
2232         }
2233         P.Actions.ActOnCXXEnterDeclInitializer(S, ThisDecl);
2234       }
2235     }
2236     ~InitializerScopeRAII() { pop(); }
2237     void pop() {
2238       if (ThisDecl && P.getLangOpts().CPlusPlus) {
2239         Scope *S = nullptr;
2240         if (D.getCXXScopeSpec().isSet())
2241           S = P.getCurScope();
2242         P.Actions.ActOnCXXExitDeclInitializer(S, ThisDecl);
2243         if (S)
2244           P.ExitScope();
2245       }
2246       ThisDecl = nullptr;
2247     }
2248   };
2249
2250   // Inform the current actions module that we just parsed this declarator.
2251   Decl *ThisDecl = nullptr;
2252   switch (TemplateInfo.Kind) {
2253   case ParsedTemplateInfo::NonTemplate:
2254     ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2255     break;
2256
2257   case ParsedTemplateInfo::Template:
2258   case ParsedTemplateInfo::ExplicitSpecialization: {
2259     ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
2260                                                *TemplateInfo.TemplateParams,
2261                                                D);
2262     if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
2263       // Re-direct this decl to refer to the templated decl so that we can
2264       // initialize it.
2265       ThisDecl = VT->getTemplatedDecl();
2266     break;
2267   }
2268   case ParsedTemplateInfo::ExplicitInstantiation: {
2269     if (Tok.is(tok::semi)) {
2270       DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
2271           getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
2272       if (ThisRes.isInvalid()) {
2273         SkipUntil(tok::semi, StopBeforeMatch);
2274         return nullptr;
2275       }
2276       ThisDecl = ThisRes.get();
2277     } else {
2278       // FIXME: This check should be for a variable template instantiation only.
2279
2280       // Check that this is a valid instantiation
2281       if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
2282         // If the declarator-id is not a template-id, issue a diagnostic and
2283         // recover by ignoring the 'template' keyword.
2284         Diag(Tok, diag::err_template_defn_explicit_instantiation)
2285             << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
2286         ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2287       } else {
2288         SourceLocation LAngleLoc =
2289             PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
2290         Diag(D.getIdentifierLoc(),
2291              diag::err_explicit_instantiation_with_definition)
2292             << SourceRange(TemplateInfo.TemplateLoc)
2293             << FixItHint::CreateInsertion(LAngleLoc, "<>");
2294
2295         // Recover as if it were an explicit specialization.
2296         TemplateParameterLists FakedParamLists;
2297         FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
2298             0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, None,
2299             LAngleLoc, nullptr));
2300
2301         ThisDecl =
2302             Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
2303       }
2304     }
2305     break;
2306     }
2307   }
2308
2309   // Parse declarator '=' initializer.
2310   // If a '==' or '+=' is found, suggest a fixit to '='.
2311   if (isTokenEqualOrEqualTypo()) {
2312     SourceLocation EqualLoc = ConsumeToken();
2313
2314     if (Tok.is(tok::kw_delete)) {
2315       if (D.isFunctionDeclarator())
2316         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2317           << 1 /* delete */;
2318       else
2319         Diag(ConsumeToken(), diag::err_deleted_non_function);
2320     } else if (Tok.is(tok::kw_default)) {
2321       if (D.isFunctionDeclarator())
2322         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2323           << 0 /* default */;
2324       else
2325         Diag(ConsumeToken(), diag::err_default_special_members);
2326     } else {
2327       InitializerScopeRAII InitScope(*this, D, ThisDecl);
2328
2329       if (Tok.is(tok::code_completion)) {
2330         Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
2331         Actions.FinalizeDeclaration(ThisDecl);
2332         cutOffParsing();
2333         return nullptr;
2334       }
2335
2336       PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl);
2337       ExprResult Init = ParseInitializer();
2338
2339       // If this is the only decl in (possibly) range based for statement,
2340       // our best guess is that the user meant ':' instead of '='.
2341       if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
2342         Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
2343             << FixItHint::CreateReplacement(EqualLoc, ":");
2344         // We are trying to stop parser from looking for ';' in this for
2345         // statement, therefore preventing spurious errors to be issued.
2346         FRI->ColonLoc = EqualLoc;
2347         Init = ExprError();
2348         FRI->RangeExpr = Init;
2349       }
2350
2351       InitScope.pop();
2352
2353       if (Init.isInvalid()) {
2354         SmallVector<tok::TokenKind, 2> StopTokens;
2355         StopTokens.push_back(tok::comma);
2356         if (D.getContext() == DeclaratorContext::ForContext ||
2357             D.getContext() == DeclaratorContext::InitStmtContext)
2358           StopTokens.push_back(tok::r_paren);
2359         SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
2360         Actions.ActOnInitializerError(ThisDecl);
2361       } else
2362         Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2363                                      /*DirectInit=*/false);
2364     }
2365   } else if (Tok.is(tok::l_paren)) {
2366     // Parse C++ direct initializer: '(' expression-list ')'
2367     BalancedDelimiterTracker T(*this, tok::l_paren);
2368     T.consumeOpen();
2369
2370     ExprVector Exprs;
2371     CommaLocsTy CommaLocs;
2372
2373     InitializerScopeRAII InitScope(*this, D, ThisDecl);
2374
2375     auto ThisVarDecl = dyn_cast_or_null<VarDecl>(ThisDecl);
2376     auto RunSignatureHelp = [&]() {
2377       QualType PreferredType = Actions.ProduceConstructorSignatureHelp(
2378           getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(),
2379           ThisDecl->getLocation(), Exprs, T.getOpenLocation());
2380       CalledSignatureHelp = true;
2381       return PreferredType;
2382     };
2383     auto SetPreferredType = [&] {
2384       PreferredType.enterFunctionArgument(Tok.getLocation(), RunSignatureHelp);
2385     };
2386
2387     llvm::function_ref<void()> ExpressionStarts;
2388     if (ThisVarDecl) {
2389       // ParseExpressionList can sometimes succeed even when ThisDecl is not
2390       // VarDecl. This is an error and it is reported in a call to
2391       // Actions.ActOnInitializerError(). However, we call
2392       // ProduceConstructorSignatureHelp only on VarDecls.
2393       ExpressionStarts = SetPreferredType;
2394     }
2395     if (ParseExpressionList(Exprs, CommaLocs, ExpressionStarts)) {
2396       if (ThisVarDecl && PP.isCodeCompletionReached() && !CalledSignatureHelp) {
2397         Actions.ProduceConstructorSignatureHelp(
2398             getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(),
2399             ThisDecl->getLocation(), Exprs, T.getOpenLocation());
2400         CalledSignatureHelp = true;
2401       }
2402       Actions.ActOnInitializerError(ThisDecl);
2403       SkipUntil(tok::r_paren, StopAtSemi);
2404     } else {
2405       // Match the ')'.
2406       T.consumeClose();
2407
2408       assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
2409              "Unexpected number of commas!");
2410
2411       InitScope.pop();
2412
2413       ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
2414                                                           T.getCloseLocation(),
2415                                                           Exprs);
2416       Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
2417                                    /*DirectInit=*/true);
2418     }
2419   } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
2420              (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
2421     // Parse C++0x braced-init-list.
2422     Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2423
2424     InitializerScopeRAII InitScope(*this, D, ThisDecl);
2425
2426     ExprResult Init(ParseBraceInitializer());
2427
2428     InitScope.pop();
2429
2430     if (Init.isInvalid()) {
2431       Actions.ActOnInitializerError(ThisDecl);
2432     } else
2433       Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/true);
2434
2435   } else {
2436     Actions.ActOnUninitializedDecl(ThisDecl);
2437   }
2438
2439   Actions.FinalizeDeclaration(ThisDecl);
2440
2441   return ThisDecl;
2442 }
2443
2444 /// ParseSpecifierQualifierList
2445 ///        specifier-qualifier-list:
2446 ///          type-specifier specifier-qualifier-list[opt]
2447 ///          type-qualifier specifier-qualifier-list[opt]
2448 /// [GNU]    attributes     specifier-qualifier-list[opt]
2449 ///
2450 void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
2451                                          DeclSpecContext DSC) {
2452   /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
2453   /// parse declaration-specifiers and complain about extra stuff.
2454   /// TODO: diagnose attribute-specifiers and alignment-specifiers.
2455   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
2456
2457   // Validate declspec for type-name.
2458   unsigned Specs = DS.getParsedSpecifiers();
2459   if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
2460     Diag(Tok, diag::err_expected_type);
2461     DS.SetTypeSpecError();
2462   } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) {
2463     Diag(Tok, diag::err_typename_requires_specqual);
2464     if (!DS.hasTypeSpecifier())
2465       DS.SetTypeSpecError();
2466   }
2467
2468   // Issue diagnostic and remove storage class if present.
2469   if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
2470     if (DS.getStorageClassSpecLoc().isValid())
2471       Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
2472     else
2473       Diag(DS.getThreadStorageClassSpecLoc(),
2474            diag::err_typename_invalid_storageclass);
2475     DS.ClearStorageClassSpecs();
2476   }
2477
2478   // Issue diagnostic and remove function specifier if present.
2479   if (Specs & DeclSpec::PQ_FunctionSpecifier) {
2480     if (DS.isInlineSpecified())
2481       Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
2482     if (DS.isVirtualSpecified())
2483       Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
2484     if (DS.hasExplicitSpecifier())
2485       Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
2486     DS.ClearFunctionSpecs();
2487   }
2488
2489   // Issue diagnostic and remove constexpr specifier if present.
2490   if (DS.hasConstexprSpecifier() && DSC != DeclSpecContext::DSC_condition) {
2491     Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr)
2492         << (DS.getConstexprSpecifier() == CSK_consteval);
2493     DS.ClearConstexprSpec();
2494   }
2495 }
2496
2497 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
2498 /// specified token is valid after the identifier in a declarator which
2499 /// immediately follows the declspec.  For example, these things are valid:
2500 ///
2501 ///      int x   [             4];         // direct-declarator
2502 ///      int x   (             int y);     // direct-declarator
2503 ///  int(int x   )                         // direct-declarator
2504 ///      int x   ;                         // simple-declaration
2505 ///      int x   =             17;         // init-declarator-list
2506 ///      int x   ,             y;          // init-declarator-list
2507 ///      int x   __asm__       ("foo");    // init-declarator-list
2508 ///      int x   :             4;          // struct-declarator
2509 ///      int x   {             5};         // C++'0x unified initializers
2510 ///
2511 /// This is not, because 'x' does not immediately follow the declspec (though
2512 /// ')' happens to be valid anyway).
2513 ///    int (x)
2514 ///
2515 static bool isValidAfterIdentifierInDeclarator(const Token &T) {
2516   return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi,
2517                    tok::comma, tok::equal, tok::kw_asm, tok::l_brace,
2518                    tok::colon);
2519 }
2520
2521 /// ParseImplicitInt - This method is called when we have an non-typename
2522 /// identifier in a declspec (which normally terminates the decl spec) when
2523 /// the declspec has no type specifier.  In this case, the declspec is either
2524 /// malformed or is "implicit int" (in K&R and C89).
2525 ///
2526 /// This method handles diagnosing this prettily and returns false if the
2527 /// declspec is done being processed.  If it recovers and thinks there may be
2528 /// other pieces of declspec after it, it returns true.
2529 ///
2530 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
2531                               const ParsedTemplateInfo &TemplateInfo,
2532                               AccessSpecifier AS, DeclSpecContext DSC,
2533                               ParsedAttributesWithRange &Attrs) {
2534   assert(Tok.is(tok::identifier) && "should have identifier");
2535
2536   SourceLocation Loc = Tok.getLocation();
2537   // If we see an identifier that is not a type name, we normally would
2538   // parse it as the identifier being declared.  However, when a typename
2539   // is typo'd or the definition is not included, this will incorrectly
2540   // parse the typename as the identifier name and fall over misparsing
2541   // later parts of the diagnostic.
2542   //
2543   // As such, we try to do some look-ahead in cases where this would
2544   // otherwise be an "implicit-int" case to see if this is invalid.  For
2545   // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
2546   // an identifier with implicit int, we'd get a parse error because the
2547   // next token is obviously invalid for a type.  Parse these as a case
2548   // with an invalid type specifier.
2549   assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
2550
2551   // Since we know that this either implicit int (which is rare) or an
2552   // error, do lookahead to try to do better recovery. This never applies
2553   // within a type specifier. Outside of C++, we allow this even if the
2554   // language doesn't "officially" support implicit int -- we support
2555   // implicit int as an extension in C99 and C11.
2556   if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
2557       isValidAfterIdentifierInDeclarator(NextToken())) {
2558     // If this token is valid for implicit int, e.g. "static x = 4", then
2559     // we just avoid eating the identifier, so it will be parsed as the
2560     // identifier in the declarator.
2561     return false;
2562   }
2563
2564   // Early exit as Sema has a dedicated missing_actual_pipe_type diagnostic
2565   // for incomplete declarations such as `pipe p`.
2566   if (getLangOpts().OpenCLCPlusPlus && DS.isTypeSpecPipe())
2567     return false;
2568
2569   if (getLangOpts().CPlusPlus &&
2570       DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
2571     // Don't require a type specifier if we have the 'auto' storage class
2572     // specifier in C++98 -- we'll promote it to a type specifier.
2573     if (SS)
2574       AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2575     return false;
2576   }
2577
2578   if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) &&
2579       getLangOpts().MSVCCompat) {
2580     // Lookup of an unqualified type name has failed in MSVC compatibility mode.
2581     // Give Sema a chance to recover if we are in a template with dependent base
2582     // classes.
2583     if (ParsedType T = Actions.ActOnMSVCUnknownTypeName(
2584             *Tok.getIdentifierInfo(), Tok.getLocation(),
2585             DSC == DeclSpecContext::DSC_template_type_arg)) {
2586       const char *PrevSpec;
2587       unsigned DiagID;
2588       DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2589                          Actions.getASTContext().getPrintingPolicy());
2590       DS.SetRangeEnd(Tok.getLocation());
2591       ConsumeToken();
2592       return false;
2593     }
2594   }
2595
2596   // Otherwise, if we don't consume this token, we are going to emit an
2597   // error anyway.  Try to recover from various common problems.  Check
2598   // to see if this was a reference to a tag name without a tag specified.
2599   // This is a common problem in C (saying 'foo' instead of 'struct foo').
2600   //
2601   // C++ doesn't need this, and isTagName doesn't take SS.
2602   if (SS == nullptr) {
2603     const char *TagName = nullptr, *FixitTagName = nullptr;
2604     tok::TokenKind TagKind = tok::unknown;
2605
2606     switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
2607       default: break;
2608       case DeclSpec::TST_enum:
2609         TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
2610       case DeclSpec::TST_union:
2611         TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
2612       case DeclSpec::TST_struct:
2613         TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
2614       case DeclSpec::TST_interface:
2615         TagName="__interface"; FixitTagName = "__interface ";
2616         TagKind=tok::kw___interface;break;
2617       case DeclSpec::TST_class:
2618         TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
2619     }
2620
2621     if (TagName) {
2622       IdentifierInfo *TokenName = Tok.getIdentifierInfo();
2623       LookupResult R(Actions, TokenName, SourceLocation(),
2624                      Sema::LookupOrdinaryName);
2625
2626       Diag(Loc, diag::err_use_of_tag_name_without_tag)
2627         << TokenName << TagName << getLangOpts().CPlusPlus
2628         << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
2629
2630       if (Actions.LookupParsedName(R, getCurScope(), SS)) {
2631         for (LookupResult::iterator I = R.begin(), IEnd = R.end();
2632              I != IEnd; ++I)
2633           Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
2634             << TokenName << TagName;
2635       }
2636
2637       // Parse this as a tag as if the missing tag were present.
2638       if (TagKind == tok::kw_enum)
2639         ParseEnumSpecifier(Loc, DS, TemplateInfo, AS,
2640                            DeclSpecContext::DSC_normal);
2641       else
2642         ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
2643                             /*EnteringContext*/ false,
2644                             DeclSpecContext::DSC_normal, Attrs);
2645       return true;
2646     }
2647   }
2648
2649   // Determine whether this identifier could plausibly be the name of something
2650   // being declared (with a missing type).
2651   if (!isTypeSpecifier(DSC) && (!SS || DSC == DeclSpecContext::DSC_top_level ||
2652                                 DSC == DeclSpecContext::DSC_class)) {
2653     // Look ahead to the next token to try to figure out what this declaration
2654     // was supposed to be.
2655     switch (NextToken().getKind()) {
2656     case tok::l_paren: {
2657       // static x(4); // 'x' is not a type
2658       // x(int n);    // 'x' is not a type
2659       // x (*p)[];    // 'x' is a type
2660       //
2661       // Since we're in an error case, we can afford to perform a tentative
2662       // parse to determine which case we're in.
2663       TentativeParsingAction PA(*this);
2664       ConsumeToken();
2665       TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
2666       PA.Revert();
2667
2668       if (TPR != TPResult::False) {
2669         // The identifier is followed by a parenthesized declarator.
2670         // It's supposed to be a type.
2671         break;
2672       }
2673
2674       // If we're in a context where we could be declaring a constructor,
2675       // check whether this is a constructor declaration with a bogus name.
2676       if (DSC == DeclSpecContext::DSC_class ||
2677           (DSC == DeclSpecContext::DSC_top_level && SS)) {
2678         IdentifierInfo *II = Tok.getIdentifierInfo();
2679         if (Actions.isCurrentClassNameTypo(II, SS)) {
2680           Diag(Loc, diag::err_constructor_bad_name)
2681             << Tok.getIdentifierInfo() << II
2682             << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
2683           Tok.setIdentifierInfo(II);
2684         }
2685       }
2686       // Fall through.
2687       LLVM_FALLTHROUGH;
2688     }
2689     case tok::comma:
2690     case tok::equal:
2691     case tok::kw_asm:
2692     case tok::l_brace:
2693     case tok::l_square:
2694     case tok::semi:
2695       // This looks like a variable or function declaration. The type is
2696       // probably missing. We're done parsing decl-specifiers.
2697       // But only if we are not in a function prototype scope.
2698       if (getCurScope()->isFunctionPrototypeScope())
2699         break;
2700       if (SS)
2701         AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2702       return false;
2703
2704     default:
2705       // This is probably supposed to be a type. This includes cases like:
2706       //   int f(itn);
2707       //   struct S { unsinged : 4; };
2708       break;
2709     }
2710   }
2711
2712   // This is almost certainly an invalid type name. Let Sema emit a diagnostic
2713   // and attempt to recover.
2714   ParsedType T;
2715   IdentifierInfo *II = Tok.getIdentifierInfo();
2716   bool IsTemplateName = getLangOpts().CPlusPlus && NextToken().is(tok::less);
2717   Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
2718                                   IsTemplateName);
2719   if (T) {
2720     // The action has suggested that the type T could be used. Set that as
2721     // the type in the declaration specifiers, consume the would-be type
2722     // name token, and we're done.
2723     const char *PrevSpec;
2724     unsigned DiagID;
2725     DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2726                        Actions.getASTContext().getPrintingPolicy());
2727     DS.SetRangeEnd(Tok.getLocation());
2728     ConsumeToken();
2729     // There may be other declaration specifiers after this.
2730     return true;
2731   } else if (II != Tok.getIdentifierInfo()) {
2732     // If no type was suggested, the correction is to a keyword
2733     Tok.setKind(II->getTokenID());
2734     // There may be other declaration specifiers after this.
2735     return true;
2736   }
2737
2738   // Otherwise, the action had no suggestion for us.  Mark this as an error.
2739   DS.SetTypeSpecError();
2740   DS.SetRangeEnd(Tok.getLocation());
2741   ConsumeToken();
2742
2743   // Eat any following template arguments.
2744   if (IsTemplateName) {
2745     SourceLocation LAngle, RAngle;
2746     TemplateArgList Args;
2747     ParseTemplateIdAfterTemplateName(true, LAngle, Args, RAngle);
2748   }
2749
2750   // TODO: Could inject an invalid typedef decl in an enclosing scope to
2751   // avoid rippling error messages on subsequent uses of the same type,
2752   // could be useful if #include was forgotten.
2753   return true;
2754 }
2755
2756 /// Determine the declaration specifier context from the declarator
2757 /// context.
2758 ///
2759 /// \param Context the declarator context, which is one of the
2760 /// DeclaratorContext enumerator values.
2761 Parser::DeclSpecContext
2762 Parser::getDeclSpecContextFromDeclaratorContext(DeclaratorContext Context) {
2763   if (Context == DeclaratorContext::MemberContext)
2764     return DeclSpecContext::DSC_class;
2765   if (Context == DeclaratorContext::FileContext)
2766     return DeclSpecContext::DSC_top_level;
2767   if (Context == DeclaratorContext::TemplateParamContext)
2768     return DeclSpecContext::DSC_template_param;
2769   if (Context == DeclaratorContext::TemplateArgContext ||
2770       Context == DeclaratorContext::TemplateTypeArgContext)
2771     return DeclSpecContext::DSC_template_type_arg;
2772   if (Context == DeclaratorContext::TrailingReturnContext ||
2773       Context == DeclaratorContext::TrailingReturnVarContext)
2774     return DeclSpecContext::DSC_trailing;
2775   if (Context == DeclaratorContext::AliasDeclContext ||
2776       Context == DeclaratorContext::AliasTemplateContext)
2777     return DeclSpecContext::DSC_alias_declaration;
2778   return DeclSpecContext::DSC_normal;
2779 }
2780
2781 /// ParseAlignArgument - Parse the argument to an alignment-specifier.
2782 ///
2783 /// FIXME: Simply returns an alignof() expression if the argument is a
2784 /// type. Ideally, the type should be propagated directly into Sema.
2785 ///
2786 /// [C11]   type-id
2787 /// [C11]   constant-expression
2788 /// [C++0x] type-id ...[opt]
2789 /// [C++0x] assignment-expression ...[opt]
2790 ExprResult Parser::ParseAlignArgument(SourceLocation Start,
2791                                       SourceLocation &EllipsisLoc) {
2792   ExprResult ER;
2793   if (isTypeIdInParens()) {
2794     SourceLocation TypeLoc = Tok.getLocation();
2795     ParsedType Ty = ParseTypeName().get();
2796     SourceRange TypeRange(Start, Tok.getLocation());
2797     ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
2798                                                Ty.getAsOpaquePtr(), TypeRange);
2799   } else
2800     ER = ParseConstantExpression();
2801
2802   if (getLangOpts().CPlusPlus11)
2803     TryConsumeToken(tok::ellipsis, EllipsisLoc);
2804
2805   return ER;
2806 }
2807
2808 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
2809 /// attribute to Attrs.
