]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/clang/lib/Parse/ParseDecl.cpp
Merge ^/vendor/lldb/dist up to its last change, and resolve conflicts.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / clang / lib / Parse / ParseDecl.cpp
1 //===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the Declaration portions of the Parser interfaces.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/Parse/Parser.h"
14 #include "clang/Parse/RAIIObjectsForParser.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/PrettyDeclStackTrace.h"
18 #include "clang/Basic/AddressSpaces.h"
19 #include "clang/Basic/Attributes.h"
20 #include "clang/Basic/CharInfo.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Parse/ParseDiagnostic.h"
23 #include "clang/Sema/Lookup.h"
24 #include "clang/Sema/ParsedTemplate.h"
25 #include "clang/Sema/Scope.h"
26 #include "llvm/ADT/Optional.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/ADT/StringSwitch.h"
30
31 using namespace clang;
32
33 //===----------------------------------------------------------------------===//
34 // C99 6.7: Declarations.
35 //===----------------------------------------------------------------------===//
36
37 /// ParseTypeName
38 ///       type-name: [C99 6.7.6]
39 ///         specifier-qualifier-list abstract-declarator[opt]
40 ///
41 /// Called type-id in C++.
42 TypeResult Parser::ParseTypeName(SourceRange *Range,
43                                  DeclaratorContext Context,
44                                  AccessSpecifier AS,
45                                  Decl **OwnedType,
46                                  ParsedAttributes *Attrs) {
47   DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
48   if (DSC == DeclSpecContext::DSC_normal)
49     DSC = DeclSpecContext::DSC_type_specifier;
50
51   // Parse the common declaration-specifiers piece.
52   DeclSpec DS(AttrFactory);
53   if (Attrs)
54     DS.addAttributes(*Attrs);
55   ParseSpecifierQualifierList(DS, AS, DSC);
56   if (OwnedType)
57     *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
58
59   // Parse the abstract-declarator, if present.
60   Declarator DeclaratorInfo(DS, Context);
61   ParseDeclarator(DeclaratorInfo);
62   if (Range)
63     *Range = DeclaratorInfo.getSourceRange();
64
65   if (DeclaratorInfo.isInvalidType())
66     return true;
67
68   return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
69 }
70
71 /// Normalizes an attribute name by dropping prefixed and suffixed __.
72 static StringRef normalizeAttrName(StringRef Name) {
73   if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
74     return Name.drop_front(2).drop_back(2);
75   return Name;
76 }
77
78 /// isAttributeLateParsed - Return true if the attribute has arguments that
79 /// require late parsing.
80 static bool isAttributeLateParsed(const IdentifierInfo &II) {
81 #define CLANG_ATTR_LATE_PARSED_LIST
82     return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
83 #include "clang/Parse/AttrParserStringSwitches.inc"
84         .Default(false);
85 #undef CLANG_ATTR_LATE_PARSED_LIST
86 }
87
88 /// Check if the a start and end source location expand to the same macro.
89 static bool FindLocsWithCommonFileID(Preprocessor &PP, SourceLocation StartLoc,
90                                      SourceLocation EndLoc) {
91   if (!StartLoc.isMacroID() || !EndLoc.isMacroID())
92     return false;
93
94   SourceManager &SM = PP.getSourceManager();
95   if (SM.getFileID(StartLoc) != SM.getFileID(EndLoc))
96     return false;
97
98   bool AttrStartIsInMacro =
99       Lexer::isAtStartOfMacroExpansion(StartLoc, SM, PP.getLangOpts());
100   bool AttrEndIsInMacro =
101       Lexer::isAtEndOfMacroExpansion(EndLoc, SM, PP.getLangOpts());
102   return AttrStartIsInMacro && AttrEndIsInMacro;
103 }
104
105 /// ParseGNUAttributes - Parse a non-empty attributes list.
106 ///
107 /// [GNU] attributes:
108 ///         attribute
109 ///         attributes attribute
110 ///
111 /// [GNU]  attribute:
112 ///          '__attribute__' '(' '(' attribute-list ')' ')'
113 ///
114 /// [GNU]  attribute-list:
115 ///          attrib
116 ///          attribute_list ',' attrib
117 ///
118 /// [GNU]  attrib:
119 ///          empty
120 ///          attrib-name
121 ///          attrib-name '(' identifier ')'
122 ///          attrib-name '(' identifier ',' nonempty-expr-list ')'
123 ///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
124 ///
125 /// [GNU]  attrib-name:
126 ///          identifier
127 ///          typespec
128 ///          typequal
129 ///          storageclass
130 ///
131 /// Whether an attribute takes an 'identifier' is determined by the
132 /// attrib-name. GCC's behavior here is not worth imitating:
133 ///
134 ///  * In C mode, if the attribute argument list starts with an identifier
135 ///    followed by a ',' or an ')', and the identifier doesn't resolve to
136 ///    a type, it is parsed as an identifier. If the attribute actually
137 ///    wanted an expression, it's out of luck (but it turns out that no
138 ///    attributes work that way, because C constant expressions are very
139 ///    limited).
140 ///  * In C++ mode, if the attribute argument list starts with an identifier,
141 ///    and the attribute *wants* an identifier, it is parsed as an identifier.
142 ///    At block scope, any additional tokens between the identifier and the
143 ///    ',' or ')' are ignored, otherwise they produce a parse error.
144 ///
145 /// We follow the C++ model, but don't allow junk after the identifier.
146 void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
147                                 SourceLocation *endLoc,
148                                 LateParsedAttrList *LateAttrs,
149                                 Declarator *D) {
150   assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
151
152   while (Tok.is(tok::kw___attribute)) {
153     SourceLocation AttrTokLoc = ConsumeToken();
154     unsigned OldNumAttrs = attrs.size();
155     unsigned OldNumLateAttrs = LateAttrs ? LateAttrs->size() : 0;
156
157     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
158                          "attribute")) {
159       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
160       return;
161     }
162     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
163       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
164       return;
165     }
166     // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
167     do {
168       // Eat preceeding commas to allow __attribute__((,,,foo))
169       while (TryConsumeToken(tok::comma))
170         ;
171
172       // Expect an identifier or declaration specifier (const, int, etc.)
173       if (Tok.isAnnotation())
174         break;
175       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
176       if (!AttrName)
177         break;
178
179       SourceLocation AttrNameLoc = ConsumeToken();
180
181       if (Tok.isNot(tok::l_paren)) {
182         attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
183                      ParsedAttr::AS_GNU);
184         continue;
185       }
186
187       // Handle "parameterized" attributes
188       if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
189         ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
190                               SourceLocation(), ParsedAttr::AS_GNU, D);
191         continue;
192       }
193
194       // Handle attributes with arguments that require late parsing.
195       LateParsedAttribute *LA =
196           new LateParsedAttribute(this, *AttrName, AttrNameLoc);
197       LateAttrs->push_back(LA);
198
199       // Attributes in a class are parsed at the end of the class, along
200       // with other late-parsed declarations.
201       if (!ClassStack.empty() && !LateAttrs->parseSoon())
202         getCurrentClass().LateParsedDeclarations.push_back(LA);
203
204       // Be sure ConsumeAndStoreUntil doesn't see the start l_paren, since it
205       // recursively consumes balanced parens.
206       LA->Toks.push_back(Tok);
207       ConsumeParen();
208       // Consume everything up to and including the matching right parens.
209       ConsumeAndStoreUntil(tok::r_paren, LA->Toks, /*StopAtSemi=*/true);
210
211       Token Eof;
212       Eof.startToken();
213       Eof.setLocation(Tok.getLocation());
214       LA->Toks.push_back(Eof);
215     } while (Tok.is(tok::comma));
216
217     if (ExpectAndConsume(tok::r_paren))
218       SkipUntil(tok::r_paren, StopAtSemi);
219     SourceLocation Loc = Tok.getLocation();
220     if (ExpectAndConsume(tok::r_paren))
221       SkipUntil(tok::r_paren, StopAtSemi);
222     if (endLoc)
223       *endLoc = Loc;
224
225     // If this was declared in a macro, attach the macro IdentifierInfo to the
226     // parsed attribute.
227     auto &SM = PP.getSourceManager();
228     if (!SM.isWrittenInBuiltinFile(SM.getSpellingLoc(AttrTokLoc)) &&
229         FindLocsWithCommonFileID(PP, AttrTokLoc, Loc)) {
230       CharSourceRange ExpansionRange = SM.getExpansionRange(AttrTokLoc);
231       StringRef FoundName =
232           Lexer::getSourceText(ExpansionRange, SM, PP.getLangOpts());
233       IdentifierInfo *MacroII = PP.getIdentifierInfo(FoundName);
234
235       for (unsigned i = OldNumAttrs; i < attrs.size(); ++i)
236         attrs[i].setMacroIdentifier(MacroII, ExpansionRange.getBegin());
237
238       if (LateAttrs) {
239         for (unsigned i = OldNumLateAttrs; i < LateAttrs->size(); ++i)
240           (*LateAttrs)[i]->MacroII = MacroII;
241       }
242     }
243   }
244 }
245
246 /// Determine whether the given attribute has an identifier argument.
247 static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
248 #define CLANG_ATTR_IDENTIFIER_ARG_LIST
249   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
250 #include "clang/Parse/AttrParserStringSwitches.inc"
251            .Default(false);
252 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST
253 }
254
255 /// Determine whether the given attribute has a variadic identifier argument.
256 static bool attributeHasVariadicIdentifierArg(const IdentifierInfo &II) {
257 #define CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
258   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
259 #include "clang/Parse/AttrParserStringSwitches.inc"
260            .Default(false);
261 #undef CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
262 }
263
264 /// Determine whether the given attribute treats kw_this as an identifier.
265 static bool attributeTreatsKeywordThisAsIdentifier(const IdentifierInfo &II) {
266 #define CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
267   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
268 #include "clang/Parse/AttrParserStringSwitches.inc"
269            .Default(false);
270 #undef CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
271 }
272
273 /// Determine whether the given attribute parses a type argument.
274 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
275 #define CLANG_ATTR_TYPE_ARG_LIST
276   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
277 #include "clang/Parse/AttrParserStringSwitches.inc"
278            .Default(false);
279 #undef CLANG_ATTR_TYPE_ARG_LIST
280 }
281
282 /// Determine whether the given attribute requires parsing its arguments
283 /// in an unevaluated context or not.
284 static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
285 #define CLANG_ATTR_ARG_CONTEXT_LIST
286   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
287 #include "clang/Parse/AttrParserStringSwitches.inc"
288            .Default(false);
289 #undef CLANG_ATTR_ARG_CONTEXT_LIST
290 }
291
292 IdentifierLoc *Parser::ParseIdentifierLoc() {
293   assert(Tok.is(tok::identifier) && "expected an identifier");
294   IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
295                                             Tok.getLocation(),
296                                             Tok.getIdentifierInfo());
297   ConsumeToken();
298   return IL;
299 }
300
301 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
302                                        SourceLocation AttrNameLoc,
303                                        ParsedAttributes &Attrs,
304                                        SourceLocation *EndLoc,
305                                        IdentifierInfo *ScopeName,
306                                        SourceLocation ScopeLoc,
307                                        ParsedAttr::Syntax Syntax) {
308   BalancedDelimiterTracker Parens(*this, tok::l_paren);
309   Parens.consumeOpen();
310
311   TypeResult T;
312   if (Tok.isNot(tok::r_paren))
313     T = ParseTypeName();
314
315   if (Parens.consumeClose())
316     return;
317
318   if (T.isInvalid())
319     return;
320
321   if (T.isUsable())
322     Attrs.addNewTypeAttr(&AttrName,
323                          SourceRange(AttrNameLoc, Parens.getCloseLocation()),
324                          ScopeName, ScopeLoc, T.get(), Syntax);
325   else
326     Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
327                  ScopeName, ScopeLoc, nullptr, 0, Syntax);
328 }
329
330 unsigned Parser::ParseAttributeArgsCommon(
331     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
332     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
333     SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
334   // Ignore the left paren location for now.
335   ConsumeParen();
336
337   bool ChangeKWThisToIdent = attributeTreatsKeywordThisAsIdentifier(*AttrName);
338   bool AttributeIsTypeArgAttr = attributeIsTypeArgAttr(*AttrName);
339
340   // Interpret "kw_this" as an identifier if the attributed requests it.
341   if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
342     Tok.setKind(tok::identifier);
343
344   ArgsVector ArgExprs;
345   if (Tok.is(tok::identifier)) {
346     // If this attribute wants an 'identifier' argument, make it so.
347     bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName) ||
348                            attributeHasVariadicIdentifierArg(*AttrName);
349     ParsedAttr::Kind AttrKind =
350         ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax);
351
352     // If we don't know how to parse this attribute, but this is the only
353     // token in this argument, assume it's meant to be an identifier.
354     if (AttrKind == ParsedAttr::UnknownAttribute ||
355         AttrKind == ParsedAttr::IgnoredAttribute) {
356       const Token &Next = NextToken();
357       IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma);
358     }
359
360     if (IsIdentifierArg)
361       ArgExprs.push_back(ParseIdentifierLoc());
362   }
363
364   ParsedType TheParsedType;
365   if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
366     // Eat the comma.
367     if (!ArgExprs.empty())
368       ConsumeToken();
369
370     // Parse the non-empty comma-separated list of expressions.
371     do {
372       // Interpret "kw_this" as an identifier if the attributed requests it.
373       if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
374         Tok.setKind(tok::identifier);
375
376       ExprResult ArgExpr;
377       if (AttributeIsTypeArgAttr) {
378         TypeResult T = ParseTypeName();
379         if (T.isInvalid()) {
380           SkipUntil(tok::r_paren, StopAtSemi);
381           return 0;
382         }
383         if (T.isUsable())
384           TheParsedType = T.get();
385         break; // FIXME: Multiple type arguments are not implemented.
386       } else if (Tok.is(tok::identifier) &&
387                  attributeHasVariadicIdentifierArg(*AttrName)) {
388         ArgExprs.push_back(ParseIdentifierLoc());
389       } else {
390         bool Uneval = attributeParsedArgsUnevaluated(*AttrName);
391         EnterExpressionEvaluationContext Unevaluated(
392             Actions,
393             Uneval ? Sema::ExpressionEvaluationContext::Unevaluated
394                    : Sema::ExpressionEvaluationContext::ConstantEvaluated);
395
396         ExprResult ArgExpr(
397             Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
398         if (ArgExpr.isInvalid()) {
399           SkipUntil(tok::r_paren, StopAtSemi);
400           return 0;
401         }
402         ArgExprs.push_back(ArgExpr.get());
403       }
404       // Eat the comma, move to the next argument
405     } while (TryConsumeToken(tok::comma));
406   }
407
408   SourceLocation RParen = Tok.getLocation();
409   if (!ExpectAndConsume(tok::r_paren)) {
410     SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
411
412     if (AttributeIsTypeArgAttr && !TheParsedType.get().isNull()) {
413       Attrs.addNewTypeAttr(AttrName, SourceRange(AttrNameLoc, RParen),
414                            ScopeName, ScopeLoc, TheParsedType, Syntax);
415     } else {
416       Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
417                    ArgExprs.data(), ArgExprs.size(), Syntax);
418     }
419   }
420
421   if (EndLoc)
422     *EndLoc = RParen;
423
424   return static_cast<unsigned>(ArgExprs.size() + !TheParsedType.get().isNull());
425 }
426
427 /// Parse the arguments to a parameterized GNU attribute or
428 /// a C++11 attribute in "gnu" namespace.
429 void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
430                                    SourceLocation AttrNameLoc,
431                                    ParsedAttributes &Attrs,
432                                    SourceLocation *EndLoc,
433                                    IdentifierInfo *ScopeName,
434                                    SourceLocation ScopeLoc,
435                                    ParsedAttr::Syntax Syntax,
436                                    Declarator *D) {
437
438   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
439
440   ParsedAttr::Kind AttrKind =
441       ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax);
442
443   if (AttrKind == ParsedAttr::AT_Availability) {
444     ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
445                                ScopeLoc, Syntax);
446     return;
447   } else if (AttrKind == ParsedAttr::AT_ExternalSourceSymbol) {
448     ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
449                                        ScopeName, ScopeLoc, Syntax);
450     return;
451   } else if (AttrKind == ParsedAttr::AT_ObjCBridgeRelated) {
452     ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
453                                     ScopeName, ScopeLoc, Syntax);
454     return;
455   } else if (AttrKind == ParsedAttr::AT_TypeTagForDatatype) {
456     ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
457                                      ScopeName, ScopeLoc, Syntax);
458     return;
459   } else if (attributeIsTypeArgAttr(*AttrName)) {
460     ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
461                               ScopeLoc, Syntax);
462     return;
463   }
464
465   // These may refer to the function arguments, but need to be parsed early to
466   // participate in determining whether it's a redeclaration.
467   llvm::Optional<ParseScope> PrototypeScope;
468   if (normalizeAttrName(AttrName->getName()) == "enable_if" &&
469       D && D->isFunctionDeclarator()) {
470     DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
471     PrototypeScope.emplace(this, Scope::FunctionPrototypeScope |
472                                      Scope::FunctionDeclarationScope |
473                                      Scope::DeclScope);
474     for (unsigned i = 0; i != FTI.NumParams; ++i) {
475       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
476       Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
477     }
478   }
479
480   ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
481                            ScopeLoc, Syntax);
482 }
483
484 unsigned Parser::ParseClangAttributeArgs(
485     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
486     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
487     SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
488   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
489
490   ParsedAttr::Kind AttrKind =
491       ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax);
492
493   switch (AttrKind) {
494   default:
495     return ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc,
496                                     ScopeName, ScopeLoc, Syntax);
497   case ParsedAttr::AT_ExternalSourceSymbol:
498     ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
499                                        ScopeName, ScopeLoc, Syntax);
500     break;
501   case ParsedAttr::AT_Availability:
502     ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
503                                ScopeLoc, Syntax);
504     break;
505   case ParsedAttr::AT_ObjCBridgeRelated:
506     ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
507                                     ScopeName, ScopeLoc, Syntax);
508     break;
509   case ParsedAttr::AT_TypeTagForDatatype:
510     ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
511                                      ScopeName, ScopeLoc, Syntax);
512     break;
513   }
514   return !Attrs.empty() ? Attrs.begin()->getNumArgs() : 0;
515 }
516
517 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
518                                         SourceLocation AttrNameLoc,
519                                         ParsedAttributes &Attrs) {
520   // If the attribute isn't known, we will not attempt to parse any
521   // arguments.
522   if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
523                     getTargetInfo(), getLangOpts())) {
524     // Eat the left paren, then skip to the ending right paren.
525     ConsumeParen();
526     SkipUntil(tok::r_paren);
527     return false;
528   }
529
530   SourceLocation OpenParenLoc = Tok.getLocation();
531
532   if (AttrName->getName() == "property") {
533     // The property declspec is more complex in that it can take one or two
534     // assignment expressions as a parameter, but the lhs of the assignment
535     // must be named get or put.
536
537     BalancedDelimiterTracker T(*this, tok::l_paren);
538     T.expectAndConsume(diag::err_expected_lparen_after,
539                        AttrName->getNameStart(), tok::r_paren);
540
541     enum AccessorKind {
542       AK_Invalid = -1,
543       AK_Put = 0,
544       AK_Get = 1 // indices into AccessorNames
545     };
546     IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
547     bool HasInvalidAccessor = false;
548
549     // Parse the accessor specifications.
550     while (true) {
551       // Stop if this doesn't look like an accessor spec.
552       if (!Tok.is(tok::identifier)) {
553         // If the user wrote a completely empty list, use a special diagnostic.
554         if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
555             AccessorNames[AK_Put] == nullptr &&
556             AccessorNames[AK_Get] == nullptr) {
557           Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
558           break;
559         }
560
561         Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
562         break;
563       }
564
565       AccessorKind Kind;
566       SourceLocation KindLoc = Tok.getLocation();
567       StringRef KindStr = Tok.getIdentifierInfo()->getName();
568       if (KindStr == "get") {
569         Kind = AK_Get;
570       } else if (KindStr == "put") {
571         Kind = AK_Put;
572
573         // Recover from the common mistake of using 'set' instead of 'put'.
574       } else if (KindStr == "set") {
575         Diag(KindLoc, diag::err_ms_property_has_set_accessor)
576             << FixItHint::CreateReplacement(KindLoc, "put");
577         Kind = AK_Put;
578
579         // Handle the mistake of forgetting the accessor kind by skipping
580         // this accessor.
581       } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
582         Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
583         ConsumeToken();
584         HasInvalidAccessor = true;
585         goto next_property_accessor;
586
587         // Otherwise, complain about the unknown accessor kind.
588       } else {
589         Diag(KindLoc, diag::err_ms_property_unknown_accessor);
590         HasInvalidAccessor = true;
591         Kind = AK_Invalid;
592
593         // Try to keep parsing unless it doesn't look like an accessor spec.
594         if (!NextToken().is(tok::equal))
595           break;
596       }
597
598       // Consume the identifier.
599       ConsumeToken();
600
601       // Consume the '='.
602       if (!TryConsumeToken(tok::equal)) {
603         Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
604             << KindStr;
605         break;
606       }
607
608       // Expect the method name.
609       if (!Tok.is(tok::identifier)) {
610         Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
611         break;
612       }
613
614       if (Kind == AK_Invalid) {
615         // Just drop invalid accessors.
616       } else if (AccessorNames[Kind] != nullptr) {
617         // Complain about the repeated accessor, ignore it, and keep parsing.
618         Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
619       } else {
620         AccessorNames[Kind] = Tok.getIdentifierInfo();
621       }
622       ConsumeToken();
623
624     next_property_accessor:
625       // Keep processing accessors until we run out.
626       if (TryConsumeToken(tok::comma))
627         continue;
628
629       // If we run into the ')', stop without consuming it.
630       if (Tok.is(tok::r_paren))
631         break;
632
633       Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
634       break;
635     }
636
637     // Only add the property attribute if it was well-formed.
638     if (!HasInvalidAccessor)
639       Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
640                                AccessorNames[AK_Get], AccessorNames[AK_Put],
641                                ParsedAttr::AS_Declspec);
642     T.skipToEnd();
643     return !HasInvalidAccessor;
644   }
645
646   unsigned NumArgs =
647       ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
648                                SourceLocation(), ParsedAttr::AS_Declspec);
649
650   // If this attribute's args were parsed, and it was expected to have
651   // arguments but none were provided, emit a diagnostic.
652   if (!Attrs.empty() && Attrs.begin()->getMaxArgs() && !NumArgs) {
653     Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
654     return false;
655   }
656   return true;
657 }
658
659 /// [MS] decl-specifier:
660 ///             __declspec ( extended-decl-modifier-seq )
661 ///
662 /// [MS] extended-decl-modifier-seq:
663 ///             extended-decl-modifier[opt]
664 ///             extended-decl-modifier extended-decl-modifier-seq
665 void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs,
666                                      SourceLocation *End) {
667   assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled");
668   assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
669
670   while (Tok.is(tok::kw___declspec)) {
671     ConsumeToken();
672     BalancedDelimiterTracker T(*this, tok::l_paren);
673     if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
674                            tok::r_paren))
675       return;
676
677     // An empty declspec is perfectly legal and should not warn.  Additionally,
678     // you can specify multiple attributes per declspec.
679     while (Tok.isNot(tok::r_paren)) {
680       // Attribute not present.
681       if (TryConsumeToken(tok::comma))
682         continue;
683
684       // We expect either a well-known identifier or a generic string.  Anything
685       // else is a malformed declspec.
686       bool IsString = Tok.getKind() == tok::string_literal;
687       if (!IsString && Tok.getKind() != tok::identifier &&
688           Tok.getKind() != tok::kw_restrict) {
689         Diag(Tok, diag::err_ms_declspec_type);
690         T.skipToEnd();
691         return;
692       }
693
694       IdentifierInfo *AttrName;
695       SourceLocation AttrNameLoc;
696       if (IsString) {
697         SmallString<8> StrBuffer;
698         bool Invalid = false;
699         StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
700         if (Invalid) {
701           T.skipToEnd();
702           return;
703         }
704         AttrName = PP.getIdentifierInfo(Str);
705         AttrNameLoc = ConsumeStringToken();
706       } else {
707         AttrName = Tok.getIdentifierInfo();
708         AttrNameLoc = ConsumeToken();
709       }
710
711       bool AttrHandled = false;
712
713       // Parse attribute arguments.
714       if (Tok.is(tok::l_paren))
715         AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
716       else if (AttrName->getName() == "property")
717         // The property attribute must have an argument list.
718         Diag(Tok.getLocation(), diag::err_expected_lparen_after)
719             << AttrName->getName();
720
721       if (!AttrHandled)
722         Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
723                      ParsedAttr::AS_Declspec);
724     }
725     T.consumeClose();
726     if (End)
727       *End = T.getCloseLocation();
728   }
729 }
730
731 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
732   // Treat these like attributes
733   while (true) {
734     switch (Tok.getKind()) {
735     case tok::kw___fastcall:
736     case tok::kw___stdcall:
737     case tok::kw___thiscall:
738     case tok::kw___regcall:
739     case tok::kw___cdecl:
740     case tok::kw___vectorcall:
741     case tok::kw___ptr64:
742     case tok::kw___w64:
743     case tok::kw___ptr32:
744     case tok::kw___sptr:
745     case tok::kw___uptr: {
746       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
747       SourceLocation AttrNameLoc = ConsumeToken();
748       attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
749                    ParsedAttr::AS_Keyword);
750       break;
751     }
752     default:
753       return;
754     }
755   }
756 }
757
758 void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
759   SourceLocation StartLoc = Tok.getLocation();
760   SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
761
762   if (EndLoc.isValid()) {
763     SourceRange Range(StartLoc, EndLoc);
764     Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
765   }
766 }
767
768 SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
769   SourceLocation EndLoc;
770
771   while (true) {
772     switch (Tok.getKind()) {
773     case tok::kw_const:
774     case tok::kw_volatile:
775     case tok::kw___fastcall:
776     case tok::kw___stdcall:
777     case tok::kw___thiscall:
778     case tok::kw___cdecl:
779     case tok::kw___vectorcall:
780     case tok::kw___ptr32:
781     case tok::kw___ptr64:
782     case tok::kw___w64:
783     case tok::kw___unaligned:
784     case tok::kw___sptr:
785     case tok::kw___uptr:
786       EndLoc = ConsumeToken();
787       break;
788     default:
789       return EndLoc;
790     }
791   }
792 }
793
794 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
795   // Treat these like attributes
796   while (Tok.is(tok::kw___pascal)) {
797     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
798     SourceLocation AttrNameLoc = ConsumeToken();
799     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
800                  ParsedAttr::AS_Keyword);
801   }
802 }
803
804 void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) {
805   // Treat these like attributes
806   while (Tok.is(tok::kw___kernel)) {
807     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
808     SourceLocation AttrNameLoc = ConsumeToken();
809     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
810                  ParsedAttr::AS_Keyword);
811   }
812 }
813
814 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
815   IdentifierInfo *AttrName = Tok.getIdentifierInfo();
816   SourceLocation AttrNameLoc = Tok.getLocation();
817   Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
818                ParsedAttr::AS_Keyword);
819 }
820
821 void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) {
822   // Treat these like attributes, even though they're type specifiers.
823   while (true) {
824     switch (Tok.getKind()) {
825     case tok::kw__Nonnull:
826     case tok::kw__Nullable:
827     case tok::kw__Null_unspecified: {
828       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
829       SourceLocation AttrNameLoc = ConsumeToken();
830       if (!getLangOpts().ObjC)
831         Diag(AttrNameLoc, diag::ext_nullability)
832           << AttrName;
833       attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
834                    ParsedAttr::AS_Keyword);
835       break;
836     }
837     default:
838       return;
839     }
840   }
841 }
842
843 static bool VersionNumberSeparator(const char Separator) {
844   return (Separator == '.' || Separator == '_');
845 }
846
847 /// Parse a version number.
848 ///
849 /// version:
850 ///   simple-integer
851 ///   simple-integer '.' simple-integer
852 ///   simple-integer '_' simple-integer
853 ///   simple-integer '.' simple-integer '.' simple-integer
854 ///   simple-integer '_' simple-integer '_' simple-integer
855 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
856   Range = SourceRange(Tok.getLocation(), Tok.getEndLoc());
857
858   if (!Tok.is(tok::numeric_constant)) {
859     Diag(Tok, diag::err_expected_version);
860     SkipUntil(tok::comma, tok::r_paren,
861               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
862     return VersionTuple();
863   }
864
865   // Parse the major (and possibly minor and subminor) versions, which
866   // are stored in the numeric constant. We utilize a quirk of the
867   // lexer, which is that it handles something like 1.2.3 as a single
868   // numeric constant, rather than two separate tokens.
869   SmallString<512> Buffer;
870   Buffer.resize(Tok.getLength()+1);
871   const char *ThisTokBegin = &Buffer[0];
872
873   // Get the spelling of the token, which eliminates trigraphs, etc.
874   bool Invalid = false;
875   unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
876   if (Invalid)
877     return VersionTuple();
878
879   // Parse the major version.
880   unsigned AfterMajor = 0;
881   unsigned Major = 0;
882   while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
883     Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
884     ++AfterMajor;
885   }
886
887   if (AfterMajor == 0) {
888     Diag(Tok, diag::err_expected_version);
889     SkipUntil(tok::comma, tok::r_paren,
890               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
891     return VersionTuple();
892   }
893
894   if (AfterMajor == ActualLength) {
895     ConsumeToken();
896
897     // We only had a single version component.
898     if (Major == 0) {
899       Diag(Tok, diag::err_zero_version);
900       return VersionTuple();
901     }
902
903     return VersionTuple(Major);
904   }
905
906   const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
907   if (!VersionNumberSeparator(AfterMajorSeparator)
908       || (AfterMajor + 1 == ActualLength)) {
909     Diag(Tok, diag::err_expected_version);
910     SkipUntil(tok::comma, tok::r_paren,
911               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
912     return VersionTuple();
913   }
914
915   // Parse the minor version.
916   unsigned AfterMinor = AfterMajor + 1;
917   unsigned Minor = 0;
918   while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
919     Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
920     ++AfterMinor;
921   }
922
923   if (AfterMinor == ActualLength) {
924     ConsumeToken();
925
926     // We had major.minor.
927     if (Major == 0 && Minor == 0) {
928       Diag(Tok, diag::err_zero_version);
929       return VersionTuple();
930     }
931
932     return VersionTuple(Major, Minor);
933   }
934
935   const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
936   // If what follows is not a '.' or '_', we have a problem.
937   if (!VersionNumberSeparator(AfterMinorSeparator)) {
938     Diag(Tok, diag::err_expected_version);
939     SkipUntil(tok::comma, tok::r_paren,
940               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
941     return VersionTuple();
942   }
943
944   // Warn if separators, be it '.' or '_', do not match.
945   if (AfterMajorSeparator != AfterMinorSeparator)
946     Diag(Tok, diag::warn_expected_consistent_version_separator);
947
948   // Parse the subminor version.
949   unsigned AfterSubminor = AfterMinor + 1;
950   unsigned Subminor = 0;
951   while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
952     Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
953     ++AfterSubminor;
954   }
955
956   if (AfterSubminor != ActualLength) {
957     Diag(Tok, diag::err_expected_version);
958     SkipUntil(tok::comma, tok::r_paren,
959               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
960     return VersionTuple();
961   }
962   ConsumeToken();
963   return VersionTuple(Major, Minor, Subminor);
964 }
965
966 /// Parse the contents of the "availability" attribute.
967 ///
968 /// availability-attribute:
969 ///   'availability' '(' platform ',' opt-strict version-arg-list,
970 ///                      opt-replacement, opt-message')'
971 ///
972 /// platform:
973 ///   identifier
974 ///
975 /// opt-strict:
976 ///   'strict' ','
977 ///
978 /// version-arg-list:
979 ///   version-arg
980 ///   version-arg ',' version-arg-list
981 ///
982 /// version-arg:
983 ///   'introduced' '=' version
984 ///   'deprecated' '=' version
985 ///   'obsoleted' = version
986 ///   'unavailable'
987 /// opt-replacement:
988 ///   'replacement' '=' <string>
989 /// opt-message:
990 ///   'message' '=' <string>
991 void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
992                                         SourceLocation AvailabilityLoc,
993                                         ParsedAttributes &attrs,
994                                         SourceLocation *endLoc,
995                                         IdentifierInfo *ScopeName,
996                                         SourceLocation ScopeLoc,
997                                         ParsedAttr::Syntax Syntax) {
998   enum { Introduced, Deprecated, Obsoleted, Unknown };
999   AvailabilityChange Changes[Unknown];
1000   ExprResult MessageExpr, ReplacementExpr;
1001
1002   // Opening '('.
1003   BalancedDelimiterTracker T(*this, tok::l_paren);
1004   if (T.consumeOpen()) {
1005     Diag(Tok, diag::err_expected) << tok::l_paren;
1006     return;
1007   }
1008
1009   // Parse the platform name.
1010   if (Tok.isNot(tok::identifier)) {
1011     Diag(Tok, diag::err_availability_expected_platform);
1012     SkipUntil(tok::r_paren, StopAtSemi);
1013     return;
1014   }
1015   IdentifierLoc *Platform = ParseIdentifierLoc();
1016   if (const IdentifierInfo *const Ident = Platform->Ident) {
1017     // Canonicalize platform name from "macosx" to "macos".
1018     if (Ident->getName() == "macosx")
1019       Platform->Ident = PP.getIdentifierInfo("macos");
1020     // Canonicalize platform name from "macosx_app_extension" to
1021     // "macos_app_extension".
1022     else if (Ident->getName() == "macosx_app_extension")
1023       Platform->Ident = PP.getIdentifierInfo("macos_app_extension");
1024     else
1025       Platform->Ident = PP.getIdentifierInfo(
1026           AvailabilityAttr::canonicalizePlatformName(Ident->getName()));
1027   }
1028
1029   // Parse the ',' following the platform name.
1030   if (ExpectAndConsume(tok::comma)) {
1031     SkipUntil(tok::r_paren, StopAtSemi);
1032     return;
1033   }
1034
1035   // If we haven't grabbed the pointers for the identifiers
1036   // "introduced", "deprecated", and "obsoleted", do so now.
1037   if (!Ident_introduced) {
1038     Ident_introduced = PP.getIdentifierInfo("introduced");
1039     Ident_deprecated = PP.getIdentifierInfo("deprecated");
1040     Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
1041     Ident_unavailable = PP.getIdentifierInfo("unavailable");
1042     Ident_message = PP.getIdentifierInfo("message");
1043     Ident_strict = PP.getIdentifierInfo("strict");
1044     Ident_replacement = PP.getIdentifierInfo("replacement");
1045   }
1046
1047   // Parse the optional "strict", the optional "replacement" and the set of
1048   // introductions/deprecations/removals.
1049   SourceLocation UnavailableLoc, StrictLoc;
1050   do {
1051     if (Tok.isNot(tok::identifier)) {
1052       Diag(Tok, diag::err_availability_expected_change);
1053       SkipUntil(tok::r_paren, StopAtSemi);
1054       return;
1055     }
1056     IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1057     SourceLocation KeywordLoc = ConsumeToken();
1058
1059     if (Keyword == Ident_strict) {
1060       if (StrictLoc.isValid()) {
1061         Diag(KeywordLoc, diag::err_availability_redundant)
1062           << Keyword << SourceRange(StrictLoc);
1063       }
1064       StrictLoc = KeywordLoc;
1065       continue;
1066     }
1067
1068     if (Keyword == Ident_unavailable) {
1069       if (UnavailableLoc.isValid()) {
1070         Diag(KeywordLoc, diag::err_availability_redundant)
1071           << Keyword << SourceRange(UnavailableLoc);
1072       }
1073       UnavailableLoc = KeywordLoc;
1074       continue;
1075     }
1076
1077     if (Keyword == Ident_deprecated && Platform->Ident &&
1078         Platform->Ident->isStr("swift")) {
1079       // For swift, we deprecate for all versions.
1080       if (Changes[Deprecated].KeywordLoc.isValid()) {
1081         Diag(KeywordLoc, diag::err_availability_redundant)
1082           << Keyword
1083           << SourceRange(Changes[Deprecated].KeywordLoc);
1084       }
1085
1086       Changes[Deprecated].KeywordLoc = KeywordLoc;
1087       // Use a fake version here.
1088       Changes[Deprecated].Version = VersionTuple(1);
1089       continue;
1090     }
1091
1092     if (Tok.isNot(tok::equal)) {
1093       Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
1094       SkipUntil(tok::r_paren, StopAtSemi);
1095       return;
1096     }
1097     ConsumeToken();
1098     if (Keyword == Ident_message || Keyword == Ident_replacement) {
1099       if (Tok.isNot(tok::string_literal)) {
1100         Diag(Tok, diag::err_expected_string_literal)
1101           << /*Source='availability attribute'*/2;
1102         SkipUntil(tok::r_paren, StopAtSemi);
1103         return;
1104       }
1105       if (Keyword == Ident_message)
1106         MessageExpr = ParseStringLiteralExpression();
1107       else
1108         ReplacementExpr = ParseStringLiteralExpression();
1109       // Also reject wide string literals.
1110       if (StringLiteral *MessageStringLiteral =
1111               cast_or_null<StringLiteral>(MessageExpr.get())) {
1112         if (MessageStringLiteral->getCharByteWidth() != 1) {
1113           Diag(MessageStringLiteral->getSourceRange().getBegin(),
1114                diag::err_expected_string_literal)
1115             << /*Source='availability attribute'*/ 2;
1116           SkipUntil(tok::r_paren, StopAtSemi);
1117           return;
1118         }
1119       }
1120       if (Keyword == Ident_message)
1121         break;
1122       else
1123         continue;
1124     }
1125
1126     // Special handling of 'NA' only when applied to introduced or
1127     // deprecated.
1128     if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
1129         Tok.is(tok::identifier)) {
1130       IdentifierInfo *NA = Tok.getIdentifierInfo();
1131       if (NA->getName() == "NA") {
1132         ConsumeToken();
1133         if (Keyword == Ident_introduced)
1134           UnavailableLoc = KeywordLoc;
1135         continue;
1136       }
1137     }
1138
1139     SourceRange VersionRange;
1140     VersionTuple Version = ParseVersionTuple(VersionRange);
1141
1142     if (Version.empty()) {
1143       SkipUntil(tok::r_paren, StopAtSemi);
1144       return;
1145     }
1146
1147     unsigned Index;
1148     if (Keyword == Ident_introduced)
1149       Index = Introduced;
1150     else if (Keyword == Ident_deprecated)
1151       Index = Deprecated;
1152     else if (Keyword == Ident_obsoleted)
1153       Index = Obsoleted;
1154     else
1155       Index = Unknown;
1156
1157     if (Index < Unknown) {
1158       if (!Changes[Index].KeywordLoc.isInvalid()) {
1159         Diag(KeywordLoc, diag::err_availability_redundant)
1160           << Keyword
1161           << SourceRange(Changes[Index].KeywordLoc,
1162                          Changes[Index].VersionRange.getEnd());
1163       }
1164
1165       Changes[Index].KeywordLoc = KeywordLoc;
1166       Changes[Index].Version = Version;
1167       Changes[Index].VersionRange = VersionRange;
1168     } else {
1169       Diag(KeywordLoc, diag::err_availability_unknown_change)
1170         << Keyword << VersionRange;
1171     }
1172
1173   } while (TryConsumeToken(tok::comma));
1174
1175   // Closing ')'.
1176   if (T.consumeClose())
1177     return;
1178
1179   if (endLoc)
1180     *endLoc = T.getCloseLocation();
1181
1182   // The 'unavailable' availability cannot be combined with any other
1183   // availability changes. Make sure that hasn't happened.
1184   if (UnavailableLoc.isValid()) {
1185     bool Complained = false;
1186     for (unsigned Index = Introduced; Index != Unknown; ++Index) {
1187       if (Changes[Index].KeywordLoc.isValid()) {
1188         if (!Complained) {
1189           Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
1190             << SourceRange(Changes[Index].KeywordLoc,
1191                            Changes[Index].VersionRange.getEnd());
1192           Complained = true;
1193         }
1194
1195         // Clear out the availability.
1196         Changes[Index] = AvailabilityChange();
1197       }
1198     }
1199   }
1200
1201   // Record this attribute
1202   attrs.addNew(&Availability,
1203                SourceRange(AvailabilityLoc, T.getCloseLocation()),
1204                ScopeName, ScopeLoc,
1205                Platform,
1206                Changes[Introduced],
1207                Changes[Deprecated],
1208                Changes[Obsoleted],
1209                UnavailableLoc, MessageExpr.get(),
1210                Syntax, StrictLoc, ReplacementExpr.get());
1211 }
1212
1213 /// Parse the contents of the "external_source_symbol" attribute.
1214 ///
1215 /// external-source-symbol-attribute:
1216 ///   'external_source_symbol' '(' keyword-arg-list ')'
1217 ///
1218 /// keyword-arg-list:
1219 ///   keyword-arg
1220 ///   keyword-arg ',' keyword-arg-list
1221 ///
1222 /// keyword-arg:
1223 ///   'language' '=' <string>
1224 ///   'defined_in' '=' <string>
1225 ///   'generated_declaration'
1226 void Parser::ParseExternalSourceSymbolAttribute(
1227     IdentifierInfo &ExternalSourceSymbol, SourceLocation Loc,
1228     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1229     SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
1230   // Opening '('.
1231   BalancedDelimiterTracker T(*this, tok::l_paren);
1232   if (T.expectAndConsume())
1233     return;
1234
1235   // Initialize the pointers for the keyword identifiers when required.
1236   if (!Ident_language) {
1237     Ident_language = PP.getIdentifierInfo("language");
1238     Ident_defined_in = PP.getIdentifierInfo("defined_in");
1239     Ident_generated_declaration = PP.getIdentifierInfo("generated_declaration");
1240   }
1241
1242   ExprResult Language;
1243   bool HasLanguage = false;
1244   ExprResult DefinedInExpr;
1245   bool HasDefinedIn = false;
1246   IdentifierLoc *GeneratedDeclaration = nullptr;
1247
1248   // Parse the language/defined_in/generated_declaration keywords
1249   do {
1250     if (Tok.isNot(tok::identifier)) {
1251       Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1252       SkipUntil(tok::r_paren, StopAtSemi);
1253       return;
1254     }
1255
1256     SourceLocation KeywordLoc = Tok.getLocation();
1257     IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1258     if (Keyword == Ident_generated_declaration) {
1259       if (GeneratedDeclaration) {
1260         Diag(Tok, diag::err_external_source_symbol_duplicate_clause) << Keyword;
1261         SkipUntil(tok::r_paren, StopAtSemi);
1262         return;
1263       }
1264       GeneratedDeclaration = ParseIdentifierLoc();
1265       continue;
1266     }
1267
1268     if (Keyword != Ident_language && Keyword != Ident_defined_in) {
1269       Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1270       SkipUntil(tok::r_paren, StopAtSemi);
1271       return;
1272     }
1273
1274     ConsumeToken();
1275     if (ExpectAndConsume(tok::equal, diag::err_expected_after,
1276                          Keyword->getName())) {
1277       SkipUntil(tok::r_paren, StopAtSemi);
1278       return;
1279     }
1280
1281     bool HadLanguage = HasLanguage, HadDefinedIn = HasDefinedIn;
1282     if (Keyword == Ident_language)
1283       HasLanguage = true;
1284     else
1285       HasDefinedIn = true;
1286
1287     if (Tok.isNot(tok::string_literal)) {
1288       Diag(Tok, diag::err_expected_string_literal)
1289           << /*Source='external_source_symbol attribute'*/ 3
1290           << /*language | source container*/ (Keyword != Ident_language);
1291       SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
1292       continue;
1293     }
1294     if (Keyword == Ident_language) {
1295       if (HadLanguage) {
1296         Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1297             << Keyword;
1298         ParseStringLiteralExpression();
1299         continue;
1300       }
1301       Language = ParseStringLiteralExpression();
1302     } else {
1303       assert(Keyword == Ident_defined_in && "Invalid clause keyword!");
1304       if (HadDefinedIn) {
1305         Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1306             << Keyword;
1307         ParseStringLiteralExpression();
1308         continue;
1309       }
1310       DefinedInExpr = ParseStringLiteralExpression();
1311     }
1312   } while (TryConsumeToken(tok::comma));
1313
1314   // Closing ')'.
1315   if (T.consumeClose())
1316     return;
1317   if (EndLoc)
1318     *EndLoc = T.getCloseLocation();
1319
1320   ArgsUnion Args[] = {Language.get(), DefinedInExpr.get(),
1321                       GeneratedDeclaration};
1322   Attrs.addNew(&ExternalSourceSymbol, SourceRange(Loc, T.getCloseLocation()),
1323                ScopeName, ScopeLoc, Args, llvm::array_lengthof(Args), Syntax);
1324 }
1325
1326 /// Parse the contents of the "objc_bridge_related" attribute.
1327 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
1328 /// related_class:
1329 ///     Identifier
1330 ///
1331 /// opt-class_method:
1332 ///     Identifier: | <empty>
1333 ///
1334 /// opt-instance_method:
1335 ///     Identifier | <empty>
1336 ///
1337 void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
1338                                 SourceLocation ObjCBridgeRelatedLoc,
1339                                 ParsedAttributes &attrs,
1340                                 SourceLocation *endLoc,
1341                                 IdentifierInfo *ScopeName,
1342                                 SourceLocation ScopeLoc,
1343                                 ParsedAttr::Syntax Syntax) {
1344   // Opening '('.
1345   BalancedDelimiterTracker T(*this, tok::l_paren);
1346   if (T.consumeOpen()) {
1347     Diag(Tok, diag::err_expected) << tok::l_paren;
1348     return;
1349   }
1350
1351   // Parse the related class name.
1352   if (Tok.isNot(tok::identifier)) {
1353     Diag(Tok, diag::err_objcbridge_related_expected_related_class);
1354     SkipUntil(tok::r_paren, StopAtSemi);
1355     return;
1356   }
1357   IdentifierLoc *RelatedClass = ParseIdentifierLoc();
1358   if (ExpectAndConsume(tok::comma)) {
1359     SkipUntil(tok::r_paren, StopAtSemi);
1360     return;
1361   }
1362
1363   // Parse class method name.  It's non-optional in the sense that a trailing
1364   // comma is required, but it can be the empty string, and then we record a
1365   // nullptr.
1366   IdentifierLoc *ClassMethod = nullptr;
1367   if (Tok.is(tok::identifier)) {
1368     ClassMethod = ParseIdentifierLoc();
1369     if (!TryConsumeToken(tok::colon)) {
1370       Diag(Tok, diag::err_objcbridge_related_selector_name);
1371       SkipUntil(tok::r_paren, StopAtSemi);
1372       return;
1373     }
1374   }
1375   if (!TryConsumeToken(tok::comma)) {
1376     if (Tok.is(tok::colon))
1377       Diag(Tok, diag::err_objcbridge_related_selector_name);
1378     else
1379       Diag(Tok, diag::err_expected) << tok::comma;
1380     SkipUntil(tok::r_paren, StopAtSemi);
1381     return;
1382   }
1383
1384   // Parse instance method name.  Also non-optional but empty string is
1385   // permitted.
1386   IdentifierLoc *InstanceMethod = nullptr;
1387   if (Tok.is(tok::identifier))
1388     InstanceMethod = ParseIdentifierLoc();
1389   else if (Tok.isNot(tok::r_paren)) {
1390     Diag(Tok, diag::err_expected) << tok::r_paren;
1391     SkipUntil(tok::r_paren, StopAtSemi);
1392     return;
1393   }
1394
1395   // Closing ')'.
1396   if (T.consumeClose())
1397     return;
1398
1399   if (endLoc)
1400     *endLoc = T.getCloseLocation();
1401
1402   // Record this attribute
1403   attrs.addNew(&ObjCBridgeRelated,
1404                SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
1405                ScopeName, ScopeLoc,
1406                RelatedClass,
1407                ClassMethod,
1408                InstanceMethod,
1409                Syntax);
1410 }
1411
1412 // Late Parsed Attributes:
1413 // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
1414
1415 void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
1416
1417 void Parser::LateParsedClass::ParseLexedAttributes() {
1418   Self->ParseLexedAttributes(*Class);
1419 }
1420
1421 void Parser::LateParsedAttribute::ParseLexedAttributes() {
1422   Self->ParseLexedAttribute(*this, true, false);
1423 }
1424
1425 /// Wrapper class which calls ParseLexedAttribute, after setting up the
1426 /// scope appropriately.
1427 void Parser::ParseLexedAttributes(ParsingClass &Class) {
1428   // Deal with templates
1429   // FIXME: Test cases to make sure this does the right thing for templates.
1430   bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
1431   ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
1432                                 HasTemplateScope);
1433   if (HasTemplateScope)
1434     Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
1435
1436   // Set or update the scope flags.
1437   bool AlreadyHasClassScope = Class.TopLevelClass;
1438   unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
1439   ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
1440   ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
1441
1442   // Enter the scope of nested classes
1443   if (!AlreadyHasClassScope)
1444     Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
1445                                                 Class.TagOrTemplate);
1446   if (!Class.LateParsedDeclarations.empty()) {
1447     for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
1448       Class.LateParsedDeclarations[i]->ParseLexedAttributes();
1449     }
1450   }
1451
1452   if (!AlreadyHasClassScope)
1453     Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
1454                                                  Class.TagOrTemplate);
1455 }
1456
1457 /// Parse all attributes in LAs, and attach them to Decl D.
1458 void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
1459                                      bool EnterScope, bool OnDefinition) {
1460   assert(LAs.parseSoon() &&
1461          "Attribute list should be marked for immediate parsing.");
1462   for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
1463     if (D)
1464       LAs[i]->addDecl(D);
1465     ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
1466     delete LAs[i];
1467   }
1468   LAs.clear();
1469 }
1470
1471 /// Finish parsing an attribute for which parsing was delayed.
1472 /// This will be called at the end of parsing a class declaration
1473 /// for each LateParsedAttribute. We consume the saved tokens and
1474 /// create an attribute with the arguments filled in. We add this
1475 /// to the Attribute list for the decl.
1476 void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
1477                                  bool EnterScope, bool OnDefinition) {
1478   // Create a fake EOF so that attribute parsing won't go off the end of the
1479   // attribute.
1480   Token AttrEnd;
1481   AttrEnd.startToken();
1482   AttrEnd.setKind(tok::eof);
1483   AttrEnd.setLocation(Tok.getLocation());
1484   AttrEnd.setEofData(LA.Toks.data());
1485   LA.Toks.push_back(AttrEnd);
1486
1487   // Append the current token at the end of the new token stream so that it
1488   // doesn't get lost.
1489   LA.Toks.push_back(Tok);
1490   PP.EnterTokenStream(LA.Toks, true, /*IsReinject=*/true);
1491   // Consume the previously pushed token.
1492   ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
1493
1494   ParsedAttributes Attrs(AttrFactory);
1495   SourceLocation endLoc;
1496
1497   if (LA.Decls.size() > 0) {
1498     Decl *D = LA.Decls[0];
1499     NamedDecl *ND  = dyn_cast<NamedDecl>(D);
1500     RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
1501
1502     // Allow 'this' within late-parsed attributes.
1503     Sema::CXXThisScopeRAII ThisScope(Actions, RD, Qualifiers(),
1504                                      ND && ND->isCXXInstanceMember());
1505
1506     if (LA.Decls.size() == 1) {
1507       // If the Decl is templatized, add template parameters to scope.
1508       bool HasTemplateScope = EnterScope && D->isTemplateDecl();
1509       ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
1510       if (HasTemplateScope)
1511         Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
1512
1513       // If the Decl is on a function, add function parameters to the scope.
1514       bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
1515       ParseScope FnScope(
1516           this, Scope::FnScope | Scope::DeclScope | Scope::CompoundStmtScope,
1517           HasFunScope);
1518       if (HasFunScope)
1519         Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
1520
1521       ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1522                             nullptr, SourceLocation(), ParsedAttr::AS_GNU,
1523                             nullptr);
1524
1525       if (HasFunScope) {
1526         Actions.ActOnExitFunctionContext();
1527         FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
1528       }
1529       if (HasTemplateScope) {
1530         TempScope.Exit();
1531       }
1532     } else {
1533       // If there are multiple decls, then the decl cannot be within the
1534       // function scope.
1535       ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1536                             nullptr, SourceLocation(), ParsedAttr::AS_GNU,
1537                             nullptr);
1538     }
1539   } else {
1540     Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
1541   }
1542
1543   if (OnDefinition && !Attrs.empty() && !Attrs.begin()->isCXX11Attribute() &&
1544       Attrs.begin()->isKnownToGCC())
1545     Diag(Tok, diag::warn_attribute_on_function_definition)
1546       << &LA.AttrName;
1547
1548   for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
1549     Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
1550
1551   // Due to a parsing error, we either went over the cached tokens or
1552   // there are still cached tokens left, so we skip the leftover tokens.
1553   while (Tok.isNot(tok::eof))
1554     ConsumeAnyToken();
1555
1556   if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())
1557     ConsumeAnyToken();
1558 }
1559
1560 void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
1561                                               SourceLocation AttrNameLoc,
1562                                               ParsedAttributes &Attrs,
1563                                               SourceLocation *EndLoc,
1564                                               IdentifierInfo *ScopeName,
1565                                               SourceLocation ScopeLoc,
1566                                               ParsedAttr::Syntax Syntax) {
1567   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1568
1569   BalancedDelimiterTracker T(*this, tok::l_paren);
1570   T.consumeOpen();
1571
1572   if (Tok.isNot(tok::identifier)) {
1573     Diag(Tok, diag::err_expected) << tok::identifier;
1574     T.skipToEnd();
1575     return;
1576   }
1577   IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1578
1579   if (ExpectAndConsume(tok::comma)) {
1580     T.skipToEnd();
1581     return;
1582   }
1583
1584   SourceRange MatchingCTypeRange;
1585   TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1586   if (MatchingCType.isInvalid()) {
1587     T.skipToEnd();
1588     return;
1589   }
1590
1591   bool LayoutCompatible = false;
1592   bool MustBeNull = false;
1593   while (TryConsumeToken(tok::comma)) {
1594     if (Tok.isNot(tok::identifier)) {
1595       Diag(Tok, diag::err_expected) << tok::identifier;
1596       T.skipToEnd();
1597       return;
1598     }
1599     IdentifierInfo *Flag = Tok.getIdentifierInfo();
1600     if (Flag->isStr("layout_compatible"))
1601       LayoutCompatible = true;
1602     else if (Flag->isStr("must_be_null"))
1603       MustBeNull = true;
1604     else {
1605       Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1606       T.skipToEnd();
1607       return;
1608     }
1609     ConsumeToken(); // consume flag
1610   }
1611
1612   if (!T.consumeClose()) {
1613     Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
1614                                    ArgumentKind, MatchingCType.get(),
1615                                    LayoutCompatible, MustBeNull, Syntax);
1616   }
1617
1618   if (EndLoc)
1619     *EndLoc = T.getCloseLocation();
1620 }
1621
1622 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1623 /// of a C++11 attribute-specifier in a location where an attribute is not
1624 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1625 /// situation.
1626 ///
1627 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1628 /// this doesn't appear to actually be an attribute-specifier, and the caller
1629 /// should try to parse it.
1630 bool Parser::DiagnoseProhibitedCXX11Attribute() {
1631   assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1632
1633   switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1634   case CAK_NotAttributeSpecifier:
1635     // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1636     return false;
1637
1638   case CAK_InvalidAttributeSpecifier:
1639     Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1640     return false;
1641
1642   case CAK_AttributeSpecifier:
1643     // Parse and discard the attributes.
1644     SourceLocation BeginLoc = ConsumeBracket();
1645     ConsumeBracket();
1646     SkipUntil(tok::r_square);
1647     assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1648     SourceLocation EndLoc = ConsumeBracket();
1649     Diag(BeginLoc, diag::err_attributes_not_allowed)
1650       << SourceRange(BeginLoc, EndLoc);
1651     return true;
1652   }
1653   llvm_unreachable("All cases handled above.");
1654 }
1655
1656 /// We have found the opening square brackets of a C++11
1657 /// attribute-specifier in a location where an attribute is not permitted, but
1658 /// we know where the attributes ought to be written. Parse them anyway, and
1659 /// provide a fixit moving them to the right place.
1660 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
1661                                              SourceLocation CorrectLocation) {
1662   assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1663          Tok.is(tok::kw_alignas));
1664
1665   // Consume the attributes.