2810 ///
2811 /// alignment-specifier:
2812 /// [C11]   '_Alignas' '(' type-id ')'
2813 /// [C11]   '_Alignas' '(' constant-expression ')'
2814 /// [C++11] 'alignas' '(' type-id ...[opt] ')'
2815 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
2816 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
2817                                      SourceLocation *EndLoc) {
2818   assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) &&
2819          "Not an alignment-specifier!");
2820
2821   IdentifierInfo *KWName = Tok.getIdentifierInfo();
2822   SourceLocation KWLoc = ConsumeToken();
2823
2824   BalancedDelimiterTracker T(*this, tok::l_paren);
2825   if (T.expectAndConsume())
2826     return;
2827
2828   SourceLocation EllipsisLoc;
2829   ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
2830   if (ArgExpr.isInvalid()) {
2831     T.skipToEnd();
2832     return;
2833   }
2834
2835   T.consumeClose();
2836   if (EndLoc)
2837     *EndLoc = T.getCloseLocation();
2838
2839   ArgsVector ArgExprs;
2840   ArgExprs.push_back(ArgExpr.get());
2841   Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
2842                ParsedAttr::AS_Keyword, EllipsisLoc);
2843 }
2844
2845 /// Determine whether we're looking at something that might be a declarator
2846 /// in a simple-declaration. If it can't possibly be a declarator, maybe
2847 /// diagnose a missing semicolon after a prior tag definition in the decl
2848 /// specifier.
2849 ///
2850 /// \return \c true if an error occurred and this can't be any kind of
2851 /// declaration.
2852 bool
2853 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
2854                                               DeclSpecContext DSContext,
2855                                               LateParsedAttrList *LateAttrs) {
2856   assert(DS.hasTagDefinition() && "shouldn't call this");
2857
2858   bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
2859                           DSContext == DeclSpecContext::DSC_top_level);
2860
2861   if (getLangOpts().CPlusPlus &&
2862       Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype,
2863                   tok::annot_template_id) &&
2864       TryAnnotateCXXScopeToken(EnteringContext)) {
2865     SkipMalformedDecl();
2866     return true;
2867   }
2868
2869   bool HasScope = Tok.is(tok::annot_cxxscope);
2870   // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
2871   Token AfterScope = HasScope ? NextToken() : Tok;
2872
2873   // Determine whether the following tokens could possibly be a
2874   // declarator.
2875   bool MightBeDeclarator = true;
2876   if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) {
2877     // A declarator-id can't start with 'typename'.
2878     MightBeDeclarator = false;
2879   } else if (AfterScope.is(tok::annot_template_id)) {
2880     // If we have a type expressed as a template-id, this cannot be a
2881     // declarator-id (such a type cannot be redeclared in a simple-declaration).
2882     TemplateIdAnnotation *Annot =
2883         static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
2884     if (Annot->Kind == TNK_Type_template)
2885       MightBeDeclarator = false;
2886   } else if (AfterScope.is(tok::identifier)) {
2887     const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
2888
2889     // These tokens cannot come after the declarator-id in a
2890     // simple-declaration, and are likely to come after a type-specifier.
2891     if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier,
2892                      tok::annot_cxxscope, tok::coloncolon)) {
2893       // Missing a semicolon.
2894       MightBeDeclarator = false;
2895     } else if (HasScope) {
2896       // If the declarator-id has a scope specifier, it must redeclare a
2897       // previously-declared entity. If that's a type (and this is not a
2898       // typedef), that's an error.
2899       CXXScopeSpec SS;
2900       Actions.RestoreNestedNameSpecifierAnnotation(
2901           Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
2902       IdentifierInfo *Name = AfterScope.getIdentifierInfo();
2903       Sema::NameClassification Classification = Actions.ClassifyName(
2904           getCurScope(), SS, Name, AfterScope.getLocation(), Next,
2905           /*IsAddressOfOperand=*/false, /*CCC=*/nullptr);
2906       switch (Classification.getKind()) {
2907       case Sema::NC_Error:
2908         SkipMalformedDecl();
2909         return true;
2910
2911       case Sema::NC_Keyword:
2912       case Sema::NC_NestedNameSpecifier:
2913         llvm_unreachable("typo correction and nested name specifiers not "
2914                          "possible here");
2915
2916       case Sema::NC_Type:
2917       case Sema::NC_TypeTemplate:
2918         // Not a previously-declared non-type entity.
2919         MightBeDeclarator = false;
2920         break;
2921
2922       case Sema::NC_Unknown:
2923       case Sema::NC_Expression:
2924       case Sema::NC_VarTemplate:
2925       case Sema::NC_FunctionTemplate:
2926       case Sema::NC_UndeclaredTemplate:
2927         // Might be a redeclaration of a prior entity.
2928         break;
2929       }
2930     }
2931   }
2932
2933   if (MightBeDeclarator)
2934     return false;
2935
2936   const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
2937   Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getEndLoc()),
2938        diag::err_expected_after)
2939       << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
2940
2941   // Try to recover from the typo, by dropping the tag definition and parsing
2942   // the problematic tokens as a type.
2943   //
2944   // FIXME: Split the DeclSpec into pieces for the standalone
2945   // declaration and pieces for the following declaration, instead
2946   // of assuming that all the other pieces attach to new declaration,
2947   // and call ParsedFreeStandingDeclSpec as appropriate.
2948   DS.ClearTypeSpecType();
2949   ParsedTemplateInfo NotATemplate;
2950   ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
2951   return false;
2952 }
2953
2954 // Choose the apprpriate diagnostic error for why fixed point types are
2955 // disabled, set the previous specifier, and mark as invalid.
2956 static void SetupFixedPointError(const LangOptions &LangOpts,
2957                                  const char *&PrevSpec, unsigned &DiagID,
2958                                  bool &isInvalid) {
2959   assert(!LangOpts.FixedPoint);
2960   DiagID = diag::err_fixed_point_not_enabled;
2961   PrevSpec = "";  // Not used by diagnostic
2962   isInvalid = true;
2963 }
2964
2965 /// ParseDeclarationSpecifiers
2966 ///       declaration-specifiers: [C99 6.7]
2967 ///         storage-class-specifier declaration-specifiers[opt]
2968 ///         type-specifier declaration-specifiers[opt]
2969 /// [C99]   function-specifier declaration-specifiers[opt]
2970 /// [C11]   alignment-specifier declaration-specifiers[opt]
2971 /// [GNU]   attributes declaration-specifiers[opt]
2972 /// [Clang] '__module_private__' declaration-specifiers[opt]
2973 /// [ObjC1] '__kindof' declaration-specifiers[opt]
2974 ///
2975 ///       storage-class-specifier: [C99 6.7.1]
2976 ///         'typedef'
2977 ///         'extern'
2978 ///         'static'
2979 ///         'auto'
2980 ///         'register'
2981 /// [C++]   'mutable'
2982 /// [C++11] 'thread_local'
2983 /// [C11]   '_Thread_local'
2984 /// [GNU]   '__thread'
2985 ///       function-specifier: [C99 6.7.4]
2986 /// [C99]   'inline'
2987 /// [C++]   'virtual'
2988 /// [C++]   'explicit'
2989 /// [OpenCL] '__kernel'
2990 ///       'friend': [C++ dcl.friend]
2991 ///       'constexpr': [C++0x dcl.constexpr]
2992 void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
2993                                         const ParsedTemplateInfo &TemplateInfo,
2994                                         AccessSpecifier AS,
2995                                         DeclSpecContext DSContext,
2996                                         LateParsedAttrList *LateAttrs) {
2997   if (DS.getSourceRange().isInvalid()) {
2998     // Start the range at the current token but make the end of the range
2999     // invalid.  This will make the entire range invalid unless we successfully
3000     // consume a token.
3001     DS.SetRangeStart(Tok.getLocation());
3002     DS.SetRangeEnd(SourceLocation());
3003   }
3004
3005   bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
3006                           DSContext == DeclSpecContext::DSC_top_level);
3007   bool AttrsLastTime = false;
3008   ParsedAttributesWithRange attrs(AttrFactory);
3009   // We use Sema's policy to get bool macros right.
3010   PrintingPolicy Policy = Actions.getPrintingPolicy();
3011   while (1) {
3012     bool isInvalid = false;
3013     bool isStorageClass = false;
3014     const char *PrevSpec = nullptr;
3015     unsigned DiagID = 0;
3016
3017     // This value needs to be set to the location of the last token if the last
3018     // token of the specifier is already consumed.
3019     SourceLocation ConsumedEnd;
3020
3021     // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL
3022     // implementation for VS2013 uses _Atomic as an identifier for one of the
3023     // classes in <atomic>.
3024     //
3025     // A typedef declaration containing _Atomic<...> is among the places where
3026     // the class is used.  If we are currently parsing such a declaration, treat
3027     // the token as an identifier.
3028     if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) &&
3029         DS.getStorageClassSpec() == clang::DeclSpec::SCS_typedef &&
3030         !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less))
3031       Tok.setKind(tok::identifier);
3032
3033     SourceLocation Loc = Tok.getLocation();
3034
3035     switch (Tok.getKind()) {
3036     default:
3037     DoneWithDeclSpec:
3038       if (!AttrsLastTime)
3039         ProhibitAttributes(attrs);
3040       else {
3041         // Reject C++11 attributes that appertain to decl specifiers as
3042         // we don't support any C++11 attributes that appertain to decl
3043         // specifiers. This also conforms to what g++ 4.8 is doing.
3044         ProhibitCXX11Attributes(attrs, diag::err_attribute_not_type_attr);
3045
3046         DS.takeAttributesFrom(attrs);
3047       }
3048
3049       // If this is not a declaration specifier token, we're done reading decl
3050       // specifiers.  First verify that DeclSpec's are consistent.
3051       DS.Finish(Actions, Policy);
3052       return;
3053
3054     case tok::l_square:
3055     case tok::kw_alignas:
3056       if (!standardAttributesAllowed() || !isCXX11AttributeSpecifier())
3057         goto DoneWithDeclSpec;
3058
3059       ProhibitAttributes(attrs);
3060       // FIXME: It would be good to recover by accepting the attributes,
3061       //        but attempting to do that now would cause serious
3062       //        madness in terms of diagnostics.
3063       attrs.clear();
3064       attrs.Range = SourceRange();
3065
3066       ParseCXX11Attributes(attrs);
3067       AttrsLastTime = true;
3068       continue;
3069
3070     case tok::code_completion: {
3071       Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
3072       if (DS.hasTypeSpecifier()) {
3073         bool AllowNonIdentifiers
3074           = (getCurScope()->getFlags() & (Scope::ControlScope |
3075                                           Scope::BlockScope |
3076                                           Scope::TemplateParamScope |
3077                                           Scope::FunctionPrototypeScope |
3078                                           Scope::AtCatchScope)) == 0;
3079         bool AllowNestedNameSpecifiers
3080           = DSContext == DeclSpecContext::DSC_top_level ||
3081             (DSContext == DeclSpecContext::DSC_class && DS.isFriendSpecified());
3082
3083         Actions.CodeCompleteDeclSpec(getCurScope(), DS,
3084                                      AllowNonIdentifiers,
3085                                      AllowNestedNameSpecifiers);
3086         return cutOffParsing();
3087       }
3088
3089       if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
3090         CCC = Sema::PCC_LocalDeclarationSpecifiers;
3091       else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
3092         CCC = DSContext == DeclSpecContext::DSC_class ? Sema::PCC_MemberTemplate
3093                                                       : Sema::PCC_Template;
3094       else if (DSContext == DeclSpecContext::DSC_class)
3095         CCC = Sema::PCC_Class;
3096       else if (CurParsedObjCImpl)
3097         CCC = Sema::PCC_ObjCImplementation;
3098
3099       Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
3100       return cutOffParsing();
3101     }
3102
3103     case tok::coloncolon: // ::foo::bar
3104       // C++ scope specifier.  Annotate and loop, or bail out on error.
3105       if (TryAnnotateCXXScopeToken(EnteringContext)) {
3106         if (!DS.hasTypeSpecifier())
3107           DS.SetTypeSpecError();
3108         goto DoneWithDeclSpec;
3109       }
3110       if (Tok.is(tok::coloncolon)) // ::new or ::delete
3111         goto DoneWithDeclSpec;
3112       continue;
3113
3114     case tok::annot_cxxscope: {
3115       if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
3116         goto DoneWithDeclSpec;
3117
3118       CXXScopeSpec SS;
3119       Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3120                                                    Tok.getAnnotationRange(),
3121                                                    SS);
3122
3123       // We are looking for a qualified typename.
3124       Token Next = NextToken();
3125       if (Next.is(tok::annot_template_id) &&
3126           static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
3127             ->Kind == TNK_Type_template) {
3128         // We have a qualified template-id, e.g., N::A<int>
3129
3130         // If this would be a valid constructor declaration with template
3131         // arguments, we will reject the attempt to form an invalid type-id
3132         // referring to the injected-class-name when we annotate the token,
3133         // per C++ [class.qual]p2.
3134         //
3135         // To improve diagnostics for this case, parse the declaration as a
3136         // constructor (and reject the extra template arguments later).
3137         TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
3138         if ((DSContext == DeclSpecContext::DSC_top_level ||
3139              DSContext == DeclSpecContext::DSC_class) &&
3140             TemplateId->Name &&
3141             Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS) &&
3142             isConstructorDeclarator(/*Unqualified*/ false)) {
3143           // The user meant this to be an out-of-line constructor
3144           // definition, but template arguments are not allowed
3145           // there.  Just allow this as a constructor; we'll
3146           // complain about it later.
3147           goto DoneWithDeclSpec;
3148         }
3149
3150         DS.getTypeSpecScope() = SS;
3151         ConsumeAnnotationToken(); // The C++ scope.
3152         assert(Tok.is(tok::annot_template_id) &&
3153                "ParseOptionalCXXScopeSpecifier not working");
3154         AnnotateTemplateIdTokenAsType();
3155         continue;
3156       }
3157
3158       if (Next.is(tok::annot_typename)) {
3159         DS.getTypeSpecScope() = SS;
3160         ConsumeAnnotationToken(); // The C++ scope.
3161         if (Tok.getAnnotationValue()) {
3162           ParsedType T = getTypeAnnotation(Tok);
3163           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
3164                                          Tok.getAnnotationEndLoc(),
3165                                          PrevSpec, DiagID, T, Policy);
3166           if (isInvalid)
3167             break;
3168         }
3169         else
3170           DS.SetTypeSpecError();
3171         DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3172         ConsumeAnnotationToken(); // The typename
3173       }
3174
3175       if (Next.isNot(tok::identifier))
3176         goto DoneWithDeclSpec;
3177
3178       // Check whether this is a constructor declaration. If we're in a
3179       // context where the identifier could be a class name, and it has the
3180       // shape of a constructor declaration, process it as one.
3181       if ((DSContext == DeclSpecContext::DSC_top_level ||
3182            DSContext == DeclSpecContext::DSC_class) &&
3183           Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
3184                                      &SS) &&
3185           isConstructorDeclarator(/*Unqualified*/ false))
3186         goto DoneWithDeclSpec;
3187
3188       ParsedType TypeRep =
3189           Actions.getTypeName(*Next.getIdentifierInfo(), Next.getLocation(),
3190                               getCurScope(), &SS, false, false, nullptr,
3191                               /*IsCtorOrDtorName=*/false,
3192                               /*WantNontrivialTypeSourceInfo=*/true,
3193                               isClassTemplateDeductionContext(DSContext));
3194
3195       // If the referenced identifier is not a type, then this declspec is
3196       // erroneous: We already checked about that it has no type specifier, and
3197       // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
3198       // typename.
3199       if (!TypeRep) {
3200         // Eat the scope spec so the identifier is current.
3201         ConsumeAnnotationToken();
3202         ParsedAttributesWithRange Attrs(AttrFactory);
3203         if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
3204           if (!Attrs.empty()) {
3205             AttrsLastTime = true;
3206             attrs.takeAllFrom(Attrs);
3207           }
3208           continue;
3209         }
3210         goto DoneWithDeclSpec;
3211       }
3212
3213       DS.getTypeSpecScope() = SS;
3214       ConsumeAnnotationToken(); // The C++ scope.
3215
3216       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3217                                      DiagID, TypeRep, Policy);
3218       if (isInvalid)
3219         break;
3220
3221       DS.SetRangeEnd(Tok.getLocation());
3222       ConsumeToken(); // The typename.
3223
3224       continue;
3225     }
3226
3227     case tok::annot_typename: {
3228       // If we've previously seen a tag definition, we were almost surely
3229       // missing a semicolon after it.
3230       if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
3231         goto DoneWithDeclSpec;
3232
3233       if (Tok.getAnnotationValue()) {
3234         ParsedType T = getTypeAnnotation(Tok);
3235         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3236                                        DiagID, T, Policy);
3237       } else
3238         DS.SetTypeSpecError();
3239
3240       if (isInvalid)
3241         break;
3242
3243       DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3244       ConsumeAnnotationToken(); // The typename
3245
3246       continue;
3247     }
3248
3249     case tok::kw___is_signed:
3250       // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
3251       // typically treats it as a trait. If we see __is_signed as it appears
3252       // in libstdc++, e.g.,
3253       //
3254       //   static const bool __is_signed;
3255       //
3256       // then treat __is_signed as an identifier rather than as a keyword.
3257       if (DS.getTypeSpecType() == TST_bool &&
3258           DS.getTypeQualifiers() == DeclSpec::TQ_const &&
3259           DS.getStorageClassSpec() == DeclSpec::SCS_static)
3260         TryKeywordIdentFallback(true);
3261
3262       // We're done with the declaration-specifiers.
3263       goto DoneWithDeclSpec;
3264
3265       // typedef-name
3266     case tok::kw___super:
3267     case tok::kw_decltype:
3268     case tok::identifier: {
3269       // This identifier can only be a typedef name if we haven't already seen
3270       // a type-specifier.  Without this check we misparse:
3271       //  typedef int X; struct Y { short X; };  as 'short int'.
3272       if (DS.hasTypeSpecifier())
3273         goto DoneWithDeclSpec;
3274
3275       // If the token is an identifier named "__declspec" and Microsoft
3276       // extensions are not enabled, it is likely that there will be cascading
3277       // parse errors if this really is a __declspec attribute. Attempt to
3278       // recognize that scenario and recover gracefully.
3279       if (!getLangOpts().DeclSpecKeyword && Tok.is(tok::identifier) &&
3280           Tok.getIdentifierInfo()->getName().equals("__declspec")) {
3281         Diag(Loc, diag::err_ms_attributes_not_enabled);
3282
3283         // The next token should be an open paren. If it is, eat the entire
3284         // attribute declaration and continue.
3285         if (NextToken().is(tok::l_paren)) {
3286           // Consume the __declspec identifier.
3287           ConsumeToken();
3288
3289           // Eat the parens and everything between them.
3290           BalancedDelimiterTracker T(*this, tok::l_paren);
3291           if (T.consumeOpen()) {
3292             assert(false && "Not a left paren?");
3293             return;
3294           }
3295           T.skipToEnd();
3296           continue;
3297         }
3298       }
3299
3300       // In C++, check to see if this is a scope specifier like foo::bar::, if
3301       // so handle it as such.  This is important for ctor parsing.
3302       if (getLangOpts().CPlusPlus) {
3303         if (TryAnnotateCXXScopeToken(EnteringContext)) {
3304           DS.SetTypeSpecError();
3305           goto DoneWithDeclSpec;
3306         }
3307         if (!Tok.is(tok::identifier))
3308           continue;
3309       }
3310
3311       // Check for need to substitute AltiVec keyword tokens.
3312       if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
3313         break;
3314
3315       // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
3316       //                allow the use of a typedef name as a type specifier.
3317       if (DS.isTypeAltiVecVector())
3318         goto DoneWithDeclSpec;
3319
3320       if (DSContext == DeclSpecContext::DSC_objc_method_result &&
3321           isObjCInstancetype()) {
3322         ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc);
3323         assert(TypeRep);
3324         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3325                                        DiagID, TypeRep, Policy);
3326         if (isInvalid)
3327           break;
3328
3329         DS.SetRangeEnd(Loc);
3330         ConsumeToken();
3331         continue;
3332       }
3333
3334       // If we're in a context where the identifier could be a class name,
3335       // check whether this is a constructor declaration.
3336       if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
3337           Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
3338           isConstructorDeclarator(/*Unqualified*/true))
3339         goto DoneWithDeclSpec;
3340
3341       ParsedType TypeRep = Actions.getTypeName(
3342           *Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), nullptr,
3343           false, false, nullptr, false, false,
3344           isClassTemplateDeductionContext(DSContext));
3345
3346       // If this is not a typedef name, don't parse it as part of the declspec,
3347       // it must be an implicit int or an error.
3348       if (!TypeRep) {
3349         ParsedAttributesWithRange Attrs(AttrFactory);
3350         if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
3351           if (!Attrs.empty()) {
3352             AttrsLastTime = true;
3353             attrs.takeAllFrom(Attrs);
3354           }
3355           continue;
3356         }
3357         goto DoneWithDeclSpec;
3358       }
3359
3360       // Likewise, if this is a context where the identifier could be a template
3361       // name, check whether this is a deduction guide declaration.
3362       if (getLangOpts().CPlusPlus17 &&
3363           (DSContext == DeclSpecContext::DSC_class ||
3364            DSContext == DeclSpecContext::DSC_top_level) &&
3365           Actions.isDeductionGuideName(getCurScope(), *Tok.getIdentifierInfo(),
3366                                        Tok.getLocation()) &&
3367           isConstructorDeclarator(/*Unqualified*/ true,
3368                                   /*DeductionGuide*/ true))
3369         goto DoneWithDeclSpec;
3370
3371       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3372                                      DiagID, TypeRep, Policy);
3373       if (isInvalid)
3374         break;
3375
3376       DS.SetRangeEnd(Tok.getLocation());
3377       ConsumeToken(); // The identifier
3378
3379       // Objective-C supports type arguments and protocol references
3380       // following an Objective-C object or object pointer
3381       // type. Handle either one of them.
3382       if (Tok.is(tok::less) && getLangOpts().ObjC) {
3383         SourceLocation NewEndLoc;
3384         TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers(
3385                                   Loc, TypeRep, /*consumeLastToken=*/true,
3386                                   NewEndLoc);
3387         if (NewTypeRep.isUsable()) {
3388           DS.UpdateTypeRep(NewTypeRep.get());
3389           DS.SetRangeEnd(NewEndLoc);
3390         }
3391       }
3392
3393       // Need to support trailing type qualifiers (e.g. "id<p> const").
3394       // If a type specifier follows, it will be diagnosed elsewhere.
3395       continue;
3396     }
3397
3398       // type-name
3399     case tok::annot_template_id: {
3400       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
3401       if (TemplateId->Kind != TNK_Type_template &&
3402           TemplateId->Kind != TNK_Undeclared_template) {
3403         // This template-id does not refer to a type name, so we're
3404         // done with the type-specifiers.