1666   SourceLocation Loc = Tok.getLocation();
1667   ParseCXX11Attributes(Attrs);
1668   CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1669   // FIXME: use err_attributes_misplaced
1670   Diag(Loc, diag::err_attributes_not_allowed)
1671     << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1672     << FixItHint::CreateRemoval(AttrRange);
1673 }
1674
1675 void Parser::DiagnoseProhibitedAttributes(
1676     const SourceRange &Range, const SourceLocation CorrectLocation) {
1677   if (CorrectLocation.isValid()) {
1678     CharSourceRange AttrRange(Range, true);
1679     Diag(CorrectLocation, diag::err_attributes_misplaced)
1680         << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1681         << FixItHint::CreateRemoval(AttrRange);
1682   } else
1683     Diag(Range.getBegin(), diag::err_attributes_not_allowed) << Range;
1684 }
1685
1686 void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &Attrs,
1687                                      unsigned DiagID) {
1688   for (const ParsedAttr &AL : Attrs) {
1689     if (!AL.isCXX11Attribute() && !AL.isC2xAttribute())
1690       continue;
1691     if (AL.getKind() == ParsedAttr::UnknownAttribute)
1692       Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL;
1693     else {
1694       Diag(AL.getLoc(), DiagID) << AL;
1695       AL.setInvalid();
1696     }
1697   }
1698 }
1699
1700 // Usually, `__attribute__((attrib)) class Foo {} var` means that attribute
1701 // applies to var, not the type Foo.
1702 // As an exception to the rule, __declspec(align(...)) before the
1703 // class-key affects the type instead of the variable.
1704 // Also, Microsoft-style [attributes] seem to affect the type instead of the
1705 // variable.
1706 // This function moves attributes that should apply to the type off DS to Attrs.
1707 void Parser::stripTypeAttributesOffDeclSpec(ParsedAttributesWithRange &Attrs,
1708                                             DeclSpec &DS,
1709                                             Sema::TagUseKind TUK) {
1710   if (TUK == Sema::TUK_Reference)
1711     return;
1712
1713   llvm::SmallVector<ParsedAttr *, 1> ToBeMoved;
1714
1715   for (ParsedAttr &AL : DS.getAttributes()) {
1716     if ((AL.getKind() == ParsedAttr::AT_Aligned &&
1717          AL.isDeclspecAttribute()) ||
1718         AL.isMicrosoftAttribute())
1719       ToBeMoved.push_back(&AL);
1720   }
1721
1722   for (ParsedAttr *AL : ToBeMoved) {
1723     DS.getAttributes().remove(AL);
1724     Attrs.addAtEnd(AL);
1725   }
1726 }
1727
1728 /// ParseDeclaration - Parse a full 'declaration', which consists of
1729 /// declaration-specifiers, some number of declarators, and a semicolon.
1730 /// 'Context' should be a DeclaratorContext value.  This returns the
1731 /// location of the semicolon in DeclEnd.
1732 ///
1733 ///       declaration: [C99 6.7]
1734 ///         block-declaration ->
1735 ///           simple-declaration
1736 ///           others                   [FIXME]
1737 /// [C++]   template-declaration
1738 /// [C++]   namespace-definition
1739 /// [C++]   using-directive
1740 /// [C++]   using-declaration
1741 /// [C++11/C11] static_assert-declaration
1742 ///         others... [FIXME]
1743 ///
1744 Parser::DeclGroupPtrTy
1745 Parser::ParseDeclaration(DeclaratorContext Context, SourceLocation &DeclEnd,
1746                          ParsedAttributesWithRange &attrs,
1747                          SourceLocation *DeclSpecStart) {
1748   ParenBraceBracketBalancer BalancerRAIIObj(*this);
1749   // Must temporarily exit the objective-c container scope for
1750   // parsing c none objective-c decls.
1751   ObjCDeclContextSwitch ObjCDC(*this);
1752
1753   Decl *SingleDecl = nullptr;
1754   switch (Tok.getKind()) {
1755   case tok::kw_template:
1756   case tok::kw_export:
1757     ProhibitAttributes(attrs);
1758     SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd, attrs);
1759     break;
1760   case tok::kw_inline:
1761     // Could be the start of an inline namespace. Allowed as an ext in C++03.
1762     if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
1763       ProhibitAttributes(attrs);
1764       SourceLocation InlineLoc = ConsumeToken();
1765       return ParseNamespace(Context, DeclEnd, InlineLoc);
1766     }
1767     return ParseSimpleDeclaration(Context, DeclEnd, attrs, true, nullptr,
1768                                   DeclSpecStart);
1769   case tok::kw_namespace:
1770     ProhibitAttributes(attrs);
1771     return ParseNamespace(Context, DeclEnd);
1772   case tok::kw_using:
1773     return ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
1774                                             DeclEnd, attrs);
1775   case tok::kw_static_assert:
1776   case tok::kw__Static_assert:
1777     ProhibitAttributes(attrs);
1778     SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1779     break;
1780   default:
1781     return ParseSimpleDeclaration(Context, DeclEnd, attrs, true, nullptr,
1782                                   DeclSpecStart);
1783   }
1784
1785   // This routine returns a DeclGroup, if the thing we parsed only contains a
1786   // single decl, convert it now.
1787   return Actions.ConvertDeclToDeclGroup(SingleDecl);
1788 }
1789
1790 ///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1791 ///         declaration-specifiers init-declarator-list[opt] ';'
1792 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
1793 ///             init-declarator-list ';'
1794 ///[C90/C++]init-declarator-list ';'                             [TODO]
1795 /// [OMP]   threadprivate-directive
1796 /// [OMP]   allocate-directive                                   [TODO]
1797 ///
1798 ///       for-range-declaration: [C++11 6.5p1: stmt.ranged]
1799 ///         attribute-specifier-seq[opt] type-specifier-seq declarator
1800 ///
1801 /// If RequireSemi is false, this does not check for a ';' at the end of the
1802 /// declaration.  If it is true, it checks for and eats it.
1803 ///
1804 /// If FRI is non-null, we might be parsing a for-range-declaration instead
1805 /// of a simple-declaration. If we find that we are, we also parse the
1806 /// for-range-initializer, and place it here.
1807 ///
1808 /// DeclSpecStart is used when decl-specifiers are parsed before parsing
1809 /// the Declaration. The SourceLocation for this Decl is set to
1810 /// DeclSpecStart if DeclSpecStart is non-null.
1811 Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(
1812     DeclaratorContext Context, SourceLocation &DeclEnd,
1813     ParsedAttributesWithRange &Attrs, bool RequireSemi, ForRangeInit *FRI,
1814     SourceLocation *DeclSpecStart) {
1815   // Parse the common declaration-specifiers piece.
1816   ParsingDeclSpec DS(*this);
1817
1818   DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
1819   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
1820
1821   // If we had a free-standing type definition with a missing semicolon, we
1822   // may get this far before the problem becomes obvious.
1823   if (DS.hasTagDefinition() &&
1824       DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
1825     return nullptr;
1826
1827   // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
1828   // declaration-specifiers init-declarator-list[opt] ';'
1829   if (Tok.is(tok::semi)) {
1830     ProhibitAttributes(Attrs);
1831     DeclEnd = Tok.getLocation();
1832     if (RequireSemi) ConsumeToken();
1833     RecordDecl *AnonRecord = nullptr;
1834     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1835                                                        DS, AnonRecord);
1836     DS.complete(TheDecl);
1837     if (AnonRecord) {
1838       Decl* decls[] = {AnonRecord, TheDecl};
1839       return Actions.BuildDeclaratorGroup(decls);
1840     }
1841     return Actions.ConvertDeclToDeclGroup(TheDecl);
1842   }
1843
1844   if (DeclSpecStart)
1845     DS.SetRangeStart(*DeclSpecStart);
1846
1847   DS.takeAttributesFrom(Attrs);
1848   return ParseDeclGroup(DS, Context, &DeclEnd, FRI);
1849 }
1850
1851 /// Returns true if this might be the start of a declarator, or a common typo
1852 /// for a declarator.
1853 bool Parser::MightBeDeclarator(DeclaratorContext Context) {
1854   switch (Tok.getKind()) {
1855   case tok::annot_cxxscope:
1856   case tok::annot_template_id:
1857   case tok::caret:
1858   case tok::code_completion:
1859   case tok::coloncolon:
1860   case tok::ellipsis:
1861   case tok::kw___attribute:
1862   case tok::kw_operator:
1863   case tok::l_paren:
1864   case tok::star:
1865     return true;
1866
1867   case tok::amp:
1868   case tok::ampamp:
1869     return getLangOpts().CPlusPlus;
1870
1871   case tok::l_square: // Might be an attribute on an unnamed bit-field.
1872     return Context == DeclaratorContext::MemberContext &&
1873            getLangOpts().CPlusPlus11 && NextToken().is(tok::l_square);
1874
1875   case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1876     return Context == DeclaratorContext::MemberContext ||
1877            getLangOpts().CPlusPlus;
1878
1879   case tok::identifier:
1880     switch (NextToken().getKind()) {
1881     case tok::code_completion:
1882     case tok::coloncolon:
1883     case tok::comma:
1884     case tok::equal:
1885     case tok::equalequal: // Might be a typo for '='.
1886     case tok::kw_alignas:
1887     case tok::kw_asm:
1888     case tok::kw___attribute:
1889     case tok::l_brace:
1890     case tok::l_paren:
1891     case tok::l_square:
1892     case tok::less:
1893     case tok::r_brace:
1894     case tok::r_paren:
1895     case tok::r_square:
1896     case tok::semi:
1897       return true;
1898
1899     case tok::colon:
1900       // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1901       // and in block scope it's probably a label. Inside a class definition,
1902       // this is a bit-field.
1903       return Context == DeclaratorContext::MemberContext ||
1904              (getLangOpts().CPlusPlus &&
1905               Context == DeclaratorContext::FileContext);
1906
1907     case tok::identifier: // Possible virt-specifier.
1908       return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
1909
1910     default:
1911       return false;
1912     }
1913
1914   default:
1915     return false;
1916   }
1917 }
1918
1919 /// Skip until we reach something which seems like a sensible place to pick
1920 /// up parsing after a malformed declaration. This will sometimes stop sooner
1921 /// than SkipUntil(tok::r_brace) would, but will never stop later.
1922 void Parser::SkipMalformedDecl() {
1923   while (true) {
1924     switch (Tok.getKind()) {
1925     case tok::l_brace:
1926       // Skip until matching }, then stop. We've probably skipped over
1927       // a malformed class or function definition or similar.
1928       ConsumeBrace();
1929       SkipUntil(tok::r_brace);
1930       if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) {
1931         // This declaration isn't over yet. Keep skipping.
1932         continue;
1933       }
1934       TryConsumeToken(tok::semi);
1935       return;
1936
1937     case tok::l_square:
1938       ConsumeBracket();
1939       SkipUntil(tok::r_square);
1940       continue;
1941
1942     case tok::l_paren:
1943       ConsumeParen();
1944       SkipUntil(tok::r_paren);
1945       continue;
1946
1947     case tok::r_brace:
1948       return;
1949
1950     case tok::semi:
1951       ConsumeToken();
1952       return;
1953
1954     case tok::kw_inline:
1955       // 'inline namespace' at the start of a line is almost certainly
1956       // a good place to pick back up parsing, except in an Objective-C
1957       // @interface context.
1958       if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
1959           (!ParsingInObjCContainer || CurParsedObjCImpl))
1960         return;
1961       break;
1962
1963     case tok::kw_namespace:
1964       // 'namespace' at the start of a line is almost certainly a good
1965       // place to pick back up parsing, except in an Objective-C
1966       // @interface context.
1967       if (Tok.isAtStartOfLine() &&
1968           (!ParsingInObjCContainer || CurParsedObjCImpl))
1969         return;
1970       break;
1971
1972     case tok::at:
1973       // @end is very much like } in Objective-C contexts.
1974       if (NextToken().isObjCAtKeyword(tok::objc_end) &&
1975           ParsingInObjCContainer)
1976         return;
1977       break;
1978
1979     case tok::minus:
1980     case tok::plus:
1981       // - and + probably start new method declarations in Objective-C contexts.
1982       if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
1983         return;
1984       break;
1985
1986     case tok::eof:
1987     case tok::annot_module_begin:
1988     case tok::annot_module_end:
1989     case tok::annot_module_include:
1990       return;
1991
1992     default:
1993       break;
1994     }
1995
1996     ConsumeAnyToken();
1997   }
1998 }
1999
2000 /// ParseDeclGroup - Having concluded that this is either a function
2001 /// definition or a group of object declarations, actually parse the
2002 /// result.
2003 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
2004                                               DeclaratorContext Context,
2005                                               SourceLocation *DeclEnd,
2006                                               ForRangeInit *FRI) {
2007   // Parse the first declarator.
2008   ParsingDeclarator D(*this, DS, Context);
2009   ParseDeclarator(D);
2010
2011   // Bail out if the first declarator didn't seem well-formed.
2012   if (!D.hasName() && !D.mayOmitIdentifier()) {
2013     SkipMalformedDecl();
2014     return nullptr;
2015   }
2016
2017   // Save late-parsed attributes for now; they need to be parsed in the
2018   // appropriate function scope after the function Decl has been constructed.
2019   // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
2020   LateParsedAttrList LateParsedAttrs(true);
2021   if (D.isFunctionDeclarator()) {
2022     MaybeParseGNUAttributes(D, &LateParsedAttrs);
2023
2024     // The _Noreturn keyword can't appear here, unlike the GNU noreturn
2025     // attribute. If we find the keyword here, tell the user to put it
2026     // at the start instead.
2027     if (Tok.is(tok::kw__Noreturn)) {
2028       SourceLocation Loc = ConsumeToken();
2029       const char *PrevSpec;
2030       unsigned DiagID;
2031
2032       // We can offer a fixit if it's valid to mark this function as _Noreturn
2033       // and we don't have any other declarators in this declaration.
2034       bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
2035       MaybeParseGNUAttributes(D, &LateParsedAttrs);
2036       Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try);
2037
2038       Diag(Loc, diag::err_c11_noreturn_misplaced)
2039           << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
2040           << (Fixit ? FixItHint::CreateInsertion(D.getBeginLoc(), "_Noreturn ")
2041                     : FixItHint());
2042     }
2043   }
2044
2045   // Check to see if we have a function *definition* which must have a body.
2046   if (D.isFunctionDeclarator() &&
2047       // Look at the next token to make sure that this isn't a function
2048       // declaration.  We have to check this because __attribute__ might be the
2049       // start of a function definition in GCC-extended K&R C.
2050       !isDeclarationAfterDeclarator()) {
2051
2052     // Function definitions are only allowed at file scope and in C++ classes.
2053     // The C++ inline method definition case is handled elsewhere, so we only
2054     // need to handle the file scope definition case.
2055     if (Context == DeclaratorContext::FileContext) {
2056       if (isStartOfFunctionDefinition(D)) {
2057         if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
2058           Diag(Tok, diag::err_function_declared_typedef);
2059
2060           // Recover by treating the 'typedef' as spurious.
2061           DS.ClearStorageClassSpecs();
2062         }
2063
2064         Decl *TheDecl =
2065           ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
2066         return Actions.ConvertDeclToDeclGroup(TheDecl);
2067       }
2068
2069       if (isDeclarationSpecifier()) {
2070         // If there is an invalid declaration specifier right after the
2071         // function prototype, then we must be in a missing semicolon case
2072         // where this isn't actually a body.  Just fall through into the code
2073         // that handles it as a prototype, and let the top-level code handle
2074         // the erroneous declspec where it would otherwise expect a comma or
2075         // semicolon.
2076       } else {
2077         Diag(Tok, diag::err_expected_fn_body);
2078         SkipUntil(tok::semi);
2079         return nullptr;
2080       }
2081     } else {
2082       if (Tok.is(tok::l_brace)) {
2083         Diag(Tok, diag::err_function_definition_not_allowed);
2084         SkipMalformedDecl();
2085         return nullptr;
2086       }
2087     }
2088   }
2089
2090   if (ParseAsmAttributesAfterDeclarator(D))
2091     return nullptr;
2092
2093   // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
2094   // must parse and analyze the for-range-initializer before the declaration is
2095   // analyzed.
2096   //
2097   // Handle the Objective-C for-in loop variable similarly, although we
2098   // don't need to parse the container in advance.
2099   if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
2100     bool IsForRangeLoop = false;
2101     if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
2102       IsForRangeLoop = true;
2103       if (getLangOpts().OpenMP)
2104         Actions.startOpenMPCXXRangeFor();
2105       if (Tok.is(tok::l_brace))
2106         FRI->RangeExpr = ParseBraceInitializer();
2107       else
2108         FRI->RangeExpr = ParseExpression();
2109     }
2110
2111     Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2112     if (IsForRangeLoop) {
2113       Actions.ActOnCXXForRangeDecl(ThisDecl);
2114     } else {
2115       // Obj-C for loop
2116       if (auto *VD = dyn_cast_or_null<VarDecl>(ThisDecl))
2117         VD->setObjCForDecl(true);
2118     }
2119     Actions.FinalizeDeclaration(ThisDecl);
2120     D.complete(ThisDecl);
2121     return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
2122   }
2123
2124   SmallVector<Decl *, 8> DeclsInGroup;
2125   Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
2126       D, ParsedTemplateInfo(), FRI);
2127   if (LateParsedAttrs.size() > 0)
2128     ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
2129   D.complete(FirstDecl);
2130   if (FirstDecl)
2131     DeclsInGroup.push_back(FirstDecl);
2132
2133   bool ExpectSemi = Context != DeclaratorContext::ForContext;
2134
2135   // If we don't have a comma, it is either the end of the list (a ';') or an
2136   // error, bail out.
2137   SourceLocation CommaLoc;
2138   while (TryConsumeToken(tok::comma, CommaLoc)) {
2139     if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
2140       // This comma was followed by a line-break and something which can't be
2141       // the start of a declarator. The comma was probably a typo for a
2142       // semicolon.
2143       Diag(CommaLoc, diag::err_expected_semi_declaration)
2144         << FixItHint::CreateReplacement(CommaLoc, ";");
2145       ExpectSemi = false;
2146       break;
2147     }
2148
2149     // Parse the next declarator.
2150     D.clear();
2151     D.setCommaLoc(CommaLoc);
2152
2153     // Accept attributes in an init-declarator.  In the first declarator in a
2154     // declaration, these would be part of the declspec.  In subsequent
2155     // declarators, they become part of the declarator itself, so that they
2156     // don't apply to declarators after *this* one.  Examples:
2157     //    short __attribute__((common)) var;    -> declspec
2158     //    short var __attribute__((common));    -> declarator
2159     //    short x, __attribute__((common)) var;    -> declarator
2160     MaybeParseGNUAttributes(D);
2161
2162     // MSVC parses but ignores qualifiers after the comma as an extension.
2163     if (getLangOpts().MicrosoftExt)
2164       DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
2165
2166     ParseDeclarator(D);
2167     if (!D.isInvalidType()) {
2168       Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
2169       D.complete(ThisDecl);
2170       if (ThisDecl)
2171         DeclsInGroup.push_back(ThisDecl);
2172     }
2173   }
2174
2175   if (DeclEnd)
2176     *DeclEnd = Tok.getLocation();
2177
2178   if (ExpectSemi &&
2179       ExpectAndConsumeSemi(Context == DeclaratorContext::FileContext
2180                            ? diag::err_invalid_token_after_toplevel_declarator
2181                            : diag::err_expected_semi_declaration)) {
2182     // Okay, there was no semicolon and one was expected.  If we see a
2183     // declaration specifier, just assume it was missing and continue parsing.
2184     // Otherwise things are very confused and we skip to recover.
2185     if (!isDeclarationSpecifier()) {
2186       SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
2187       TryConsumeToken(tok::semi);
2188     }
2189   }
2190
2191   return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
2192 }
2193
2194 /// Parse an optional simple-asm-expr and attributes, and attach them to a
2195 /// declarator. Returns true on an error.
2196 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
2197   // If a simple-asm-expr is present, parse it.
2198   if (Tok.is(tok::kw_asm)) {
2199     SourceLocation Loc;
2200     ExprResult AsmLabel(ParseSimpleAsm(&Loc));
2201     if (AsmLabel.isInvalid()) {
2202       SkipUntil(tok::semi, StopBeforeMatch);
2203       return true;
2204     }
2205
2206     D.setAsmLabel(AsmLabel.get());
2207     D.SetRangeEnd(Loc);
2208   }
2209
2210   MaybeParseGNUAttributes(D);
2211   return false;
2212 }
2213
2214 /// Parse 'declaration' after parsing 'declaration-specifiers
2215 /// declarator'. This method parses the remainder of the declaration
2216 /// (including any attributes or initializer, among other things) and
2217 /// finalizes the declaration.
2218 ///
2219 ///       init-declarator: [C99 6.7]
2220 ///         declarator
2221 ///         declarator '=' initializer
2222 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
2223 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
2224 /// [C++]   declarator initializer[opt]
2225 ///
2226 /// [C++] initializer:
2227 /// [C++]   '=' initializer-clause
2228 /// [C++]   '(' expression-list ')'
2229 /// [C++0x] '=' 'default'                                                [TODO]
2230 /// [C++0x] '=' 'delete'
2231 /// [C++0x] braced-init-list
2232 ///
2233 /// According to the standard grammar, =default and =delete are function
2234 /// definitions, but that definitely doesn't fit with the parser here.
2235 ///
2236 Decl *Parser::ParseDeclarationAfterDeclarator(
2237     Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
2238   if (ParseAsmAttributesAfterDeclarator(D))
2239     return nullptr;
2240
2241   return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
2242 }
2243
2244 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
2245     Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
2246   // RAII type used to track whether we're inside an initializer.
2247   struct InitializerScopeRAII {
2248     Parser &P;
2249     Declarator &D;
2250     Decl *ThisDecl;
2251
2252     InitializerScopeRAII(Parser &P, Declarator &D, Decl *ThisDecl)
2253         : P(P), D(D), ThisDecl(ThisDecl) {
2254       if (ThisDecl && P.getLangOpts().CPlusPlus) {
2255         Scope *S = nullptr;
2256         if (D.getCXXScopeSpec().isSet()) {
2257           P.EnterScope(0);
2258           S = P.getCurScope();
2259         }
2260         P.Actions.ActOnCXXEnterDeclInitializer(S, ThisDecl);
2261       }
2262     }
2263     ~InitializerScopeRAII() { pop(); }
2264     void pop() {
2265       if (ThisDecl && P.getLangOpts().CPlusPlus) {
2266         Scope *S = nullptr;
2267         if (D.getCXXScopeSpec().isSet())
2268           S = P.getCurScope();
2269         P.Actions.ActOnCXXExitDeclInitializer(S, ThisDecl);
2270         if (S)
2271           P.ExitScope();
2272       }
2273       ThisDecl = nullptr;
2274     }
2275   };
2276
2277   // Inform the current actions module that we just parsed this declarator.
2278   Decl *ThisDecl = nullptr;
2279   switch (TemplateInfo.Kind) {
2280   case ParsedTemplateInfo::NonTemplate:
2281     ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2282     break;
2283
2284   case ParsedTemplateInfo::Template:
2285   case ParsedTemplateInfo::ExplicitSpecialization: {
2286     ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
2287                                                *TemplateInfo.TemplateParams,
2288                                                D);
2289     if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
2290       // Re-direct this decl to refer to the templated decl so that we can
2291       // initialize it.
2292       ThisDecl = VT->getTemplatedDecl();
2293     break;
2294   }
2295   case ParsedTemplateInfo::ExplicitInstantiation: {
2296     if (Tok.is(tok::semi)) {
2297       DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
2298           getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
2299       if (ThisRes.isInvalid()) {
2300         SkipUntil(tok::semi, StopBeforeMatch);
2301         return nullptr;
2302       }
2303       ThisDecl = ThisRes.get();
2304     } else {
2305       // FIXME: This check should be for a variable template instantiation only.
2306
2307       // Check that this is a valid instantiation
2308       if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
2309         // If the declarator-id is not a template-id, issue a diagnostic and
2310         // recover by ignoring the 'template' keyword.
2311         Diag(Tok, diag::err_template_defn_explicit_instantiation)
2312             << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
2313         ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2314       } else {
2315         SourceLocation LAngleLoc =
2316             PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
2317         Diag(D.getIdentifierLoc(),
2318              diag::err_explicit_instantiation_with_definition)
2319             << SourceRange(TemplateInfo.TemplateLoc)
2320             << FixItHint::CreateInsertion(LAngleLoc, "<>");
2321
2322         // Recover as if it were an explicit specialization.
2323         TemplateParameterLists FakedParamLists;
2324         FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
2325             0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, None,
2326             LAngleLoc, nullptr));
2327
2328         ThisDecl =
2329             Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
2330       }
2331     }
2332     break;
2333     }
2334   }
2335
2336   // Parse declarator '=' initializer.
2337   // If a '==' or '+=' is found, suggest a fixit to '='.
2338   if (isTokenEqualOrEqualTypo()) {
2339     SourceLocation EqualLoc = ConsumeToken();
2340
2341     if (Tok.is(tok::kw_delete)) {
2342       if (D.isFunctionDeclarator())
2343         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2344           << 1 /* delete */;
2345       else
2346         Diag(ConsumeToken(), diag::err_deleted_non_function);
2347     } else if (Tok.is(tok::kw_default)) {
2348       if (D.isFunctionDeclarator())
2349         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2350           << 0 /* default */;
2351       else
2352         Diag(ConsumeToken(), diag::err_default_special_members);
2353     } else {
2354       InitializerScopeRAII InitScope(*this, D, ThisDecl);
2355
2356       if (Tok.is(tok::code_completion)) {
2357         Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
2358         Actions.FinalizeDeclaration(ThisDecl);
2359         cutOffParsing();
2360         return nullptr;
2361       }
2362
2363       PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl);
2364       ExprResult Init = ParseInitializer();
2365
2366       // If this is the only decl in (possibly) range based for statement,
2367       // our best guess is that the user meant ':' instead of '='.
2368       if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
2369         Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
2370             << FixItHint::CreateReplacement(EqualLoc, ":");
2371         // We are trying to stop parser from looking for ';' in this for
2372         // statement, therefore preventing spurious errors to be issued.
2373         FRI->ColonLoc = EqualLoc;
2374         Init = ExprError();
2375         FRI->RangeExpr = Init;
2376       }
2377
2378       InitScope.pop();
2379
2380       if (Init.isInvalid()) {
2381         SmallVector<tok::TokenKind, 2> StopTokens;
2382         StopTokens.push_back(tok::comma);
2383         if (D.getContext() == DeclaratorContext::ForContext ||
2384             D.getContext() == DeclaratorContext::InitStmtContext)
2385           StopTokens.push_back(tok::r_paren);
2386         SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
2387         Actions.ActOnInitializerError(ThisDecl);
2388       } else
2389         Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2390                                      /*DirectInit=*/false);
2391     }
2392   } else if (Tok.is(tok::l_paren)) {
2393     // Parse C++ direct initializer: '(' expression-list ')'
2394     BalancedDelimiterTracker T(*this, tok::l_paren);
2395     T.consumeOpen();
2396
2397     ExprVector Exprs;
2398     CommaLocsTy CommaLocs;
2399
2400     InitializerScopeRAII InitScope(*this, D, ThisDecl);
2401
2402     auto ThisVarDecl = dyn_cast_or_null<VarDecl>(ThisDecl);
2403     auto RunSignatureHelp = [&]() {
2404       QualType PreferredType = Actions.ProduceConstructorSignatureHelp(
2405           getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(),
2406           ThisDecl->getLocation(), Exprs, T.getOpenLocation());
2407       CalledSignatureHelp = true;
2408       return PreferredType;
2409     };
2410     auto SetPreferredType = [&] {
2411       PreferredType.enterFunctionArgument(Tok.getLocation(), RunSignatureHelp);
2412     };
2413
2414     llvm::function_ref<void()> ExpressionStarts;
2415     if (ThisVarDecl) {
2416       // ParseExpressionList can sometimes succeed even when ThisDecl is not
2417       // VarDecl. This is an error and it is reported in a call to
2418       // Actions.ActOnInitializerError(). However, we call
2419       // ProduceConstructorSignatureHelp only on VarDecls.
2420       ExpressionStarts = SetPreferredType;
2421     }
2422     if (ParseExpressionList(Exprs, CommaLocs, ExpressionStarts)) {
2423       if (ThisVarDecl && PP.isCodeCompletionReached() && !CalledSignatureHelp) {
2424         Actions.ProduceConstructorSignatureHelp(
2425             getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(),
2426             ThisDecl->getLocation(), Exprs, T.getOpenLocation());
2427         CalledSignatureHelp = true;
2428       }
2429       Actions.ActOnInitializerError(ThisDecl);
2430       SkipUntil(tok::r_paren, StopAtSemi);
2431     } else {
2432       // Match the ')'.