3405         goto DoneWithDeclSpec;
3406       }
3407
3408       // If we're in a context where the template-id could be a
3409       // constructor name or specialization, check whether this is a
3410       // constructor declaration.
3411       if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
3412           Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
3413           isConstructorDeclarator(TemplateId->SS.isEmpty()))
3414         goto DoneWithDeclSpec;
3415
3416       // Turn the template-id annotation token into a type annotation
3417       // token, then try again to parse it as a type-specifier.
3418       AnnotateTemplateIdTokenAsType();
3419       continue;
3420     }
3421
3422     // GNU attributes support.
3423     case tok::kw___attribute:
3424       ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
3425       continue;
3426
3427     // Microsoft declspec support.
3428     case tok::kw___declspec:
3429       ParseMicrosoftDeclSpecs(DS.getAttributes());
3430       continue;
3431
3432     // Microsoft single token adornments.
3433     case tok::kw___forceinline: {
3434       isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
3435       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
3436       SourceLocation AttrNameLoc = Tok.getLocation();
3437       DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
3438                                 nullptr, 0, ParsedAttr::AS_Keyword);
3439       break;
3440     }
3441
3442     case tok::kw___unaligned:
3443       isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
3444                                  getLangOpts());
3445       break;
3446
3447     case tok::kw___sptr:
3448     case tok::kw___uptr:
3449     case tok::kw___ptr64:
3450     case tok::kw___ptr32:
3451     case tok::kw___w64:
3452     case tok::kw___cdecl:
3453     case tok::kw___stdcall:
3454     case tok::kw___fastcall:
3455     case tok::kw___thiscall:
3456     case tok::kw___regcall:
3457     case tok::kw___vectorcall:
3458       ParseMicrosoftTypeAttributes(DS.getAttributes());
3459       continue;
3460
3461     // Borland single token adornments.
3462     case tok::kw___pascal:
3463       ParseBorlandTypeAttributes(DS.getAttributes());
3464       continue;
3465
3466     // OpenCL single token adornments.
3467     case tok::kw___kernel:
3468       ParseOpenCLKernelAttributes(DS.getAttributes());
3469       continue;
3470
3471     // Nullability type specifiers.
3472     case tok::kw__Nonnull:
3473     case tok::kw__Nullable:
3474     case tok::kw__Null_unspecified:
3475       ParseNullabilityTypeSpecifiers(DS.getAttributes());
3476       continue;
3477
3478     // Objective-C 'kindof' types.
3479     case tok::kw___kindof:
3480       DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
3481                                 nullptr, 0, ParsedAttr::AS_Keyword);
3482       (void)ConsumeToken();
3483       continue;
3484
3485     // storage-class-specifier
3486     case tok::kw_typedef:
3487       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
3488                                          PrevSpec, DiagID, Policy);
3489       isStorageClass = true;
3490       break;
3491     case tok::kw_extern:
3492       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3493         Diag(Tok, diag::ext_thread_before) << "extern";
3494       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
3495                                          PrevSpec, DiagID, Policy);
3496       isStorageClass = true;
3497       break;
3498     case tok::kw___private_extern__:
3499       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
3500                                          Loc, PrevSpec, DiagID, Policy);
3501       isStorageClass = true;
3502       break;
3503     case tok::kw_static:
3504       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3505         Diag(Tok, diag::ext_thread_before) << "static";
3506       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
3507                                          PrevSpec, DiagID, Policy);
3508       isStorageClass = true;
3509       break;
3510     case tok::kw_auto:
3511       if (getLangOpts().CPlusPlus11) {
3512         if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
3513           isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3514                                              PrevSpec, DiagID, Policy);
3515           if (!isInvalid)
3516             Diag(Tok, diag::ext_auto_storage_class)
3517               << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3518         } else
3519           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
3520                                          DiagID, Policy);
3521       } else
3522         isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3523                                            PrevSpec, DiagID, Policy);
3524       isStorageClass = true;
3525       break;
3526     case tok::kw___auto_type:
3527       Diag(Tok, diag::ext_auto_type);
3528       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec,
3529                                      DiagID, Policy);
3530       break;
3531     case tok::kw_register:
3532       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
3533                                          PrevSpec, DiagID, Policy);
3534       isStorageClass = true;
3535       break;
3536     case tok::kw_mutable:
3537       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
3538                                          PrevSpec, DiagID, Policy);
3539       isStorageClass = true;
3540       break;
3541     case tok::kw___thread:
3542       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
3543                                                PrevSpec, DiagID);
3544       isStorageClass = true;
3545       break;
3546     case tok::kw_thread_local:
3547       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc,
3548                                                PrevSpec, DiagID);
3549       isStorageClass = true;
3550       break;
3551     case tok::kw__Thread_local:
3552       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
3553                                                Loc, PrevSpec, DiagID);
3554       isStorageClass = true;
3555       break;
3556
3557     // function-specifier
3558     case tok::kw_inline:
3559       isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
3560       break;
3561     case tok::kw_virtual:
3562       // C++ for OpenCL does not allow virtual function qualifier, to avoid
3563       // function pointers restricted in OpenCL v2.0 s6.9.a.
3564       if (getLangOpts().OpenCLCPlusPlus) {
3565         DiagID = diag::err_openclcxx_virtual_function;
3566         PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3567         isInvalid = true;
3568       }
3569       else {
3570         isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
3571       }
3572       break;
3573     case tok::kw_explicit: {
3574       SourceLocation ExplicitLoc = Loc;
3575       SourceLocation CloseParenLoc;
3576       ExplicitSpecifier ExplicitSpec(nullptr, ExplicitSpecKind::ResolvedTrue);
3577       ConsumedEnd = ExplicitLoc;
3578       ConsumeToken(); // kw_explicit
3579       if (Tok.is(tok::l_paren)) {
3580         if (getLangOpts().CPlusPlus2a) {
3581           ExprResult ExplicitExpr(static_cast<Expr *>(nullptr));
3582           BalancedDelimiterTracker Tracker(*this, tok::l_paren);
3583           Tracker.consumeOpen();
3584           ExplicitExpr = ParseConstantExpression();
3585           ConsumedEnd = Tok.getLocation();
3586           if (ExplicitExpr.isUsable()) {
3587             CloseParenLoc = Tok.getLocation();
3588             Tracker.consumeClose();
3589             ExplicitSpec =
3590                 Actions.ActOnExplicitBoolSpecifier(ExplicitExpr.get());
3591           } else
3592             Tracker.skipToEnd();
3593         } else
3594           Diag(Tok.getLocation(), diag::warn_cxx2a_compat_explicit_bool);
3595       }
3596       isInvalid = DS.setFunctionSpecExplicit(ExplicitLoc, PrevSpec, DiagID,
3597                                              ExplicitSpec, CloseParenLoc);
3598       break;
3599     }
3600     case tok::kw__Noreturn:
3601       if (!getLangOpts().C11)
3602         Diag(Loc, diag::ext_c11_noreturn);
3603       isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
3604       break;
3605
3606     // alignment-specifier
3607     case tok::kw__Alignas:
3608       if (!getLangOpts().C11)
3609         Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
3610       ParseAlignmentSpecifier(DS.getAttributes());
3611       continue;
3612
3613     // friend
3614     case tok::kw_friend:
3615       if (DSContext == DeclSpecContext::DSC_class)
3616         isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
3617       else {
3618         PrevSpec = ""; // not actually used by the diagnostic
3619         DiagID = diag::err_friend_invalid_in_context;
3620         isInvalid = true;
3621       }
3622       break;
3623
3624     // Modules
3625     case tok::kw___module_private__:
3626       isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
3627       break;
3628
3629     // constexpr
3630     case tok::kw_constexpr:
3631       isInvalid = DS.SetConstexprSpec(CSK_constexpr, Loc, PrevSpec, DiagID);
3632       break;
3633
3634     // consteval
3635     case tok::kw_consteval:
3636       isInvalid = DS.SetConstexprSpec(CSK_consteval, Loc, PrevSpec, DiagID);
3637       break;
3638
3639     // type-specifier
3640     case tok::kw_short:
3641       isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
3642                                       DiagID, Policy);
3643       break;
3644     case tok::kw_long:
3645       if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
3646         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
3647                                         DiagID, Policy);
3648       else
3649         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3650                                         DiagID, Policy);
3651       break;
3652     case tok::kw___int64:
3653         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3654                                         DiagID, Policy);
3655       break;
3656     case tok::kw_signed:
3657       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
3658                                      DiagID);
3659       break;
3660     case tok::kw_unsigned:
3661       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
3662                                      DiagID);
3663       break;
3664     case tok::kw__Complex:
3665       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
3666                                         DiagID);
3667       break;
3668     case tok::kw__Imaginary:
3669       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
3670                                         DiagID);
3671       break;
3672     case tok::kw_void:
3673       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
3674                                      DiagID, Policy);
3675       break;
3676     case tok::kw_char:
3677       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
3678                                      DiagID, Policy);
3679       break;
3680     case tok::kw_int:
3681       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
3682                                      DiagID, Policy);
3683       break;
3684     case tok::kw___int128:
3685       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
3686                                      DiagID, Policy);
3687       break;
3688     case tok::kw_half:
3689       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
3690                                      DiagID, Policy);
3691       break;
3692     case tok::kw_float:
3693       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
3694                                      DiagID, Policy);
3695       break;
3696     case tok::kw_double:
3697       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
3698                                      DiagID, Policy);
3699       break;
3700     case tok::kw__Float16:
3701       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec,
3702                                      DiagID, Policy);
3703       break;
3704     case tok::kw__Accum:
3705       if (!getLangOpts().FixedPoint) {
3706         SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3707       } else {
3708         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_accum, Loc, PrevSpec,
3709                                        DiagID, Policy);
3710       }
3711       break;
3712     case tok::kw__Fract:
3713       if (!getLangOpts().FixedPoint) {
3714         SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3715       } else {
3716         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_fract, Loc, PrevSpec,
3717                                        DiagID, Policy);
3718       }
3719       break;
3720     case tok::kw__Sat:
3721       if (!getLangOpts().FixedPoint) {
3722         SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3723       } else {
3724         isInvalid = DS.SetTypeSpecSat(Loc, PrevSpec, DiagID);
3725       }
3726       break;
3727     case tok::kw___float128:
3728       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec,
3729                                      DiagID, Policy);
3730       break;
3731     case tok::kw_wchar_t:
3732       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
3733                                      DiagID, Policy);
3734       break;
3735     case tok::kw_char8_t:
3736       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec,
3737                                      DiagID, Policy);
3738       break;
3739     case tok::kw_char16_t:
3740       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
3741                                      DiagID, Policy);
3742       break;
3743     case tok::kw_char32_t:
3744       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
3745                                      DiagID, Policy);
3746       break;
3747     case tok::kw_bool:
3748     case tok::kw__Bool:
3749       if (Tok.is(tok::kw_bool) &&
3750           DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
3751           DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
3752         PrevSpec = ""; // Not used by the diagnostic.
3753         DiagID = diag::err_bool_redeclaration;
3754         // For better error recovery.
3755         Tok.setKind(tok::identifier);
3756         isInvalid = true;
3757       } else {
3758         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
3759                                        DiagID, Policy);
3760       }
3761       break;
3762     case tok::kw__Decimal32:
3763       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
3764                                      DiagID, Policy);
3765       break;
3766     case tok::kw__Decimal64:
3767       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
3768                                      DiagID, Policy);
3769       break;
3770     case tok::kw__Decimal128:
3771       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
3772                                      DiagID, Policy);
3773       break;
3774     case tok::kw___vector:
3775       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
3776       break;
3777     case tok::kw___pixel:
3778       isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
3779       break;
3780     case tok::kw___bool:
3781       isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
3782       break;
3783     case tok::kw_pipe:
3784       if (!getLangOpts().OpenCL || (getLangOpts().OpenCLVersion < 200 &&
3785                                     !getLangOpts().OpenCLCPlusPlus)) {
3786         // OpenCL 2.0 defined this keyword. OpenCL 1.2 and earlier should
3787         // support the "pipe" word as identifier.
3788         Tok.getIdentifierInfo()->revertTokenIDToIdentifier();
3789         goto DoneWithDeclSpec;
3790       }
3791       isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy);
3792       break;
3793 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
3794   case tok::kw_##ImgType##_t: \
3795     isInvalid = DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, \
3796                                    DiagID, Policy); \
3797     break;
3798 #include "clang/Basic/OpenCLImageTypes.def"
3799     case tok::kw___unknown_anytype:
3800       isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
3801                                      PrevSpec, DiagID, Policy);
3802       break;
3803
3804     // class-specifier:
3805     case tok::kw_class:
3806     case tok::kw_struct:
3807     case tok::kw___interface:
3808     case tok::kw_union: {
3809       tok::TokenKind Kind = Tok.getKind();
3810       ConsumeToken();
3811
3812       // These are attributes following class specifiers.
3813       // To produce better diagnostic, we parse them when
3814       // parsing class specifier.
3815       ParsedAttributesWithRange Attributes(AttrFactory);
3816       ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
3817                           EnteringContext, DSContext, Attributes);
3818
3819       // If there are attributes following class specifier,
3820       // take them over and handle them here.
3821       if (!Attributes.empty()) {
3822         AttrsLastTime = true;
3823         attrs.takeAllFrom(Attributes);
3824       }
3825       continue;
3826     }
3827
3828     // enum-specifier:
3829     case tok::kw_enum:
3830       ConsumeToken();
3831       ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
3832       continue;
3833
3834     // cv-qualifier:
3835     case tok::kw_const:
3836       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
3837                                  getLangOpts());
3838       break;
3839     case tok::kw_volatile:
3840       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3841                                  getLangOpts());
3842       break;
3843     case tok::kw_restrict:
3844       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3845                                  getLangOpts());
3846       break;
3847
3848     // C++ typename-specifier:
3849     case tok::kw_typename:
3850       if (TryAnnotateTypeOrScopeToken()) {
3851         DS.SetTypeSpecError();
3852         goto DoneWithDeclSpec;
3853       }
3854       if (!Tok.is(tok::kw_typename))
3855         continue;
3856       break;
3857
3858     // GNU typeof support.
3859     case tok::kw_typeof:
3860       ParseTypeofSpecifier(DS);
3861       continue;
3862
3863     case tok::annot_decltype:
3864       ParseDecltypeSpecifier(DS);
3865       continue;
3866
3867     case tok::annot_pragma_pack:
3868       HandlePragmaPack();
3869       continue;
3870
3871     case tok::annot_pragma_ms_pragma:
3872       HandlePragmaMSPragma();
3873       continue;
3874
3875     case tok::annot_pragma_ms_vtordisp:
3876       HandlePragmaMSVtorDisp();
3877       continue;
3878
3879     case tok::annot_pragma_ms_pointers_to_members:
3880       HandlePragmaMSPointersToMembers();
3881       continue;
3882
3883     case tok::kw___underlying_type:
3884       ParseUnderlyingTypeSpecifier(DS);
3885       continue;
3886
3887     case tok::kw__Atomic:
3888       // C11 6.7.2.4/4:
3889       //   If the _Atomic keyword is immediately followed by a left parenthesis,
3890       //   it is interpreted as a type specifier (with a type name), not as a
3891       //   type qualifier.
3892       if (NextToken().is(tok::l_paren)) {
3893         ParseAtomicSpecifier(DS);
3894         continue;
3895       }
3896       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
3897                                  getLangOpts());
3898       break;
3899
3900     // OpenCL address space qualifiers:
3901     case tok::kw___generic:
3902       // generic address space is introduced only in OpenCL v2.0
3903       // see OpenCL C Spec v2.0 s6.5.5
3904       if (Actions.getLangOpts().OpenCLVersion < 200 &&
3905           !Actions.getLangOpts().OpenCLCPlusPlus) {
3906         DiagID = diag::err_opencl_unknown_type_specifier;
3907         PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3908         isInvalid = true;
3909         break;
3910       };
3911       LLVM_FALLTHROUGH;
3912     case tok::kw_private:
3913     case tok::kw___private:
3914     case tok::kw___global:
3915     case tok::kw___local:
3916     case tok::kw___constant:
3917     // OpenCL access qualifiers:
3918     case tok::kw___read_only:
3919     case tok::kw___write_only:
3920     case tok::kw___read_write:
3921       ParseOpenCLQualifiers(DS.getAttributes());
3922       break;
3923
3924     case tok::less:
3925       // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
3926       // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
3927       // but we support it.
3928       if (DS.hasTypeSpecifier() || !getLangOpts().ObjC)
3929         goto DoneWithDeclSpec;
3930
3931       SourceLocation StartLoc = Tok.getLocation();
3932       SourceLocation EndLoc;
3933       TypeResult Type = parseObjCProtocolQualifierType(EndLoc);
3934       if (Type.isUsable()) {
3935         if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc,
3936                                PrevSpec, DiagID, Type.get(),
3937                                Actions.getASTContext().getPrintingPolicy()))
3938           Diag(StartLoc, DiagID) << PrevSpec;
3939
3940         DS.SetRangeEnd(EndLoc);
3941       } else {
3942         DS.SetTypeSpecError();
3943       }
3944
3945       // Need to support trailing type qualifiers (e.g. "id<p> const").
3946       // If a type specifier follows, it will be diagnosed elsewhere.
3947       continue;
3948     }
3949
3950     DS.SetRangeEnd(ConsumedEnd.isValid() ? ConsumedEnd : Tok.getLocation());
3951
3952     // If the specifier wasn't legal, issue a diagnostic.
3953     if (isInvalid) {
3954       assert(PrevSpec && "Method did not return previous specifier!");
3955       assert(DiagID);
3956
3957       if (DiagID == diag::ext_duplicate_declspec ||
3958           DiagID == diag::ext_warn_duplicate_declspec ||
3959           DiagID == diag::err_duplicate_declspec)
3960         Diag(Loc, DiagID) << PrevSpec
3961                           << FixItHint::CreateRemoval(
3962                                  SourceRange(Loc, DS.getEndLoc()));
3963       else if (DiagID == diag::err_opencl_unknown_type_specifier) {
3964         Diag(Loc, DiagID) << getLangOpts().OpenCLCPlusPlus
3965                           << getLangOpts().getOpenCLVersionTuple().getAsString()
3966                           << PrevSpec << isStorageClass;
3967       } else
3968         Diag(Loc, DiagID) << PrevSpec;
3969     }
3970
3971     if (DiagID != diag::err_bool_redeclaration && ConsumedEnd.isInvalid())
3972       // After an error the next token can be an annotation token.
3973       ConsumeAnyToken();
3974
3975     AttrsLastTime = false;
3976   }
3977 }
3978
3979 /// ParseStructDeclaration - Parse a struct declaration without the terminating
3980 /// semicolon.
3981 ///
3982 /// Note that a struct declaration refers to a declaration in a struct,
3983 /// not to the declaration of a struct.
3984 ///
3985 ///       struct-declaration:
3986 /// [C2x]   attributes-specifier-seq[opt]
3987 ///           specifier-qualifier-list struct-declarator-list
3988 /// [GNU]   __extension__ struct-declaration
3989 /// [GNU]   specifier-qualifier-list
3990 ///       struct-declarator-list:
3991 ///         struct-declarator
3992 ///         struct-declarator-list ',' struct-declarator
3993 /// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
3994 ///       struct-declarator:
3995 ///         declarator
3996 /// [GNU]   declarator attributes[opt]
3997 ///         declarator[opt] ':' constant-expression
3998 /// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
3999 ///
4000 void Parser::ParseStructDeclaration(
4001     ParsingDeclSpec &DS,
4002     llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
4003
4004   if (Tok.is(tok::kw___extension__)) {
4005     // __extension__ silences extension warnings in the subexpression.
4006     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
4007     ConsumeToken();
4008     return ParseStructDeclaration(DS, FieldsCallback);
4009   }
4010
4011   // Parse leading attributes.
4012   ParsedAttributesWithRange Attrs(AttrFactory);
4013   MaybeParseCXX11Attributes(Attrs);
4014   DS.takeAttributesFrom(Attrs);
4015
4016   // Parse the common specifier-qualifiers-list piece.
4017   ParseSpecifierQualifierList(DS);
4018
4019   // If there are no declarators, this is a free-standing declaration
4020   // specifier. Let the actions module cope with it.
4021   if (Tok.is(tok::semi)) {
4022     RecordDecl *AnonRecord = nullptr;
4023     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
4024                                                        DS, AnonRecord);
4025     assert(!AnonRecord && "Did not expect anonymous struct or union here");
4026     DS.complete(TheDecl);
4027     return;
4028   }
4029
4030   // Read struct-declarators until we find the semicolon.
4031   bool FirstDeclarator = true;
4032   SourceLocation CommaLoc;
4033   while (1) {
4034     ParsingFieldDeclarator DeclaratorInfo(*this, DS);
4035     DeclaratorInfo.D.setCommaLoc(CommaLoc);
4036
4037     // Attributes are only allowed here on successive declarators.
4038     if (!FirstDeclarator)
4039       MaybeParseGNUAttributes(DeclaratorInfo.D);
4040
4041     /// struct-declarator: declarator
4042     /// struct-declarator: declarator[opt] ':' constant-expression
4043     if (Tok.isNot(tok::colon)) {
4044       // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
4045       ColonProtectionRAIIObject X(*this);
4046       ParseDeclarator(DeclaratorInfo.D);
4047     } else
4048       DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
4049
4050     if (TryConsumeToken(tok::colon)) {
4051       ExprResult Res(ParseConstantExpression());
4052       if (Res.isInvalid())
4053         SkipUntil(tok::semi, StopBeforeMatch);
4054       else
4055         DeclaratorInfo.BitfieldSize = Res.get();
4056     }
4057
4058     // If attributes exist after the declarator, parse them.
4059     MaybeParseGNUAttributes(DeclaratorInfo.D);
4060
4061     // We're done with this declarator;  invoke the callback.
4062     FieldsCallback(DeclaratorInfo);
4063
4064     // If we don't have a comma, it is either the end of the list (a ';')
4065     // or an error, bail out.
4066     if (!TryConsumeToken(tok::comma, CommaLoc))
4067       return;
4068
4069     FirstDeclarator = false;
4070   }
4071 }
4072
4073 /// ParseStructUnionBody
4074 ///       struct-contents:
4075 ///         struct-declaration-list
4076 /// [EXT]   empty
4077 /// [GNU]   "struct-declaration-list" without terminatoring ';'
4078 ///       struct-declaration-list:
4079 ///         struct-declaration
4080 ///         struct-declaration-list struct-declaration
4081 /// [OBC]   '@' 'defs' '(' class-name ')'
4082 ///
4083 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
4084                                   unsigned TagType, Decl *TagDecl) {
4085   PrettyDeclStackTraceEntry CrashInfo(Actions.Context, TagDecl, RecordLoc,
4086                                       "parsing struct/union body");
4087   assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
4088
4089   BalancedDelimiterTracker T(*this, tok::l_brace);
4090   if (T.consumeOpen())
4091     return;
4092
4093   ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
4094   Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
4095
4096   SmallVector<Decl *, 32> FieldDecls;
4097
4098   // While we still have something to read, read the declarations in the struct.
4099   while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
4100          Tok.isNot(tok::eof)) {
4101     // Each iteration of this loop reads one struct-declaration.
4102
4103     // Check for extraneous top-level semicolon.
4104     if (Tok.is(tok::semi)) {
4105       ConsumeExtraSemi(InsideStruct, TagType);
4106       continue;
4107     }
4108
4109     // Parse _Static_assert declaration.
4110     if (Tok.is(tok::kw__Static_assert)) {
4111       SourceLocation DeclEnd;
4112       ParseStaticAssertDeclaration(DeclEnd);
4113       continue;
4114     }
4115
4116     if (Tok.is(tok::annot_pragma_pack)) {
4117       HandlePragmaPack();
4118       continue;
4119     }
4120
4121     if (Tok.is(tok::annot_pragma_align)) {
4122       HandlePragmaAlign();
4123       continue;
4124     }
4125
4126     if (Tok.is(tok::annot_pragma_openmp)) {
4127       // Result can be ignored, because it must be always empty.
4128       AccessSpecifier AS = AS_none;
4129       ParsedAttributesWithRange Attrs(AttrFactory);
4130       (void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs);
4131       continue;
4132     }
4133
4134     if (!Tok.is(tok::at)) {
4135       auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
4136         // Install the declarator into the current TagDecl.
4137         Decl *Field =
4138             Actions.ActOnField(getCurScope(), TagDecl,
4139                                FD.D.getDeclSpec().getSourceRange().getBegin(),
4140                                FD.D, FD.BitfieldSize);
4141         FieldDecls.push_back(Field);
4142         FD.complete(Field);
4143       };
4144
4145       // Parse all the comma separated declarators.
4146       ParsingDeclSpec DS(*this);
4147       ParseStructDeclaration(DS, CFieldCallback);
4148     } else { // Handle @defs
4149       ConsumeToken();
4150       if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
4151         Diag(Tok, diag::err_unexpected_at);
4152         SkipUntil(tok::semi);
4153         continue;
4154       }
4155       ConsumeToken();
4156       ExpectAndConsume(tok::l_paren);
4157       if (!Tok.is(tok::identifier)) {
4158         Diag(Tok, diag::err_expected) << tok::identifier;
4159         SkipUntil(tok::semi);
4160         continue;
4161       }
4162       SmallVector<Decl *, 16> Fields;
4163       Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
4164                         Tok.getIdentifierInfo(), Fields);
4165       FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
4166       ConsumeToken();
4167       ExpectAndConsume(tok::r_paren);
4168     }
4169
4170     if (TryConsumeToken(tok::semi))
4171       continue;
4172
4173     if (Tok.is(tok::r_brace)) {
4174       ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
4175       break;
4176     }
4177
4178     ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
4179     // Skip to end of block or statement to avoid ext-warning on extra ';'.
4180     SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
4181     // If we stopped at a ';', eat it.
4182     TryConsumeToken(tok::semi);
4183   }
4184
4185   T.consumeClose();
4186
4187   ParsedAttributes attrs(AttrFactory);
4188   // If attributes exist after struct contents, parse them.
4189   MaybeParseGNUAttributes(attrs);
4190
4191   Actions.ActOnFields(getCurScope(), RecordLoc, TagDecl, FieldDecls,
4192                       T.getOpenLocation(), T.getCloseLocation(), attrs);
4193   StructScope.Exit();
4194   Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, T.getRange());
4195 }
4196
4197 /// ParseEnumSpecifier
4198 ///       enum-specifier: [C99 6.7.2.2]
4199 ///         'enum' identifier[opt] '{' enumerator-list '}'
4200 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
4201 /// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
4202 ///                                                 '}' attributes[opt]
4203 /// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
4204 ///                                                 '}'
4205 ///         'enum' identifier
4206 /// [GNU]   'enum' attributes[opt] identifier
4207 ///
4208 /// [C++11] enum-head '{' enumerator-list[opt] '}'
4209 /// [C++11] enum-head '{' enumerator-list ','  '}'
4210 ///
4211 ///       enum-head: [C++11]
4212 ///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
4213 ///         enum-key attribute-specifier-seq[opt] nested-name-specifier
4214 ///             identifier enum-base[opt]
4215 ///
4216 ///       enum-key: [C++11]
4217 ///         'enum'
4218 ///         'enum' 'class'
4219 ///         'enum' 'struct'
4220 ///
4221 ///       enum-base: [C++11]
4222 ///         ':' type-specifier-seq
4223 ///
4224 /// [C++] elaborated-type-specifier:
4225 /// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
4226 ///
4227 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
4228                                 const ParsedTemplateInfo &TemplateInfo,
4229                                 AccessSpecifier AS, DeclSpecContext DSC) {
4230   // Parse the tag portion of this.
4231   if (Tok.is(tok::code_completion)) {
4232     // Code completion for an enum name.
4233     Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
4234     return cutOffParsing();
4235   }
4236
4237   // If attributes exist after tag, parse them.
4238   ParsedAttributesWithRange attrs(AttrFactory);
4239   MaybeParseGNUAttributes(attrs);
4240   MaybeParseCXX11Attributes(attrs);
4241   MaybeParseMicrosoftDeclSpecs(attrs);
4242
4243   SourceLocation ScopedEnumKWLoc;
4244   bool IsScopedUsingClassTag = false;
4245
4246   // In C++11, recognize 'enum class' and 'enum struct'.
4247   if (Tok.isOneOf(tok::kw_class, tok::kw_struct)) {
4248     Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
4249                                         : diag::ext_scoped_enum);
4250     IsScopedUsingClassTag = Tok.is(tok::kw_class);
4251     ScopedEnumKWLoc = ConsumeToken();
4252
4253     // Attributes are not allowed between these keywords.  Diagnose,
4254     // but then just treat them like they appeared in the right place.
4255     ProhibitAttributes(attrs);
4256
4257     // They are allowed afterwards, though.
4258     MaybeParseGNUAttributes(attrs);
4259     MaybeParseCXX11Attributes(attrs);
4260     MaybeParseMicrosoftDeclSpecs(attrs);
4261   }
4262
4263   // C++11 [temp.explicit]p12:
4264   //   The usual access controls do not apply to names used to specify
4265   //   explicit instantiations.
4266   // We extend this to also cover explicit specializations.  Note that
4267   // we don't suppress if this turns out to be an elaborated type
4268   // specifier.
4269   bool shouldDelayDiagsInTag =
4270     (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
4271      TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
4272   SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
4273
4274   // Enum definitions should not be parsed in a trailing-return-type.
4275   bool AllowDeclaration = DSC != DeclSpecContext::DSC_trailing;
4276
4277   CXXScopeSpec &SS = DS.getTypeSpecScope();
4278   if (getLangOpts().CPlusPlus) {
4279     // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
4280     // if a fixed underlying type is allowed.
4281     ColonProtectionRAIIObject X(*this, AllowDeclaration);
4282
4283     CXXScopeSpec Spec;
4284     if (ParseOptionalCXXScopeSpecifier(Spec, nullptr,
4285                                        /*EnteringContext=*/true))
4286       return;
4287
4288     if (Spec.isSet() && Tok.isNot(tok::identifier)) {
4289       Diag(Tok, diag::err_expected) << tok::identifier;
4290       if (Tok.isNot(tok::l_brace)) {
4291         // Has no name and is not a definition.
4292         // Skip the rest of this declarator, up until the comma or semicolon.
4293         SkipUntil(tok::comma, StopAtSemi);
4294         return;
4295       }
4296     }
4297
4298     SS = Spec;
4299   }
4300
4301   // Must have either 'enum name' or 'enum {...}'.
4302   if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
4303       !(AllowDeclaration && Tok.is(tok::colon))) {
4304     Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
4305
4306     // Skip the rest of this declarator, up until the comma or semicolon.
4307     SkipUntil(tok::comma, StopAtSemi);
4308     return;
4309   }
4310
4311   // If an identifier is present, consume and remember it.
4312   IdentifierInfo *Name = nullptr;
4313   SourceLocation NameLoc;
4314   if (Tok.is(tok::identifier)) {
4315     Name = Tok.getIdentifierInfo();
4316     NameLoc = ConsumeToken();
4317   }
4318
4319   if (!Name && ScopedEnumKWLoc.isValid()) {
4320     // C++0x 7.2p2: The optional identifier shall not be omitted in the
4321     // declaration of a scoped enumeration.
4322     Diag(Tok, diag::err_scoped_enum_missing_identifier);
4323     ScopedEnumKWLoc = SourceLocation();
4324     IsScopedUsingClassTag = false;
4325   }
4326
4327   // Okay, end the suppression area.  We'll decide whether to emit the
4328   // diagnostics in a second.
4329   if (shouldDelayDiagsInTag)
4330     diagsFromTag.done();
4331
4332   TypeResult BaseType;
4333
4334   // Parse the fixed underlying type.
4335   bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4336   if (AllowDeclaration && Tok.is(tok::colon)) {
4337     bool PossibleBitfield = false;
4338     if (CanBeBitfield) {
4339       // If we're in class scope, this can either be an enum declaration with
4340       // an underlying type, or a declaration of a bitfield member. We try to
4341       // use a simple disambiguation scheme first to catch the common cases
4342       // (integer literal, sizeof); if it's still ambiguous, we then consider
4343       // anything that's a simple-type-specifier followed by '(' as an
4344       // expression. This suffices because function types are not valid
4345       // underlying types anyway.
4346       EnterExpressionEvaluationContext Unevaluated(
4347           Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
4348       TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
4349       // If the next token starts an expression, we know we're parsing a
4350       // bit-field. This is the common case.
4351       if (TPR == TPResult::True)
4352         PossibleBitfield = true;
4353       // If the next token starts a type-specifier-seq, it may be either a
4354       // a fixed underlying type or the start of a function-style cast in C++;
4355       // lookahead one more token to see if it's obvious that we have a
4356       // fixed underlying type.
4357       else if (TPR == TPResult::False &&
4358                GetLookAheadToken(2).getKind() == tok::semi) {
4359         // Consume the ':'.
4360         ConsumeToken();
4361       } else {
4362         // We have the start of a type-specifier-seq, so we have to perform
4363         // tentative parsing to determine whether we have an expression or a
4364         // type.
4365         TentativeParsingAction TPA(*this);
4366
4367         // Consume the ':'.
4368         ConsumeToken();
4369
4370         // If we see a type specifier followed by an open-brace, we have an
4371         // ambiguity between an underlying type and a C++11 braced
4372         // function-style cast. Resolve this by always treating it as an
4373         // underlying type.
4374         // FIXME: The standard is not entirely clear on how to disambiguate in
4375         // this case.
4376         if ((getLangOpts().CPlusPlus &&
4377              isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) ||
4378             (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
4379           // We'll parse this as a bitfield later.
4380           PossibleBitfield = true;
4381           TPA.Revert();
4382         } else {
4383           // We have a type-specifier-seq.
4384           TPA.Commit();
4385         }
4386       }
4387     } else {
4388       // Consume the ':'.
4389       ConsumeToken();
4390     }
4391
4392     if (!PossibleBitfield) {
4393       SourceRange Range;
4394       BaseType = ParseTypeName(&Range);
4395
4396       if (!getLangOpts().ObjC) {
4397         if (getLangOpts().CPlusPlus11)
4398           Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
4399         else if (getLangOpts().CPlusPlus)
4400           Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type);
4401         else if (getLangOpts().MicrosoftExt)
4402           Diag(StartLoc, diag::ext_ms_c_enum_fixed_underlying_type);
4403         else
4404           Diag(StartLoc, diag::ext_clang_c_enum_fixed_underlying_type);
4405       }
4406     }
4407   }
4408
4409   // There are four options here.  If we have 'friend enum foo;' then this is a
4410   // friend declaration, and cannot have an accompanying definition. If we have
4411   // 'enum foo;', then this is a forward declaration.  If we have
4412   // 'enum foo {...' then this is a definition. Otherwise we have something
4413   // like 'enum foo xyz', a reference.
4414   //
4415   // This is needed to handle stuff like this right (C99 6.7.2.3p11):
4416   // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
4417   // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
4418   //
4419   Sema::TagUseKind TUK;
4420   if (!AllowDeclaration) {
4421     TUK = Sema::TUK_Reference;
4422   } else if (Tok.is(tok::l_brace)) {
4423     if (DS.isFriendSpecified()) {
4424       Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
4425         << SourceRange(DS.getFriendSpecLoc());
4426       ConsumeBrace();
4427       SkipUntil(tok::r_brace, StopAtSemi);
4428       TUK = Sema::TUK_Friend;
4429     } else {
4430       TUK = Sema::TUK_Definition;
4431     }
4432   } else if (!isTypeSpecifier(DSC) &&
4433              (Tok.is(tok::semi) ||
4434               (Tok.isAtStartOfLine() &&
4435                !isValidAfterTypeSpecifier(CanBeBitfield)))) {
4436     TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
4437     if (Tok.isNot(tok::semi)) {
4438       // A semicolon was missing after this declaration. Diagnose and recover.
4439       ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4440       PP.EnterToken(Tok, /*IsReinject=*/true);
4441       Tok.setKind(tok::semi);
4442     }
4443   } else {
4444     TUK = Sema::TUK_Reference;
4445   }
4446
4447   // If this is an elaborated type specifier, and we delayed
4448   // diagnostics before, just merge them into the current pool.
4449   if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
4450     diagsFromTag.redelay();
4451   }
4452
4453   MultiTemplateParamsArg TParams;
4454   if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
4455       TUK != Sema::TUK_Reference) {
4456     if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
4457       // Skip the rest of this declarator, up until the comma or semicolon.
4458       Diag(Tok, diag::err_enum_template);
4459       SkipUntil(tok::comma, StopAtSemi);
4460       return;
4461     }
4462
4463     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
4464       // Enumerations can't be explicitly instantiated.
4465       DS.SetTypeSpecError();
4466       Diag(StartLoc, diag::err_explicit_instantiation_enum);
4467       return;
4468     }
4469
4470     assert(TemplateInfo.TemplateParams && "no template parameters");
4471     TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
4472                                      TemplateInfo.TemplateParams->size());
4473   }
4474
4475   if (TUK == Sema::TUK_Reference)
4476     ProhibitAttributes(attrs);
4477
4478   if (!Name && TUK != Sema::TUK_Definition) {
4479     Diag(Tok, diag::err_enumerator_unnamed_no_def);
4480
4481     // Skip the rest of this declarator, up until the comma or semicolon.
4482     SkipUntil(tok::comma, StopAtSemi);
4483     return;
4484   }
4485
4486   stripTypeAttributesOffDeclSpec(attrs, DS, TUK);
4487
4488   Sema::SkipBodyInfo SkipBody;
4489   if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) &&
4490       NextToken().is(tok::identifier))
4491     SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(),
4492                                               NextToken().getIdentifierInfo(),
4493                                               NextToken().getLocation());
4494
4495   bool Owned = false;
4496   bool IsDependent = false;
4497   const char *PrevSpec = nullptr;
4498   unsigned DiagID;
4499   Decl *TagDecl = Actions.ActOnTag(
4500       getCurScope(), DeclSpec::TST_enum, TUK, StartLoc, SS, Name, NameLoc,
4501       attrs, AS, DS.getModulePrivateSpecLoc(), TParams, Owned, IsDependent,
4502       ScopedEnumKWLoc, IsScopedUsingClassTag, BaseType,
4503       DSC == DeclSpecContext::DSC_type_specifier,
4504       DSC == DeclSpecContext::DSC_template_param ||
4505           DSC == DeclSpecContext::DSC_template_type_arg,
4506       &SkipBody);
4507
4508   if (SkipBody.ShouldSkip) {
4509     assert(TUK == Sema::TUK_Definition && "can only skip a definition");
4510
4511     BalancedDelimiterTracker T(*this, tok::l_brace);
4512     T.consumeOpen();
4513     T.skipToEnd();
4514
4515     if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
4516                            NameLoc.isValid() ? NameLoc : StartLoc,
4517                            PrevSpec, DiagID, TagDecl, Owned,
4518                            Actions.getASTContext().getPrintingPolicy()))
4519       Diag(StartLoc, DiagID) << PrevSpec;
4520     return;
4521   }
4522
4523   if (IsDependent) {
4524     // This enum has a dependent nested-name-specifier. Handle it as a
4525     // dependent tag.
4526     if (!Name) {
4527       DS.SetTypeSpecError();
4528       Diag(Tok, diag::err_expected_type_name_after_typename);
4529       return;
4530     }
4531
4532     TypeResult Type = Actions.ActOnDependentTag(
4533         getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
4534     if (Type.isInvalid()) {
4535       DS.SetTypeSpecError();
4536       return;
4537     }
4538
4539     if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
4540                            NameLoc.isValid() ? NameLoc : StartLoc,
4541                            PrevSpec, DiagID, Type.get(),
4542                            Actions.getASTContext().getPrintingPolicy()))
4543       Diag(StartLoc, DiagID) << PrevSpec;
4544
4545     return;
4546   }
4547
4548   if (!TagDecl) {
4549     // The action failed to produce an enumeration tag. If this is a
4550     // definition, consume the entire definition.
4551     if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
4552       ConsumeBrace();
4553       SkipUntil(tok::r_brace, StopAtSemi);
4554     }
4555
4556     DS.SetTypeSpecError();
4557     return;
4558   }
4559
4560   if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
4561     Decl *D = SkipBody.CheckSameAsPrevious ? SkipBody.New : TagDecl;
4562     ParseEnumBody(StartLoc, D);
4563     if (SkipBody.CheckSameAsPrevious &&
4564         !Actions.ActOnDuplicateDefinition(DS, TagDecl, SkipBody)) {
4565       DS.SetTypeSpecError();
4566       return;
4567     }
4568   }
4569
4570   if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
4571                          NameLoc.isValid() ? NameLoc : StartLoc,
4572                          PrevSpec, DiagID, TagDecl, Owned,
4573                          Actions.getASTContext().getPrintingPolicy()))
4574     Diag(StartLoc, DiagID) << PrevSpec;
4575 }
4576
4577 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
4578 ///       enumerator-list:
4579 ///         enumerator
4580 ///         enumerator-list ',' enumerator
4581 ///       enumerator:
4582 ///         enumeration-constant attributes[opt]
4583 ///         enumeration-constant attributes[opt] '=' constant-expression
4584 ///       enumeration-constant:
4585 ///         identifier
4586 ///
4587 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
4588   // Enter the scope of the enum body and start the definition.
4589   ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
4590   Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
4591
4592   BalancedDelimiterTracker T(*this, tok::l_brace);
4593   T.consumeOpen();
4594
4595   // C does not allow an empty enumerator-list, C++ does [dcl.enum].
4596   if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
4597     Diag(Tok, diag::err_empty_enum);
4598
4599   SmallVector<Decl *, 32> EnumConstantDecls;
4600   SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags;
4601
4602   Decl *LastEnumConstDecl = nullptr;
4603
4604   // Parse the enumerator-list.
4605   while (Tok.isNot(tok::r_brace)) {
4606     // Parse enumerator. If failed, try skipping till the start of the next
4607     // enumerator definition.
4608     if (Tok.isNot(tok::identifier)) {
4609       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
4610       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
4611           TryConsumeToken(tok::comma))
4612         continue;
4613       break;
4614     }
4615     IdentifierInfo *Ident = Tok.getIdentifierInfo();
4616     SourceLocation IdentLoc = ConsumeToken();
4617
4618     // If attributes exist after the enumerator, parse them.
4619     ParsedAttributesWithRange attrs(AttrFactory);
4620     MaybeParseGNUAttributes(attrs);
4621     ProhibitAttributes(attrs); // GNU-style attributes are prohibited.
4622     if (standardAttributesAllowed() && isCXX11AttributeSpecifier()) {
4623       if (getLangOpts().CPlusPlus)
4624         Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
4625                                     ? diag::warn_cxx14_compat_ns_enum_attribute
4626                                     : diag::ext_ns_enum_attribute)
4627             << 1 /*enumerator*/;
4628       ParseCXX11Attributes(attrs);
4629     }
4630
4631     SourceLocation EqualLoc;
4632     ExprResult AssignedVal;
4633     EnumAvailabilityDiags.emplace_back(*this);
4634
4635     if (TryConsumeToken(tok::equal, EqualLoc)) {
4636       AssignedVal = ParseConstantExpression();
4637       if (AssignedVal.isInvalid())
4638         SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
4639     }
4640
4641     // Install the enumerator constant into EnumDecl.
4642     Decl *EnumConstDecl = Actions.ActOnEnumConstant(
4643         getCurScope(), EnumDecl, LastEnumConstDecl, IdentLoc, Ident, attrs,
4644         EqualLoc, AssignedVal.get());
4645     EnumAvailabilityDiags.back().done();
4646
4647     EnumConstantDecls.push_back(EnumConstDecl);
4648     LastEnumConstDecl = EnumConstDecl;
4649
4650     if (Tok.is(tok::identifier)) {
4651       // We're missing a comma between enumerators.
4652       SourceLocation Loc = getEndOfPreviousToken();
4653       Diag(Loc, diag::err_enumerator_list_missing_comma)
4654         << FixItHint::CreateInsertion(Loc, ", ");
4655       continue;
4656     }
4657
4658     // Emumerator definition must be finished, only comma or r_brace are
4659     // allowed here.
4660     SourceLocation CommaLoc;
4661     if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
4662       if (EqualLoc.isValid())
4663         Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
4664                                                            << tok::comma;
4665       else
4666         Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
4667       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
4668         if (TryConsumeToken(tok::comma, CommaLoc))
4669           continue;
4670       } else {
4671         break;
4672       }
4673     }
4674
4675     // If comma is followed by r_brace, emit appropriate warning.
4676     if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
4677       if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
4678         Diag(CommaLoc, getLangOpts().CPlusPlus ?
4679                diag::ext_enumerator_list_comma_cxx :
4680                diag::ext_enumerator_list_comma_c)
4681           << FixItHint::CreateRemoval(CommaLoc);
4682       else if (getLangOpts().CPlusPlus11)
4683         Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
4684           << FixItHint::CreateRemoval(CommaLoc);
4685       break;
4686     }
4687   }
4688
4689   // Eat the }.
4690   T.consumeClose();
4691
4692   // If attributes exist after the identifier list, parse them.
4693   ParsedAttributes attrs(AttrFactory);
4694   MaybeParseGNUAttributes(attrs);
4695
4696   Actions.ActOnEnumBody(StartLoc, T.getRange(), EnumDecl, EnumConstantDecls,
4697                         getCurScope(), attrs);
4698
4699   // Now handle enum constant availability diagnostics.