2433       T.consumeClose();
2434
2435       assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
2436              "Unexpected number of commas!");
2437
2438       InitScope.pop();
2439
2440       ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
2441                                                           T.getCloseLocation(),
2442                                                           Exprs);
2443       Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
2444                                    /*DirectInit=*/true);
2445     }
2446   } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
2447              (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
2448     // Parse C++0x braced-init-list.
2449     Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2450
2451     InitializerScopeRAII InitScope(*this, D, ThisDecl);
2452
2453     ExprResult Init(ParseBraceInitializer());
2454
2455     InitScope.pop();
2456
2457     if (Init.isInvalid()) {
2458       Actions.ActOnInitializerError(ThisDecl);
2459     } else
2460       Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/true);
2461
2462   } else {
2463     Actions.ActOnUninitializedDecl(ThisDecl);
2464   }
2465
2466   Actions.FinalizeDeclaration(ThisDecl);
2467
2468   return ThisDecl;
2469 }
2470
2471 /// ParseSpecifierQualifierList
2472 ///        specifier-qualifier-list:
2473 ///          type-specifier specifier-qualifier-list[opt]
2474 ///          type-qualifier specifier-qualifier-list[opt]
2475 /// [GNU]    attributes     specifier-qualifier-list[opt]
2476 ///
2477 void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
2478                                          DeclSpecContext DSC) {
2479   /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
2480   /// parse declaration-specifiers and complain about extra stuff.
2481   /// TODO: diagnose attribute-specifiers and alignment-specifiers.
2482   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
2483
2484   // Validate declspec for type-name.
2485   unsigned Specs = DS.getParsedSpecifiers();
2486   if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
2487     Diag(Tok, diag::err_expected_type);
2488     DS.SetTypeSpecError();
2489   } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) {
2490     Diag(Tok, diag::err_typename_requires_specqual);
2491     if (!DS.hasTypeSpecifier())
2492       DS.SetTypeSpecError();
2493   }
2494
2495   // Issue diagnostic and remove storage class if present.
2496   if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
2497     if (DS.getStorageClassSpecLoc().isValid())
2498       Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
2499     else
2500       Diag(DS.getThreadStorageClassSpecLoc(),
2501            diag::err_typename_invalid_storageclass);
2502     DS.ClearStorageClassSpecs();
2503   }
2504
2505   // Issue diagnostic and remove function specifier if present.
2506   if (Specs & DeclSpec::PQ_FunctionSpecifier) {
2507     if (DS.isInlineSpecified())
2508       Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
2509     if (DS.isVirtualSpecified())
2510       Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
2511     if (DS.hasExplicitSpecifier())
2512       Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
2513     DS.ClearFunctionSpecs();
2514   }
2515
2516   // Issue diagnostic and remove constexpr specifier if present.
2517   if (DS.hasConstexprSpecifier() && DSC != DeclSpecContext::DSC_condition) {
2518     Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr)
2519         << DS.getConstexprSpecifier();
2520     DS.ClearConstexprSpec();
2521   }
2522 }
2523
2524 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
2525 /// specified token is valid after the identifier in a declarator which
2526 /// immediately follows the declspec.  For example, these things are valid:
2527 ///
2528 ///      int x   [             4];         // direct-declarator
2529 ///      int x   (             int y);     // direct-declarator
2530 ///  int(int x   )                         // direct-declarator
2531 ///      int x   ;                         // simple-declaration
2532 ///      int x   =             17;         // init-declarator-list
2533 ///      int x   ,             y;          // init-declarator-list
2534 ///      int x   __asm__       ("foo");    // init-declarator-list
2535 ///      int x   :             4;          // struct-declarator
2536 ///      int x   {             5};         // C++'0x unified initializers
2537 ///
2538 /// This is not, because 'x' does not immediately follow the declspec (though
2539 /// ')' happens to be valid anyway).
2540 ///    int (x)
2541 ///
2542 static bool isValidAfterIdentifierInDeclarator(const Token &T) {
2543   return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi,
2544                    tok::comma, tok::equal, tok::kw_asm, tok::l_brace,
2545                    tok::colon);
2546 }
2547
2548 /// ParseImplicitInt - This method is called when we have an non-typename
2549 /// identifier in a declspec (which normally terminates the decl spec) when
2550 /// the declspec has no type specifier.  In this case, the declspec is either
2551 /// malformed or is "implicit int" (in K&R and C89).
2552 ///
2553 /// This method handles diagnosing this prettily and returns false if the
2554 /// declspec is done being processed.  If it recovers and thinks there may be
2555 /// other pieces of declspec after it, it returns true.
2556 ///
2557 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
2558                               const ParsedTemplateInfo &TemplateInfo,
2559                               AccessSpecifier AS, DeclSpecContext DSC,
2560                               ParsedAttributesWithRange &Attrs) {
2561   assert(Tok.is(tok::identifier) && "should have identifier");
2562
2563   SourceLocation Loc = Tok.getLocation();
2564   // If we see an identifier that is not a type name, we normally would
2565   // parse it as the identifier being declared.  However, when a typename
2566   // is typo'd or the definition is not included, this will incorrectly
2567   // parse the typename as the identifier name and fall over misparsing
2568   // later parts of the diagnostic.
2569   //
2570   // As such, we try to do some look-ahead in cases where this would
2571   // otherwise be an "implicit-int" case to see if this is invalid.  For
2572   // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
2573   // an identifier with implicit int, we'd get a parse error because the
2574   // next token is obviously invalid for a type.  Parse these as a case
2575   // with an invalid type specifier.
2576   assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
2577
2578   // Since we know that this either implicit int (which is rare) or an
2579   // error, do lookahead to try to do better recovery. This never applies
2580   // within a type specifier. Outside of C++, we allow this even if the
2581   // language doesn't "officially" support implicit int -- we support
2582   // implicit int as an extension in C99 and C11.
2583   if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
2584       isValidAfterIdentifierInDeclarator(NextToken())) {
2585     // If this token is valid for implicit int, e.g. "static x = 4", then
2586     // we just avoid eating the identifier, so it will be parsed as the
2587     // identifier in the declarator.
2588     return false;
2589   }
2590
2591   // Early exit as Sema has a dedicated missing_actual_pipe_type diagnostic
2592   // for incomplete declarations such as `pipe p`.
2593   if (getLangOpts().OpenCLCPlusPlus && DS.isTypeSpecPipe())
2594     return false;
2595
2596   if (getLangOpts().CPlusPlus &&
2597       DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
2598     // Don't require a type specifier if we have the 'auto' storage class
2599     // specifier in C++98 -- we'll promote it to a type specifier.
2600     if (SS)
2601       AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2602     return false;
2603   }
2604
2605   if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) &&
2606       getLangOpts().MSVCCompat) {
2607     // Lookup of an unqualified type name has failed in MSVC compatibility mode.
2608     // Give Sema a chance to recover if we are in a template with dependent base
2609     // classes.
2610     if (ParsedType T = Actions.ActOnMSVCUnknownTypeName(
2611             *Tok.getIdentifierInfo(), Tok.getLocation(),
2612             DSC == DeclSpecContext::DSC_template_type_arg)) {
2613       const char *PrevSpec;
2614       unsigned DiagID;
2615       DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2616                          Actions.getASTContext().getPrintingPolicy());
2617       DS.SetRangeEnd(Tok.getLocation());
2618       ConsumeToken();
2619       return false;
2620     }
2621   }
2622
2623   // Otherwise, if we don't consume this token, we are going to emit an
2624   // error anyway.  Try to recover from various common problems.  Check
2625   // to see if this was a reference to a tag name without a tag specified.
2626   // This is a common problem in C (saying 'foo' instead of 'struct foo').
2627   //
2628   // C++ doesn't need this, and isTagName doesn't take SS.
2629   if (SS == nullptr) {
2630     const char *TagName = nullptr, *FixitTagName = nullptr;
2631     tok::TokenKind TagKind = tok::unknown;
2632
2633     switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
2634       default: break;
2635       case DeclSpec::TST_enum:
2636         TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
2637       case DeclSpec::TST_union:
2638         TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
2639       case DeclSpec::TST_struct:
2640         TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
2641       case DeclSpec::TST_interface:
2642         TagName="__interface"; FixitTagName = "__interface ";
2643         TagKind=tok::kw___interface;break;
2644       case DeclSpec::TST_class:
2645         TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
2646     }
2647
2648     if (TagName) {
2649       IdentifierInfo *TokenName = Tok.getIdentifierInfo();
2650       LookupResult R(Actions, TokenName, SourceLocation(),
2651                      Sema::LookupOrdinaryName);
2652
2653       Diag(Loc, diag::err_use_of_tag_name_without_tag)
2654         << TokenName << TagName << getLangOpts().CPlusPlus
2655         << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
2656
2657       if (Actions.LookupParsedName(R, getCurScope(), SS)) {
2658         for (LookupResult::iterator I = R.begin(), IEnd = R.end();
2659              I != IEnd; ++I)
2660           Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
2661             << TokenName << TagName;
2662       }
2663
2664       // Parse this as a tag as if the missing tag were present.
2665       if (TagKind == tok::kw_enum)
2666         ParseEnumSpecifier(Loc, DS, TemplateInfo, AS,
2667                            DeclSpecContext::DSC_normal);
2668       else
2669         ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
2670                             /*EnteringContext*/ false,
2671                             DeclSpecContext::DSC_normal, Attrs);
2672       return true;
2673     }
2674   }
2675
2676   // Determine whether this identifier could plausibly be the name of something
2677   // being declared (with a missing type).
2678   if (!isTypeSpecifier(DSC) && (!SS || DSC == DeclSpecContext::DSC_top_level ||
2679                                 DSC == DeclSpecContext::DSC_class)) {
2680     // Look ahead to the next token to try to figure out what this declaration
2681     // was supposed to be.
2682     switch (NextToken().getKind()) {
2683     case tok::l_paren: {
2684       // static x(4); // 'x' is not a type
2685       // x(int n);    // 'x' is not a type
2686       // x (*p)[];    // 'x' is a type
2687       //
2688       // Since we're in an error case, we can afford to perform a tentative
2689       // parse to determine which case we're in.
2690       TentativeParsingAction PA(*this);
2691       ConsumeToken();
2692       TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
2693       PA.Revert();
2694
2695       if (TPR != TPResult::False) {
2696         // The identifier is followed by a parenthesized declarator.
2697         // It's supposed to be a type.
2698         break;
2699       }
2700
2701       // If we're in a context where we could be declaring a constructor,
2702       // check whether this is a constructor declaration with a bogus name.
2703       if (DSC == DeclSpecContext::DSC_class ||
2704           (DSC == DeclSpecContext::DSC_top_level && SS)) {
2705         IdentifierInfo *II = Tok.getIdentifierInfo();
2706         if (Actions.isCurrentClassNameTypo(II, SS)) {
2707           Diag(Loc, diag::err_constructor_bad_name)
2708             << Tok.getIdentifierInfo() << II
2709             << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
2710           Tok.setIdentifierInfo(II);
2711         }
2712       }
2713       // Fall through.
2714       LLVM_FALLTHROUGH;
2715     }
2716     case tok::comma:
2717     case tok::equal:
2718     case tok::kw_asm:
2719     case tok::l_brace:
2720     case tok::l_square:
2721     case tok::semi:
2722       // This looks like a variable or function declaration. The type is
2723       // probably missing. We're done parsing decl-specifiers.
2724       // But only if we are not in a function prototype scope.
2725       if (getCurScope()->isFunctionPrototypeScope())
2726         break;
2727       if (SS)
2728         AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2729       return false;
2730
2731     default:
2732       // This is probably supposed to be a type. This includes cases like:
2733       //   int f(itn);
2734       //   struct S { unsinged : 4; };
2735       break;
2736     }
2737   }
2738
2739   // This is almost certainly an invalid type name. Let Sema emit a diagnostic
2740   // and attempt to recover.
2741   ParsedType T;
2742   IdentifierInfo *II = Tok.getIdentifierInfo();
2743   bool IsTemplateName = getLangOpts().CPlusPlus && NextToken().is(tok::less);
2744   Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
2745                                   IsTemplateName);
2746   if (T) {
2747     // The action has suggested that the type T could be used. Set that as
2748     // the type in the declaration specifiers, consume the would-be type
2749     // name token, and we're done.
2750     const char *PrevSpec;
2751     unsigned DiagID;
2752     DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2753                        Actions.getASTContext().getPrintingPolicy());
2754     DS.SetRangeEnd(Tok.getLocation());
2755     ConsumeToken();
2756     // There may be other declaration specifiers after this.
2757     return true;
2758   } else if (II != Tok.getIdentifierInfo()) {
2759     // If no type was suggested, the correction is to a keyword
2760     Tok.setKind(II->getTokenID());
2761     // There may be other declaration specifiers after this.
2762     return true;
2763   }
2764
2765   // Otherwise, the action had no suggestion for us.  Mark this as an error.
2766   DS.SetTypeSpecError();
2767   DS.SetRangeEnd(Tok.getLocation());
2768   ConsumeToken();
2769
2770   // Eat any following template arguments.
2771   if (IsTemplateName) {
2772     SourceLocation LAngle, RAngle;
2773     TemplateArgList Args;
2774     ParseTemplateIdAfterTemplateName(true, LAngle, Args, RAngle);
2775   }
2776
2777   // TODO: Could inject an invalid typedef decl in an enclosing scope to
2778   // avoid rippling error messages on subsequent uses of the same type,
2779   // could be useful if #include was forgotten.
2780   return true;
2781 }
2782
2783 /// Determine the declaration specifier context from the declarator
2784 /// context.
2785 ///
2786 /// \param Context the declarator context, which is one of the
2787 /// DeclaratorContext enumerator values.
2788 Parser::DeclSpecContext
2789 Parser::getDeclSpecContextFromDeclaratorContext(DeclaratorContext Context) {
2790   if (Context == DeclaratorContext::MemberContext)
2791     return DeclSpecContext::DSC_class;
2792   if (Context == DeclaratorContext::FileContext)
2793     return DeclSpecContext::DSC_top_level;
2794   if (Context == DeclaratorContext::TemplateParamContext)
2795     return DeclSpecContext::DSC_template_param;
2796   if (Context == DeclaratorContext::TemplateArgContext ||
2797       Context == DeclaratorContext::TemplateTypeArgContext)
2798     return DeclSpecContext::DSC_template_type_arg;
2799   if (Context == DeclaratorContext::TrailingReturnContext ||
2800       Context == DeclaratorContext::TrailingReturnVarContext)
2801     return DeclSpecContext::DSC_trailing;
2802   if (Context == DeclaratorContext::AliasDeclContext ||
2803       Context == DeclaratorContext::AliasTemplateContext)
2804     return DeclSpecContext::DSC_alias_declaration;
2805   return DeclSpecContext::DSC_normal;
2806 }
2807
2808 /// ParseAlignArgument - Parse the argument to an alignment-specifier.
2809 ///
2810 /// FIXME: Simply returns an alignof() expression if the argument is a
2811 /// type. Ideally, the type should be propagated directly into Sema.
2812 ///
2813 /// [C11]   type-id
2814 /// [C11]   constant-expression
2815 /// [C++0x] type-id ...[opt]
2816 /// [C++0x] assignment-expression ...[opt]
2817 ExprResult Parser::ParseAlignArgument(SourceLocation Start,
2818                                       SourceLocation &EllipsisLoc) {
2819   ExprResult ER;
2820   if (isTypeIdInParens()) {
2821     SourceLocation TypeLoc = Tok.getLocation();
2822     ParsedType Ty = ParseTypeName().get();
2823     SourceRange TypeRange(Start, Tok.getLocation());
2824     ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
2825                                                Ty.getAsOpaquePtr(), TypeRange);
2826   } else
2827     ER = ParseConstantExpression();
2828
2829   if (getLangOpts().CPlusPlus11)
2830     TryConsumeToken(tok::ellipsis, EllipsisLoc);
2831
2832   return ER;
2833 }
2834
2835 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
2836 /// attribute to Attrs.
2837 ///
2838 /// alignment-specifier:
2839 /// [C11]   '_Alignas' '(' type-id ')'
2840 /// [C11]   '_Alignas' '(' constant-expression ')'
2841 /// [C++11] 'alignas' '(' type-id ...[opt] ')'
2842 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
2843 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
2844                                      SourceLocation *EndLoc) {
2845   assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) &&
2846          "Not an alignment-specifier!");
2847
2848   IdentifierInfo *KWName = Tok.getIdentifierInfo();
2849   SourceLocation KWLoc = ConsumeToken();
2850
2851   BalancedDelimiterTracker T(*this, tok::l_paren);
2852   if (T.expectAndConsume())
2853     return;
2854
2855   SourceLocation EllipsisLoc;
2856   ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
2857   if (ArgExpr.isInvalid()) {
2858     T.skipToEnd();
2859     return;
2860   }
2861
2862   T.consumeClose();
2863   if (EndLoc)
2864     *EndLoc = T.getCloseLocation();
2865
2866   ArgsVector ArgExprs;
2867   ArgExprs.push_back(ArgExpr.get());
2868   Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
2869                ParsedAttr::AS_Keyword, EllipsisLoc);
2870 }
2871
2872 /// Determine whether we're looking at something that might be a declarator
2873 /// in a simple-declaration. If it can't possibly be a declarator, maybe
2874 /// diagnose a missing semicolon after a prior tag definition in the decl
2875 /// specifier.
2876 ///
2877 /// \return \c true if an error occurred and this can't be any kind of
2878 /// declaration.
2879 bool
2880 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
2881                                               DeclSpecContext DSContext,
2882                                               LateParsedAttrList *LateAttrs) {
2883   assert(DS.hasTagDefinition() && "shouldn't call this");
2884
2885   bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
2886                           DSContext == DeclSpecContext::DSC_top_level);
2887
2888   if (getLangOpts().CPlusPlus &&
2889       Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype,
2890                   tok::annot_template_id) &&
2891       TryAnnotateCXXScopeToken(EnteringContext)) {
2892     SkipMalformedDecl();
2893     return true;
2894   }
2895
2896   bool HasScope = Tok.is(tok::annot_cxxscope);
2897   // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
2898   Token AfterScope = HasScope ? NextToken() : Tok;
2899
2900   // Determine whether the following tokens could possibly be a
2901   // declarator.
2902   bool MightBeDeclarator = true;
2903   if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) {
2904     // A declarator-id can't start with 'typename'.
2905     MightBeDeclarator = false;
2906   } else if (AfterScope.is(tok::annot_template_id)) {
2907     // If we have a type expressed as a template-id, this cannot be a
2908     // declarator-id (such a type cannot be redeclared in a simple-declaration).
2909     TemplateIdAnnotation *Annot =
2910         static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
2911     if (Annot->Kind == TNK_Type_template)
2912       MightBeDeclarator = false;
2913   } else if (AfterScope.is(tok::identifier)) {
2914     const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
2915
2916     // These tokens cannot come after the declarator-id in a
2917     // simple-declaration, and are likely to come after a type-specifier.
2918     if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier,
2919                      tok::annot_cxxscope, tok::coloncolon)) {
2920       // Missing a semicolon.
2921       MightBeDeclarator = false;
2922     } else if (HasScope) {
2923       // If the declarator-id has a scope specifier, it must redeclare a
2924       // previously-declared entity. If that's a type (and this is not a
2925       // typedef), that's an error.
2926       CXXScopeSpec SS;
2927       Actions.RestoreNestedNameSpecifierAnnotation(
2928           Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
2929       IdentifierInfo *Name = AfterScope.getIdentifierInfo();
2930       Sema::NameClassification Classification = Actions.ClassifyName(
2931           getCurScope(), SS, Name, AfterScope.getLocation(), Next,
2932           /*CCC=*/nullptr);
2933       switch (Classification.getKind()) {
2934       case Sema::NC_Error:
2935         SkipMalformedDecl();
2936         return true;
2937
2938       case Sema::NC_Keyword:
2939         llvm_unreachable("typo correction is not possible here");
2940
2941       case Sema::NC_Type:
2942       case Sema::NC_TypeTemplate:
2943       case Sema::NC_UndeclaredNonType:
2944       case Sema::NC_UndeclaredTemplate:
2945         // Not a previously-declared non-type entity.
2946         MightBeDeclarator = false;
2947         break;
2948
2949       case Sema::NC_Unknown:
2950       case Sema::NC_NonType:
2951       case Sema::NC_DependentNonType:
2952       case Sema::NC_ContextIndependentExpr:
2953       case Sema::NC_VarTemplate:
2954       case Sema::NC_FunctionTemplate:
2955         // Might be a redeclaration of a prior entity.
2956         break;
2957       }
2958     }
2959   }
2960
2961   if (MightBeDeclarator)
2962     return false;
2963
2964   const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
2965   Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getEndLoc()),
2966        diag::err_expected_after)
2967       << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
2968
2969   // Try to recover from the typo, by dropping the tag definition and parsing
2970   // the problematic tokens as a type.
2971   //
2972   // FIXME: Split the DeclSpec into pieces for the standalone
2973   // declaration and pieces for the following declaration, instead
2974   // of assuming that all the other pieces attach to new declaration,
2975   // and call ParsedFreeStandingDeclSpec as appropriate.
2976   DS.ClearTypeSpecType();
2977   ParsedTemplateInfo NotATemplate;
2978   ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
2979   return false;
2980 }
2981
2982 // Choose the apprpriate diagnostic error for why fixed point types are
2983 // disabled, set the previous specifier, and mark as invalid.
2984 static void SetupFixedPointError(const LangOptions &LangOpts,
2985                                  const char *&PrevSpec, unsigned &DiagID,
2986                                  bool &isInvalid) {
2987   assert(!LangOpts.FixedPoint);
2988   DiagID = diag::err_fixed_point_not_enabled;
2989   PrevSpec = "";  // Not used by diagnostic
2990   isInvalid = true;
2991 }
2992
2993 /// ParseDeclarationSpecifiers
2994 ///       declaration-specifiers: [C99 6.7]
2995 ///         storage-class-specifier declaration-specifiers[opt]
2996 ///         type-specifier declaration-specifiers[opt]
2997 /// [C99]   function-specifier declaration-specifiers[opt]
2998 /// [C11]   alignment-specifier declaration-specifiers[opt]
2999 /// [GNU]   attributes declaration-specifiers[opt]
3000 /// [Clang] '__module_private__' declaration-specifiers[opt]
3001 /// [ObjC1] '__kindof' declaration-specifiers[opt]
3002 ///
3003 ///       storage-class-specifier: [C99 6.7.1]
3004 ///         'typedef'
3005 ///         'extern'
3006 ///         'static'
3007 ///         'auto'
3008 ///         'register'
3009 /// [C++]   'mutable'
3010 /// [C++11] 'thread_local'
3011 /// [C11]   '_Thread_local'
3012 /// [GNU]   '__thread'
3013 ///       function-specifier: [C99 6.7.4]
3014 /// [C99]   'inline'
3015 /// [C++]   'virtual'
3016 /// [C++]   'explicit'
3017 /// [OpenCL] '__kernel'
3018 ///       'friend': [C++ dcl.friend]
3019 ///       'constexpr': [C++0x dcl.constexpr]
3020 void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
3021                                         const ParsedTemplateInfo &TemplateInfo,
3022                                         AccessSpecifier AS,
3023                                         DeclSpecContext DSContext,
3024                                         LateParsedAttrList *LateAttrs) {
3025   if (DS.getSourceRange().isInvalid()) {
3026     // Start the range at the current token but make the end of the range
3027     // invalid.  This will make the entire range invalid unless we successfully
3028     // consume a token.
3029     DS.SetRangeStart(Tok.getLocation());
3030     DS.SetRangeEnd(SourceLocation());
3031   }
3032
3033   bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
3034                           DSContext == DeclSpecContext::DSC_top_level);
3035   bool AttrsLastTime = false;
3036   ParsedAttributesWithRange attrs(AttrFactory);
3037   // We use Sema's policy to get bool macros right.
3038   PrintingPolicy Policy = Actions.getPrintingPolicy();
3039   while (1) {
3040     bool isInvalid = false;
3041     bool isStorageClass = false;
3042     const char *PrevSpec = nullptr;
3043     unsigned DiagID = 0;
3044
3045     // This value needs to be set to the location of the last token if the last
3046     // token of the specifier is already consumed.
3047     SourceLocation ConsumedEnd;
3048
3049     // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL
3050     // implementation for VS2013 uses _Atomic as an identifier for one of the
3051     // classes in <atomic>.
3052     //
3053     // A typedef declaration containing _Atomic<...> is among the places where
3054     // the class is used.  If we are currently parsing such a declaration, treat
3055     // the token as an identifier.
3056     if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) &&
3057         DS.getStorageClassSpec() == clang::DeclSpec::SCS_typedef &&
3058         !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less))
3059       Tok.setKind(tok::identifier);
3060
3061     SourceLocation Loc = Tok.getLocation();
3062
3063     switch (Tok.getKind()) {
3064     default:
3065     DoneWithDeclSpec:
3066       if (!AttrsLastTime)
3067         ProhibitAttributes(attrs);
3068       else {
3069         // Reject C++11 attributes that appertain to decl specifiers as
3070         // we don't support any C++11 attributes that appertain to decl
3071         // specifiers. This also conforms to what g++ 4.8 is doing.
3072         ProhibitCXX11Attributes(attrs, diag::err_attribute_not_type_attr);
3073
3074         DS.takeAttributesFrom(attrs);
3075       }
3076
3077       // If this is not a declaration specifier token, we're done reading decl
3078       // specifiers.  First verify that DeclSpec's are consistent.
3079       DS.Finish(Actions, Policy);
3080       return;
3081
3082     case tok::l_square:
3083     case tok::kw_alignas:
3084       if (!standardAttributesAllowed() || !isCXX11AttributeSpecifier())
3085         goto DoneWithDeclSpec;
3086
3087       ProhibitAttributes(attrs);
3088       // FIXME: It would be good to recover by accepting the attributes,
3089       //        but attempting to do that now would cause serious
3090       //        madness in terms of diagnostics.
3091       attrs.clear();
3092       attrs.Range = SourceRange();
3093
3094       ParseCXX11Attributes(attrs);
3095       AttrsLastTime = true;
3096       continue;
3097
3098     case tok::code_completion: {
3099       Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
3100       if (DS.hasTypeSpecifier()) {
3101         bool AllowNonIdentifiers
3102           = (getCurScope()->getFlags() & (Scope::ControlScope |
3103                                           Scope::BlockScope |
3104                                           Scope::TemplateParamScope |
3105                                           Scope::FunctionPrototypeScope |
3106                                           Scope::AtCatchScope)) == 0;
3107         bool AllowNestedNameSpecifiers
3108           = DSContext == DeclSpecContext::DSC_top_level ||
3109             (DSContext == DeclSpecContext::DSC_class && DS.isFriendSpecified());
3110
3111         Actions.CodeCompleteDeclSpec(getCurScope(), DS,
3112                                      AllowNonIdentifiers,
3113                                      AllowNestedNameSpecifiers);
3114         return cutOffParsing();
3115       }
3116
3117       if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
3118         CCC = Sema::PCC_LocalDeclarationSpecifiers;
3119       else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
3120         CCC = DSContext == DeclSpecContext::DSC_class ? Sema::PCC_MemberTemplate
3121                                                       : Sema::PCC_Template;
3122       else if (DSContext == DeclSpecContext::DSC_class)
3123         CCC = Sema::PCC_Class;
3124       else if (CurParsedObjCImpl)
3125         CCC = Sema::PCC_ObjCImplementation;
3126
3127       Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
3128       return cutOffParsing();
3129     }
3130
3131     case tok::coloncolon: // ::foo::bar
3132       // C++ scope specifier.  Annotate and loop, or bail out on error.
3133       if (TryAnnotateCXXScopeToken(EnteringContext)) {
3134         if (!DS.hasTypeSpecifier())
3135           DS.SetTypeSpecError();
3136         goto DoneWithDeclSpec;
3137       }
3138       if (Tok.is(tok::coloncolon)) // ::new or ::delete
3139         goto DoneWithDeclSpec;
3140       continue;
3141
3142     case tok::annot_cxxscope: {
3143       if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
3144         goto DoneWithDeclSpec;
3145
3146       CXXScopeSpec SS;
3147       Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3148                                                    Tok.getAnnotationRange(),
3149                                                    SS);
3150
3151       // We are looking for a qualified typename.
3152       Token Next = NextToken();
3153       if (Next.is(tok::annot_template_id) &&
3154           static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
3155             ->Kind == TNK_Type_template) {
3156         // We have a qualified template-id, e.g., N::A<int>
3157
3158         // If this would be a valid constructor declaration with template
3159         // arguments, we will reject the attempt to form an invalid type-id
3160         // referring to the injected-class-name when we annotate the token,
3161         // per C++ [class.qual]p2.
3162         //
3163         // To improve diagnostics for this case, parse the declaration as a
3164         // constructor (and reject the extra template arguments later).
3165         TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
3166         if ((DSContext == DeclSpecContext::DSC_top_level ||
3167              DSContext == DeclSpecContext::DSC_class) &&
3168             TemplateId->Name &&
3169             Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS) &&
3170             isConstructorDeclarator(/*Unqualified*/ false)) {
3171           // The user meant this to be an out-of-line constructor
3172           // definition, but template arguments are not allowed
3173           // there.  Just allow this as a constructor; we'll
3174           // complain about it later.
3175           goto DoneWithDeclSpec;
3176         }
3177
3178         DS.getTypeSpecScope() = SS;
3179         ConsumeAnnotationToken(); // The C++ scope.
3180         assert(Tok.is(tok::annot_template_id) &&
3181                "ParseOptionalCXXScopeSpecifier not working");
3182         AnnotateTemplateIdTokenAsType();
3183         continue;
3184       }
3185
3186       if (Next.is(tok::annot_typename)) {
3187         DS.getTypeSpecScope() = SS;
3188         ConsumeAnnotationToken(); // The C++ scope.
3189         if (Tok.getAnnotationValue()) {
3190           ParsedType T = getTypeAnnotation(Tok);
3191           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
3192                                          Tok.getAnnotationEndLoc(),
3193                                          PrevSpec, DiagID, T, Policy);
3194           if (isInvalid)
3195             break;
3196         }
3197         else
3198           DS.SetTypeSpecError();
3199         DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3200         ConsumeAnnotationToken(); // The typename
3201       }
3202
3203       if (Next.isNot(tok::identifier))
3204         goto DoneWithDeclSpec;
3205
3206       // Check whether this is a constructor declaration. If we're in a
3207       // context where the identifier could be a class name, and it has the
3208       // shape of a constructor declaration, process it as one.
3209       if ((DSContext == DeclSpecContext::DSC_top_level ||
3210            DSContext == DeclSpecContext::DSC_class) &&
3211           Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
3212                                      &SS) &&
3213           isConstructorDeclarator(/*Unqualified*/ false))
3214         goto DoneWithDeclSpec;
3215
3216       ParsedType TypeRep =
3217           Actions.getTypeName(*Next.getIdentifierInfo(), Next.getLocation(),
3218                               getCurScope(), &SS, false, false, nullptr,
3219                               /*IsCtorOrDtorName=*/false,
3220                               /*WantNontrivialTypeSourceInfo=*/true,
3221                               isClassTemplateDeductionContext(DSContext));
3222
3223       // If the referenced identifier is not a type, then this declspec is
3224       // erroneous: We already checked about that it has no type specifier, and
3225       // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
3226       // typename.
3227       if (!TypeRep) {
3228         // Eat the scope spec so the identifier is current.
3229         ConsumeAnnotationToken();
3230         ParsedAttributesWithRange Attrs(AttrFactory);
3231         if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
3232           if (!Attrs.empty()) {
3233             AttrsLastTime = true;
3234             attrs.takeAllFrom(Attrs);
3235           }
3236           continue;
3237         }
3238         goto DoneWithDeclSpec;
3239       }
3240
3241       DS.getTypeSpecScope() = SS;
3242       ConsumeAnnotationToken(); // The C++ scope.
3243
3244       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3245                                      DiagID, TypeRep, Policy);
3246       if (isInvalid)
3247         break;
3248
3249       DS.SetRangeEnd(Tok.getLocation());
3250       ConsumeToken(); // The typename.
3251
3252       continue;
3253     }
3254
3255     case tok::annot_typename: {
3256       // If we've previously seen a tag definition, we were almost surely
3257       // missing a semicolon after it.
3258       if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
3259         goto DoneWithDeclSpec;
3260
3261       if (Tok.getAnnotationValue()) {
3262         ParsedType T = getTypeAnnotation(Tok);
3263         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3264                                        DiagID, T, Policy);
3265       } else
3266         DS.SetTypeSpecError();
3267
3268       if (isInvalid)
3269         break;
3270
3271       DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3272       ConsumeAnnotationToken(); // The typename
3273
3274       continue;
3275     }
3276
3277     case tok::kw___is_signed:
3278       // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
3279       // typically treats it as a trait. If we see __is_signed as it appears
3280       // in libstdc++, e.g.,
3281       //
3282       //   static const bool __is_signed;
3283       //
3284       // then treat __is_signed as an identifier rather than as a keyword.
3285       if (DS.getTypeSpecType() == TST_bool &&
3286           DS.getTypeQualifiers() == DeclSpec::TQ_const &&
3287           DS.getStorageClassSpec() == DeclSpec::SCS_static)
3288         TryKeywordIdentFallback(true);
3289
3290       // We're done with the declaration-specifiers.
3291       goto DoneWithDeclSpec;
3292
3293       // typedef-name
3294     case tok::kw___super:
3295     case tok::kw_decltype:
3296     case tok::identifier: {
3297       // This identifier can only be a typedef name if we haven't already seen
3298       // a type-specifier.  Without this check we misparse:
3299       //  typedef int X; struct Y { short X; };  as 'short int'.
3300       if (DS.hasTypeSpecifier())
3301         goto DoneWithDeclSpec;
3302
3303       // If the token is an identifier named "__declspec" and Microsoft
3304       // extensions are not enabled, it is likely that there will be cascading
3305       // parse errors if this really is a __declspec attribute. Attempt to
3306       // recognize that scenario and recover gracefully.
3307       if (!getLangOpts().DeclSpecKeyword && Tok.is(tok::identifier) &&
3308           Tok.getIdentifierInfo()->getName().equals("__declspec")) {
3309         Diag(Loc, diag::err_ms_attributes_not_enabled);
3310
3311         // The next token should be an open paren. If it is, eat the entire
3312         // attribute declaration and continue.
3313         if (NextToken().is(tok::l_paren)) {
3314           // Consume the __declspec identifier.
3315           ConsumeToken();
3316
3317           // Eat the parens and everything between them.
3318           BalancedDelimiterTracker T(*this, tok::l_paren);
3319           if (T.consumeOpen()) {
3320             assert(false && "Not a left paren?");
3321             return;
3322           }
3323           T.skipToEnd();
3324           continue;
3325         }
3326       }
3327
3328       // In C++, check to see if this is a scope specifier like foo::bar::, if
3329       // so handle it as such.  This is important for ctor parsing.
3330       if (getLangOpts().CPlusPlus) {
3331         if (TryAnnotateCXXScopeToken(EnteringContext)) {
3332           DS.SetTypeSpecError();
3333           goto DoneWithDeclSpec;
3334         }
3335         if (!Tok.is(tok::identifier))
3336           continue;
3337       }
3338
3339       // Check for need to substitute AltiVec keyword tokens.
3340       if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
3341         break;
3342
3343       // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
3344       //                allow the use of a typedef name as a type specifier.
3345       if (DS.isTypeAltiVecVector())
3346         goto DoneWithDeclSpec;
3347
3348       if (DSContext == DeclSpecContext::DSC_objc_method_result &&
3349           isObjCInstancetype()) {
3350         ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc);
3351         assert(TypeRep);
3352         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3353                                        DiagID, TypeRep, Policy);
3354         if (isInvalid)
3355           break;
3356
3357         DS.SetRangeEnd(Loc);
3358         ConsumeToken();
3359         continue;
3360       }
3361
3362       // If we're in a context where the identifier could be a class name,
3363       // check whether this is a constructor declaration.
3364       if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
3365           Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
3366           isConstructorDeclarator(/*Unqualified*/true))
3367         goto DoneWithDeclSpec;
3368
3369       ParsedType TypeRep = Actions.getTypeName(
3370           *Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), nullptr,
3371           false, false, nullptr, false, false,
3372           isClassTemplateDeductionContext(DSContext));
3373
3374       // If this is not a typedef name, don't parse it as part of the declspec,
3375       // it must be an implicit int or an error.
3376       if (!TypeRep) {
3377         ParsedAttributesWithRange Attrs(AttrFactory);
3378         if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
3379           if (!Attrs.empty()) {
3380             AttrsLastTime = true;
3381             attrs.takeAllFrom(Attrs);
3382           }
3383           continue;
3384         }
3385         goto DoneWithDeclSpec;
3386       }
3387
3388       // Likewise, if this is a context where the identifier could be a template
3389       // name, check whether this is a deduction guide declaration.
3390       if (getLangOpts().CPlusPlus17 &&
3391           (DSContext == DeclSpecContext::DSC_class ||
3392            DSContext == DeclSpecContext::DSC_top_level) &&
3393           Actions.isDeductionGuideName(getCurScope(), *Tok.getIdentifierInfo(),
3394                                        Tok.getLocation()) &&
3395           isConstructorDeclarator(/*Unqualified*/ true,
3396                                   /*DeductionGuide*/ true))
3397         goto DoneWithDeclSpec;
3398
3399       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3400                                      DiagID, TypeRep, Policy);
3401       if (isInvalid)
3402         break;
3403
3404       DS.SetRangeEnd(Tok.getLocation());
3405       ConsumeToken(); // The identifier
3406
3407       // Objective-C supports type arguments and protocol references
3408       // following an Objective-C object or object pointer
3409       // type. Handle either one of them.
3410       if (Tok.is(tok::less) && getLangOpts().ObjC) {
3411         SourceLocation NewEndLoc;
3412         TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers(
3413                                   Loc, TypeRep, /*consumeLastToken=*/true,
3414                                   NewEndLoc);
3415         if (NewTypeRep.isUsable()) {
3416           DS.UpdateTypeRep(NewTypeRep.get());
3417           DS.SetRangeEnd(NewEndLoc);
3418         }
3419       }
3420
3421       // Need to support trailing type qualifiers (e.g. "id<p> const").
3422       // If a type specifier follows, it will be diagnosed elsewhere.
3423       continue;
3424     }
3425
3426       // type-name
3427     case tok::annot_template_id: {
3428       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
3429       if (TemplateId->Kind != TNK_Type_template &&
3430           TemplateId->Kind != TNK_Undeclared_template) {
3431         // This template-id does not refer to a type name, so we're
3432         // done with the type-specifiers.
3433         goto DoneWithDeclSpec;
3434       }
3435
3436       // If we're in a context where the template-id could be a
3437       // constructor name or specialization, check whether this is a
3438       // constructor declaration.
3439       if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
3440           Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
3441           isConstructorDeclarator(TemplateId->SS.isEmpty()))
3442         goto DoneWithDeclSpec;
3443
3444       // Turn the template-id annotation token into a type annotation
3445       // token, then try again to parse it as a type-specifier.
3446       AnnotateTemplateIdTokenAsType();
3447       continue;
3448     }
3449
3450     // GNU attributes support.
3451     case tok::kw___attribute:
3452       ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
3453       continue;
3454
3455     // Microsoft declspec support.
3456     case tok::kw___declspec:
3457       ParseMicrosoftDeclSpecs(DS.getAttributes());
3458       continue;
3459
3460     // Microsoft single token adornments.
3461     case tok::kw___forceinline: {
3462       isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
3463       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
3464       SourceLocation AttrNameLoc = Tok.getLocation();
3465       DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
3466                                 nullptr, 0, ParsedAttr::AS_Keyword);
3467       break;
3468     }
3469
3470     case tok::kw___unaligned:
3471       isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
3472                                  getLangOpts());
3473       break;
3474
3475     case tok::kw___sptr:
3476     case tok::kw___uptr:
3477     case tok::kw___ptr64:
3478     case tok::kw___ptr32:
3479     case tok::kw___w64:
3480     case tok::kw___cdecl:
3481     case tok::kw___stdcall:
3482     case tok::kw___fastcall:
3483     case tok::kw___thiscall:
3484     case tok::kw___regcall:
3485     case tok::kw___vectorcall:
3486       ParseMicrosoftTypeAttributes(DS.getAttributes());
3487       continue;
3488
3489     // Borland single token adornments.
3490     case tok::kw___pascal:
3491       ParseBorlandTypeAttributes(DS.getAttributes());
3492       continue;
3493
3494     // OpenCL single token adornments.
3495     case tok::kw___kernel:
3496       ParseOpenCLKernelAttributes(DS.getAttributes());
3497       continue;
3498
3499     // Nullability type specifiers.
3500     case tok::kw__Nonnull:
3501     case tok::kw__Nullable:
3502     case tok::kw__Null_unspecified:
3503       ParseNullabilityTypeSpecifiers(DS.getAttributes());
3504       continue;
3505
3506     // Objective-C 'kindof' types.
3507     case tok::kw___kindof:
3508       DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
3509                                 nullptr, 0, ParsedAttr::AS_Keyword);
3510       (void)ConsumeToken();
3511       continue;
3512
3513     // storage-class-specifier
3514     case tok::kw_typedef:
3515       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
3516                                          PrevSpec, DiagID, Policy);
3517       isStorageClass = true;
3518       break;
3519     case tok::kw_extern:
3520       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3521         Diag(Tok, diag::ext_thread_before) << "extern";
3522       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
3523                                          PrevSpec, DiagID, Policy);
3524       isStorageClass = true;
3525       break;
3526     case tok::kw___private_extern__:
3527       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
3528                                          Loc, PrevSpec, DiagID, Policy);
3529       isStorageClass = true;
3530       break;
3531     case tok::kw_static:
3532       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3533         Diag(Tok, diag::ext_thread_before) << "static";
3534       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
3535                                          PrevSpec, DiagID, Policy);
3536       isStorageClass = true;
3537       break;
3538     case tok::kw_auto:
3539       if (getLangOpts().CPlusPlus11) {
3540         if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
3541           isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3542                                              PrevSpec, DiagID, Policy);
3543           if (!isInvalid)
3544             Diag(Tok, diag::ext_auto_storage_class)
3545               << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3546         } else
3547           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
3548                                          DiagID, Policy);
3549       } else
3550         isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3551                                            PrevSpec, DiagID, Policy);
3552       isStorageClass = true;
3553       break;
3554     case tok::kw___auto_type:
3555       Diag(Tok, diag::ext_auto_type);
3556       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec,
3557                                      DiagID, Policy);
3558       break;
3559     case tok::kw_register:
3560       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
3561                                          PrevSpec, DiagID, Policy);
3562       isStorageClass = true;
3563       break;
3564     case tok::kw_mutable:
3565       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
3566                                          PrevSpec, DiagID, Policy);
3567       isStorageClass = true;
3568       break;
3569     case tok::kw___thread:
3570       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
3571                                                PrevSpec, DiagID);
3572       isStorageClass = true;
3573       break;
3574     case tok::kw_thread_local:
3575       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc,
3576                                                PrevSpec, DiagID);
3577       isStorageClass = true;
3578       break;
3579     case tok::kw__Thread_local:
3580       if (!getLangOpts().C11)
3581         Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3582       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
3583                                                Loc, PrevSpec, DiagID);
3584       isStorageClass = true;
3585       break;
3586
3587     // function-specifier
3588     case tok::kw_inline:
3589       isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
3590       break;
3591     case tok::kw_virtual:
3592       // C++ for OpenCL does not allow virtual function qualifier, to avoid
3593       // function pointers restricted in OpenCL v2.0 s6.9.a.
3594       if (getLangOpts().OpenCLCPlusPlus) {
3595         DiagID = diag::err_openclcxx_virtual_function;
3596         PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3597         isInvalid = true;
3598       }
3599       else {
3600         isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
3601       }
3602       break;
3603     case tok::kw_explicit: {
3604       SourceLocation ExplicitLoc = Loc;
3605       SourceLocation CloseParenLoc;
3606       ExplicitSpecifier ExplicitSpec(nullptr, ExplicitSpecKind::ResolvedTrue);
3607       ConsumedEnd = ExplicitLoc;
3608       ConsumeToken(); // kw_explicit
3609       if (Tok.is(tok::l_paren)) {
3610         if (getLangOpts().CPlusPlus2a) {
3611           ExprResult ExplicitExpr(static_cast<Expr *>(nullptr));
3612           BalancedDelimiterTracker Tracker(*this, tok::l_paren);
3613           Tracker.consumeOpen();
3614           ExplicitExpr = ParseConstantExpression();
3615           ConsumedEnd = Tok.getLocation();
3616           if (ExplicitExpr.isUsable()) {
3617             CloseParenLoc = Tok.getLocation();
3618             Tracker.consumeClose();
3619             ExplicitSpec =
3620                 Actions.ActOnExplicitBoolSpecifier(ExplicitExpr.get());
3621           } else
3622             Tracker.skipToEnd();
3623         } else
3624           Diag(Tok.getLocation(), diag::warn_cxx2a_compat_explicit_bool);
3625       }
3626       isInvalid = DS.setFunctionSpecExplicit(ExplicitLoc, PrevSpec, DiagID,
3627                                              ExplicitSpec, CloseParenLoc);
3628       break;
3629     }
3630     case tok::kw__Noreturn:
3631       if (!getLangOpts().C11)
3632         Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3633       isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
3634       break;
3635
3636     // alignment-specifier
3637     case tok::kw__Alignas:
3638       if (!getLangOpts().C11)
3639         Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3640       ParseAlignmentSpecifier(DS.getAttributes());
3641       continue;
3642
3643     // friend
3644     case tok::kw_friend:
3645       if (DSContext == DeclSpecContext::DSC_class)
3646         isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
3647       else {
3648         PrevSpec = ""; // not actually used by the diagnostic
3649         DiagID = diag::err_friend_invalid_in_context;
3650         isInvalid = true;
3651       }
3652       break;
3653
3654     // Modules
3655     case tok::kw___module_private__:
3656       isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
3657       break;
3658
3659     // constexpr, consteval, constinit specifiers
3660     case tok::kw_constexpr:
3661       isInvalid = DS.SetConstexprSpec(CSK_constexpr, Loc, PrevSpec, DiagID);
3662       break;
3663     case tok::kw_consteval:
3664       isInvalid = DS.SetConstexprSpec(CSK_consteval, Loc, PrevSpec, DiagID);
3665       break;
3666     case tok::kw_constinit:
3667       isInvalid = DS.SetConstexprSpec(CSK_constinit, Loc, PrevSpec, DiagID);
3668       break;
3669
3670     // type-specifier
3671     case tok::kw_short:
3672       isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
3673                                       DiagID, Policy);
3674       break;
3675     case tok::kw_long:
3676       if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
3677         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
3678                                         DiagID, Policy);
3679       else
3680         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3681                                         DiagID, Policy);
3682       break;
3683     case tok::kw___int64:
3684         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3685                                         DiagID, Policy);
3686       break;
3687     case tok::kw_signed:
3688       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
3689                                      DiagID);
3690       break;
3691     case tok::kw_unsigned:
3692       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
3693                                      DiagID);
3694       break;
3695     case tok::kw__Complex:
3696       if (!getLangOpts().C99)
3697         Diag(Tok, diag::ext_c99_feature) << Tok.getName();
3698       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
3699                                         DiagID);
3700       break;
3701     case tok::kw__Imaginary:
3702       if (!getLangOpts().C99)
3703         Diag(Tok, diag::ext_c99_feature) << Tok.getName();
3704       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
3705                                         DiagID);
3706       break;
3707     case tok::kw_void:
3708       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
3709                                      DiagID, Policy);
3710       break;
3711     case tok::kw_char:
3712       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
3713                                      DiagID, Policy);
3714       break;
3715     case tok::kw_int:
3716       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
3717                                      DiagID, Policy);
3718       break;
3719     case tok::kw___int128:
3720       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
3721                                      DiagID, Policy);
3722       break;
3723     case tok::kw_half:
3724       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
3725                                      DiagID, Policy);
3726       break;
3727     case tok::kw_float:
3728       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
3729                                      DiagID, Policy);
3730       break;
3731     case tok::kw_double:
3732       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
3733                                      DiagID, Policy);
3734       break;
3735     case tok::kw__Float16:
3736       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec,
3737                                      DiagID, Policy);
3738       break;
3739     case tok::kw__Accum:
3740       if (!getLangOpts().FixedPoint) {
3741         SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3742       } else {
3743         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_accum, Loc, PrevSpec,
3744                                        DiagID, Policy);
3745       }
3746       break;
3747     case tok::kw__Fract:
3748       if (!getLangOpts().FixedPoint) {
3749         SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3750       } else {
3751         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_fract, Loc, PrevSpec,
3752                                        DiagID, Policy);
3753       }
3754       break;
3755     case tok::kw__Sat:
3756       if (!getLangOpts().FixedPoint) {
3757         SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3758       } else {
3759         isInvalid = DS.SetTypeSpecSat(Loc, PrevSpec, DiagID);
3760       }
3761       break;
3762     case tok::kw___float128:
3763       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec,
3764                                      DiagID, Policy);
3765       break;
3766     case tok::kw_wchar_t:
3767       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
3768                                      DiagID, Policy);
3769       break;
3770     case tok::kw_char8_t:
3771       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec,
3772                                      DiagID, Policy);
3773       break;
3774     case tok::kw_char16_t:
3775       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
3776                                      DiagID, Policy);
3777       break;
3778     case tok::kw_char32_t:
3779       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
3780                                      DiagID, Policy);
3781       break;
3782     case tok::kw_bool:
3783     case tok::kw__Bool:
3784       if (Tok.is(tok::kw__Bool) && !getLangOpts().C99)
3785         Diag(Tok, diag::ext_c99_feature) << Tok.getName();
3786
3787       if (Tok.is(tok::kw_bool) &&
3788           DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
3789           DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
3790         PrevSpec = ""; // Not used by the diagnostic.
3791         DiagID = diag::err_bool_redeclaration;
3792         // For better error recovery.
3793         Tok.setKind(tok::identifier);
3794         isInvalid = true;
3795       } else {
3796         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
3797                                        DiagID, Policy);
3798       }
3799       break;
3800     case tok::kw__Decimal32:
3801       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
3802                                      DiagID, Policy);
3803       break;
3804     case tok::kw__Decimal64:
3805       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
3806                                      DiagID, Policy);
3807       break;
3808     case tok::kw__Decimal128:
3809       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
3810                                      DiagID, Policy);
3811       break;
3812     case tok::kw___vector:
3813       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
3814       break;
3815     case tok::kw___pixel:
3816       isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
3817       break;
3818     case tok::kw___bool:
3819       isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
3820       break;
3821     case tok::kw_pipe:
3822       if (!getLangOpts().OpenCL || (getLangOpts().OpenCLVersion < 200 &&
3823                                     !getLangOpts().OpenCLCPlusPlus)) {
3824         // OpenCL 2.0 defined this keyword. OpenCL 1.2 and earlier should
3825         // support the "pipe" word as identifier.
3826         Tok.getIdentifierInfo()->revertTokenIDToIdentifier();
3827         goto DoneWithDeclSpec;
3828       }
3829       isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy);
3830       break;
3831 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
3832   case tok::kw_##ImgType##_t: \
3833     isInvalid = DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, \
3834                                    DiagID, Policy); \
3835     break;
3836 #include "clang/Basic/OpenCLImageTypes.def"
3837     case tok::kw___unknown_anytype:
3838       isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
3839                                      PrevSpec, DiagID, Policy);
3840       break;
3841
3842     // class-specifier:
3843     case tok::kw_class:
3844     case tok::kw_struct:
3845     case tok::kw___interface:
3846     case tok::kw_union: {
3847       tok::TokenKind Kind = Tok.getKind();
3848       ConsumeToken();
3849
3850       // These are attributes following class specifiers.
3851       // To produce better diagnostic, we parse them when
3852       // parsing class specifier.
3853       ParsedAttributesWithRange Attributes(AttrFactory);
3854       ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
3855                           EnteringContext, DSContext, Attributes);
3856
3857       // If there are attributes following class specifier,
3858       // take them over and handle them here.
3859       if (!Attributes.empty()) {
3860         AttrsLastTime = true;
3861         attrs.takeAllFrom(Attributes);
3862       }
3863       continue;
3864     }
3865
3866     // enum-specifier:
3867     case tok::kw_enum:
3868       ConsumeToken();
3869       ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
3870       continue;
3871
3872     // cv-qualifier:
3873     case tok::kw_const:
3874       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
3875                                  getLangOpts());
3876       break;
3877     case tok::kw_volatile:
3878       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3879                                  getLangOpts());
3880       break;
3881     case tok::kw_restrict:
3882       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3883                                  getLangOpts());
3884       break;
3885
3886     // C++ typename-specifier:
3887     case tok::kw_typename:
3888       if (TryAnnotateTypeOrScopeToken()) {
3889         DS.SetTypeSpecError();
3890         goto DoneWithDeclSpec;
3891       }
3892       if (!Tok.is(tok::kw_typename))
3893         continue;
3894       break;
3895
3896     // GNU typeof support.
3897     case tok::kw_typeof:
3898       ParseTypeofSpecifier(DS);
3899       continue;
3900
3901     case tok::annot_decltype:
3902       ParseDecltypeSpecifier(DS);
3903       continue;
3904
3905     case tok::annot_pragma_pack:
3906       HandlePragmaPack();
3907       continue;
3908
3909     case tok::annot_pragma_ms_pragma:
3910       HandlePragmaMSPragma();
3911       continue;
3912
3913     case tok::annot_pragma_ms_vtordisp:
3914       HandlePragmaMSVtorDisp();
3915       continue;
3916
3917     case tok::annot_pragma_ms_pointers_to_members:
3918       HandlePragmaMSPointersToMembers();
3919       continue;
3920
3921     case tok::kw___underlying_type:
3922       ParseUnderlyingTypeSpecifier(DS);
3923       continue;
3924
3925     case tok::kw__Atomic:
3926       // C11 6.7.2.4/4:
3927       //   If the _Atomic keyword is immediately followed by a left parenthesis,
3928       //   it is interpreted as a type specifier (with a type name), not as a
3929       //   type qualifier.
3930       if (!getLangOpts().C11)
3931         Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3932
3933       if (NextToken().is(tok::l_paren)) {
3934         ParseAtomicSpecifier(DS);
3935         continue;
3936       }
3937       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
3938                                  getLangOpts());
3939       break;
3940
3941     // OpenCL address space qualifiers:
3942     case tok::kw___generic:
3943       // generic address space is introduced only in OpenCL v2.0
3944       // see OpenCL C Spec v2.0 s6.5.5
3945       if (Actions.getLangOpts().OpenCLVersion < 200 &&
3946           !Actions.getLangOpts().OpenCLCPlusPlus) {
3947         DiagID = diag::err_opencl_unknown_type_specifier;
3948         PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3949         isInvalid = true;
3950         break;
3951       };
3952       LLVM_FALLTHROUGH;
3953     case tok::kw_private:
3954     case tok::kw___private:
3955     case tok::kw___global:
3956     case tok::kw___local:
3957     case tok::kw___constant:
3958     // OpenCL access qualifiers:
3959     case tok::kw___read_only:
3960     case tok::kw___write_only:
3961     case tok::kw___read_write:
3962       ParseOpenCLQualifiers(DS.getAttributes());
3963       break;
3964
3965     case tok::less:
3966       // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
3967       // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
3968       // but we support it.
3969       if (DS.hasTypeSpecifier() || !getLangOpts().ObjC)
3970         goto DoneWithDeclSpec;
3971
3972       SourceLocation StartLoc = Tok.getLocation();
3973       SourceLocation EndLoc;
3974       TypeResult Type = parseObjCProtocolQualifierType(EndLoc);
3975       if (Type.isUsable()) {
3976         if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc,
3977                                PrevSpec, DiagID, Type.get(),
3978                                Actions.getASTContext().getPrintingPolicy()))
3979           Diag(StartLoc, DiagID) << PrevSpec;
3980
3981         DS.SetRangeEnd(EndLoc);
3982       } else {
3983         DS.SetTypeSpecError();
3984       }
3985
3986       // Need to support trailing type qualifiers (e.g. "id<p> const").
3987       // If a type specifier follows, it will be diagnosed elsewhere.
3988       continue;
3989     }
3990
3991     DS.SetRangeEnd(ConsumedEnd.isValid() ? ConsumedEnd : Tok.getLocation());
3992
3993     // If the specifier wasn't legal, issue a diagnostic.