4700   assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size());
4701   for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) {
4702     ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
4703     EnumAvailabilityDiags[i].redelay();
4704     PD.complete(EnumConstantDecls[i]);
4705   }
4706
4707   EnumScope.Exit();
4708   Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, T.getRange());
4709
4710   // The next token must be valid after an enum definition. If not, a ';'
4711   // was probably forgotten.
4712   bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4713   if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
4714     ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4715     // Push this token back into the preprocessor and change our current token
4716     // to ';' so that the rest of the code recovers as though there were an
4717     // ';' after the definition.
4718     PP.EnterToken(Tok, /*IsReinject=*/true);
4719     Tok.setKind(tok::semi);
4720   }
4721 }
4722
4723 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
4724 /// is definitely a type-specifier.  Return false if it isn't part of a type
4725 /// specifier or if we're not sure.
4726 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
4727   switch (Tok.getKind()) {
4728   default: return false;
4729     // type-specifiers
4730   case tok::kw_short:
4731   case tok::kw_long:
4732   case tok::kw___int64:
4733   case tok::kw___int128:
4734   case tok::kw_signed:
4735   case tok::kw_unsigned:
4736   case tok::kw__Complex:
4737   case tok::kw__Imaginary:
4738   case tok::kw_void:
4739   case tok::kw_char:
4740   case tok::kw_wchar_t:
4741   case tok::kw_char8_t:
4742   case tok::kw_char16_t:
4743   case tok::kw_char32_t:
4744   case tok::kw_int:
4745   case tok::kw_half:
4746   case tok::kw_float:
4747   case tok::kw_double:
4748   case tok::kw__Accum:
4749   case tok::kw__Fract:
4750   case tok::kw__Float16:
4751   case tok::kw___float128:
4752   case tok::kw_bool:
4753   case tok::kw__Bool:
4754   case tok::kw__Decimal32:
4755   case tok::kw__Decimal64:
4756   case tok::kw__Decimal128:
4757   case tok::kw___vector:
4758 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4759 #include "clang/Basic/OpenCLImageTypes.def"
4760
4761     // struct-or-union-specifier (C99) or class-specifier (C++)
4762   case tok::kw_class:
4763   case tok::kw_struct:
4764   case tok::kw___interface:
4765   case tok::kw_union:
4766     // enum-specifier
4767   case tok::kw_enum:
4768
4769     // typedef-name
4770   case tok::annot_typename:
4771     return true;
4772   }
4773 }
4774
4775 /// isTypeSpecifierQualifier - Return true if the current token could be the
4776 /// start of a specifier-qualifier-list.
4777 bool Parser::isTypeSpecifierQualifier() {
4778   switch (Tok.getKind()) {
4779   default: return false;
4780
4781   case tok::identifier:   // foo::bar
4782     if (TryAltiVecVectorToken())
4783       return true;
4784     LLVM_FALLTHROUGH;
4785   case tok::kw_typename:  // typename T::type
4786     // Annotate typenames and C++ scope specifiers.  If we get one, just
4787     // recurse to handle whatever we get.
4788     if (TryAnnotateTypeOrScopeToken())
4789       return true;
4790     if (Tok.is(tok::identifier))
4791       return false;
4792     return isTypeSpecifierQualifier();
4793
4794   case tok::coloncolon:   // ::foo::bar
4795     if (NextToken().is(tok::kw_new) ||    // ::new
4796         NextToken().is(tok::kw_delete))   // ::delete
4797       return false;
4798
4799     if (TryAnnotateTypeOrScopeToken())
4800       return true;
4801     return isTypeSpecifierQualifier();
4802
4803     // GNU attributes support.
4804   case tok::kw___attribute:
4805     // GNU typeof support.
4806   case tok::kw_typeof:
4807
4808     // type-specifiers
4809   case tok::kw_short:
4810   case tok::kw_long:
4811   case tok::kw___int64:
4812   case tok::kw___int128:
4813   case tok::kw_signed:
4814   case tok::kw_unsigned:
4815   case tok::kw__Complex:
4816   case tok::kw__Imaginary:
4817   case tok::kw_void:
4818   case tok::kw_char:
4819   case tok::kw_wchar_t:
4820   case tok::kw_char8_t:
4821   case tok::kw_char16_t:
4822   case tok::kw_char32_t:
4823   case tok::kw_int:
4824   case tok::kw_half:
4825   case tok::kw_float:
4826   case tok::kw_double:
4827   case tok::kw__Accum:
4828   case tok::kw__Fract:
4829   case tok::kw__Float16:
4830   case tok::kw___float128:
4831   case tok::kw_bool:
4832   case tok::kw__Bool:
4833   case tok::kw__Decimal32:
4834   case tok::kw__Decimal64:
4835   case tok::kw__Decimal128:
4836   case tok::kw___vector:
4837 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4838 #include "clang/Basic/OpenCLImageTypes.def"
4839
4840     // struct-or-union-specifier (C99) or class-specifier (C++)
4841   case tok::kw_class:
4842   case tok::kw_struct:
4843   case tok::kw___interface:
4844   case tok::kw_union:
4845     // enum-specifier
4846   case tok::kw_enum:
4847
4848     // type-qualifier
4849   case tok::kw_const:
4850   case tok::kw_volatile:
4851   case tok::kw_restrict:
4852   case tok::kw__Sat:
4853
4854     // Debugger support.
4855   case tok::kw___unknown_anytype:
4856
4857     // typedef-name
4858   case tok::annot_typename:
4859     return true;
4860
4861     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4862   case tok::less:
4863     return getLangOpts().ObjC;
4864
4865   case tok::kw___cdecl:
4866   case tok::kw___stdcall:
4867   case tok::kw___fastcall:
4868   case tok::kw___thiscall:
4869   case tok::kw___regcall:
4870   case tok::kw___vectorcall:
4871   case tok::kw___w64:
4872   case tok::kw___ptr64:
4873   case tok::kw___ptr32:
4874   case tok::kw___pascal:
4875   case tok::kw___unaligned:
4876
4877   case tok::kw__Nonnull:
4878   case tok::kw__Nullable:
4879   case tok::kw__Null_unspecified:
4880
4881   case tok::kw___kindof:
4882
4883   case tok::kw___private:
4884   case tok::kw___local:
4885   case tok::kw___global:
4886   case tok::kw___constant:
4887   case tok::kw___generic:
4888   case tok::kw___read_only:
4889   case tok::kw___read_write:
4890   case tok::kw___write_only:
4891     return true;
4892
4893   case tok::kw_private:
4894     return getLangOpts().OpenCL;
4895
4896   // C11 _Atomic
4897   case tok::kw__Atomic:
4898     return true;
4899   }
4900 }
4901
4902 /// isDeclarationSpecifier() - Return true if the current token is part of a
4903 /// declaration specifier.
4904 ///
4905 /// \param DisambiguatingWithExpression True to indicate that the purpose of
4906 /// this check is to disambiguate between an expression and a declaration.
4907 bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
4908   switch (Tok.getKind()) {
4909   default: return false;
4910
4911   case tok::kw_pipe:
4912     return (getLangOpts().OpenCL && getLangOpts().OpenCLVersion >= 200) ||
4913            getLangOpts().OpenCLCPlusPlus;
4914
4915   case tok::identifier:   // foo::bar
4916     // Unfortunate hack to support "Class.factoryMethod" notation.
4917     if (getLangOpts().ObjC && NextToken().is(tok::period))
4918       return false;
4919     if (TryAltiVecVectorToken())
4920       return true;
4921     LLVM_FALLTHROUGH;
4922   case tok::kw_decltype: // decltype(T())::type
4923   case tok::kw_typename: // typename T::type
4924     // Annotate typenames and C++ scope specifiers.  If we get one, just
4925     // recurse to handle whatever we get.
4926     if (TryAnnotateTypeOrScopeToken())
4927       return true;
4928     if (Tok.is(tok::identifier))
4929       return false;
4930
4931     // If we're in Objective-C and we have an Objective-C class type followed
4932     // by an identifier and then either ':' or ']', in a place where an
4933     // expression is permitted, then this is probably a class message send
4934     // missing the initial '['. In this case, we won't consider this to be
4935     // the start of a declaration.
4936     if (DisambiguatingWithExpression &&
4937         isStartOfObjCClassMessageMissingOpenBracket())
4938       return false;
4939
4940     return isDeclarationSpecifier();
4941
4942   case tok::coloncolon:   // ::foo::bar
4943     if (NextToken().is(tok::kw_new) ||    // ::new
4944         NextToken().is(tok::kw_delete))   // ::delete
4945       return false;
4946
4947     // Annotate typenames and C++ scope specifiers.  If we get one, just
4948     // recurse to handle whatever we get.
4949     if (TryAnnotateTypeOrScopeToken())
4950       return true;
4951     return isDeclarationSpecifier();
4952
4953     // storage-class-specifier
4954   case tok::kw_typedef:
4955   case tok::kw_extern:
4956   case tok::kw___private_extern__:
4957   case tok::kw_static:
4958   case tok::kw_auto:
4959   case tok::kw___auto_type:
4960   case tok::kw_register:
4961   case tok::kw___thread:
4962   case tok::kw_thread_local:
4963   case tok::kw__Thread_local:
4964
4965     // Modules
4966   case tok::kw___module_private__:
4967
4968     // Debugger support
4969   case tok::kw___unknown_anytype:
4970
4971     // type-specifiers
4972   case tok::kw_short:
4973   case tok::kw_long:
4974   case tok::kw___int64:
4975   case tok::kw___int128:
4976   case tok::kw_signed:
4977   case tok::kw_unsigned:
4978   case tok::kw__Complex:
4979   case tok::kw__Imaginary:
4980   case tok::kw_void:
4981   case tok::kw_char:
4982   case tok::kw_wchar_t:
4983   case tok::kw_char8_t:
4984   case tok::kw_char16_t:
4985   case tok::kw_char32_t:
4986
4987   case tok::kw_int:
4988   case tok::kw_half:
4989   case tok::kw_float:
4990   case tok::kw_double:
4991   case tok::kw__Accum:
4992   case tok::kw__Fract:
4993   case tok::kw__Float16:
4994   case tok::kw___float128:
4995   case tok::kw_bool:
4996   case tok::kw__Bool:
4997   case tok::kw__Decimal32:
4998   case tok::kw__Decimal64:
4999   case tok::kw__Decimal128:
5000   case tok::kw___vector:
5001
5002     // struct-or-union-specifier (C99) or class-specifier (C++)
5003   case tok::kw_class:
5004   case tok::kw_struct:
5005   case tok::kw_union:
5006   case tok::kw___interface:
5007     // enum-specifier
5008   case tok::kw_enum:
5009
5010     // type-qualifier
5011   case tok::kw_const:
5012   case tok::kw_volatile:
5013   case tok::kw_restrict:
5014   case tok::kw__Sat:
5015
5016     // function-specifier
5017   case tok::kw_inline:
5018   case tok::kw_virtual:
5019   case tok::kw_explicit:
5020   case tok::kw__Noreturn:
5021
5022     // alignment-specifier
5023   case tok::kw__Alignas:
5024
5025     // friend keyword.
5026   case tok::kw_friend:
5027
5028     // static_assert-declaration
5029   case tok::kw__Static_assert:
5030
5031     // GNU typeof support.
5032   case tok::kw_typeof:
5033
5034     // GNU attributes.
5035   case tok::kw___attribute:
5036
5037     // C++11 decltype and constexpr.
5038   case tok::annot_decltype:
5039   case tok::kw_constexpr:
5040
5041     // C++20 consteval.
5042   case tok::kw_consteval:
5043
5044     // C11 _Atomic
5045   case tok::kw__Atomic:
5046     return true;
5047
5048     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
5049   case tok::less:
5050     return getLangOpts().ObjC;
5051
5052     // typedef-name
5053   case tok::annot_typename:
5054     return !DisambiguatingWithExpression ||
5055            !isStartOfObjCClassMessageMissingOpenBracket();
5056
5057   case tok::kw___declspec:
5058   case tok::kw___cdecl:
5059   case tok::kw___stdcall:
5060   case tok::kw___fastcall:
5061   case tok::kw___thiscall:
5062   case tok::kw___regcall:
5063   case tok::kw___vectorcall:
5064   case tok::kw___w64:
5065   case tok::kw___sptr:
5066   case tok::kw___uptr:
5067   case tok::kw___ptr64:
5068   case tok::kw___ptr32:
5069   case tok::kw___forceinline:
5070   case tok::kw___pascal:
5071   case tok::kw___unaligned:
5072
5073   case tok::kw__Nonnull:
5074   case tok::kw__Nullable:
5075   case tok::kw__Null_unspecified:
5076
5077   case tok::kw___kindof:
5078
5079   case tok::kw___private:
5080   case tok::kw___local:
5081   case tok::kw___global:
5082   case tok::kw___constant:
5083   case tok::kw___generic:
5084   case tok::kw___read_only:
5085   case tok::kw___read_write:
5086   case tok::kw___write_only:
5087 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
5088 #include "clang/Basic/OpenCLImageTypes.def"
5089
5090     return true;
5091
5092   case tok::kw_private:
5093     return getLangOpts().OpenCL;
5094   }
5095 }
5096
5097 bool Parser::isConstructorDeclarator(bool IsUnqualified, bool DeductionGuide) {
5098   TentativeParsingAction TPA(*this);
5099
5100   // Parse the C++ scope specifier.
5101   CXXScopeSpec SS;
5102   if (ParseOptionalCXXScopeSpecifier(SS, nullptr,
5103                                      /*EnteringContext=*/true)) {
5104     TPA.Revert();
5105     return false;
5106   }
5107
5108   // Parse the constructor name.
5109   if (Tok.is(tok::identifier)) {
5110     // We already know that we have a constructor name; just consume
5111     // the token.
5112     ConsumeToken();
5113   } else if (Tok.is(tok::annot_template_id)) {
5114     ConsumeAnnotationToken();
5115   } else {
5116     TPA.Revert();
5117     return false;
5118   }
5119
5120   // There may be attributes here, appertaining to the constructor name or type
5121   // we just stepped past.
5122   SkipCXX11Attributes();
5123
5124   // Current class name must be followed by a left parenthesis.
5125   if (Tok.isNot(tok::l_paren)) {
5126     TPA.Revert();
5127     return false;
5128   }
5129   ConsumeParen();
5130
5131   // A right parenthesis, or ellipsis followed by a right parenthesis signals
5132   // that we have a constructor.
5133   if (Tok.is(tok::r_paren) ||
5134       (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
5135     TPA.Revert();
5136     return true;
5137   }
5138
5139   // A C++11 attribute here signals that we have a constructor, and is an
5140   // attribute on the first constructor parameter.
5141   if (getLangOpts().CPlusPlus11 &&
5142       isCXX11AttributeSpecifier(/*Disambiguate*/ false,
5143                                 /*OuterMightBeMessageSend*/ true)) {
5144     TPA.Revert();
5145     return true;
5146   }
5147
5148   // If we need to, enter the specified scope.
5149   DeclaratorScopeObj DeclScopeObj(*this, SS);
5150   if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
5151     DeclScopeObj.EnterDeclaratorScope();
5152
5153   // Optionally skip Microsoft attributes.
5154   ParsedAttributes Attrs(AttrFactory);
5155   MaybeParseMicrosoftAttributes(Attrs);
5156
5157   // Check whether the next token(s) are part of a declaration
5158   // specifier, in which case we have the start of a parameter and,
5159   // therefore, we know that this is a constructor.
5160   bool IsConstructor = false;
5161   if (isDeclarationSpecifier())
5162     IsConstructor = true;
5163   else if (Tok.is(tok::identifier) ||
5164            (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
5165     // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
5166     // This might be a parenthesized member name, but is more likely to
5167     // be a constructor declaration with an invalid argument type. Keep
5168     // looking.
5169     if (Tok.is(tok::annot_cxxscope))
5170       ConsumeAnnotationToken();
5171     ConsumeToken();
5172
5173     // If this is not a constructor, we must be parsing a declarator,
5174     // which must have one of the following syntactic forms (see the
5175     // grammar extract at the start of ParseDirectDeclarator):
5176     switch (Tok.getKind()) {
5177     case tok::l_paren:
5178       // C(X   (   int));
5179     case tok::l_square:
5180       // C(X   [   5]);
5181       // C(X   [   [attribute]]);
5182     case tok::coloncolon:
5183       // C(X   ::   Y);
5184       // C(X   ::   *p);
5185       // Assume this isn't a constructor, rather than assuming it's a
5186       // constructor with an unnamed parameter of an ill-formed type.
5187       break;
5188
5189     case tok::r_paren:
5190       // C(X   )
5191
5192       // Skip past the right-paren and any following attributes to get to
5193       // the function body or trailing-return-type.
5194       ConsumeParen();
5195       SkipCXX11Attributes();
5196
5197       if (DeductionGuide) {
5198         // C(X) -> ... is a deduction guide.
5199         IsConstructor = Tok.is(tok::arrow);
5200         break;
5201       }
5202       if (Tok.is(tok::colon) || Tok.is(tok::kw_try)) {
5203         // Assume these were meant to be constructors:
5204         //   C(X)   :    (the name of a bit-field cannot be parenthesized).
5205         //   C(X)   try  (this is otherwise ill-formed).
5206         IsConstructor = true;
5207       }
5208       if (Tok.is(tok::semi) || Tok.is(tok::l_brace)) {
5209         // If we have a constructor name within the class definition,
5210         // assume these were meant to be constructors:
5211         //   C(X)   {
5212         //   C(X)   ;
5213         // ... because otherwise we would be declaring a non-static data
5214         // member that is ill-formed because it's of the same type as its
5215         // surrounding class.
5216         //
5217         // FIXME: We can actually do this whether or not the name is qualified,
5218         // because if it is qualified in this context it must be being used as
5219         // a constructor name.
5220         // currently, so we're somewhat conservative here.
5221         IsConstructor = IsUnqualified;
5222       }
5223       break;
5224
5225     default:
5226       IsConstructor = true;
5227       break;
5228     }
5229   }
5230
5231   TPA.Revert();
5232   return IsConstructor;
5233 }
5234
5235 /// ParseTypeQualifierListOpt
5236 ///          type-qualifier-list: [C99 6.7.5]
5237 ///            type-qualifier
5238 /// [vendor]   attributes
5239 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
5240 ///            type-qualifier-list type-qualifier
5241 /// [vendor]   type-qualifier-list attributes
5242 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
5243 /// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
5244 ///              [ only if AttReqs & AR_CXX11AttributesParsed ]
5245 /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
5246 /// AttrRequirements bitmask values.
5247 void Parser::ParseTypeQualifierListOpt(
5248     DeclSpec &DS, unsigned AttrReqs, bool AtomicAllowed,
5249     bool IdentifierRequired,
5250     Optional<llvm::function_ref<void()>> CodeCompletionHandler) {
5251   if (standardAttributesAllowed() && (AttrReqs & AR_CXX11AttributesParsed) &&
5252       isCXX11AttributeSpecifier()) {
5253     ParsedAttributesWithRange attrs(AttrFactory);
5254     ParseCXX11Attributes(attrs);
5255     DS.takeAttributesFrom(attrs);
5256   }
5257
5258   SourceLocation EndLoc;
5259
5260   while (1) {
5261     bool isInvalid = false;
5262     const char *PrevSpec = nullptr;
5263     unsigned DiagID = 0;
5264     SourceLocation Loc = Tok.getLocation();
5265
5266     switch (Tok.getKind()) {
5267     case tok::code_completion:
5268       if (CodeCompletionHandler)
5269         (*CodeCompletionHandler)();
5270       else
5271         Actions.CodeCompleteTypeQualifiers(DS);
5272       return cutOffParsing();
5273
5274     case tok::kw_const:
5275       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
5276                                  getLangOpts());
5277       break;
5278     case tok::kw_volatile:
5279       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
5280                                  getLangOpts());
5281       break;
5282     case tok::kw_restrict:
5283       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
5284                                  getLangOpts());
5285       break;
5286     case tok::kw__Atomic:
5287       if (!AtomicAllowed)
5288         goto DoneWithTypeQuals;
5289       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
5290                                  getLangOpts());
5291       break;
5292
5293     // OpenCL qualifiers:
5294     case tok::kw_private:
5295       if (!getLangOpts().OpenCL)
5296         goto DoneWithTypeQuals;
5297       LLVM_FALLTHROUGH;
5298     case tok::kw___private:
5299     case tok::kw___global:
5300     case tok::kw___local:
5301     case tok::kw___constant:
5302     case tok::kw___generic:
5303     case tok::kw___read_only:
5304     case tok::kw___write_only:
5305     case tok::kw___read_write:
5306       ParseOpenCLQualifiers(DS.getAttributes());
5307       break;
5308
5309     case tok::kw___unaligned:
5310       isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
5311                                  getLangOpts());
5312       break;
5313     case tok::kw___uptr:
5314       // GNU libc headers in C mode use '__uptr' as an identifier which conflicts
5315       // with the MS modifier keyword.
5316       if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
5317           IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
5318         if (TryKeywordIdentFallback(false))
5319           continue;
5320       }
5321       LLVM_FALLTHROUGH;
5322     case tok::kw___sptr:
5323     case tok::kw___w64:
5324     case tok::kw___ptr64:
5325     case tok::kw___ptr32:
5326     case tok::kw___cdecl:
5327     case tok::kw___stdcall:
5328     case tok::kw___fastcall:
5329     case tok::kw___thiscall:
5330     case tok::kw___regcall:
5331     case tok::kw___vectorcall:
5332       if (AttrReqs & AR_DeclspecAttributesParsed) {
5333         ParseMicrosoftTypeAttributes(DS.getAttributes());
5334         continue;
5335       }
5336       goto DoneWithTypeQuals;
5337     case tok::kw___pascal:
5338       if (AttrReqs & AR_VendorAttributesParsed) {
5339         ParseBorlandTypeAttributes(DS.getAttributes());
5340         continue;
5341       }
5342       goto DoneWithTypeQuals;
5343
5344     // Nullability type specifiers.
5345     case tok::kw__Nonnull:
5346     case tok::kw__Nullable:
5347     case tok::kw__Null_unspecified:
5348       ParseNullabilityTypeSpecifiers(DS.getAttributes());
5349       continue;
5350
5351     // Objective-C 'kindof' types.
5352     case tok::kw___kindof:
5353       DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
5354                                 nullptr, 0, ParsedAttr::AS_Keyword);
5355       (void)ConsumeToken();
5356       continue;
5357
5358     case tok::kw___attribute:
5359       if (AttrReqs & AR_GNUAttributesParsedAndRejected)
5360         // When GNU attributes are expressly forbidden, diagnose their usage.
5361         Diag(Tok, diag::err_attributes_not_allowed);
5362
5363       // Parse the attributes even if they are rejected to ensure that error
5364       // recovery is graceful.