3994     if (isInvalid) {
3995       assert(PrevSpec && "Method did not return previous specifier!");
3996       assert(DiagID);
3997
3998       if (DiagID == diag::ext_duplicate_declspec ||
3999           DiagID == diag::ext_warn_duplicate_declspec ||
4000           DiagID == diag::err_duplicate_declspec)
4001         Diag(Loc, DiagID) << PrevSpec
4002                           << FixItHint::CreateRemoval(
4003                                  SourceRange(Loc, DS.getEndLoc()));
4004       else if (DiagID == diag::err_opencl_unknown_type_specifier) {
4005         Diag(Loc, DiagID) << getLangOpts().OpenCLCPlusPlus
4006                           << getLangOpts().getOpenCLVersionTuple().getAsString()
4007                           << PrevSpec << isStorageClass;
4008       } else
4009         Diag(Loc, DiagID) << PrevSpec;
4010     }
4011
4012     if (DiagID != diag::err_bool_redeclaration && ConsumedEnd.isInvalid())
4013       // After an error the next token can be an annotation token.
4014       ConsumeAnyToken();
4015
4016     AttrsLastTime = false;
4017   }
4018 }
4019
4020 /// ParseStructDeclaration - Parse a struct declaration without the terminating
4021 /// semicolon.
4022 ///
4023 /// Note that a struct declaration refers to a declaration in a struct,
4024 /// not to the declaration of a struct.
4025 ///
4026 ///       struct-declaration:
4027 /// [C2x]   attributes-specifier-seq[opt]
4028 ///           specifier-qualifier-list struct-declarator-list
4029 /// [GNU]   __extension__ struct-declaration
4030 /// [GNU]   specifier-qualifier-list
4031 ///       struct-declarator-list:
4032 ///         struct-declarator
4033 ///         struct-declarator-list ',' struct-declarator
4034 /// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
4035 ///       struct-declarator:
4036 ///         declarator
4037 /// [GNU]   declarator attributes[opt]
4038 ///         declarator[opt] ':' constant-expression
4039 /// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
4040 ///
4041 void Parser::ParseStructDeclaration(
4042     ParsingDeclSpec &DS,
4043     llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
4044
4045   if (Tok.is(tok::kw___extension__)) {
4046     // __extension__ silences extension warnings in the subexpression.
4047     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
4048     ConsumeToken();
4049     return ParseStructDeclaration(DS, FieldsCallback);
4050   }
4051
4052   // Parse leading attributes.
4053   ParsedAttributesWithRange Attrs(AttrFactory);
4054   MaybeParseCXX11Attributes(Attrs);
4055   DS.takeAttributesFrom(Attrs);
4056
4057   // Parse the common specifier-qualifiers-list piece.
4058   ParseSpecifierQualifierList(DS);
4059
4060   // If there are no declarators, this is a free-standing declaration
4061   // specifier. Let the actions module cope with it.
4062   if (Tok.is(tok::semi)) {
4063     RecordDecl *AnonRecord = nullptr;
4064     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
4065                                                        DS, AnonRecord);
4066     assert(!AnonRecord && "Did not expect anonymous struct or union here");
4067     DS.complete(TheDecl);
4068     return;
4069   }
4070
4071   // Read struct-declarators until we find the semicolon.
4072   bool FirstDeclarator = true;
4073   SourceLocation CommaLoc;
4074   while (1) {
4075     ParsingFieldDeclarator DeclaratorInfo(*this, DS);
4076     DeclaratorInfo.D.setCommaLoc(CommaLoc);
4077
4078     // Attributes are only allowed here on successive declarators.
4079     if (!FirstDeclarator)
4080       MaybeParseGNUAttributes(DeclaratorInfo.D);
4081
4082     /// struct-declarator: declarator
4083     /// struct-declarator: declarator[opt] ':' constant-expression
4084     if (Tok.isNot(tok::colon)) {
4085       // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
4086       ColonProtectionRAIIObject X(*this);
4087       ParseDeclarator(DeclaratorInfo.D);
4088     } else
4089       DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
4090
4091     if (TryConsumeToken(tok::colon)) {
4092       ExprResult Res(ParseConstantExpression());
4093       if (Res.isInvalid())
4094         SkipUntil(tok::semi, StopBeforeMatch);
4095       else
4096         DeclaratorInfo.BitfieldSize = Res.get();
4097     }
4098
4099     // If attributes exist after the declarator, parse them.
4100     MaybeParseGNUAttributes(DeclaratorInfo.D);
4101
4102     // We're done with this declarator;  invoke the callback.
4103     FieldsCallback(DeclaratorInfo);
4104
4105     // If we don't have a comma, it is either the end of the list (a ';')
4106     // or an error, bail out.
4107     if (!TryConsumeToken(tok::comma, CommaLoc))
4108       return;
4109
4110     FirstDeclarator = false;
4111   }
4112 }
4113
4114 /// ParseStructUnionBody
4115 ///       struct-contents:
4116 ///         struct-declaration-list
4117 /// [EXT]   empty
4118 /// [GNU]   "struct-declaration-list" without terminatoring ';'
4119 ///       struct-declaration-list:
4120 ///         struct-declaration
4121 ///         struct-declaration-list struct-declaration
4122 /// [OBC]   '@' 'defs' '(' class-name ')'
4123 ///
4124 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
4125                                   DeclSpec::TST TagType, Decl *TagDecl) {
4126   PrettyDeclStackTraceEntry CrashInfo(Actions.Context, TagDecl, RecordLoc,
4127                                       "parsing struct/union body");
4128   assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
4129
4130   BalancedDelimiterTracker T(*this, tok::l_brace);
4131   if (T.consumeOpen())
4132     return;
4133
4134   ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
4135   Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
4136
4137   SmallVector<Decl *, 32> FieldDecls;
4138
4139   // While we still have something to read, read the declarations in the struct.
4140   while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
4141          Tok.isNot(tok::eof)) {
4142     // Each iteration of this loop reads one struct-declaration.
4143
4144     // Check for extraneous top-level semicolon.
4145     if (Tok.is(tok::semi)) {
4146       ConsumeExtraSemi(InsideStruct, TagType);
4147       continue;
4148     }
4149
4150     // Parse _Static_assert declaration.
4151     if (Tok.is(tok::kw__Static_assert)) {
4152       SourceLocation DeclEnd;
4153       ParseStaticAssertDeclaration(DeclEnd);
4154       continue;
4155     }
4156
4157     if (Tok.is(tok::annot_pragma_pack)) {
4158       HandlePragmaPack();
4159       continue;
4160     }
4161
4162     if (Tok.is(tok::annot_pragma_align)) {
4163       HandlePragmaAlign();
4164       continue;
4165     }
4166
4167     if (Tok.is(tok::annot_pragma_openmp)) {
4168       // Result can be ignored, because it must be always empty.
4169       AccessSpecifier AS = AS_none;
4170       ParsedAttributesWithRange Attrs(AttrFactory);
4171       (void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs);
4172       continue;
4173     }
4174
4175     if (tok::isPragmaAnnotation(Tok.getKind())) {
4176       Diag(Tok.getLocation(), diag::err_pragma_misplaced_in_decl)
4177           << DeclSpec::getSpecifierName(
4178                  TagType, Actions.getASTContext().getPrintingPolicy());
4179       ConsumeAnnotationToken();
4180       continue;
4181     }
4182
4183     if (!Tok.is(tok::at)) {
4184       auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
4185         // Install the declarator into the current TagDecl.
4186         Decl *Field =
4187             Actions.ActOnField(getCurScope(), TagDecl,
4188                                FD.D.getDeclSpec().getSourceRange().getBegin(),
4189                                FD.D, FD.BitfieldSize);
4190         FieldDecls.push_back(Field);
4191         FD.complete(Field);
4192       };
4193
4194       // Parse all the comma separated declarators.
4195       ParsingDeclSpec DS(*this);
4196       ParseStructDeclaration(DS, CFieldCallback);
4197     } else { // Handle @defs
4198       ConsumeToken();
4199       if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
4200         Diag(Tok, diag::err_unexpected_at);
4201         SkipUntil(tok::semi);
4202         continue;
4203       }
4204       ConsumeToken();
4205       ExpectAndConsume(tok::l_paren);
4206       if (!Tok.is(tok::identifier)) {
4207         Diag(Tok, diag::err_expected) << tok::identifier;
4208         SkipUntil(tok::semi);
4209         continue;
4210       }
4211       SmallVector<Decl *, 16> Fields;
4212       Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
4213                         Tok.getIdentifierInfo(), Fields);
4214       FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
4215       ConsumeToken();
4216       ExpectAndConsume(tok::r_paren);
4217     }
4218
4219     if (TryConsumeToken(tok::semi))
4220       continue;
4221
4222     if (Tok.is(tok::r_brace)) {
4223       ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
4224       break;
4225     }
4226
4227     ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
4228     // Skip to end of block or statement to avoid ext-warning on extra ';'.
4229     SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
4230     // If we stopped at a ';', eat it.
4231     TryConsumeToken(tok::semi);
4232   }
4233
4234   T.consumeClose();
4235
4236   ParsedAttributes attrs(AttrFactory);
4237   // If attributes exist after struct contents, parse them.
4238   MaybeParseGNUAttributes(attrs);
4239
4240   Actions.ActOnFields(getCurScope(), RecordLoc, TagDecl, FieldDecls,
4241                       T.getOpenLocation(), T.getCloseLocation(), attrs);
4242   StructScope.Exit();
4243   Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, T.getRange());
4244 }
4245
4246 /// ParseEnumSpecifier
4247 ///       enum-specifier: [C99 6.7.2.2]
4248 ///         'enum' identifier[opt] '{' enumerator-list '}'
4249 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
4250 /// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
4251 ///                                                 '}' attributes[opt]
4252 /// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
4253 ///                                                 '}'
4254 ///         'enum' identifier
4255 /// [GNU]   'enum' attributes[opt] identifier
4256 ///
4257 /// [C++11] enum-head '{' enumerator-list[opt] '}'
4258 /// [C++11] enum-head '{' enumerator-list ','  '}'
4259 ///
4260 ///       enum-head: [C++11]
4261 ///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
4262 ///         enum-key attribute-specifier-seq[opt] nested-name-specifier
4263 ///             identifier enum-base[opt]
4264 ///
4265 ///       enum-key: [C++11]
4266 ///         'enum'
4267 ///         'enum' 'class'
4268 ///         'enum' 'struct'
4269 ///
4270 ///       enum-base: [C++11]
4271 ///         ':' type-specifier-seq
4272 ///
4273 /// [C++] elaborated-type-specifier:
4274 /// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
4275 ///
4276 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
4277                                 const ParsedTemplateInfo &TemplateInfo,
4278                                 AccessSpecifier AS, DeclSpecContext DSC) {
4279   // Parse the tag portion of this.
4280   if (Tok.is(tok::code_completion)) {
4281     // Code completion for an enum name.
4282     Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
4283     return cutOffParsing();
4284   }
4285
4286   // If attributes exist after tag, parse them.
4287   ParsedAttributesWithRange attrs(AttrFactory);
4288   MaybeParseGNUAttributes(attrs);
4289   MaybeParseCXX11Attributes(attrs);
4290   MaybeParseMicrosoftDeclSpecs(attrs);
4291
4292   SourceLocation ScopedEnumKWLoc;
4293   bool IsScopedUsingClassTag = false;
4294
4295   // In C++11, recognize 'enum class' and 'enum struct'.
4296   if (Tok.isOneOf(tok::kw_class, tok::kw_struct)) {
4297     Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
4298                                         : diag::ext_scoped_enum);
4299     IsScopedUsingClassTag = Tok.is(tok::kw_class);
4300     ScopedEnumKWLoc = ConsumeToken();
4301
4302     // Attributes are not allowed between these keywords.  Diagnose,
4303     // but then just treat them like they appeared in the right place.
4304     ProhibitAttributes(attrs);
4305
4306     // They are allowed afterwards, though.
4307     MaybeParseGNUAttributes(attrs);
4308     MaybeParseCXX11Attributes(attrs);
4309     MaybeParseMicrosoftDeclSpecs(attrs);
4310   }
4311
4312   // C++11 [temp.explicit]p12:
4313   //   The usual access controls do not apply to names used to specify
4314   //   explicit instantiations.
4315   // We extend this to also cover explicit specializations.  Note that
4316   // we don't suppress if this turns out to be an elaborated type
4317   // specifier.
4318   bool shouldDelayDiagsInTag =
4319     (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
4320      TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
4321   SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
4322
4323   // Enum definitions should not be parsed in a trailing-return-type.
4324   bool AllowDeclaration = DSC != DeclSpecContext::DSC_trailing;
4325
4326   CXXScopeSpec &SS = DS.getTypeSpecScope();
4327   if (getLangOpts().CPlusPlus) {
4328     // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
4329     // if a fixed underlying type is allowed.
4330     ColonProtectionRAIIObject X(*this, AllowDeclaration);
4331
4332     CXXScopeSpec Spec;
4333     if (ParseOptionalCXXScopeSpecifier(Spec, nullptr,
4334                                        /*EnteringContext=*/true))
4335       return;
4336
4337     if (Spec.isSet() && Tok.isNot(tok::identifier)) {
4338       Diag(Tok, diag::err_expected) << tok::identifier;
4339       if (Tok.isNot(tok::l_brace)) {
4340         // Has no name and is not a definition.
4341         // Skip the rest of this declarator, up until the comma or semicolon.
4342         SkipUntil(tok::comma, StopAtSemi);
4343         return;
4344       }
4345     }
4346
4347     SS = Spec;
4348   }
4349
4350   // Must have either 'enum name' or 'enum {...}'.
4351   if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
4352       !(AllowDeclaration && Tok.is(tok::colon))) {
4353     Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
4354
4355     // Skip the rest of this declarator, up until the comma or semicolon.
4356     SkipUntil(tok::comma, StopAtSemi);
4357     return;
4358   }
4359
4360   // If an identifier is present, consume and remember it.
4361   IdentifierInfo *Name = nullptr;
4362   SourceLocation NameLoc;
4363   if (Tok.is(tok::identifier)) {
4364     Name = Tok.getIdentifierInfo();
4365     NameLoc = ConsumeToken();
4366   }
4367
4368   if (!Name && ScopedEnumKWLoc.isValid()) {
4369     // C++0x 7.2p2: The optional identifier shall not be omitted in the
4370     // declaration of a scoped enumeration.
4371     Diag(Tok, diag::err_scoped_enum_missing_identifier);
4372     ScopedEnumKWLoc = SourceLocation();
4373     IsScopedUsingClassTag = false;
4374   }
4375
4376   // Okay, end the suppression area.  We'll decide whether to emit the
4377   // diagnostics in a second.
4378   if (shouldDelayDiagsInTag)
4379     diagsFromTag.done();
4380
4381   TypeResult BaseType;
4382
4383   // Parse the fixed underlying type.
4384   bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4385   if (AllowDeclaration && Tok.is(tok::colon)) {
4386     bool PossibleBitfield = false;
4387     if (CanBeBitfield) {
4388       // If we're in class scope, this can either be an enum declaration with
4389       // an underlying type, or a declaration of a bitfield member. We try to
4390       // use a simple disambiguation scheme first to catch the common cases
4391       // (integer literal, sizeof); if it's still ambiguous, we then consider
4392       // anything that's a simple-type-specifier followed by '(' as an
4393       // expression. This suffices because function types are not valid
4394       // underlying types anyway.
4395       EnterExpressionEvaluationContext Unevaluated(
4396           Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
4397       TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
4398       // If the next token starts an expression, we know we're parsing a
4399       // bit-field. This is the common case.
4400       if (TPR == TPResult::True)
4401         PossibleBitfield = true;
4402       // If the next token starts a type-specifier-seq, it may be either a
4403       // a fixed underlying type or the start of a function-style cast in C++;
4404       // lookahead one more token to see if it's obvious that we have a
4405       // fixed underlying type.
4406       else if (TPR == TPResult::False &&
4407                GetLookAheadToken(2).getKind() == tok::semi) {
4408         // Consume the ':'.
4409         ConsumeToken();
4410       } else {
4411         // We have the start of a type-specifier-seq, so we have to perform
4412         // tentative parsing to determine whether we have an expression or a
4413         // type.
4414         TentativeParsingAction TPA(*this);
4415
4416         // Consume the ':'.
4417         ConsumeToken();
4418
4419         // If we see a type specifier followed by an open-brace, we have an
4420         // ambiguity between an underlying type and a C++11 braced
4421         // function-style cast. Resolve this by always treating it as an
4422         // underlying type.
4423         // FIXME: The standard is not entirely clear on how to disambiguate in
4424         // this case.
4425         if ((getLangOpts().CPlusPlus &&
4426              isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) ||
4427             (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
4428           // We'll parse this as a bitfield later.
4429           PossibleBitfield = true;
4430           TPA.Revert();
4431         } else {
4432           // We have a type-specifier-seq.
4433           TPA.Commit();
4434         }
4435       }
4436     } else {
4437       // Consume the ':'.
4438       ConsumeToken();
4439     }
4440
4441     if (!PossibleBitfield) {
4442       SourceRange Range;
4443       BaseType = ParseTypeName(&Range);
4444
4445       if (!getLangOpts().ObjC) {
4446         if (getLangOpts().CPlusPlus11)
4447           Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
4448         else if (getLangOpts().CPlusPlus)
4449           Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type);
4450         else if (getLangOpts().MicrosoftExt)
4451           Diag(StartLoc, diag::ext_ms_c_enum_fixed_underlying_type);
4452         else
4453           Diag(StartLoc, diag::ext_clang_c_enum_fixed_underlying_type);
4454       }
4455     }
4456   }
4457
4458   // There are four options here.  If we have 'friend enum foo;' then this is a
4459   // friend declaration, and cannot have an accompanying definition. If we have
4460   // 'enum foo;', then this is a forward declaration.  If we have
4461   // 'enum foo {...' then this is a definition. Otherwise we have something
4462   // like 'enum foo xyz', a reference.
4463   //
4464   // This is needed to handle stuff like this right (C99 6.7.2.3p11):
4465   // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
4466   // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
4467   //
4468   Sema::TagUseKind TUK;
4469   if (!AllowDeclaration) {
4470     TUK = Sema::TUK_Reference;
4471   } else if (Tok.is(tok::l_brace)) {
4472     if (DS.isFriendSpecified()) {
4473       Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
4474         << SourceRange(DS.getFriendSpecLoc());
4475       ConsumeBrace();
4476       SkipUntil(tok::r_brace, StopAtSemi);
4477       TUK = Sema::TUK_Friend;
4478     } else {
4479       TUK = Sema::TUK_Definition;
4480     }
4481   } else if (!isTypeSpecifier(DSC) &&
4482              (Tok.is(tok::semi) ||
4483               (Tok.isAtStartOfLine() &&
4484                !isValidAfterTypeSpecifier(CanBeBitfield)))) {
4485     TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
4486     if (Tok.isNot(tok::semi)) {
4487       // A semicolon was missing after this declaration. Diagnose and recover.
4488       ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4489       PP.EnterToken(Tok, /*IsReinject=*/true);
4490       Tok.setKind(tok::semi);
4491     }
4492   } else {
4493     TUK = Sema::TUK_Reference;
4494   }
4495
4496   // If this is an elaborated type specifier, and we delayed
4497   // diagnostics before, just merge them into the current pool.
4498   if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
4499     diagsFromTag.redelay();
4500   }
4501
4502   MultiTemplateParamsArg TParams;
4503   if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
4504       TUK != Sema::TUK_Reference) {
4505     if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
4506       // Skip the rest of this declarator, up until the comma or semicolon.
4507       Diag(Tok, diag::err_enum_template);
4508       SkipUntil(tok::comma, StopAtSemi);
4509       return;
4510     }
4511
4512     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
4513       // Enumerations can't be explicitly instantiated.
4514       DS.SetTypeSpecError();
4515       Diag(StartLoc, diag::err_explicit_instantiation_enum);
4516       return;
4517     }
4518
4519     assert(TemplateInfo.TemplateParams && "no template parameters");
4520     TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
4521                                      TemplateInfo.TemplateParams->size());
4522   }
4523
4524   if (TUK == Sema::TUK_Reference)
4525     ProhibitAttributes(attrs);
4526
4527   if (!Name && TUK != Sema::TUK_Definition) {
4528     Diag(Tok, diag::err_enumerator_unnamed_no_def);
4529
4530     // Skip the rest of this declarator, up until the comma or semicolon.
4531     SkipUntil(tok::comma, StopAtSemi);
4532     return;
4533   }
4534
4535   stripTypeAttributesOffDeclSpec(attrs, DS, TUK);
4536
4537   Sema::SkipBodyInfo SkipBody;
4538   if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) &&
4539       NextToken().is(tok::identifier))
4540     SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(),
4541                                               NextToken().getIdentifierInfo(),
4542                                               NextToken().getLocation());
4543
4544   bool Owned = false;
4545   bool IsDependent = false;
4546   const char *PrevSpec = nullptr;
4547   unsigned DiagID;
4548   Decl *TagDecl = Actions.ActOnTag(
4549       getCurScope(), DeclSpec::TST_enum, TUK, StartLoc, SS, Name, NameLoc,
4550       attrs, AS, DS.getModulePrivateSpecLoc(), TParams, Owned, IsDependent,
4551       ScopedEnumKWLoc, IsScopedUsingClassTag, BaseType,
4552       DSC == DeclSpecContext::DSC_type_specifier,
4553       DSC == DeclSpecContext::DSC_template_param ||
4554           DSC == DeclSpecContext::DSC_template_type_arg,
4555       &SkipBody);
4556
4557   if (SkipBody.ShouldSkip) {
4558     assert(TUK == Sema::TUK_Definition && "can only skip a definition");
4559
4560     BalancedDelimiterTracker T(*this, tok::l_brace);
4561     T.consumeOpen();
4562     T.skipToEnd();
4563
4564     if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
4565                            NameLoc.isValid() ? NameLoc : StartLoc,
4566                            PrevSpec, DiagID, TagDecl, Owned,
4567                            Actions.getASTContext().getPrintingPolicy()))
4568       Diag(StartLoc, DiagID) << PrevSpec;
4569     return;
4570   }
4571
4572   if (IsDependent) {
4573     // This enum has a dependent nested-name-specifier. Handle it as a
4574     // dependent tag.
4575     if (!Name) {
4576       DS.SetTypeSpecError();
4577       Diag(Tok, diag::err_expected_type_name_after_typename);
4578       return;
4579     }
4580
4581     TypeResult Type = Actions.ActOnDependentTag(
4582         getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
4583     if (Type.isInvalid()) {
4584       DS.SetTypeSpecError();
4585       return;
4586     }
4587
4588     if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
4589                            NameLoc.isValid() ? NameLoc : StartLoc,
4590                            PrevSpec, DiagID, Type.get(),
4591                            Actions.getASTContext().getPrintingPolicy()))
4592       Diag(StartLoc, DiagID) << PrevSpec;
4593
4594     return;
4595   }
4596
4597   if (!TagDecl) {
4598     // The action failed to produce an enumeration tag. If this is a
4599     // definition, consume the entire definition.
4600     if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
4601       ConsumeBrace();
4602       SkipUntil(tok::r_brace, StopAtSemi);
4603     }
4604
4605     DS.SetTypeSpecError();
4606     return;
4607   }
4608
4609   if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
4610     Decl *D = SkipBody.CheckSameAsPrevious ? SkipBody.New : TagDecl;
4611     ParseEnumBody(StartLoc, D);
4612     if (SkipBody.CheckSameAsPrevious &&
4613         !Actions.ActOnDuplicateDefinition(DS, TagDecl, SkipBody)) {
4614       DS.SetTypeSpecError();
4615       return;
4616     }
4617   }
4618
4619   if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
4620                          NameLoc.isValid() ? NameLoc : StartLoc,
4621                          PrevSpec, DiagID, TagDecl, Owned,
4622                          Actions.getASTContext().getPrintingPolicy()))
4623     Diag(StartLoc, DiagID) << PrevSpec;
4624 }
4625
4626 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
4627 ///       enumerator-list:
4628 ///         enumerator
4629 ///         enumerator-list ',' enumerator
4630 ///       enumerator:
4631 ///         enumeration-constant attributes[opt]
4632 ///         enumeration-constant attributes[opt] '=' constant-expression
4633 ///       enumeration-constant:
4634 ///         identifier
4635 ///
4636 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
4637   // Enter the scope of the enum body and start the definition.
4638   ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
4639   Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
4640
4641   BalancedDelimiterTracker T(*this, tok::l_brace);
4642   T.consumeOpen();
4643
4644   // C does not allow an empty enumerator-list, C++ does [dcl.enum].
4645   if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
4646     Diag(Tok, diag::err_empty_enum);
4647
4648   SmallVector<Decl *, 32> EnumConstantDecls;
4649   SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags;
4650
4651   Decl *LastEnumConstDecl = nullptr;
4652
4653   // Parse the enumerator-list.
4654   while (Tok.isNot(tok::r_brace)) {
4655     // Parse enumerator. If failed, try skipping till the start of the next
4656     // enumerator definition.
4657     if (Tok.isNot(tok::identifier)) {
4658       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
4659       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
4660           TryConsumeToken(tok::comma))
4661         continue;
4662       break;
4663     }
4664     IdentifierInfo *Ident = Tok.getIdentifierInfo();
4665     SourceLocation IdentLoc = ConsumeToken();
4666
4667     // If attributes exist after the enumerator, parse them.
4668     ParsedAttributesWithRange attrs(AttrFactory);
4669     MaybeParseGNUAttributes(attrs);
4670     ProhibitAttributes(attrs); // GNU-style attributes are prohibited.
4671     if (standardAttributesAllowed() && isCXX11AttributeSpecifier()) {
4672       if (getLangOpts().CPlusPlus)
4673         Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
4674                                     ? diag::warn_cxx14_compat_ns_enum_attribute
4675                                     : diag::ext_ns_enum_attribute)
4676             << 1 /*enumerator*/;
4677       ParseCXX11Attributes(attrs);
4678     }
4679
4680     SourceLocation EqualLoc;
4681     ExprResult AssignedVal;
4682     EnumAvailabilityDiags.emplace_back(*this);
4683
4684     EnterExpressionEvaluationContext ConstantEvaluated(
4685         Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
4686     if (TryConsumeToken(tok::equal, EqualLoc)) {
4687       AssignedVal = ParseConstantExpressionInExprEvalContext();
4688       if (AssignedVal.isInvalid())
4689         SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
4690     }
4691
4692     // Install the enumerator constant into EnumDecl.
4693     Decl *EnumConstDecl = Actions.ActOnEnumConstant(
4694         getCurScope(), EnumDecl, LastEnumConstDecl, IdentLoc, Ident, attrs,
4695         EqualLoc, AssignedVal.get());
4696     EnumAvailabilityDiags.back().done();
4697
4698     EnumConstantDecls.push_back(EnumConstDecl);
4699     LastEnumConstDecl = EnumConstDecl;
4700
4701     if (Tok.is(tok::identifier)) {
4702       // We're missing a comma between enumerators.
4703       SourceLocation Loc = getEndOfPreviousToken();
4704       Diag(Loc, diag::err_enumerator_list_missing_comma)
4705         << FixItHint::CreateInsertion(Loc, ", ");
4706       continue;
4707     }
4708
4709     // Emumerator definition must be finished, only comma or r_brace are
4710     // allowed here.
4711     SourceLocation CommaLoc;
4712     if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
4713       if (EqualLoc.isValid())
4714         Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
4715                                                            << tok::comma;
4716       else
4717         Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
4718       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
4719         if (TryConsumeToken(tok::comma, CommaLoc))
4720           continue;
4721       } else {
4722         break;
4723       }
4724     }
4725
4726     // If comma is followed by r_brace, emit appropriate warning.
4727     if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
4728       if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
4729         Diag(CommaLoc, getLangOpts().CPlusPlus ?
4730                diag::ext_enumerator_list_comma_cxx :
4731                diag::ext_enumerator_list_comma_c)
4732           << FixItHint::CreateRemoval(CommaLoc);
4733       else if (getLangOpts().CPlusPlus11)
4734         Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
4735           << FixItHint::CreateRemoval(CommaLoc);
4736       break;
4737     }
4738   }
4739
4740   // Eat the }.
4741   T.consumeClose();
4742
4743   // If attributes exist after the identifier list, parse them.
4744   ParsedAttributes attrs(AttrFactory);
4745   MaybeParseGNUAttributes(attrs);
4746
4747   Actions.ActOnEnumBody(StartLoc, T.getRange(), EnumDecl, EnumConstantDecls,
4748                         getCurScope(), attrs);
4749
4750   // Now handle enum constant availability diagnostics.
4751   assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size());
4752   for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) {
4753     ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
4754     EnumAvailabilityDiags[i].redelay();
4755     PD.complete(EnumConstantDecls[i]);
4756   }
4757
4758   EnumScope.Exit();
4759   Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, T.getRange());
4760
4761   // The next token must be valid after an enum definition. If not, a ';'
4762   // was probably forgotten.
4763   bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4764   if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
4765     ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4766     // Push this token back into the preprocessor and change our current token
4767     // to ';' so that the rest of the code recovers as though there were an
4768     // ';' after the definition.
4769     PP.EnterToken(Tok, /*IsReinject=*/true);
4770     Tok.setKind(tok::semi);
4771   }
4772 }
4773
4774 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
4775 /// is definitely a type-specifier.  Return false if it isn't part of a type
4776 /// specifier or if we're not sure.
4777 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
4778   switch (Tok.getKind()) {
4779   default: return false;
4780     // type-specifiers
4781   case tok::kw_short:
4782   case tok::kw_long:
4783   case tok::kw___int64:
4784   case tok::kw___int128:
4785   case tok::kw_signed:
4786   case tok::kw_unsigned:
4787   case tok::kw__Complex:
4788   case tok::kw__Imaginary:
4789   case tok::kw_void:
4790   case tok::kw_char:
4791   case tok::kw_wchar_t:
4792   case tok::kw_char8_t:
4793   case tok::kw_char16_t:
4794   case tok::kw_char32_t:
4795   case tok::kw_int:
4796   case tok::kw_half:
4797   case tok::kw_float:
4798   case tok::kw_double:
4799   case tok::kw__Accum:
4800   case tok::kw__Fract:
4801   case tok::kw__Float16:
4802   case tok::kw___float128:
4803   case tok::kw_bool:
4804   case tok::kw__Bool:
4805   case tok::kw__Decimal32:
4806   case tok::kw__Decimal64:
4807   case tok::kw__Decimal128:
4808   case tok::kw___vector:
4809 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4810 #include "clang/Basic/OpenCLImageTypes.def"
4811
4812     // struct-or-union-specifier (C99) or class-specifier (C++)
4813   case tok::kw_class:
4814   case tok::kw_struct:
4815   case tok::kw___interface:
4816   case tok::kw_union:
4817     // enum-specifier
4818   case tok::kw_enum:
4819
4820     // typedef-name
4821   case tok::annot_typename:
4822     return true;
4823   }
4824 }
4825
4826 /// isTypeSpecifierQualifier - Return true if the current token could be the
4827 /// start of a specifier-qualifier-list.
4828 bool Parser::isTypeSpecifierQualifier() {
4829   switch (Tok.getKind()) {
4830   default: return false;
4831
4832   case tok::identifier:   // foo::bar
4833     if (TryAltiVecVectorToken())
4834       return true;
4835     LLVM_FALLTHROUGH;
4836   case tok::kw_typename:  // typename T::type
4837     // Annotate typenames and C++ scope specifiers.  If we get one, just
4838     // recurse to handle whatever we get.
4839     if (TryAnnotateTypeOrScopeToken())
4840       return true;
4841     if (Tok.is(tok::identifier))
4842       return false;
4843     return isTypeSpecifierQualifier();
4844
4845   case tok::coloncolon:   // ::foo::bar
4846     if (NextToken().is(tok::kw_new) ||    // ::new
4847         NextToken().is(tok::kw_delete))   // ::delete
4848       return false;
4849
4850     if (TryAnnotateTypeOrScopeToken())
4851       return true;
4852     return isTypeSpecifierQualifier();
4853
4854     // GNU attributes support.
4855   case tok::kw___attribute:
4856     // GNU typeof support.
4857   case tok::kw_typeof:
4858
4859     // type-specifiers
4860   case tok::kw_short:
4861   case tok::kw_long:
4862   case tok::kw___int64:
4863   case tok::kw___int128:
4864   case tok::kw_signed:
4865   case tok::kw_unsigned:
4866   case tok::kw__Complex:
4867   case tok::kw__Imaginary:
4868   case tok::kw_void:
4869   case tok::kw_char:
4870   case tok::kw_wchar_t:
4871   case tok::kw_char8_t:
4872   case tok::kw_char16_t:
4873   case tok::kw_char32_t:
4874   case tok::kw_int:
4875   case tok::kw_half:
4876   case tok::kw_float:
4877   case tok::kw_double:
4878   case tok::kw__Accum:
4879   case tok::kw__Fract:
4880   case tok::kw__Float16:
4881   case tok::kw___float128:
4882   case tok::kw_bool:
4883   case tok::kw__Bool:
4884   case tok::kw__Decimal32:
4885   case tok::kw__Decimal64:
4886   case tok::kw__Decimal128:
4887   case tok::kw___vector:
4888 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4889 #include "clang/Basic/OpenCLImageTypes.def"
4890
4891     // struct-or-union-specifier (C99) or class-specifier (C++)
4892   case tok::kw_class:
4893   case tok::kw_struct:
4894   case tok::kw___interface:
4895   case tok::kw_union:
4896     // enum-specifier
4897   case tok::kw_enum:
4898
4899     // type-qualifier
4900   case tok::kw_const:
4901   case tok::kw_volatile:
4902   case tok::kw_restrict:
4903   case tok::kw__Sat:
4904
4905     // Debugger support.
4906   case tok::kw___unknown_anytype:
4907
4908     // typedef-name
4909   case tok::annot_typename:
4910     return true;
4911
4912     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4913   case tok::less:
4914     return getLangOpts().ObjC;
4915
4916   case tok::kw___cdecl:
4917   case tok::kw___stdcall:
4918   case tok::kw___fastcall:
4919   case tok::kw___thiscall:
4920   case tok::kw___regcall:
4921   case tok::kw___vectorcall:
4922   case tok::kw___w64:
4923   case tok::kw___ptr64:
4924   case tok::kw___ptr32:
4925   case tok::kw___pascal:
4926   case tok::kw___unaligned:
4927
4928   case tok::kw__Nonnull:
4929   case tok::kw__Nullable:
4930   case tok::kw__Null_unspecified:
4931
4932   case tok::kw___kindof:
4933
4934   case tok::kw___private:
4935   case tok::kw___local:
4936   case tok::kw___global:
4937   case tok::kw___constant:
4938   case tok::kw___generic:
4939   case tok::kw___read_only:
4940   case tok::kw___read_write:
4941   case tok::kw___write_only:
4942     return true;
4943
4944   case tok::kw_private:
4945     return getLangOpts().OpenCL;
4946
4947   // C11 _Atomic
4948   case tok::kw__Atomic:
4949     return true;
4950   }
4951 }
4952
4953 /// isDeclarationSpecifier() - Return true if the current token is part of a
4954 /// declaration specifier.
4955 ///
4956 /// \param DisambiguatingWithExpression True to indicate that the purpose of
4957 /// this check is to disambiguate between an expression and a declaration.
4958 bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
4959   switch (Tok.getKind()) {
4960   default: return false;
4961
4962   case tok::kw_pipe:
4963     return (getLangOpts().OpenCL && getLangOpts().OpenCLVersion >= 200) ||
4964            getLangOpts().OpenCLCPlusPlus;
4965
4966   case tok::identifier:   // foo::bar
4967     // Unfortunate hack to support "Class.factoryMethod" notation.
4968     if (getLangOpts().ObjC && NextToken().is(tok::period))
4969       return false;
4970     if (TryAltiVecVectorToken())
4971       return true;
4972     LLVM_FALLTHROUGH;
4973   case tok::kw_decltype: // decltype(T())::type
4974   case tok::kw_typename: // typename T::type
4975     // Annotate typenames and C++ scope specifiers.  If we get one, just
4976     // recurse to handle whatever we get.
4977     if (TryAnnotateTypeOrScopeToken())
4978       return true;
4979     if (Tok.is(tok::identifier))
4980       return false;
4981
4982     // If we're in Objective-C and we have an Objective-C class type followed
4983     // by an identifier and then either ':' or ']', in a place where an
4984     // expression is permitted, then this is probably a class message send
4985     // missing the initial '['. In this case, we won't consider this to be
4986     // the start of a declaration.
4987     if (DisambiguatingWithExpression &&
4988         isStartOfObjCClassMessageMissingOpenBracket())
4989       return false;
4990
4991     return isDeclarationSpecifier();
4992
4993   case tok::coloncolon:   // ::foo::bar
4994     if (NextToken().is(tok::kw_new) ||    // ::new
4995         NextToken().is(tok::kw_delete))   // ::delete
4996       return false;
4997
4998     // Annotate typenames and C++ scope specifiers.  If we get one, just
4999     // recurse to handle whatever we get.
5000     if (TryAnnotateTypeOrScopeToken())
5001       return true;
5002     return isDeclarationSpecifier();
5003
5004     // storage-class-specifier
5005   case tok::kw_typedef:
5006   case tok::kw_extern:
5007   case tok::kw___private_extern__:
5008   case tok::kw_static:
5009   case tok::kw_auto:
5010   case tok::kw___auto_type:
5011   case tok::kw_register:
5012   case tok::kw___thread:
5013   case tok::kw_thread_local:
5014   case tok::kw__Thread_local:
5015
5016     // Modules
5017   case tok::kw___module_private__:
5018
5019     // Debugger support
5020   case tok::kw___unknown_anytype:
5021
5022     // type-specifiers
5023   case tok::kw_short:
5024   case tok::kw_long:
5025   case tok::kw___int64:
5026   case tok::kw___int128:
5027   case tok::kw_signed:
5028   case tok::kw_unsigned:
5029   case tok::kw__Complex:
5030   case tok::kw__Imaginary:
5031   case tok::kw_void:
5032   case tok::kw_char:
5033   case tok::kw_wchar_t:
5034   case tok::kw_char8_t:
5035   case tok::kw_char16_t:
5036   case tok::kw_char32_t:
5037
5038   case tok::kw_int:
5039   case tok::kw_half:
5040   case tok::kw_float:
5041   case tok::kw_double:
5042   case tok::kw__Accum:
5043   case tok::kw__Fract:
5044   case tok::kw__Float16:
5045   case tok::kw___float128:
5046   case tok::kw_bool:
5047   case tok::kw__Bool:
5048   case tok::kw__Decimal32:
5049   case tok::kw__Decimal64:
5050   case tok::kw__Decimal128:
5051   case tok::kw___vector:
5052
5053     // struct-or-union-specifier (C99) or class-specifier (C++)
5054   case tok::kw_class:
5055   case tok::kw_struct:
5056   case tok::kw_union:
5057   case tok::kw___interface:
5058     // enum-specifier
5059   case tok::kw_enum:
5060
5061     // type-qualifier
5062   case tok::kw_const:
5063   case tok::kw_volatile:
5064   case tok::kw_restrict:
5065   case tok::kw__Sat:
5066
5067     // function-specifier
5068   case tok::kw_inline:
5069   case tok::kw_virtual:
5070   case tok::kw_explicit:
5071   case tok::kw__Noreturn:
5072
5073     // alignment-specifier
5074   case tok::kw__Alignas:
5075
5076     // friend keyword.
5077   case tok::kw_friend:
5078
5079     // static_assert-declaration
5080   case tok::kw__Static_assert:
5081
5082     // GNU typeof support.
5083   case tok::kw_typeof:
5084
5085     // GNU attributes.
5086   case tok::kw___attribute:
5087
5088     // C++11 decltype and constexpr.
5089   case tok::annot_decltype:
5090   case tok::kw_constexpr:
5091
5092     // C++20 consteval and constinit.
5093   case tok::kw_consteval:
5094   case tok::kw_constinit:
5095
5096     // C11 _Atomic
5097   case tok::kw__Atomic:
5098     return true;
5099
5100     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
5101   case tok::less:
5102     return getLangOpts().ObjC;
5103
5104     // typedef-name
5105   case tok::annot_typename:
5106     return !DisambiguatingWithExpression ||
5107            !isStartOfObjCClassMessageMissingOpenBracket();
5108
5109   case tok::kw___declspec:
5110   case tok::kw___cdecl:
5111   case tok::kw___stdcall:
5112   case tok::kw___fastcall:
5113   case tok::kw___thiscall:
5114   case tok::kw___regcall:
5115   case tok::kw___vectorcall:
5116   case tok::kw___w64:
5117   case tok::kw___sptr:
5118   case tok::kw___uptr:
5119   case tok::kw___ptr64:
5120   case tok::kw___ptr32:
5121   case tok::kw___forceinline:
5122   case tok::kw___pascal:
5123   case tok::kw___unaligned:
5124
5125   case tok::kw__Nonnull:
5126   case tok::kw__Nullable:
5127   case tok::kw__Null_unspecified:
5128
5129   case tok::kw___kindof:
5130
5131   case tok::kw___private:
5132   case tok::kw___local:
5133   case tok::kw___global:
5134   case tok::kw___constant:
5135   case tok::kw___generic:
5136   case tok::kw___read_only:
5137   case tok::kw___read_write:
5138   case tok::kw___write_only:
5139 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
5140 #include "clang/Basic/OpenCLImageTypes.def"
5141
5142     return true;
5143
5144   case tok::kw_private:
5145     return getLangOpts().OpenCL;
5146   }
5147 }
5148
5149 bool Parser::isConstructorDeclarator(bool IsUnqualified, bool DeductionGuide) {
5150   TentativeParsingAction TPA(*this);
5151
5152   // Parse the C++ scope specifier.
5153   CXXScopeSpec SS;
5154   if (ParseOptionalCXXScopeSpecifier(SS, nullptr,
5155                                      /*EnteringContext=*/true)) {
5156     TPA.Revert();
5157     return false;
5158   }
5159
5160   // Parse the constructor name.
5161   if (Tok.is(tok::identifier)) {
5162     // We already know that we have a constructor name; just consume
5163     // the token.
5164     ConsumeToken();
5165   } else if (Tok.is(tok::annot_template_id)) {
5166     ConsumeAnnotationToken();
5167   } else {
5168     TPA.Revert();
5169     return false;
5170   }
5171
5172   // There may be attributes here, appertaining to the constructor name or type
5173   // we just stepped past.
5174   SkipCXX11Attributes();
5175
5176   // Current class name must be followed by a left parenthesis.
5177   if (Tok.isNot(tok::l_paren)) {
5178     TPA.Revert();
5179     return false;
5180   }
5181   ConsumeParen();
5182
5183   // A right parenthesis, or ellipsis followed by a right parenthesis signals
5184   // that we have a constructor.
5185   if (Tok.is(tok::r_paren) ||
5186       (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
5187     TPA.Revert();
5188     return true;
5189   }
5190
5191   // A C++11 attribute here signals that we have a constructor, and is an
5192   // attribute on the first constructor parameter.
5193   if (getLangOpts().CPlusPlus11 &&
5194       isCXX11AttributeSpecifier(/*Disambiguate*/ false,
5195                                 /*OuterMightBeMessageSend*/ true)) {
5196     TPA.Revert();
5197     return true;
5198   }
5199
5200   // If we need to, enter the specified scope.
5201   DeclaratorScopeObj DeclScopeObj(*this, SS);
5202   if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
5203     DeclScopeObj.EnterDeclaratorScope();
5204
5205   // Optionally skip Microsoft attributes.
5206   ParsedAttributes Attrs(AttrFactory);
5207   MaybeParseMicrosoftAttributes(Attrs);
5208
5209   // Check whether the next token(s) are part of a declaration
5210   // specifier, in which case we have the start of a parameter and,
5211   // therefore, we know that this is a constructor.
5212   bool IsConstructor = false;
5213   if (isDeclarationSpecifier())
5214     IsConstructor = true;
5215   else if (Tok.is(tok::identifier) ||
5216            (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
5217     // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
5218     // This might be a parenthesized member name, but is more likely to
5219     // be a constructor declaration with an invalid argument type. Keep
5220     // looking.
5221     if (Tok.is(tok::annot_cxxscope))
5222       ConsumeAnnotationToken();
5223     ConsumeToken();
5224
5225     // If this is not a constructor, we must be parsing a declarator,
5226     // which must have one of the following syntactic forms (see the
5227     // grammar extract at the start of ParseDirectDeclarator):
5228     switch (Tok.getKind()) {
5229     case tok::l_paren:
5230       // C(X   (   int));
5231     case tok::l_square:
5232       // C(X   [   5]);
5233       // C(X   [   [attribute]]);
5234     case tok::coloncolon:
5235       // C(X   ::   Y);
5236       // C(X   ::   *p);
5237       // Assume this isn't a constructor, rather than assuming it's a
5238       // constructor with an unnamed parameter of an ill-formed type.
5239       break;
5240
5241     case tok::r_paren:
5242       // C(X   )
5243
5244       // Skip past the right-paren and any following attributes to get to
5245       // the function body or trailing-return-type.
5246       ConsumeParen();
5247       SkipCXX11Attributes();
5248
5249       if (DeductionGuide) {
5250         // C(X) -> ... is a deduction guide.
5251         IsConstructor = Tok.is(tok::arrow);
5252         break;
5253       }
5254       if (Tok.is(tok::colon) || Tok.is(tok::kw_try)) {
5255         // Assume these were meant to be constructors:
5256         //   C(X)   :    (the name of a bit-field cannot be parenthesized).
5257         //   C(X)   try  (this is otherwise ill-formed).
5258         IsConstructor = true;
5259       }
5260       if (Tok.is(tok::semi) || Tok.is(tok::l_brace)) {
5261         // If we have a constructor name within the class definition,
5262         // assume these were meant to be constructors:
5263         //   C(X)   {
5264         //   C(X)   ;
5265         // ... because otherwise we would be declaring a non-static data
5266         // member that is ill-formed because it's of the same type as its
5267         // surrounding class.
5268         //
5269         // FIXME: We can actually do this whether or not the name is qualified,
5270         // because if it is qualified in this context it must be being used as
5271         // a constructor name.
5272         // currently, so we're somewhat conservative here.
5273         IsConstructor = IsUnqualified;
5274       }
5275       break;
5276
5277     default:
5278       IsConstructor = true;
5279       break;
5280     }
5281   }
5282
5283   TPA.Revert();
5284   return IsConstructor;
5285 }
5286
5287 /// ParseTypeQualifierListOpt
5288 ///          type-qualifier-list: [C99 6.7.5]
5289 ///            type-qualifier
5290 /// [vendor]   attributes
5291 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
5292 ///            type-qualifier-list type-qualifier
5293 /// [vendor]   type-qualifier-list attributes
5294 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
5295 /// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
5296 ///              [ only if AttReqs & AR_CXX11AttributesParsed ]
5297 /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
5298 /// AttrRequirements bitmask values.
5299 void Parser::ParseTypeQualifierListOpt(
5300     DeclSpec &DS, unsigned AttrReqs, bool AtomicAllowed,
5301     bool IdentifierRequired,
5302     Optional<llvm::function_ref<void()>> CodeCompletionHandler) {
5303   if (standardAttributesAllowed() && (AttrReqs & AR_CXX11AttributesParsed) &&
5304       isCXX11AttributeSpecifier()) {
5305     ParsedAttributesWithRange attrs(AttrFactory);
5306     ParseCXX11Attributes(attrs);
5307     DS.takeAttributesFrom(attrs);
5308   }
5309
5310   SourceLocation EndLoc;
5311
5312   while (1) {
5313     bool isInvalid = false;
5314     const char *PrevSpec = nullptr;
5315     unsigned DiagID = 0;
5316     SourceLocation Loc = Tok.getLocation();
5317
5318     switch (Tok.getKind()) {
5319     case tok::code_completion:
5320       if (CodeCompletionHandler)
5321         (*CodeCompletionHandler)();
5322       else
5323         Actions.CodeCompleteTypeQualifiers(DS);
5324       return cutOffParsing();
5325
5326     case tok::kw_const:
5327       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
5328                                  getLangOpts());
5329       break;
5330     case tok::kw_volatile:
5331       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
5332                                  getLangOpts());
5333       break;
5334     case tok::kw_restrict:
5335       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
5336                                  getLangOpts());
5337       break;
5338     case tok::kw__Atomic:
5339       if (!AtomicAllowed)
5340         goto DoneWithTypeQuals;
5341       if (!getLangOpts().C11)
5342         Diag(Tok, diag::ext_c11_feature) << Tok.getName();
5343       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
5344                                  getLangOpts());
5345       break;
5346
5347     // OpenCL qualifiers:
5348     case tok::kw_private:
5349       if (!getLangOpts().OpenCL)
5350         goto DoneWithTypeQuals;
5351       LLVM_FALLTHROUGH;
5352     case tok::kw___private:
5353     case tok::kw___global:
5354     case tok::kw___local:
5355     case tok::kw___constant:
5356     case tok::kw___generic:
5357     case tok::kw___read_only:
5358     case tok::kw___write_only:
5359     case tok::kw___read_write:
5360       ParseOpenCLQualifiers(DS.getAttributes());
5361       break;
5362
5363     case tok::kw___unaligned:
5364       isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
5365                                  getLangOpts());
5366       break;
5367     case tok::kw___uptr:
5368       // GNU libc headers in C mode use '__uptr' as an identifier which conflicts
5369       // with the MS modifier keyword.
5370       if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
5371           IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
5372         if (TryKeywordIdentFallback(false))
5373           continue;
5374       }
5375       LLVM_FALLTHROUGH;
5376     case tok::kw___sptr:
5377     case tok::kw___w64:
5378     case tok::kw___ptr64:
5379     case tok::kw___ptr32:
5380     case tok::kw___cdecl:
5381     case tok::kw___stdcall:
5382     case tok::kw___fastcall:
5383     case tok::kw___thiscall:
5384     case tok::kw___regcall:
5385     case tok::kw___vectorcall:
5386       if (AttrReqs & AR_DeclspecAttributesParsed) {
5387         ParseMicrosoftTypeAttributes(DS.getAttributes());
5388         continue;
5389       }
5390       goto DoneWithTypeQuals;
5391     case tok::kw___pascal:
5392       if (AttrReqs & AR_VendorAttributesParsed) {
5393         ParseBorlandTypeAttributes(DS.getAttributes());
5394         continue;
5395       }
5396       goto DoneWithTypeQuals;
5397
5398     // Nullability type specifiers.
5399     case tok::kw__Nonnull:
5400     case tok::kw__Nullable:
5401     case tok::kw__Null_unspecified:
5402       ParseNullabilityTypeSpecifiers(DS.getAttributes());
5403       continue;
5404
5405     // Objective-C 'kindof' types.
5406     case tok::kw___kindof:
5407       DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
5408                                 nullptr, 0, ParsedAttr::AS_Keyword);
5409       (void)ConsumeToken();
5410       continue;
5411
5412     case tok::kw___attribute:
5413       if (AttrReqs & AR_GNUAttributesParsedAndRejected)
5414         // When GNU attributes are expressly forbidden, diagnose their usage.
5415         Diag(Tok, diag::err_attributes_not_allowed);
5416
5417       // Parse the attributes even if they are rejected to ensure that error
5418       // recovery is graceful.
5419       if (AttrReqs & AR_GNUAttributesParsed ||
5420           AttrReqs & AR_GNUAttributesParsedAndRejected) {
5421         ParseGNUAttributes(DS.getAttributes());
5422         continue; // do *not* consume the next token!
5423       }
5424       // otherwise, FALL THROUGH!
5425       LLVM_FALLTHROUGH;
5426     default:
5427       DoneWithTypeQuals:
5428       // If this is not a type-qualifier token, we're done reading type
5429       // qualifiers.  First verify that DeclSpec's are consistent.
5430       DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
5431       if (EndLoc.isValid())
5432         DS.SetRangeEnd(EndLoc);
5433       return;
5434     }
5435
5436     // If the specifier combination wasn't legal, issue a diagnostic.
5437     if (isInvalid) {
5438       assert(PrevSpec && "Method did not return previous specifier!");
5439       Diag(Tok, DiagID) << PrevSpec;
5440     }
5441     EndLoc = ConsumeToken();
5442   }
5443 }
5444
5445 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
5446 ///
5447 void Parser::ParseDeclarator(Declarator &D) {
5448   /// This implements the 'declarator' production in the C grammar, then checks
5449   /// for well-formedness and issues diagnostics.
5450   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5451 }
5452
5453 static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
5454                                DeclaratorContext TheContext) {
5455   if (Kind == tok::star || Kind == tok::caret)
5456     return true;
5457
5458   if (Kind == tok::kw_pipe &&
5459       ((Lang.OpenCL && Lang.OpenCLVersion >= 200) || Lang.OpenCLCPlusPlus))
5460     return true;
5461
5462   if (!Lang.CPlusPlus)
5463     return false;
5464
5465   if (Kind == tok::amp)
5466     return true;
5467
5468   // We parse rvalue refs in C++03, because otherwise the errors are scary.
5469   // But we must not parse them in conversion-type-ids and new-type-ids, since
5470   // those can be legitimately followed by a && operator.
5471   // (The same thing can in theory happen after a trailing-return-type, but
5472   // since those are a C++11 feature, there is no rejects-valid issue there.)
5473   if (Kind == tok::ampamp)
5474     return Lang.CPlusPlus11 ||
5475            (TheContext != DeclaratorContext::ConversionIdContext &&
5476             TheContext != DeclaratorContext::CXXNewContext);
5477
5478   return false;
5479 }
5480
5481 // Indicates whether the given declarator is a pipe declarator.
5482 static bool isPipeDeclerator(const Declarator &D) {
5483   const unsigned NumTypes = D.getNumTypeObjects();
5484
5485   for (unsigned Idx = 0; Idx != NumTypes; ++Idx)
5486     if (DeclaratorChunk::Pipe == D.getTypeObject(Idx).Kind)
5487       return true;
5488
5489   return false;
5490 }
5491
5492 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
5493 /// is parsed by the function passed to it. Pass null, and the direct-declarator
5494 /// isn't parsed at all, making this function effectively parse the C++
5495 /// ptr-operator production.
5496 ///
5497 /// If the grammar of this construct is extended, matching changes must also be
5498 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to
5499 /// isConstructorDeclarator.
5500 ///
5501 ///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
5502 /// [C]     pointer[opt] direct-declarator
5503 /// [C++]   direct-declarator
5504 /// [C++]   ptr-operator declarator
5505 ///
5506 ///       pointer: [C99 6.7.5]
5507 ///         '*' type-qualifier-list[opt]
5508 ///         '*' type-qualifier-list[opt] pointer
5509 ///
5510 ///       ptr-operator:
5511 ///         '*' cv-qualifier-seq[opt]
5512 ///         '&'
5513 /// [C++0x] '&&'
5514 /// [GNU]   '&' restrict[opt] attributes[opt]
5515 /// [GNU?]  '&&' restrict[opt] attributes[opt]
5516 ///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
5517 void Parser::ParseDeclaratorInternal(Declarator &D,
5518                                      DirectDeclParseFunction DirectDeclParser) {
5519   if (Diags.hasAllExtensionsSilenced())
5520     D.setExtension();
5521
5522   // C++ member pointers start with a '::' or a nested-name.
5523   // Member pointers get special handling, since there's no place for the
5524   // scope spec in the generic path below.
5525   if (getLangOpts().CPlusPlus &&
5526       (Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) ||
5527        (Tok.is(tok::identifier) &&
5528         (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
5529        Tok.is(tok::annot_cxxscope))) {
5530     bool EnteringContext =
5531         D.getContext() == DeclaratorContext::FileContext ||
5532         D.getContext() == DeclaratorContext::MemberContext;
5533     CXXScopeSpec SS;
5534     ParseOptionalCXXScopeSpecifier(SS, nullptr, EnteringContext);
5535
5536     if (SS.isNotEmpty()) {
5537       if (Tok.isNot(tok::star)) {
5538         // The scope spec really belongs to the direct-declarator.
5539         if (D.mayHaveIdentifier())
5540           D.getCXXScopeSpec() = SS;
5541         else
5542           AnnotateScopeToken(SS, true);
5543
5544         if (DirectDeclParser)
5545           (this->*DirectDeclParser)(D);
5546         return;
5547       }
5548
5549       SourceLocation Loc = ConsumeToken();
5550       D.SetRangeEnd(Loc);
5551       DeclSpec DS(AttrFactory);
5552       ParseTypeQualifierListOpt(DS);
5553       D.ExtendWithDeclSpec(DS);
5554
5555       // Recurse to parse whatever is left.
5556       ParseDeclaratorInternal(D, DirectDeclParser);
5557
5558       // Sema will have to catch (syntactically invalid) pointers into global
5559       // scope. It has to catch pointers into namespace scope anyway.