5365       if (AttrReqs & AR_GNUAttributesParsed ||
5366           AttrReqs & AR_GNUAttributesParsedAndRejected) {
5367         ParseGNUAttributes(DS.getAttributes());
5368         continue; // do *not* consume the next token!
5369       }
5370       // otherwise, FALL THROUGH!
5371       LLVM_FALLTHROUGH;
5372     default:
5373       DoneWithTypeQuals:
5374       // If this is not a type-qualifier token, we're done reading type
5375       // qualifiers.  First verify that DeclSpec's are consistent.
5376       DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
5377       if (EndLoc.isValid())
5378         DS.SetRangeEnd(EndLoc);
5379       return;
5380     }
5381
5382     // If the specifier combination wasn't legal, issue a diagnostic.
5383     if (isInvalid) {
5384       assert(PrevSpec && "Method did not return previous specifier!");
5385       Diag(Tok, DiagID) << PrevSpec;
5386     }
5387     EndLoc = ConsumeToken();
5388   }
5389 }
5390
5391 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
5392 ///
5393 void Parser::ParseDeclarator(Declarator &D) {
5394   /// This implements the 'declarator' production in the C grammar, then checks
5395   /// for well-formedness and issues diagnostics.
5396   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5397 }
5398
5399 static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
5400                                DeclaratorContext TheContext) {
5401   if (Kind == tok::star || Kind == tok::caret)
5402     return true;
5403
5404   if (Kind == tok::kw_pipe &&
5405       ((Lang.OpenCL && Lang.OpenCLVersion >= 200) || Lang.OpenCLCPlusPlus))
5406     return true;
5407
5408   if (!Lang.CPlusPlus)
5409     return false;
5410
5411   if (Kind == tok::amp)
5412     return true;
5413
5414   // We parse rvalue refs in C++03, because otherwise the errors are scary.
5415   // But we must not parse them in conversion-type-ids and new-type-ids, since
5416   // those can be legitimately followed by a && operator.
5417   // (The same thing can in theory happen after a trailing-return-type, but
5418   // since those are a C++11 feature, there is no rejects-valid issue there.)
5419   if (Kind == tok::ampamp)
5420     return Lang.CPlusPlus11 ||
5421            (TheContext != DeclaratorContext::ConversionIdContext &&
5422             TheContext != DeclaratorContext::CXXNewContext);
5423
5424   return false;
5425 }
5426
5427 // Indicates whether the given declarator is a pipe declarator.
5428 static bool isPipeDeclerator(const Declarator &D) {
5429   const unsigned NumTypes = D.getNumTypeObjects();
5430
5431   for (unsigned Idx = 0; Idx != NumTypes; ++Idx)
5432     if (DeclaratorChunk::Pipe == D.getTypeObject(Idx).Kind)
5433       return true;
5434
5435   return false;
5436 }
5437
5438 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
5439 /// is parsed by the function passed to it. Pass null, and the direct-declarator
5440 /// isn't parsed at all, making this function effectively parse the C++
5441 /// ptr-operator production.
5442 ///
5443 /// If the grammar of this construct is extended, matching changes must also be
5444 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to
5445 /// isConstructorDeclarator.
5446 ///
5447 ///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
5448 /// [C]     pointer[opt] direct-declarator
5449 /// [C++]   direct-declarator
5450 /// [C++]   ptr-operator declarator
5451 ///
5452 ///       pointer: [C99 6.7.5]
5453 ///         '*' type-qualifier-list[opt]
5454 ///         '*' type-qualifier-list[opt] pointer
5455 ///
5456 ///       ptr-operator:
5457 ///         '*' cv-qualifier-seq[opt]
5458 ///         '&'
5459 /// [C++0x] '&&'
5460 /// [GNU]   '&' restrict[opt] attributes[opt]
5461 /// [GNU?]  '&&' restrict[opt] attributes[opt]
5462 ///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
5463 void Parser::ParseDeclaratorInternal(Declarator &D,
5464                                      DirectDeclParseFunction DirectDeclParser) {
5465   if (Diags.hasAllExtensionsSilenced())
5466     D.setExtension();
5467
5468   // C++ member pointers start with a '::' or a nested-name.
5469   // Member pointers get special handling, since there's no place for the
5470   // scope spec in the generic path below.
5471   if (getLangOpts().CPlusPlus &&
5472       (Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) ||
5473        (Tok.is(tok::identifier) &&
5474         (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
5475        Tok.is(tok::annot_cxxscope))) {
5476     bool EnteringContext =
5477         D.getContext() == DeclaratorContext::FileContext ||
5478         D.getContext() == DeclaratorContext::MemberContext;
5479     CXXScopeSpec SS;
5480     ParseOptionalCXXScopeSpecifier(SS, nullptr, EnteringContext);
5481
5482     if (SS.isNotEmpty()) {
5483       if (Tok.isNot(tok::star)) {
5484         // The scope spec really belongs to the direct-declarator.
5485         if (D.mayHaveIdentifier())
5486           D.getCXXScopeSpec() = SS;
5487         else
5488           AnnotateScopeToken(SS, true);
5489
5490         if (DirectDeclParser)
5491           (this->*DirectDeclParser)(D);
5492         return;
5493       }
5494
5495       SourceLocation Loc = ConsumeToken();
5496       D.SetRangeEnd(Loc);
5497       DeclSpec DS(AttrFactory);
5498       ParseTypeQualifierListOpt(DS);
5499       D.ExtendWithDeclSpec(DS);
5500
5501       // Recurse to parse whatever is left.
5502       ParseDeclaratorInternal(D, DirectDeclParser);
5503
5504       // Sema will have to catch (syntactically invalid) pointers into global
5505       // scope. It has to catch pointers into namespace scope anyway.
5506       D.AddTypeInfo(DeclaratorChunk::getMemberPointer(
5507                         SS, DS.getTypeQualifiers(), DS.getEndLoc()),
5508                     std::move(DS.getAttributes()),
5509                     /* Don't replace range end. */ SourceLocation());
5510       return;
5511     }
5512   }
5513
5514   tok::TokenKind Kind = Tok.getKind();
5515
5516   if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclerator(D)) {
5517     DeclSpec DS(AttrFactory);
5518     ParseTypeQualifierListOpt(DS);
5519
5520     D.AddTypeInfo(
5521         DeclaratorChunk::getPipe(DS.getTypeQualifiers(), DS.getPipeLoc()),
5522         std::move(DS.getAttributes()), SourceLocation());
5523   }
5524
5525   // Not a pointer, C++ reference, or block.
5526   if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
5527     if (DirectDeclParser)
5528       (this->*DirectDeclParser)(D);
5529     return;
5530   }
5531
5532   // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
5533   // '&&' -> rvalue reference
5534   SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
5535   D.SetRangeEnd(Loc);
5536
5537   if (Kind == tok::star || Kind == tok::caret) {
5538     // Is a pointer.
5539     DeclSpec DS(AttrFactory);
5540
5541     // GNU attributes are not allowed here in a new-type-id, but Declspec and
5542     // C++11 attributes are allowed.
5543     unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
5544                     ((D.getContext() != DeclaratorContext::CXXNewContext)
5545                          ? AR_GNUAttributesParsed
5546                          : AR_GNUAttributesParsedAndRejected);
5547     ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
5548     D.ExtendWithDeclSpec(DS);
5549
5550     // Recursively parse the declarator.
5551     ParseDeclaratorInternal(D, DirectDeclParser);
5552     if (Kind == tok::star)
5553       // Remember that we parsed a pointer type, and remember the type-quals.
5554       D.AddTypeInfo(DeclaratorChunk::getPointer(
5555                         DS.getTypeQualifiers(), Loc, DS.getConstSpecLoc(),
5556                         DS.getVolatileSpecLoc(), DS.getRestrictSpecLoc(),
5557                         DS.getAtomicSpecLoc(), DS.getUnalignedSpecLoc()),
5558                     std::move(DS.getAttributes()), SourceLocation());
5559     else
5560       // Remember that we parsed a Block type, and remember the type-quals.
5561       D.AddTypeInfo(
5562           DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(), Loc),
5563           std::move(DS.getAttributes()), SourceLocation());
5564   } else {
5565     // Is a reference
5566     DeclSpec DS(AttrFactory);
5567
5568     // Complain about rvalue references in C++03, but then go on and build
5569     // the declarator.
5570     if (Kind == tok::ampamp)
5571       Diag(Loc, getLangOpts().CPlusPlus11 ?
5572            diag::warn_cxx98_compat_rvalue_reference :
5573            diag::ext_rvalue_reference);
5574
5575     // GNU-style and C++11 attributes are allowed here, as is restrict.
5576     ParseTypeQualifierListOpt(DS);
5577     D.ExtendWithDeclSpec(DS);
5578
5579     // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
5580     // cv-qualifiers are introduced through the use of a typedef or of a
5581     // template type argument, in which case the cv-qualifiers are ignored.
5582     if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
5583       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5584         Diag(DS.getConstSpecLoc(),
5585              diag::err_invalid_reference_qualifier_application) << "const";
5586       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5587         Diag(DS.getVolatileSpecLoc(),
5588              diag::err_invalid_reference_qualifier_application) << "volatile";
5589       // 'restrict' is permitted as an extension.
5590       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5591         Diag(DS.getAtomicSpecLoc(),
5592              diag::err_invalid_reference_qualifier_application) << "_Atomic";
5593     }
5594
5595     // Recursively parse the declarator.
5596     ParseDeclaratorInternal(D, DirectDeclParser);
5597
5598     if (D.getNumTypeObjects() > 0) {
5599       // C++ [dcl.ref]p4: There shall be no references to references.
5600       DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
5601       if (InnerChunk.Kind == DeclaratorChunk::Reference) {
5602         if (const IdentifierInfo *II = D.getIdentifier())
5603           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
5604            << II;
5605         else
5606           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
5607             << "type name";
5608
5609         // Once we've complained about the reference-to-reference, we
5610         // can go ahead and build the (technically ill-formed)
5611         // declarator: reference collapsing will take care of it.
5612       }
5613     }
5614
5615     // Remember that we parsed a reference type.
5616     D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
5617                                                 Kind == tok::amp),
5618                   std::move(DS.getAttributes()), SourceLocation());
5619   }
5620 }
5621
5622 // When correcting from misplaced brackets before the identifier, the location
5623 // is saved inside the declarator so that other diagnostic messages can use
5624 // them.  This extracts and returns that location, or returns the provided
5625 // location if a stored location does not exist.
5626 static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
5627                                                 SourceLocation Loc) {
5628   if (D.getName().StartLocation.isInvalid() &&
5629       D.getName().EndLocation.isValid())
5630     return D.getName().EndLocation;
5631
5632   return Loc;
5633 }
5634
5635 /// ParseDirectDeclarator
5636 ///       direct-declarator: [C99 6.7.5]
5637 /// [C99]   identifier
5638 ///         '(' declarator ')'
5639 /// [GNU]   '(' attributes declarator ')'
5640 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
5641 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
5642 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
5643 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
5644 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
5645 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
5646 ///                    attribute-specifier-seq[opt]
5647 ///         direct-declarator '(' parameter-type-list ')'
5648 ///         direct-declarator '(' identifier-list[opt] ')'
5649 /// [GNU]   direct-declarator '(' parameter-forward-declarations
5650 ///                    parameter-type-list[opt] ')'
5651 /// [C++]   direct-declarator '(' parameter-declaration-clause ')'
5652 ///                    cv-qualifier-seq[opt] exception-specification[opt]
5653 /// [C++11] direct-declarator '(' parameter-declaration-clause ')'
5654 ///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
5655 ///                    ref-qualifier[opt] exception-specification[opt]
5656 /// [C++]   declarator-id
5657 /// [C++11] declarator-id attribute-specifier-seq[opt]
5658 ///
5659 ///       declarator-id: [C++ 8]
5660 ///         '...'[opt] id-expression
5661 ///         '::'[opt] nested-name-specifier[opt] type-name
5662 ///
5663 ///       id-expression: [C++ 5.1]
5664 ///         unqualified-id
5665 ///         qualified-id
5666 ///
5667 ///       unqualified-id: [C++ 5.1]
5668 ///         identifier
5669 ///         operator-function-id
5670 ///         conversion-function-id
5671 ///          '~' class-name
5672 ///         template-id
5673 ///
5674 /// C++17 adds the following, which we also handle here:
5675 ///
5676 ///       simple-declaration:
5677 ///         <decl-spec> '[' identifier-list ']' brace-or-equal-initializer ';'
5678 ///
5679 /// Note, any additional constructs added here may need corresponding changes
5680 /// in isConstructorDeclarator.
5681 void Parser::ParseDirectDeclarator(Declarator &D) {
5682   DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
5683
5684   if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
5685     // This might be a C++17 structured binding.
5686     if (Tok.is(tok::l_square) && !D.mayOmitIdentifier() &&
5687         D.getCXXScopeSpec().isEmpty())
5688       return ParseDecompositionDeclarator(D);
5689
5690     // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
5691     // this context it is a bitfield. Also in range-based for statement colon
5692     // may delimit for-range-declaration.
5693     ColonProtectionRAIIObject X(
5694         *this, D.getContext() == DeclaratorContext::MemberContext ||
5695                    (D.getContext() == DeclaratorContext::ForContext &&
5696                     getLangOpts().CPlusPlus11));
5697
5698     // ParseDeclaratorInternal might already have parsed the scope.
5699     if (D.getCXXScopeSpec().isEmpty()) {
5700       bool EnteringContext =
5701           D.getContext() == DeclaratorContext::FileContext ||
5702           D.getContext() == DeclaratorContext::MemberContext;
5703       ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), nullptr,
5704                                      EnteringContext);
5705     }
5706
5707     if (D.getCXXScopeSpec().isValid()) {
5708       if (Actions.ShouldEnterDeclaratorScope(getCurScope(),
5709                                              D.getCXXScopeSpec()))
5710         // Change the declaration context for name lookup, until this function
5711         // is exited (and the declarator has been parsed).
5712         DeclScopeObj.EnterDeclaratorScope();
5713       else if (getObjCDeclContext()) {
5714         // Ensure that we don't interpret the next token as an identifier when
5715         // dealing with declarations in an Objective-C container.
5716         D.SetIdentifier(nullptr, Tok.getLocation());
5717         D.setInvalidType(true);
5718         ConsumeToken();
5719         goto PastIdentifier;
5720       }
5721     }
5722
5723     // C++0x [dcl.fct]p14:
5724     //   There is a syntactic ambiguity when an ellipsis occurs at the end of a
5725     //   parameter-declaration-clause without a preceding comma. In this case,
5726     //   the ellipsis is parsed as part of the abstract-declarator if the type
5727     //   of the parameter either names a template parameter pack that has not
5728     //   been expanded or contains auto; otherwise, it is parsed as part of the
5729     //   parameter-declaration-clause.
5730     if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
5731         !((D.getContext() == DeclaratorContext::PrototypeContext ||
5732            D.getContext() == DeclaratorContext::LambdaExprParameterContext ||
5733            D.getContext() == DeclaratorContext::BlockLiteralContext) &&
5734           NextToken().is(tok::r_paren) &&
5735           !D.hasGroupingParens() &&
5736           !Actions.containsUnexpandedParameterPacks(D) &&
5737           D.getDeclSpec().getTypeSpecType() != TST_auto)) {
5738       SourceLocation EllipsisLoc = ConsumeToken();
5739       if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
5740         // The ellipsis was put in the wrong place. Recover, and explain to
5741         // the user what they should have done.
5742         ParseDeclarator(D);
5743         if (EllipsisLoc.isValid())
5744           DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
5745         return;
5746       } else
5747         D.setEllipsisLoc(EllipsisLoc);
5748
5749       // The ellipsis can't be followed by a parenthesized declarator. We
5750       // check for that in ParseParenDeclarator, after we have disambiguated
5751       // the l_paren token.
5752     }
5753
5754     if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id,
5755                     tok::tilde)) {
5756       // We found something that indicates the start of an unqualified-id.
5757       // Parse that unqualified-id.
5758       bool AllowConstructorName;
5759       bool AllowDeductionGuide;
5760       if (D.getDeclSpec().hasTypeSpecifier()) {
5761         AllowConstructorName = false;
5762         AllowDeductionGuide = false;
5763       } else if (D.getCXXScopeSpec().isSet()) {
5764         AllowConstructorName =
5765           (D.getContext() == DeclaratorContext::FileContext ||
5766            D.getContext() == DeclaratorContext::MemberContext);
5767         AllowDeductionGuide = false;
5768       } else {
5769         AllowConstructorName =
5770             (D.getContext() == DeclaratorContext::MemberContext);
5771         AllowDeductionGuide =
5772           (D.getContext() == DeclaratorContext::FileContext ||
5773            D.getContext() == DeclaratorContext::MemberContext);
5774       }
5775
5776       bool HadScope = D.getCXXScopeSpec().isValid();
5777       if (ParseUnqualifiedId(D.getCXXScopeSpec(),
5778                              /*EnteringContext=*/true,
5779                              /*AllowDestructorName=*/true, AllowConstructorName,
5780                              AllowDeductionGuide, nullptr, nullptr,
5781                              D.getName()) ||
5782           // Once we're past the identifier, if the scope was bad, mark the
5783           // whole declarator bad.
5784           D.getCXXScopeSpec().isInvalid()) {
5785         D.SetIdentifier(nullptr, Tok.getLocation());
5786         D.setInvalidType(true);
5787       } else {
5788         // ParseUnqualifiedId might have parsed a scope specifier during error
5789         // recovery. If it did so, enter that scope.
5790         if (!HadScope && D.getCXXScopeSpec().isValid() &&
5791             Actions.ShouldEnterDeclaratorScope(getCurScope(),
5792                                                D.getCXXScopeSpec()))
5793           DeclScopeObj.EnterDeclaratorScope();
5794
5795         // Parsed the unqualified-id; update range information and move along.
5796         if (D.getSourceRange().getBegin().isInvalid())
5797           D.SetRangeBegin(D.getName().getSourceRange().getBegin());
5798         D.SetRangeEnd(D.getName().getSourceRange().getEnd());
5799       }
5800       goto PastIdentifier;
5801     }
5802
5803     if (D.getCXXScopeSpec().isNotEmpty()) {
5804       // We have a scope specifier but no following unqualified-id.
5805       Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()),
5806            diag::err_expected_unqualified_id)
5807           << /*C++*/1;
5808       D.SetIdentifier(nullptr, Tok.getLocation());
5809       goto PastIdentifier;
5810     }
5811   } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
5812     assert(!getLangOpts().CPlusPlus &&
5813            "There's a C++-specific check for tok::identifier above");
5814     assert(Tok.getIdentifierInfo() && "Not an identifier?");
5815     D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
5816     D.SetRangeEnd(Tok.getLocation());
5817     ConsumeToken();
5818     goto PastIdentifier;
5819   } else if (Tok.is(tok::identifier) && !D.mayHaveIdentifier()) {
5820     // We're not allowed an identifier here, but we got one. Try to figure out
5821     // if the user was trying to attach a name to the type, or whether the name
5822     // is some unrelated trailing syntax.
5823     bool DiagnoseIdentifier = false;
5824     if (D.hasGroupingParens())
5825       // An identifier within parens is unlikely to be intended to be anything
5826       // other than a name being "declared".
5827       DiagnoseIdentifier = true;
5828     else if (D.getContext() == DeclaratorContext::TemplateArgContext)
5829       // T<int N> is an accidental identifier; T<int N indicates a missing '>'.
5830       DiagnoseIdentifier =
5831           NextToken().isOneOf(tok::comma, tok::greater, tok::greatergreater);
5832     else if (D.getContext() == DeclaratorContext::AliasDeclContext ||
5833              D.getContext() == DeclaratorContext::AliasTemplateContext)
5834       // The most likely error is that the ';' was forgotten.
5835       DiagnoseIdentifier = NextToken().isOneOf(tok::comma, tok::semi);
5836     else if ((D.getContext() == DeclaratorContext::TrailingReturnContext ||
5837               D.getContext() == DeclaratorContext::TrailingReturnVarContext) &&
5838              !isCXX11VirtSpecifier(Tok))
5839       DiagnoseIdentifier = NextToken().isOneOf(
5840           tok::comma, tok::semi, tok::equal, tok::l_brace, tok::kw_try);
5841     if (DiagnoseIdentifier) {
5842       Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
5843         << FixItHint::CreateRemoval(Tok.getLocation());
5844       D.SetIdentifier(nullptr, Tok.getLocation());
5845       ConsumeToken();
5846       goto PastIdentifier;
5847     }
5848   }
5849
5850   if (Tok.is(tok::l_paren)) {
5851     // If this might be an abstract-declarator followed by a direct-initializer,
5852     // check whether this is a valid declarator chunk. If it can't be, assume
5853     // that it's an initializer instead.
5854     if (D.mayOmitIdentifier() && D.mayBeFollowedByCXXDirectInit()) {
5855       RevertingTentativeParsingAction PA(*this);
5856       if (TryParseDeclarator(true, D.mayHaveIdentifier(), true) ==
5857               TPResult::False) {
5858         D.SetIdentifier(nullptr, Tok.getLocation());
5859         goto PastIdentifier;
5860       }
5861     }
5862
5863     // direct-declarator: '(' declarator ')'
5864     // direct-declarator: '(' attributes declarator ')'
5865     // Example: 'char (*X)'   or 'int (*XX)(void)'
5866     ParseParenDeclarator(D);
5867
5868     // If the declarator was parenthesized, we entered the declarator
5869     // scope when parsing the parenthesized declarator, then exited
5870     // the scope already. Re-enter the scope, if we need to.
5871     if (D.getCXXScopeSpec().isSet()) {
5872       // If there was an error parsing parenthesized declarator, declarator
5873       // scope may have been entered before. Don't do it again.
5874       if (!D.isInvalidType() &&
5875           Actions.ShouldEnterDeclaratorScope(getCurScope(),
5876                                              D.getCXXScopeSpec()))
5877         // Change the declaration context for name lookup, until this function
5878         // is exited (and the declarator has been parsed).
5879         DeclScopeObj.EnterDeclaratorScope();
5880     }
5881   } else if (D.mayOmitIdentifier()) {
5882     // This could be something simple like "int" (in which case the declarator
5883     // portion is empty), if an abstract-declarator is allowed.
5884     D.SetIdentifier(nullptr, Tok.getLocation());
5885
5886     // The grammar for abstract-pack-declarator does not allow grouping parens.
5887     // FIXME: Revisit this once core issue 1488 is resolved.
5888     if (D.hasEllipsis() && D.hasGroupingParens())
5889       Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
5890            diag::ext_abstract_pack_declarator_parens);
5891   } else {
5892     if (Tok.getKind() == tok::annot_pragma_parser_crash)
5893       LLVM_BUILTIN_TRAP;
5894     if (Tok.is(tok::l_square))
5895       return ParseMisplacedBracketDeclarator(D);
5896     if (D.getContext() == DeclaratorContext::MemberContext) {
5897       // Objective-C++: Detect C++ keywords and try to prevent further errors by
5898       // treating these keyword as valid member names.
5899       if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
5900           Tok.getIdentifierInfo() &&
5901           Tok.getIdentifierInfo()->isCPlusPlusKeyword(getLangOpts())) {
5902         Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5903              diag::err_expected_member_name_or_semi_objcxx_keyword)
5904             << Tok.getIdentifierInfo()
5905             << (D.getDeclSpec().isEmpty() ? SourceRange()
5906                                           : D.getDeclSpec().getSourceRange());
5907         D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
5908         D.SetRangeEnd(Tok.getLocation());
5909         ConsumeToken();
5910         goto PastIdentifier;
5911       }
5912       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5913            diag::err_expected_member_name_or_semi)
5914           << (D.getDeclSpec().isEmpty() ? SourceRange()
5915                                         : D.getDeclSpec().getSourceRange());
5916     } else if (getLangOpts().CPlusPlus) {
5917       if (Tok.isOneOf(tok::period, tok::arrow))
5918         Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
5919       else {
5920         SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
5921         if (Tok.isAtStartOfLine() && Loc.isValid())
5922           Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
5923               << getLangOpts().CPlusPlus;
5924         else
5925           Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5926                diag::err_expected_unqualified_id)
5927               << getLangOpts().CPlusPlus;
5928       }
5929     } else {
5930       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5931            diag::err_expected_either)
5932           << tok::identifier << tok::l_paren;
5933     }
5934     D.SetIdentifier(nullptr, Tok.getLocation());
5935     D.setInvalidType(true);
5936   }
5937
5938  PastIdentifier:
5939   assert(D.isPastIdentifier() &&
5940          "Haven't past the location of the identifier yet?");
5941
5942   // Don't parse attributes unless we have parsed an unparenthesized name.
5943   if (D.hasName() && !D.getNumTypeObjects())
5944     MaybeParseCXX11Attributes(D);
5945
5946   while (1) {
5947     if (Tok.is(tok::l_paren)) {
5948       // Enter function-declaration scope, limiting any declarators to the
5949       // function prototype scope, including parameter declarators.
5950       ParseScope PrototypeScope(this,
5951                                 Scope::FunctionPrototypeScope|Scope::DeclScope|
5952                                 (D.isFunctionDeclaratorAFunctionDeclaration()
5953                                    ? Scope::FunctionDeclarationScope : 0));
5954
5955       // The paren may be part of a C++ direct initializer, eg. "int x(1);".
5956       // In such a case, check if we actually have a function declarator; if it
5957       // is not, the declarator has been fully parsed.
5958       bool IsAmbiguous = false;
5959       if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
5960         // The name of the declarator, if any, is tentatively declared within
5961         // a possible direct initializer.
5962         TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
5963         bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
5964         TentativelyDeclaredIdentifiers.pop_back();
5965         if (!IsFunctionDecl)
5966           break;
5967       }
5968       ParsedAttributes attrs(AttrFactory);
5969       BalancedDelimiterTracker T(*this, tok::l_paren);
5970       T.consumeOpen();
5971       ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
5972       PrototypeScope.Exit();
5973     } else if (Tok.is(tok::l_square)) {
5974       ParseBracketDeclarator(D);
5975     } else {
5976       break;
5977     }
5978   }
5979 }
5980
5981 void Parser::ParseDecompositionDeclarator(Declarator &D) {
5982   assert(Tok.is(tok::l_square));
5983
5984   // If this doesn't look like a structured binding, maybe it's a misplaced
5985   // array declarator.
5986   // FIXME: Consume the l_square first so we don't need extra lookahead for
5987   // this.
5988   if (!(NextToken().is(tok::identifier) &&
5989         GetLookAheadToken(2).isOneOf(tok::comma, tok::r_square)) &&
5990       !(NextToken().is(tok::r_square) &&
5991         GetLookAheadToken(2).isOneOf(tok::equal, tok::l_brace)))
5992     return ParseMisplacedBracketDeclarator(D);
5993
5994   BalancedDelimiterTracker T(*this, tok::l_square);
5995   T.consumeOpen();
5996
5997   SmallVector<DecompositionDeclarator::Binding, 32> Bindings;
5998   while (Tok.isNot(tok::r_square)) {
5999     if (!Bindings.empty()) {
6000       if (Tok.is(tok::comma))
6001         ConsumeToken();
6002       else {
6003         if (Tok.is(tok::identifier)) {
6004           SourceLocation EndLoc = getEndOfPreviousToken();
6005           Diag(EndLoc, diag::err_expected)
6006               << tok::comma << FixItHint::CreateInsertion(EndLoc, ",");
6007         } else {
6008           Diag(Tok, diag::err_expected_comma_or_rsquare);
6009         }
6010
6011         SkipUntil(tok::r_square, tok::comma, tok::identifier,
6012                   StopAtSemi | StopBeforeMatch);
6013         if (Tok.is(tok::comma))
6014           ConsumeToken();
6015         else if (Tok.isNot(tok::identifier))
6016           break;
6017       }
6018     }
6019
6020     if (Tok.isNot(tok::identifier)) {
6021       Diag(Tok, diag::err_expected) << tok::identifier;
6022       break;
6023     }
6024
6025     Bindings.push_back({Tok.getIdentifierInfo(), Tok.getLocation()});
6026     ConsumeToken();
6027   }
6028
6029   if (Tok.isNot(tok::r_square))
6030     // We've already diagnosed a problem here.
6031     T.skipToEnd();
6032   else {
6033     // C++17 does not allow the identifier-list in a structured binding
6034     // to be empty.
6035     if (Bindings.empty())
6036       Diag(Tok.getLocation(), diag::ext_decomp_decl_empty);
6037
6038     T.consumeClose();
6039   }
6040
6041   return D.setDecompositionBindings(T.getOpenLocation(), Bindings,
6042                                     T.getCloseLocation());
6043 }
6044
6045 /// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
6046 /// only called before the identifier, so these are most likely just grouping
6047 /// parens for precedence.  If we find that these are actually function
6048 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
6049 ///
6050 ///       direct-declarator:
6051 ///         '(' declarator ')'
6052 /// [GNU]   '(' attributes declarator ')'
6053 ///         direct-declarator '(' parameter-type-list ')'
6054 ///         direct-declarator '(' identifier-list[opt] ')'
6055 /// [GNU]   direct-declarator '(' parameter-forward-declarations
6056 ///                    parameter-type-list[opt] ')'
6057 ///
6058 void Parser::ParseParenDeclarator(Declarator &D) {
6059   BalancedDelimiterTracker T(*this, tok::l_paren);
6060   T.consumeOpen();
6061
6062   assert(!D.isPastIdentifier() && "Should be called before passing identifier");
6063
6064   // Eat any attributes before we look at whether this is a grouping or function
6065   // declarator paren.  If this is a grouping paren, the attribute applies to
6066   // the type being built up, for example:
6067   //     int (__attribute__(()) *x)(long y)
6068   // If this ends up not being a grouping paren, the attribute applies to the
6069   // first argument, for example:
6070   //     int (__attribute__(()) int x)
6071   // In either case, we need to eat any attributes to be able to determine what
6072   // sort of paren this is.
6073   //
6074   ParsedAttributes attrs(AttrFactory);
6075   bool RequiresArg = false;
6076   if (Tok.is(tok::kw___attribute)) {
6077     ParseGNUAttributes(attrs);
6078
6079     // We require that the argument list (if this is a non-grouping paren) be
6080     // present even if the attribute list was empty.
6081     RequiresArg = true;
6082   }
6083
6084   // Eat any Microsoft extensions.
6085   ParseMicrosoftTypeAttributes(attrs);
6086
6087   // Eat any Borland extensions.
6088   if  (Tok.is(tok::kw___pascal))
6089     ParseBorlandTypeAttributes(attrs);
6090
6091   // If we haven't past the identifier yet (or where the identifier would be
6092   // stored, if this is an abstract declarator), then this is probably just
6093   // grouping parens. However, if this could be an abstract-declarator, then
6094   // this could also be the start of function arguments (consider 'void()').
6095   bool isGrouping;
6096
6097   if (!D.mayOmitIdentifier()) {
6098     // If this can't be an abstract-declarator, this *must* be a grouping
6099     // paren, because we haven't seen the identifier yet.
6100     isGrouping = true;
6101   } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
6102              (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
6103               NextToken().is(tok::r_paren)) || // C++ int(...)
6104              isDeclarationSpecifier() ||       // 'int(int)' is a function.
6105              isCXX11AttributeSpecifier()) {    // 'int([[]]int)' is a function.
6106     // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
6107     // considered to be a type, not a K&R identifier-list.
6108     isGrouping = false;
6109   } else {
6110     // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
6111     isGrouping = true;
6112   }
6113
6114   // If this is a grouping paren, handle:
6115   // direct-declarator: '(' declarator ')'
6116   // direct-declarator: '(' attributes declarator ')'
6117   if (isGrouping) {
6118     SourceLocation EllipsisLoc = D.getEllipsisLoc();
6119     D.setEllipsisLoc(SourceLocation());
6120
6121     bool hadGroupingParens = D.hasGroupingParens();
6122     D.setGroupingParens(true);
6123     ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
6124     // Match the ')'.
6125     T.consumeClose();
6126     D.AddTypeInfo(
6127         DeclaratorChunk::getParen(T.getOpenLocation(), T.getCloseLocation()),
6128         std::move(attrs), T.getCloseLocation());
6129
6130     D.setGroupingParens(hadGroupingParens);
6131
6132     // An ellipsis cannot be placed outside parentheses.
6133     if (EllipsisLoc.isValid())
6134       DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
6135
6136     return;
6137   }
6138
6139   // Okay, if this wasn't a grouping paren, it must be the start of a function
6140   // argument list.  Recognize that this declarator will never have an
6141   // identifier (and remember where it would have been), then call into
6142   // ParseFunctionDeclarator to handle of argument list.
6143   D.SetIdentifier(nullptr, Tok.getLocation());
6144
6145   // Enter function-declaration scope, limiting any declarators to the
6146   // function prototype scope, including parameter declarators.
6147   ParseScope PrototypeScope(this,
6148                             Scope::FunctionPrototypeScope | Scope::DeclScope |
6149                             (D.isFunctionDeclaratorAFunctionDeclaration()
6150                                ? Scope::FunctionDeclarationScope : 0));
6151   ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
6152   PrototypeScope.Exit();
6153 }
6154
6155 /// ParseFunctionDeclarator - We are after the identifier and have parsed the
6156 /// declarator D up to a paren, which indicates that we are parsing function
6157 /// arguments.
6158 ///
6159 /// If FirstArgAttrs is non-null, then the caller parsed those arguments
6160 /// immediately after the open paren - they should be considered to be the
6161 /// first argument of a parameter.
6162 ///
6163 /// If RequiresArg is true, then the first argument of the function is required
6164 /// to be present and required to not be an identifier list.
6165 ///
6166 /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
6167 /// (C++11) ref-qualifier[opt], exception-specification[opt],
6168 /// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
6169 ///
6170 /// [C++11] exception-specification:
6171 ///           dynamic-exception-specification
6172 ///           noexcept-specification
6173 ///
6174 void Parser::ParseFunctionDeclarator(Declarator &D,
6175                                      ParsedAttributes &FirstArgAttrs,
6176                                      BalancedDelimiterTracker &Tracker,
6177                                      bool IsAmbiguous,
6178                                      bool RequiresArg) {
6179   assert(getCurScope()->isFunctionPrototypeScope() &&
6180          "Should call from a Function scope");
6181   // lparen is already consumed!
6182   assert(D.isPastIdentifier() && "Should not call before identifier!");
6183
6184   // This should be true when the function has typed arguments.
6185   // Otherwise, it is treated as a K&R-style function.
6186   bool HasProto = false;
6187   // Build up an array of information about the parsed arguments.
6188   SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
6189   // Remember where we see an ellipsis, if any.
6190   SourceLocation EllipsisLoc;
6191
6192   DeclSpec DS(AttrFactory);
6193   bool RefQualifierIsLValueRef = true;
6194   SourceLocation RefQualifierLoc;
6195   ExceptionSpecificationType ESpecType = EST_None;
6196   SourceRange ESpecRange;
6197   SmallVector<ParsedType, 2> DynamicExceptions;
6198   SmallVector<SourceRange, 2> DynamicExceptionRanges;
6199   ExprResult NoexceptExpr;
6200   CachedTokens *ExceptionSpecTokens = nullptr;
6201   ParsedAttributesWithRange FnAttrs(AttrFactory);
6202   TypeResult TrailingReturnType;
6203
6204   /* LocalEndLoc is the end location for the local FunctionTypeLoc.
6205      EndLoc is the end location for the function declarator.
6206      They differ for trailing return types. */
6207   SourceLocation StartLoc, LocalEndLoc, EndLoc;
6208   SourceLocation LParenLoc, RParenLoc;
6209   LParenLoc = Tracker.getOpenLocation();
6210   StartLoc = LParenLoc;
6211
6212   if (isFunctionDeclaratorIdentifierList()) {
6213     if (RequiresArg)
6214       Diag(Tok, diag::err_argument_required_after_attribute);
6215
6216     ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
6217
6218     Tracker.consumeClose();
6219     RParenLoc = Tracker.getCloseLocation();
6220     LocalEndLoc = RParenLoc;
6221     EndLoc = RParenLoc;
6222
6223     // If there are attributes following the identifier list, parse them and
6224     // prohibit them.
6225     MaybeParseCXX11Attributes(FnAttrs);
6226     ProhibitAttributes(FnAttrs);
6227   } else {
6228     if (Tok.isNot(tok::r_paren))
6229       ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo,
6230                                       EllipsisLoc);
6231     else if (RequiresArg)
6232       Diag(Tok, diag::err_argument_required_after_attribute);
6233
6234     HasProto = ParamInfo.size() || getLangOpts().CPlusPlus
6235                                 || getLangOpts().OpenCL;
6236
6237     // If we have the closing ')', eat it.
6238     Tracker.consumeClose();
6239     RParenLoc = Tracker.getCloseLocation();
6240     LocalEndLoc = RParenLoc;
6241     EndLoc = RParenLoc;
6242
6243     if (getLangOpts().CPlusPlus) {
6244       // FIXME: Accept these components in any order, and produce fixits to
6245       // correct the order if the user gets it wrong. Ideally we should deal
6246       // with the pure-specifier in the same way.
6247
6248       // Parse cv-qualifier-seq[opt].
6249       ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed,
6250                                 /*AtomicAllowed*/ false,
6251                                 /*IdentifierRequired=*/false,
6252                                 llvm::function_ref<void()>([&]() {
6253                                   Actions.CodeCompleteFunctionQualifiers(DS, D);
6254                                 }));
6255       if (!DS.getSourceRange().getEnd().isInvalid()) {
6256         EndLoc = DS.getSourceRange().getEnd();
6257       }
6258
6259       // Parse ref-qualifier[opt].
6260       if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc))
6261         EndLoc = RefQualifierLoc;
6262
6263       // C++11 [expr.prim.general]p3:
6264       //   If a declaration declares a member function or member function
6265       //   template of a class X, the expression this is a prvalue of type
6266       //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
6267       //   and the end of the function-definition, member-declarator, or
6268       //   declarator.
6269       // FIXME: currently, "static" case isn't handled correctly.
6270       bool IsCXX11MemberFunction =
6271         getLangOpts().CPlusPlus11 &&
6272         D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6273         (D.getContext() == DeclaratorContext::MemberContext
6274          ? !D.getDeclSpec().isFriendSpecified()
6275          : D.getContext() == DeclaratorContext::FileContext &&
6276            D.getCXXScopeSpec().isValid() &&
6277            Actions.CurContext->isRecord());
6278
6279       Qualifiers Q = Qualifiers::fromCVRUMask(DS.getTypeQualifiers());
6280       if (D.getDeclSpec().hasConstexprSpecifier() && !getLangOpts().CPlusPlus14)
6281         Q.addConst();
6282       // FIXME: Collect C++ address spaces.
6283       // If there are multiple different address spaces, the source is invalid.
6284       // Carry on using the first addr space for the qualifiers of 'this'.
6285       // The diagnostic will be given later while creating the function
6286       // prototype for the method.
6287       if (getLangOpts().OpenCLCPlusPlus) {
6288         for (ParsedAttr &attr : DS.getAttributes()) {
6289           LangAS ASIdx = attr.asOpenCLLangAS();
6290           if (ASIdx != LangAS::Default) {
6291             Q.addAddressSpace(ASIdx);
6292             break;
6293           }
6294         }
6295       }
6296
6297       Sema::CXXThisScopeRAII ThisScope(
6298           Actions, dyn_cast<CXXRecordDecl>(Actions.CurContext), Q,
6299           IsCXX11MemberFunction);
6300
6301       // Parse exception-specification[opt].
6302       bool Delayed = D.isFirstDeclarationOfMember() &&
6303                      D.isFunctionDeclaratorAFunctionDeclaration();
6304       if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
6305           GetLookAheadToken(0).is(tok::kw_noexcept) &&
6306           GetLookAheadToken(1).is(tok::l_paren) &&
6307           GetLookAheadToken(2).is(tok::kw_noexcept) &&
6308           GetLookAheadToken(3).is(tok::l_paren) &&
6309           GetLookAheadToken(4).is(tok::identifier) &&
6310           GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
6311         // HACK: We've got an exception-specification
6312         //   noexcept(noexcept(swap(...)))
6313         // or
6314         //   noexcept(noexcept(swap(...)) && noexcept(swap(...)))
6315         // on a 'swap' member function. This is a libstdc++ bug; the lookup
6316         // for 'swap' will only find the function we're currently declaring,
6317         // whereas it expects to find a non-member swap through ADL. Turn off
6318         // delayed parsing to give it a chance to find what it expects.
6319         Delayed = false;
6320       }
6321       ESpecType = tryParseExceptionSpecification(Delayed,
6322                                                  ESpecRange,
6323                                                  DynamicExceptions,
6324                                                  DynamicExceptionRanges,
6325                                                  NoexceptExpr,
6326                                                  ExceptionSpecTokens);
6327       if (ESpecType != EST_None)
6328         EndLoc = ESpecRange.getEnd();
6329
6330       // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
6331       // after the exception-specification.
6332       MaybeParseCXX11Attributes(FnAttrs);
6333
6334       // Parse trailing-return-type[opt].
6335       LocalEndLoc = EndLoc;
6336       if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
6337         Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
6338         if (D.getDeclSpec().getTypeSpecType() == TST_auto)
6339           StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
6340         LocalEndLoc = Tok.getLocation();
6341         SourceRange Range;
6342         TrailingReturnType =
6343             ParseTrailingReturnType(Range, D.mayBeFollowedByCXXDirectInit());
6344         EndLoc = Range.getEnd();
6345       }
6346     } else if (standardAttributesAllowed()) {
6347       MaybeParseCXX11Attributes(FnAttrs);
6348     }
6349   }
6350
6351   // Collect non-parameter declarations from the prototype if this is a function
6352   // declaration. They will be moved into the scope of the function. Only do
6353   // this in C and not C++, where the decls will continue to live in the
6354   // surrounding context.
6355   SmallVector<NamedDecl *, 0> DeclsInPrototype;
6356   if (getCurScope()->getFlags() & Scope::FunctionDeclarationScope &&
6357       !getLangOpts().CPlusPlus) {
6358     for (Decl *D : getCurScope()->decls()) {
6359       NamedDecl *ND = dyn_cast<NamedDecl>(D);
6360       if (!ND || isa<ParmVarDecl>(ND))
6361         continue;
6362       DeclsInPrototype.push_back(ND);
6363     }
6364   }
6365
6366   // Remember that we parsed a function type, and remember the attributes.
6367   D.AddTypeInfo(DeclaratorChunk::getFunction(
6368                     HasProto, IsAmbiguous, LParenLoc, ParamInfo.data(),
6369                     ParamInfo.size(), EllipsisLoc, RParenLoc,
6370                     RefQualifierIsLValueRef, RefQualifierLoc,
6371                     /*MutableLoc=*/SourceLocation(),
6372                     ESpecType, ESpecRange, DynamicExceptions.data(),
6373                     DynamicExceptionRanges.data(), DynamicExceptions.size(),
6374                     NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
6375                     ExceptionSpecTokens, DeclsInPrototype, StartLoc,
6376                     LocalEndLoc, D, TrailingReturnType, &DS),
6377                 std::move(FnAttrs), EndLoc);
6378 }
6379
6380 /// ParseRefQualifier - Parses a member function ref-qualifier. Returns
6381 /// true if a ref-qualifier is found.
6382 bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef,
6383                                SourceLocation &RefQualifierLoc) {
6384   if (Tok.isOneOf(tok::amp, tok::ampamp)) {
6385     Diag(Tok, getLangOpts().CPlusPlus11 ?
6386          diag::warn_cxx98_compat_ref_qualifier :
6387          diag::ext_ref_qualifier);
6388
6389     RefQualifierIsLValueRef = Tok.is(tok::amp);
6390     RefQualifierLoc = ConsumeToken();
6391     return true;
6392   }
6393   return false;
6394 }
6395
6396 /// isFunctionDeclaratorIdentifierList - This parameter list may have an
6397 /// identifier list form for a K&R-style function:  void foo(a,b,c)
6398 ///
6399 /// Note that identifier-lists are only allowed for normal declarators, not for
6400 /// abstract-declarators.
6401 bool Parser::isFunctionDeclaratorIdentifierList() {
6402   return !getLangOpts().CPlusPlus
6403          && Tok.is(tok::identifier)
6404          && !TryAltiVecVectorToken()
6405          // K&R identifier lists can't have typedefs as identifiers, per C99
6406          // 6.7.5.3p11.
6407          && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
6408          // Identifier lists follow a really simple grammar: the identifiers can
6409          // be followed *only* by a ", identifier" or ")".  However, K&R
6410          // identifier lists are really rare in the brave new modern world, and
6411          // it is very common for someone to typo a type in a non-K&R style
6412          // list.  If we are presented with something like: "void foo(intptr x,
6413          // float y)", we don't want to start parsing the function declarator as
6414          // though it is a K&R style declarator just because intptr is an
6415          // invalid type.
6416          //
6417          // To handle this, we check to see if the token after the first
6418          // identifier is a "," or ")".  Only then do we parse it as an
6419          // identifier list.
6420          && (!Tok.is(tok::eof) &&
6421              (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)));
6422 }
6423
6424 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
6425 /// we found a K&R-style identifier list instead of a typed parameter list.
6426 ///
6427 /// After returning, ParamInfo will hold the parsed parameters.
6428 ///
6429 ///       identifier-list: [C99 6.7.5]
6430 ///         identifier
6431 ///         identifier-list ',' identifier
6432 ///
6433 void Parser::ParseFunctionDeclaratorIdentifierList(
6434        Declarator &D,
6435        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
6436   // If there was no identifier specified for the declarator, either we are in
6437   // an abstract-declarator, or we are in a parameter declarator which was found
6438   // to be abstract.  In abstract-declarators, identifier lists are not valid:
6439   // diagnose this.
6440   if (!D.getIdentifier())
6441     Diag(Tok, diag::ext_ident_list_in_param);
6442
6443   // Maintain an efficient lookup of params we have seen so far.
6444   llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
6445
6446   do {
6447     // If this isn't an identifier, report the error and skip until ')'.
6448     if (Tok.isNot(tok::identifier)) {
6449       Diag(Tok, diag::err_expected) << tok::identifier;
6450       SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
6451       // Forget we parsed anything.
6452       ParamInfo.clear();
6453       return;
6454     }
6455
6456     IdentifierInfo *ParmII = Tok.getIdentifierInfo();
6457
6458     // Reject 'typedef int y; int test(x, y)', but continue parsing.
6459     if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
6460       Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
6461
6462     // Verify that the argument identifier has not already been mentioned.
6463     if (!ParamsSoFar.insert(ParmII).second) {
6464       Diag(Tok, diag::err_param_redefinition) << ParmII;
6465     } else {
6466       // Remember this identifier in ParamInfo.
6467       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
6468                                                      Tok.getLocation(),
6469                                                      nullptr));
6470     }
6471
6472     // Eat the identifier.
6473     ConsumeToken();
6474     // The list continues if we see a comma.
6475   } while (TryConsumeToken(tok::comma));
6476 }
6477
6478 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
6479 /// after the opening parenthesis. This function will not parse a K&R-style
6480 /// identifier list.
6481 ///
6482 /// D is the declarator being parsed.  If FirstArgAttrs is non-null, then the
6483 /// caller parsed those arguments immediately after the open paren - they should
6484 /// be considered to be part of the first parameter.
6485 ///
6486 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
6487 /// be the location of the ellipsis, if any was parsed.
6488 ///
6489 ///       parameter-type-list: [C99 6.7.5]
6490 ///         parameter-list
6491 ///         parameter-list ',' '...'
6492 /// [C++]   parameter-list '...'
6493 ///
6494 ///       parameter-list: [C99 6.7.5]
6495 ///         parameter-declaration
6496 ///         parameter-list ',' parameter-declaration
6497 ///
6498 ///       parameter-declaration: [C99 6.7.5]
6499 ///         declaration-specifiers declarator
6500 /// [C++]   declaration-specifiers declarator '=' assignment-expression
6501 /// [C++11]                                       initializer-clause
6502 /// [GNU]   declaration-specifiers declarator attributes
6503 ///         declaration-specifiers abstract-declarator[opt]
6504 /// [C++]   declaration-specifiers abstract-declarator[opt]
6505 ///           '=' assignment-expression
6506 /// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
6507 /// [C++11] attribute-specifier-seq parameter-declaration
6508 ///
6509 void Parser::ParseParameterDeclarationClause(
6510        Declarator &D,
6511        ParsedAttributes &FirstArgAttrs,
6512        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
6513        SourceLocation &EllipsisLoc) {
6514   do {
6515     // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
6516     // before deciding this was a parameter-declaration-clause.
6517     if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
6518       break;
6519
6520     // Parse the declaration-specifiers.
6521     // Just use the ParsingDeclaration "scope" of the declarator.
6522     DeclSpec DS(AttrFactory);
6523
6524     // Parse any C++11 attributes.
6525     MaybeParseCXX11Attributes(DS.getAttributes());
6526
6527     // Skip any Microsoft attributes before a param.
6528     MaybeParseMicrosoftAttributes(DS.getAttributes());
6529
6530     SourceLocation DSStart = Tok.getLocation();
6531
6532     // If the caller parsed attributes for the first argument, add them now.
6533     // Take them so that we only apply the attributes to the first parameter.
6534     // FIXME: If we can leave the attributes in the token stream somehow, we can
6535     // get rid of a parameter (FirstArgAttrs) and this statement. It might be
6536     // too much hassle.
6537     DS.takeAttributesFrom(FirstArgAttrs);
6538
6539     ParseDeclarationSpecifiers(DS);
6540
6541
6542     // Parse the declarator.  This is "PrototypeContext" or
6543     // "LambdaExprParameterContext", because we must accept either
6544     // 'declarator' or 'abstract-declarator' here.
6545     Declarator ParmDeclarator(
6546         DS, D.getContext() == DeclaratorContext::LambdaExprContext
6547                 ? DeclaratorContext::LambdaExprParameterContext
6548                 : DeclaratorContext::PrototypeContext);
6549     ParseDeclarator(ParmDeclarator);
6550
6551     // Parse GNU attributes, if present.
6552     MaybeParseGNUAttributes(ParmDeclarator);
6553
6554     // Remember this parsed parameter in ParamInfo.
6555     IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
6556
6557     // DefArgToks is used when the parsing of default arguments needs
6558     // to be delayed.
6559     std::unique_ptr<CachedTokens> DefArgToks;
6560
6561     // If no parameter was specified, verify that *something* was specified,
6562     // otherwise we have a missing type and identifier.
6563     if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
6564         ParmDeclarator.getNumTypeObjects() == 0) {
6565       // Completely missing, emit error.
6566       Diag(DSStart, diag::err_missing_param);
6567     } else {
6568       // Otherwise, we have something.  Add it and let semantic analysis try
6569       // to grok it and add the result to the ParamInfo we are building.
6570
6571       // Last chance to recover from a misplaced ellipsis in an attempted
6572       // parameter pack declaration.
6573       if (Tok.is(tok::ellipsis) &&
6574           (NextToken().isNot(tok::r_paren) ||
6575            (!ParmDeclarator.getEllipsisLoc().isValid() &&
6576             !Actions.isUnexpandedParameterPackPermitted())) &&
6577           Actions.containsUnexpandedParameterPacks(ParmDeclarator))
6578         DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
6579
6580       // Inform the actions module about the parameter declarator, so it gets
6581       // added to the current scope.
6582       Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator);
6583       // Parse the default argument, if any. We parse the default
6584       // arguments in all dialects; the semantic analysis in
6585       // ActOnParamDefaultArgument will reject the default argument in
6586       // C.
6587       if (Tok.is(tok::equal)) {
6588         SourceLocation EqualLoc = Tok.getLocation();
6589
6590         // Parse the default argument
6591         if (D.getContext() == DeclaratorContext::MemberContext) {
6592           // If we're inside a class definition, cache the tokens
6593           // corresponding to the default argument. We'll actually parse
6594           // them when we see the end of the class definition.
6595           DefArgToks.reset(new CachedTokens);
6596
6597           SourceLocation ArgStartLoc = NextToken().getLocation();
6598           if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) {
6599             DefArgToks.reset();
6600             Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
6601           } else {
6602             Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
6603                                                       ArgStartLoc);
6604           }
6605         } else {
6606           // Consume the '='.
6607           ConsumeToken();
6608
6609           // The argument isn't actually potentially evaluated unless it is
6610           // used.
6611           EnterExpressionEvaluationContext Eval(
6612               Actions,
6613               Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed,
6614               Param);
6615
6616           ExprResult DefArgResult;
6617           if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
6618             Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
6619             DefArgResult = ParseBraceInitializer();
6620           } else
6621             DefArgResult = ParseAssignmentExpression();
6622           DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
6623           if (DefArgResult.isInvalid()) {
6624             Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
6625             SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
6626           } else {
6627             // Inform the actions module about the default argument
6628             Actions.ActOnParamDefaultArgument(Param, EqualLoc,
6629                                               DefArgResult.get());
6630           }
6631         }
6632       }
6633
6634       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
6635                                           ParmDeclarator.getIdentifierLoc(),
6636                                           Param, std::move(DefArgToks)));
6637     }
6638
6639     if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
6640       if (!getLangOpts().CPlusPlus) {
6641         // We have ellipsis without a preceding ',', which is ill-formed
6642         // in C. Complain and provide the fix.
6643         Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
6644             << FixItHint::CreateInsertion(EllipsisLoc, ", ");
6645       } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
6646                  Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
6647         // It looks like this was supposed to be a parameter pack. Warn and
6648         // point out where the ellipsis should have gone.
6649         SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
6650         Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
6651           << ParmEllipsis.isValid() << ParmEllipsis;
6652         if (ParmEllipsis.isValid()) {
6653           Diag(ParmEllipsis,
6654                diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
6655         } else {
6656           Diag(ParmDeclarator.getIdentifierLoc(),
6657                diag::note_misplaced_ellipsis_vararg_add_ellipsis)
6658             << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
6659                                           "...")
6660             << !ParmDeclarator.hasName();
6661         }
6662         Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
6663           << FixItHint::CreateInsertion(EllipsisLoc, ", ");
6664       }
6665
6666       // We can't have any more parameters after an ellipsis.
6667       break;
6668     }
6669
6670     // If the next token is a comma, consume it and keep reading arguments.
6671   } while (TryConsumeToken(tok::comma));
6672 }
6673
6674 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
6675 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
6676 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
6677 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
6678 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
6679 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
6680 ///                           attribute-specifier-seq[opt]
6681 void Parser::ParseBracketDeclarator(Declarator &D) {
6682   if (CheckProhibitedCXX11Attribute())
6683     return;
6684
6685   BalancedDelimiterTracker T(*this, tok::l_square);
6686   T.consumeOpen();
6687
6688   // C array syntax has many features, but by-far the most common is [] and [4].
6689   // This code does a fast path to handle some of the most obvious cases.
6690   if (Tok.getKind() == tok::r_square) {
6691     T.consumeClose();
6692     ParsedAttributes attrs(AttrFactory);
6693     MaybeParseCXX11Attributes(attrs);
6694
6695     // Remember that we parsed the empty array type.
6696     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
6697                                             T.getOpenLocation(),
6698                                             T.getCloseLocation()),
6699                   std::move(attrs), T.getCloseLocation());
6700     return;
6701   } else if (Tok.getKind() == tok::numeric_constant &&
6702              GetLookAheadToken(1).is(tok::r_square)) {
6703     // [4] is very common.  Parse the numeric constant expression.
6704     ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
6705     ConsumeToken();
6706
6707     T.consumeClose();
6708     ParsedAttributes attrs(AttrFactory);
6709     MaybeParseCXX11Attributes(attrs);
6710
6711     // Remember that we parsed a array type, and remember its features.
6712     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, ExprRes.get(),
6713                                             T.getOpenLocation(),
6714                                             T.getCloseLocation()),
6715                   std::move(attrs), T.getCloseLocation());
6716     return;
6717   } else if (Tok.getKind() == tok::code_completion) {
6718     Actions.CodeCompleteBracketDeclarator(getCurScope());
6719     return cutOffParsing();
6720   }
6721
6722   // If valid, this location is the position where we read the 'static' keyword.
6723   SourceLocation StaticLoc;
6724   TryConsumeToken(tok::kw_static, StaticLoc);
6725
6726   // If there is a type-qualifier-list, read it now.
6727   // Type qualifiers in an array subscript are a C99 feature.
6728   DeclSpec DS(AttrFactory);
6729   ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
6730
6731   // If we haven't already read 'static', check to see if there is one after the
6732   // type-qualifier-list.
6733   if (!StaticLoc.isValid())
6734     TryConsumeToken(tok::kw_static, StaticLoc);
6735
6736   // Handle "direct-declarator [ type-qual-list[opt] * ]".
6737   bool isStar = false;
6738   ExprResult NumElements;
6739
6740   // Handle the case where we have '[*]' as the array size.  However, a leading
6741   // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
6742   // the token after the star is a ']'.  Since stars in arrays are
6743   // infrequent, use of lookahead is not costly here.
6744   if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
6745     ConsumeToken();  // Eat the '*'.
6746
6747     if (StaticLoc.isValid()) {
6748       Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
6749       StaticLoc = SourceLocation();  // Drop the static.
6750     }
6751     isStar = true;
6752   } else if (Tok.isNot(tok::r_square)) {
6753     // Note, in C89, this production uses the constant-expr production instead
6754     // of assignment-expr.  The only difference is that assignment-expr allows
6755     // things like '=' and '*='.  Sema rejects these in C89 mode because they
6756     // are not i-c-e's, so we don't need to distinguish between the two here.
6757
6758     // Parse the constant-expression or assignment-expression now (depending
6759     // on dialect).
6760     if (getLangOpts().CPlusPlus) {
6761       NumElements = ParseConstantExpression();
6762     } else {
6763       EnterExpressionEvaluationContext Unevaluated(
6764           Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6765       NumElements =
6766           Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
6767     }
6768   } else {
6769     if (StaticLoc.isValid()) {
6770       Diag(StaticLoc, diag::err_unspecified_size_with_static);
6771       StaticLoc = SourceLocation();  // Drop the static.
6772     }
6773   }
6774
6775   // If there was an error parsing the assignment-expression, recover.
6776   if (NumElements.isInvalid()) {
6777     D.setInvalidType(true);
6778     // If the expression was invalid, skip it.
6779     SkipUntil(tok::r_square, StopAtSemi);
6780     return;
6781   }
6782
6783   T.consumeClose();
6784
6785   MaybeParseCXX11Attributes(DS.getAttributes());
6786
6787   // Remember that we parsed a array type, and remember its features.
6788   D.AddTypeInfo(
6789       DeclaratorChunk::getArray(DS.getTypeQualifiers(), StaticLoc.isValid(),
6790                                 isStar, NumElements.get(), T.getOpenLocation(),
6791                                 T.getCloseLocation()),
6792       std::move(DS.getAttributes()), T.getCloseLocation());
6793 }
6794
6795 /// Diagnose brackets before an identifier.
6796 void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
6797   assert(Tok.is(tok::l_square) && "Missing opening bracket");
6798   assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
6799
6800   SourceLocation StartBracketLoc = Tok.getLocation();
6801   Declarator TempDeclarator(D.getDeclSpec(), D.getContext());
6802
6803   while (Tok.is(tok::l_square)) {
6804     ParseBracketDeclarator(TempDeclarator);
6805   }
6806
6807   // Stuff the location of the start of the brackets into the Declarator.
6808   // The diagnostics from ParseDirectDeclarator will make more sense if
6809   // they use this location instead.
6810   if (Tok.is(tok::semi))
6811     D.getName().EndLocation = StartBracketLoc;
6812
6813   SourceLocation SuggestParenLoc = Tok.getLocation();
6814
6815   // Now that the brackets are removed, try parsing the declarator again.
6816   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
6817
6818   // Something went wrong parsing the brackets, in which case,
6819   // ParseBracketDeclarator has emitted an error, and we don't need to emit
6820   // one here.
6821   if (TempDeclarator.getNumTypeObjects() == 0)
6822     return;
6823
6824   // Determine if parens will need to be suggested in the diagnostic.
6825   bool NeedParens = false;
6826   if (D.getNumTypeObjects() != 0) {
6827     switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
6828     case DeclaratorChunk::Pointer:
6829     case DeclaratorChunk::Reference:
6830     case DeclaratorChunk::BlockPointer:
6831     case DeclaratorChunk::MemberPointer:
6832     case DeclaratorChunk::Pipe:
6833       NeedParens = true;
6834       break;
6835     case DeclaratorChunk::Array:
6836     case DeclaratorChunk::Function:
6837     case DeclaratorChunk::Paren:
6838       break;
6839     }
6840   }
6841
6842   if (NeedParens) {
6843     // Create a DeclaratorChunk for the inserted parens.
6844     SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc());
6845     D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc),
6846                   SourceLocation());
6847   }
6848
6849   // Adding back the bracket info to the end of the Declarator.
6850   for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
6851     const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
6852     D.AddTypeInfo(Chunk, SourceLocation());
6853   }
6854
6855   // The missing identifier would have been diagnosed in ParseDirectDeclarator.
6856   // If parentheses are required, always suggest them.
6857   if (!D.getIdentifier() && !NeedParens)
6858     return;
6859
6860   SourceLocation EndBracketLoc = TempDeclarator.getEndLoc();
6861
6862   // Generate the move bracket error message.
6863   SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
6864   SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc());
6865
6866   if (NeedParens) {
6867     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
6868         << getLangOpts().CPlusPlus
6869         << FixItHint::CreateInsertion(SuggestParenLoc, "(")
6870         << FixItHint::CreateInsertion(EndLoc, ")")
6871         << FixItHint::CreateInsertionFromRange(
6872                EndLoc, CharSourceRange(BracketRange, true))
6873         << FixItHint::CreateRemoval(BracketRange);
6874   } else {
6875     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
6876         << getLangOpts().CPlusPlus
6877         << FixItHint::CreateInsertionFromRange(
6878                EndLoc, CharSourceRange(BracketRange, true))
6879         << FixItHint::CreateRemoval(BracketRange);
6880   }
6881 }
6882
6883 /// [GNU]   typeof-specifier:
6884 ///           typeof ( expressions )
6885 ///           typeof ( type-name )
6886 /// [GNU/C++] typeof unary-expression
6887 ///
6888 void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
6889   assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
6890   Token OpTok = Tok;
6891   SourceLocation StartLoc = ConsumeToken();
6892
6893   const bool hasParens = Tok.is(tok::l_paren);
6894
6895   EnterExpressionEvaluationContext Unevaluated(
6896       Actions, Sema::ExpressionEvaluationContext::Unevaluated,
6897       Sema::ReuseLambdaContextDecl);
6898
6899   bool isCastExpr;
6900   ParsedType CastTy;
6901   SourceRange CastRange;
6902   ExprResult Operand = Actions.CorrectDelayedTyposInExpr(
6903       ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
6904   if (hasParens)
6905     DS.setTypeofParensRange(CastRange);
6906
6907   if (CastRange.getEnd().isInvalid())
6908     // FIXME: Not accurate, the range gets one token more than it should.
6909     DS.SetRangeEnd(Tok.getLocation());
6910   else
6911     DS.SetRangeEnd(CastRange.getEnd());
6912
6913   if (isCastExpr) {
6914     if (!CastTy) {
6915       DS.SetTypeSpecError();
6916       return;
6917     }
6918
6919     const char *PrevSpec = nullptr;
6920     unsigned DiagID;
6921     // Check for duplicate type specifiers (e.g. "int typeof(int)").
6922     if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
6923                            DiagID, CastTy,
6924                            Actions.getASTContext().getPrintingPolicy()))
6925       Diag(StartLoc, DiagID) << PrevSpec;
6926     return;
6927   }
6928
6929   // If we get here, the operand to the typeof was an expression.
6930   if (Operand.isInvalid()) {
6931     DS.SetTypeSpecError();
6932     return;
6933   }
6934
6935   // We might need to transform the operand if it is potentially evaluated.
6936   Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
6937   if (Operand.isInvalid()) {
6938     DS.SetTypeSpecError();
6939     return;
6940   }
6941
6942   const char *PrevSpec = nullptr;
6943   unsigned DiagID;
6944   // Check for duplicate type specifiers (e.g. "int typeof(int)").
6945   if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
6946                          DiagID, Operand.get(),
6947                          Actions.getASTContext().getPrintingPolicy()))
6948     Diag(StartLoc, DiagID) << PrevSpec;
6949 }
6950
6951 /// [C11]   atomic-specifier:
6952 ///           _Atomic ( type-name )
6953 ///
6954 void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
6955   assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
6956          "Not an atomic specifier");
6957
6958   SourceLocation StartLoc = ConsumeToken();
6959   BalancedDelimiterTracker T(*this, tok::l_paren);
6960   if (T.consumeOpen())
6961     return;
6962
6963   TypeResult Result = ParseTypeName();
6964   if (Result.isInvalid()) {
6965     SkipUntil(tok::r_paren, StopAtSemi);
6966     return;
6967   }
6968
6969   // Match the ')'
6970   T.consumeClose();
6971
6972   if (T.getCloseLocation().isInvalid())
6973     return;
6974
6975   DS.setTypeofParensRange(T.getRange());
6976   DS.SetRangeEnd(T.getCloseLocation());
6977
6978   const char *PrevSpec = nullptr;
6979   unsigned DiagID;
6980   if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
6981                          DiagID, Result.get(),
6982                          Actions.getASTContext().getPrintingPolicy()))
6983     Diag(StartLoc, DiagID) << PrevSpec;
6984 }
6985
6986 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
6987 /// from TryAltiVecVectorToken.
6988 bool Parser::TryAltiVecVectorTokenOutOfLine() {
6989   Token Next = NextToken();
6990   switch (Next.getKind()) {
6991   default: return false;
6992   case tok::kw_short:
6993   case tok::kw_long:
6994   case tok::kw_signed:
6995   case tok::kw_unsigned:
6996   case tok::kw_void:
6997   case tok::kw_char:
6998   case tok::kw_int:
6999   case tok::kw_float:
7000   case tok::kw_double:
7001   case tok::kw_bool:
7002   case tok::kw___bool:
7003   case tok::kw___pixel:
7004     Tok.setKind(tok::kw___vector);
7005     return true;
7006   case tok::identifier:
7007     if (Next.getIdentifierInfo() == Ident_pixel) {
7008       Tok.setKind(tok::kw___vector);
7009       return true;
7010     }
7011     if (Next.getIdentifierInfo() == Ident_bool) {
7012       Tok.setKind(tok::kw___vector);
7013       return true;
7014     }
7015     return false;
7016   }
7017 }
7018
7019 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
7020                                       const char *&PrevSpec, unsigned &DiagID,
7021                                       bool &isInvalid) {
7022   const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
7023   if (Tok.getIdentifierInfo() == Ident_vector) {
7024     Token Next = NextToken();
7025     switch (Next.getKind()) {
7026     case tok::kw_short:
7027     case tok::kw_long:
7028     case tok::kw_signed:
7029     case tok::kw_unsigned:
7030     case tok::kw_void:
7031     case tok::kw_char:
7032     case tok::kw_int:
7033     case tok::kw_float:
7034     case tok::kw_double:
7035     case tok::kw_bool:
7036     case tok::kw___bool:
7037     case tok::kw___pixel:
7038       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
7039       return true;
7040     case tok::identifier:
7041       if (Next.getIdentifierInfo() == Ident_pixel) {
7042         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
7043         return true;
7044       }
7045       if (Next.getIdentifierInfo() == Ident_bool) {
7046         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
7047         return true;
7048       }
7049       break;
7050     default:
7051       break;
7052     }
7053   } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
7054              DS.isTypeAltiVecVector()) {
7055     isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
7056     return true;
7057   } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
7058              DS.isTypeAltiVecVector()) {
7059     isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
7060     return true;
7061   }
7062   return false;
7063 }