5560       D.AddTypeInfo(DeclaratorChunk::getMemberPointer(
5561                         SS, DS.getTypeQualifiers(), DS.getEndLoc()),
5562                     std::move(DS.getAttributes()),
5563                     /* Don't replace range end. */ SourceLocation());
5564       return;
5565     }
5566   }
5567
5568   tok::TokenKind Kind = Tok.getKind();
5569
5570   if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclerator(D)) {
5571     DeclSpec DS(AttrFactory);
5572     ParseTypeQualifierListOpt(DS);
5573
5574     D.AddTypeInfo(
5575         DeclaratorChunk::getPipe(DS.getTypeQualifiers(), DS.getPipeLoc()),
5576         std::move(DS.getAttributes()), SourceLocation());
5577   }
5578
5579   // Not a pointer, C++ reference, or block.
5580   if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
5581     if (DirectDeclParser)
5582       (this->*DirectDeclParser)(D);
5583     return;
5584   }
5585
5586   // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
5587   // '&&' -> rvalue reference
5588   SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
5589   D.SetRangeEnd(Loc);
5590
5591   if (Kind == tok::star || Kind == tok::caret) {
5592     // Is a pointer.
5593     DeclSpec DS(AttrFactory);
5594
5595     // GNU attributes are not allowed here in a new-type-id, but Declspec and
5596     // C++11 attributes are allowed.
5597     unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
5598                     ((D.getContext() != DeclaratorContext::CXXNewContext)
5599                          ? AR_GNUAttributesParsed
5600                          : AR_GNUAttributesParsedAndRejected);
5601     ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
5602     D.ExtendWithDeclSpec(DS);
5603
5604     // Recursively parse the declarator.
5605     ParseDeclaratorInternal(D, DirectDeclParser);
5606     if (Kind == tok::star)
5607       // Remember that we parsed a pointer type, and remember the type-quals.
5608       D.AddTypeInfo(DeclaratorChunk::getPointer(
5609                         DS.getTypeQualifiers(), Loc, DS.getConstSpecLoc(),
5610                         DS.getVolatileSpecLoc(), DS.getRestrictSpecLoc(),
5611                         DS.getAtomicSpecLoc(), DS.getUnalignedSpecLoc()),
5612                     std::move(DS.getAttributes()), SourceLocation());
5613     else
5614       // Remember that we parsed a Block type, and remember the type-quals.
5615       D.AddTypeInfo(
5616           DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(), Loc),
5617           std::move(DS.getAttributes()), SourceLocation());
5618   } else {
5619     // Is a reference
5620     DeclSpec DS(AttrFactory);
5621
5622     // Complain about rvalue references in C++03, but then go on and build
5623     // the declarator.
5624     if (Kind == tok::ampamp)
5625       Diag(Loc, getLangOpts().CPlusPlus11 ?
5626            diag::warn_cxx98_compat_rvalue_reference :
5627            diag::ext_rvalue_reference);
5628
5629     // GNU-style and C++11 attributes are allowed here, as is restrict.
5630     ParseTypeQualifierListOpt(DS);
5631     D.ExtendWithDeclSpec(DS);
5632
5633     // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
5634     // cv-qualifiers are introduced through the use of a typedef or of a
5635     // template type argument, in which case the cv-qualifiers are ignored.
5636     if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
5637       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5638         Diag(DS.getConstSpecLoc(),
5639              diag::err_invalid_reference_qualifier_application) << "const";
5640       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5641         Diag(DS.getVolatileSpecLoc(),
5642              diag::err_invalid_reference_qualifier_application) << "volatile";
5643       // 'restrict' is permitted as an extension.
5644       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5645         Diag(DS.getAtomicSpecLoc(),
5646              diag::err_invalid_reference_qualifier_application) << "_Atomic";
5647     }
5648
5649     // Recursively parse the declarator.
5650     ParseDeclaratorInternal(D, DirectDeclParser);
5651
5652     if (D.getNumTypeObjects() > 0) {
5653       // C++ [dcl.ref]p4: There shall be no references to references.
5654       DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
5655       if (InnerChunk.Kind == DeclaratorChunk::Reference) {
5656         if (const IdentifierInfo *II = D.getIdentifier())
5657           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
5658            << II;
5659         else
5660           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
5661             << "type name";
5662
5663         // Once we've complained about the reference-to-reference, we
5664         // can go ahead and build the (technically ill-formed)
5665         // declarator: reference collapsing will take care of it.
5666       }
5667     }
5668
5669     // Remember that we parsed a reference type.
5670     D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
5671                                                 Kind == tok::amp),
5672                   std::move(DS.getAttributes()), SourceLocation());
5673   }
5674 }
5675
5676 // When correcting from misplaced brackets before the identifier, the location
5677 // is saved inside the declarator so that other diagnostic messages can use
5678 // them.  This extracts and returns that location, or returns the provided
5679 // location if a stored location does not exist.
5680 static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
5681                                                 SourceLocation Loc) {
5682   if (D.getName().StartLocation.isInvalid() &&
5683       D.getName().EndLocation.isValid())
5684     return D.getName().EndLocation;
5685
5686   return Loc;
5687 }
5688
5689 /// ParseDirectDeclarator
5690 ///       direct-declarator: [C99 6.7.5]
5691 /// [C99]   identifier
5692 ///         '(' declarator ')'
5693 /// [GNU]   '(' attributes declarator ')'
5694 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
5695 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
5696 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
5697 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
5698 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
5699 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
5700 ///                    attribute-specifier-seq[opt]
5701 ///         direct-declarator '(' parameter-type-list ')'
5702 ///         direct-declarator '(' identifier-list[opt] ')'
5703 /// [GNU]   direct-declarator '(' parameter-forward-declarations
5704 ///                    parameter-type-list[opt] ')'
5705 /// [C++]   direct-declarator '(' parameter-declaration-clause ')'
5706 ///                    cv-qualifier-seq[opt] exception-specification[opt]
5707 /// [C++11] direct-declarator '(' parameter-declaration-clause ')'
5708 ///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
5709 ///                    ref-qualifier[opt] exception-specification[opt]
5710 /// [C++]   declarator-id
5711 /// [C++11] declarator-id attribute-specifier-seq[opt]
5712 ///
5713 ///       declarator-id: [C++ 8]
5714 ///         '...'[opt] id-expression
5715 ///         '::'[opt] nested-name-specifier[opt] type-name
5716 ///
5717 ///       id-expression: [C++ 5.1]
5718 ///         unqualified-id
5719 ///         qualified-id
5720 ///
5721 ///       unqualified-id: [C++ 5.1]
5722 ///         identifier
5723 ///         operator-function-id
5724 ///         conversion-function-id
5725 ///          '~' class-name
5726 ///         template-id
5727 ///
5728 /// C++17 adds the following, which we also handle here:
5729 ///
5730 ///       simple-declaration:
5731 ///         <decl-spec> '[' identifier-list ']' brace-or-equal-initializer ';'
5732 ///
5733 /// Note, any additional constructs added here may need corresponding changes
5734 /// in isConstructorDeclarator.
5735 void Parser::ParseDirectDeclarator(Declarator &D) {
5736   DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
5737
5738   if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
5739     // This might be a C++17 structured binding.
5740     if (Tok.is(tok::l_square) && !D.mayOmitIdentifier() &&
5741         D.getCXXScopeSpec().isEmpty())
5742       return ParseDecompositionDeclarator(D);
5743
5744     // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
5745     // this context it is a bitfield. Also in range-based for statement colon
5746     // may delimit for-range-declaration.
5747     ColonProtectionRAIIObject X(
5748         *this, D.getContext() == DeclaratorContext::MemberContext ||
5749                    (D.getContext() == DeclaratorContext::ForContext &&
5750                     getLangOpts().CPlusPlus11));
5751
5752     // ParseDeclaratorInternal might already have parsed the scope.
5753     if (D.getCXXScopeSpec().isEmpty()) {
5754       bool EnteringContext =
5755           D.getContext() == DeclaratorContext::FileContext ||
5756           D.getContext() == DeclaratorContext::MemberContext;
5757       ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), nullptr,
5758                                      EnteringContext);
5759     }
5760
5761     if (D.getCXXScopeSpec().isValid()) {
5762       if (Actions.ShouldEnterDeclaratorScope(getCurScope(),
5763                                              D.getCXXScopeSpec()))
5764         // Change the declaration context for name lookup, until this function
5765         // is exited (and the declarator has been parsed).
5766         DeclScopeObj.EnterDeclaratorScope();
5767       else if (getObjCDeclContext()) {
5768         // Ensure that we don't interpret the next token as an identifier when
5769         // dealing with declarations in an Objective-C container.
5770         D.SetIdentifier(nullptr, Tok.getLocation());
5771         D.setInvalidType(true);
5772         ConsumeToken();
5773         goto PastIdentifier;
5774       }
5775     }
5776
5777     // C++0x [dcl.fct]p14:
5778     //   There is a syntactic ambiguity when an ellipsis occurs at the end of a
5779     //   parameter-declaration-clause without a preceding comma. In this case,
5780     //   the ellipsis is parsed as part of the abstract-declarator if the type
5781     //   of the parameter either names a template parameter pack that has not
5782     //   been expanded or contains auto; otherwise, it is parsed as part of the
5783     //   parameter-declaration-clause.
5784     if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
5785         !((D.getContext() == DeclaratorContext::PrototypeContext ||
5786            D.getContext() == DeclaratorContext::LambdaExprParameterContext ||
5787            D.getContext() == DeclaratorContext::BlockLiteralContext) &&
5788           NextToken().is(tok::r_paren) &&
5789           !D.hasGroupingParens() &&
5790           !Actions.containsUnexpandedParameterPacks(D) &&
5791           D.getDeclSpec().getTypeSpecType() != TST_auto)) {
5792       SourceLocation EllipsisLoc = ConsumeToken();
5793       if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
5794         // The ellipsis was put in the wrong place. Recover, and explain to
5795         // the user what they should have done.
5796         ParseDeclarator(D);
5797         if (EllipsisLoc.isValid())
5798           DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
5799         return;
5800       } else
5801         D.setEllipsisLoc(EllipsisLoc);
5802
5803       // The ellipsis can't be followed by a parenthesized declarator. We
5804       // check for that in ParseParenDeclarator, after we have disambiguated
5805       // the l_paren token.
5806     }
5807
5808     if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id,
5809                     tok::tilde)) {
5810       // We found something that indicates the start of an unqualified-id.
5811       // Parse that unqualified-id.
5812       bool AllowConstructorName;
5813       bool AllowDeductionGuide;
5814       if (D.getDeclSpec().hasTypeSpecifier()) {
5815         AllowConstructorName = false;
5816         AllowDeductionGuide = false;
5817       } else if (D.getCXXScopeSpec().isSet()) {
5818         AllowConstructorName =
5819           (D.getContext() == DeclaratorContext::FileContext ||
5820            D.getContext() == DeclaratorContext::MemberContext);
5821         AllowDeductionGuide = false;
5822       } else {
5823         AllowConstructorName =
5824             (D.getContext() == DeclaratorContext::MemberContext);
5825         AllowDeductionGuide =
5826           (D.getContext() == DeclaratorContext::FileContext ||
5827            D.getContext() == DeclaratorContext::MemberContext);
5828       }
5829
5830       bool HadScope = D.getCXXScopeSpec().isValid();
5831       if (ParseUnqualifiedId(D.getCXXScopeSpec(),
5832                              /*EnteringContext=*/true,
5833                              /*AllowDestructorName=*/true, AllowConstructorName,
5834                              AllowDeductionGuide, nullptr, nullptr,
5835                              D.getName()) ||
5836           // Once we're past the identifier, if the scope was bad, mark the
5837           // whole declarator bad.
5838           D.getCXXScopeSpec().isInvalid()) {
5839         D.SetIdentifier(nullptr, Tok.getLocation());
5840         D.setInvalidType(true);
5841       } else {
5842         // ParseUnqualifiedId might have parsed a scope specifier during error
5843         // recovery. If it did so, enter that scope.
5844         if (!HadScope && D.getCXXScopeSpec().isValid() &&
5845             Actions.ShouldEnterDeclaratorScope(getCurScope(),
5846                                                D.getCXXScopeSpec()))
5847           DeclScopeObj.EnterDeclaratorScope();
5848
5849         // Parsed the unqualified-id; update range information and move along.
5850         if (D.getSourceRange().getBegin().isInvalid())
5851           D.SetRangeBegin(D.getName().getSourceRange().getBegin());
5852         D.SetRangeEnd(D.getName().getSourceRange().getEnd());
5853       }
5854       goto PastIdentifier;
5855     }
5856
5857     if (D.getCXXScopeSpec().isNotEmpty()) {
5858       // We have a scope specifier but no following unqualified-id.
5859       Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()),
5860            diag::err_expected_unqualified_id)
5861           << /*C++*/1;
5862       D.SetIdentifier(nullptr, Tok.getLocation());
5863       goto PastIdentifier;
5864     }
5865   } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
5866     assert(!getLangOpts().CPlusPlus &&
5867            "There's a C++-specific check for tok::identifier above");
5868     assert(Tok.getIdentifierInfo() && "Not an identifier?");
5869     D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
5870     D.SetRangeEnd(Tok.getLocation());
5871     ConsumeToken();
5872     goto PastIdentifier;
5873   } else if (Tok.is(tok::identifier) && !D.mayHaveIdentifier()) {
5874     // We're not allowed an identifier here, but we got one. Try to figure out
5875     // if the user was trying to attach a name to the type, or whether the name
5876     // is some unrelated trailing syntax.
5877     bool DiagnoseIdentifier = false;
5878     if (D.hasGroupingParens())
5879       // An identifier within parens is unlikely to be intended to be anything
5880       // other than a name being "declared".
5881       DiagnoseIdentifier = true;
5882     else if (D.getContext() == DeclaratorContext::TemplateArgContext)
5883       // T<int N> is an accidental identifier; T<int N indicates a missing '>'.
5884       DiagnoseIdentifier =
5885           NextToken().isOneOf(tok::comma, tok::greater, tok::greatergreater);
5886     else if (D.getContext() == DeclaratorContext::AliasDeclContext ||
5887              D.getContext() == DeclaratorContext::AliasTemplateContext)
5888       // The most likely error is that the ';' was forgotten.
5889       DiagnoseIdentifier = NextToken().isOneOf(tok::comma, tok::semi);
5890     else if ((D.getContext() == DeclaratorContext::TrailingReturnContext ||
5891               D.getContext() == DeclaratorContext::TrailingReturnVarContext) &&
5892              !isCXX11VirtSpecifier(Tok))
5893       DiagnoseIdentifier = NextToken().isOneOf(
5894           tok::comma, tok::semi, tok::equal, tok::l_brace, tok::kw_try);
5895     if (DiagnoseIdentifier) {
5896       Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
5897         << FixItHint::CreateRemoval(Tok.getLocation());
5898       D.SetIdentifier(nullptr, Tok.getLocation());
5899       ConsumeToken();
5900       goto PastIdentifier;
5901     }
5902   }
5903
5904   if (Tok.is(tok::l_paren)) {
5905     // If this might be an abstract-declarator followed by a direct-initializer,
5906     // check whether this is a valid declarator chunk. If it can't be, assume
5907     // that it's an initializer instead.
5908     if (D.mayOmitIdentifier() && D.mayBeFollowedByCXXDirectInit()) {
5909       RevertingTentativeParsingAction PA(*this);
5910       if (TryParseDeclarator(true, D.mayHaveIdentifier(), true) ==
5911               TPResult::False) {
5912         D.SetIdentifier(nullptr, Tok.getLocation());
5913         goto PastIdentifier;
5914       }
5915     }
5916
5917     // direct-declarator: '(' declarator ')'
5918     // direct-declarator: '(' attributes declarator ')'
5919     // Example: 'char (*X)'   or 'int (*XX)(void)'
5920     ParseParenDeclarator(D);
5921
5922     // If the declarator was parenthesized, we entered the declarator
5923     // scope when parsing the parenthesized declarator, then exited
5924     // the scope already. Re-enter the scope, if we need to.
5925     if (D.getCXXScopeSpec().isSet()) {
5926       // If there was an error parsing parenthesized declarator, declarator
5927       // scope may have been entered before. Don't do it again.
5928       if (!D.isInvalidType() &&
5929           Actions.ShouldEnterDeclaratorScope(getCurScope(),
5930                                              D.getCXXScopeSpec()))
5931         // Change the declaration context for name lookup, until this function
5932         // is exited (and the declarator has been parsed).
5933         DeclScopeObj.EnterDeclaratorScope();
5934     }
5935   } else if (D.mayOmitIdentifier()) {
5936     // This could be something simple like "int" (in which case the declarator
5937     // portion is empty), if an abstract-declarator is allowed.
5938     D.SetIdentifier(nullptr, Tok.getLocation());
5939
5940     // The grammar for abstract-pack-declarator does not allow grouping parens.
5941     // FIXME: Revisit this once core issue 1488 is resolved.
5942     if (D.hasEllipsis() && D.hasGroupingParens())
5943       Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
5944            diag::ext_abstract_pack_declarator_parens);
5945   } else {
5946     if (Tok.getKind() == tok::annot_pragma_parser_crash)
5947       LLVM_BUILTIN_TRAP;
5948     if (Tok.is(tok::l_square))
5949       return ParseMisplacedBracketDeclarator(D);
5950     if (D.getContext() == DeclaratorContext::MemberContext) {
5951       // Objective-C++: Detect C++ keywords and try to prevent further errors by
5952       // treating these keyword as valid member names.
5953       if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
5954           Tok.getIdentifierInfo() &&
5955           Tok.getIdentifierInfo()->isCPlusPlusKeyword(getLangOpts())) {
5956         Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5957              diag::err_expected_member_name_or_semi_objcxx_keyword)
5958             << Tok.getIdentifierInfo()
5959             << (D.getDeclSpec().isEmpty() ? SourceRange()
5960                                           : D.getDeclSpec().getSourceRange());
5961         D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
5962         D.SetRangeEnd(Tok.getLocation());
5963         ConsumeToken();
5964         goto PastIdentifier;
5965       }
5966       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5967            diag::err_expected_member_name_or_semi)
5968           << (D.getDeclSpec().isEmpty() ? SourceRange()
5969                                         : D.getDeclSpec().getSourceRange());
5970     } else if (getLangOpts().CPlusPlus) {
5971       if (Tok.isOneOf(tok::period, tok::arrow))
5972         Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
5973       else {
5974         SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
5975         if (Tok.isAtStartOfLine() && Loc.isValid())
5976           Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
5977               << getLangOpts().CPlusPlus;
5978         else
5979           Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5980                diag::err_expected_unqualified_id)
5981               << getLangOpts().CPlusPlus;
5982       }
5983     } else {
5984       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5985            diag::err_expected_either)
5986           << tok::identifier << tok::l_paren;
5987     }
5988     D.SetIdentifier(nullptr, Tok.getLocation());
5989     D.setInvalidType(true);
5990   }
5991
5992  PastIdentifier:
5993   assert(D.isPastIdentifier() &&
5994          "Haven't past the location of the identifier yet?");
5995
5996   // Don't parse attributes unless we have parsed an unparenthesized name.
5997   if (D.hasName() && !D.getNumTypeObjects())
5998     MaybeParseCXX11Attributes(D);
5999
6000   while (1) {
6001     if (Tok.is(tok::l_paren)) {
6002       // Enter function-declaration scope, limiting any declarators to the
6003       // function prototype scope, including parameter declarators.
6004       ParseScope PrototypeScope(this,
6005                                 Scope::FunctionPrototypeScope|Scope::DeclScope|
6006                                 (D.isFunctionDeclaratorAFunctionDeclaration()
6007                                    ? Scope::FunctionDeclarationScope : 0));
6008
6009       // The paren may be part of a C++ direct initializer, eg. "int x(1);".
6010       // In such a case, check if we actually have a function declarator; if it
6011       // is not, the declarator has been fully parsed.
6012       bool IsAmbiguous = false;
6013       if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
6014         // The name of the declarator, if any, is tentatively declared within
6015         // a possible direct initializer.
6016         TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
6017         bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
6018         TentativelyDeclaredIdentifiers.pop_back();
6019         if (!IsFunctionDecl)
6020           break;
6021       }
6022       ParsedAttributes attrs(AttrFactory);
6023       BalancedDelimiterTracker T(*this, tok::l_paren);
6024       T.consumeOpen();
6025       ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
6026       PrototypeScope.Exit();
6027     } else if (Tok.is(tok::l_square)) {
6028       ParseBracketDeclarator(D);
6029     } else {
6030       break;
6031     }
6032   }
6033 }
6034
6035 void Parser::ParseDecompositionDeclarator(Declarator &D) {
6036   assert(Tok.is(tok::l_square));
6037
6038   // If this doesn't look like a structured binding, maybe it's a misplaced
6039   // array declarator.
6040   // FIXME: Consume the l_square first so we don't need extra lookahead for
6041   // this.
6042   if (!(NextToken().is(tok::identifier) &&
6043         GetLookAheadToken(2).isOneOf(tok::comma, tok::r_square)) &&
6044       !(NextToken().is(tok::r_square) &&
6045         GetLookAheadToken(2).isOneOf(tok::equal, tok::l_brace)))
6046     return ParseMisplacedBracketDeclarator(D);
6047
6048   BalancedDelimiterTracker T(*this, tok::l_square);
6049   T.consumeOpen();
6050
6051   SmallVector<DecompositionDeclarator::Binding, 32> Bindings;
6052   while (Tok.isNot(tok::r_square)) {
6053     if (!Bindings.empty()) {
6054       if (Tok.is(tok::comma))
6055         ConsumeToken();
6056       else {
6057         if (Tok.is(tok::identifier)) {
6058           SourceLocation EndLoc = getEndOfPreviousToken();
6059           Diag(EndLoc, diag::err_expected)
6060               << tok::comma << FixItHint::CreateInsertion(EndLoc, ",");
6061         } else {
6062           Diag(Tok, diag::err_expected_comma_or_rsquare);
6063         }
6064
6065         SkipUntil(tok::r_square, tok::comma, tok::identifier,
6066                   StopAtSemi | StopBeforeMatch);
6067         if (Tok.is(tok::comma))
6068           ConsumeToken();
6069         else if (Tok.isNot(tok::identifier))
6070           break;
6071       }
6072     }
6073
6074     if (Tok.isNot(tok::identifier)) {
6075       Diag(Tok, diag::err_expected) << tok::identifier;
6076       break;
6077     }
6078
6079     Bindings.push_back({Tok.getIdentifierInfo(), Tok.getLocation()});
6080     ConsumeToken();
6081   }
6082
6083   if (Tok.isNot(tok::r_square))
6084     // We've already diagnosed a problem here.
6085     T.skipToEnd();
6086   else {
6087     // C++17 does not allow the identifier-list in a structured binding
6088     // to be empty.
6089     if (Bindings.empty())
6090       Diag(Tok.getLocation(), diag::ext_decomp_decl_empty);
6091
6092     T.consumeClose();
6093   }
6094
6095   return D.setDecompositionBindings(T.getOpenLocation(), Bindings,
6096                                     T.getCloseLocation());
6097 }
6098
6099 /// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
6100 /// only called before the identifier, so these are most likely just grouping
6101 /// parens for precedence.  If we find that these are actually function
6102 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
6103 ///
6104 ///       direct-declarator:
6105 ///         '(' declarator ')'
6106 /// [GNU]   '(' attributes declarator ')'
6107 ///         direct-declarator '(' parameter-type-list ')'
6108 ///         direct-declarator '(' identifier-list[opt] ')'
6109 /// [GNU]   direct-declarator '(' parameter-forward-declarations
6110 ///                    parameter-type-list[opt] ')'
6111 ///
6112 void Parser::ParseParenDeclarator(Declarator &D) {
6113   BalancedDelimiterTracker T(*this, tok::l_paren);
6114   T.consumeOpen();
6115
6116   assert(!D.isPastIdentifier() && "Should be called before passing identifier");
6117
6118   // Eat any attributes before we look at whether this is a grouping or function
6119   // declarator paren.  If this is a grouping paren, the attribute applies to
6120   // the type being built up, for example:
6121   //     int (__attribute__(()) *x)(long y)
6122   // If this ends up not being a grouping paren, the attribute applies to the
6123   // first argument, for example:
6124   //     int (__attribute__(()) int x)
6125   // In either case, we need to eat any attributes to be able to determine what
6126   // sort of paren this is.
6127   //
6128   ParsedAttributes attrs(AttrFactory);
6129   bool RequiresArg = false;
6130   if (Tok.is(tok::kw___attribute)) {
6131     ParseGNUAttributes(attrs);
6132
6133     // We require that the argument list (if this is a non-grouping paren) be
6134     // present even if the attribute list was empty.
6135     RequiresArg = true;
6136   }
6137
6138   // Eat any Microsoft extensions.
6139   ParseMicrosoftTypeAttributes(attrs);
6140
6141   // Eat any Borland extensions.
6142   if  (Tok.is(tok::kw___pascal))
6143     ParseBorlandTypeAttributes(attrs);
6144
6145   // If we haven't past the identifier yet (or where the identifier would be
6146   // stored, if this is an abstract declarator), then this is probably just
6147   // grouping parens. However, if this could be an abstract-declarator, then
6148   // this could also be the start of function arguments (consider 'void()').
6149   bool isGrouping;
6150
6151   if (!D.mayOmitIdentifier()) {
6152     // If this can't be an abstract-declarator, this *must* be a grouping
6153     // paren, because we haven't seen the identifier yet.
6154     isGrouping = true;
6155   } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
6156              (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
6157               NextToken().is(tok::r_paren)) || // C++ int(...)
6158              isDeclarationSpecifier() ||       // 'int(int)' is a function.
6159              isCXX11AttributeSpecifier()) {    // 'int([[]]int)' is a function.
6160     // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
6161     // considered to be a type, not a K&R identifier-list.
6162     isGrouping = false;
6163   } else {
6164     // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
6165     isGrouping = true;
6166   }
6167
6168   // If this is a grouping paren, handle:
6169   // direct-declarator: '(' declarator ')'
6170   // direct-declarator: '(' attributes declarator ')'
6171   if (isGrouping) {
6172     SourceLocation EllipsisLoc = D.getEllipsisLoc();
6173     D.setEllipsisLoc(SourceLocation());
6174
6175     bool hadGroupingParens = D.hasGroupingParens();
6176     D.setGroupingParens(true);
6177     ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
6178     // Match the ')'.
6179     T.consumeClose();
6180     D.AddTypeInfo(
6181         DeclaratorChunk::getParen(T.getOpenLocation(), T.getCloseLocation()),
6182         std::move(attrs), T.getCloseLocation());
6183
6184     D.setGroupingParens(hadGroupingParens);
6185
6186     // An ellipsis cannot be placed outside parentheses.
6187     if (EllipsisLoc.isValid())
6188       DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
6189
6190     return;
6191   }
6192
6193   // Okay, if this wasn't a grouping paren, it must be the start of a function
6194   // argument list.  Recognize that this declarator will never have an
6195   // identifier (and remember where it would have been), then call into
6196   // ParseFunctionDeclarator to handle of argument list.
6197   D.SetIdentifier(nullptr, Tok.getLocation());
6198
6199   // Enter function-declaration scope, limiting any declarators to the
6200   // function prototype scope, including parameter declarators.
6201   ParseScope PrototypeScope(this,
6202                             Scope::FunctionPrototypeScope | Scope::DeclScope |
6203                             (D.isFunctionDeclaratorAFunctionDeclaration()
6204                                ? Scope::FunctionDeclarationScope : 0));
6205   ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
6206   PrototypeScope.Exit();
6207 }
6208
6209 /// ParseFunctionDeclarator - We are after the identifier and have parsed the
6210 /// declarator D up to a paren, which indicates that we are parsing function
6211 /// arguments.
6212 ///
6213 /// If FirstArgAttrs is non-null, then the caller parsed those arguments
6214 /// immediately after the open paren - they should be considered to be the
6215 /// first argument of a parameter.
6216 ///
6217 /// If RequiresArg is true, then the first argument of the function is required
6218 /// to be present and required to not be an identifier list.
6219 ///
6220 /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
6221 /// (C++11) ref-qualifier[opt], exception-specification[opt],
6222 /// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
6223 ///
6224 /// [C++11] exception-specification:
6225 ///           dynamic-exception-specification
6226 ///           noexcept-specification
6227 ///
6228 void Parser::ParseFunctionDeclarator(Declarator &D,
6229                                      ParsedAttributes &FirstArgAttrs,
6230                                      BalancedDelimiterTracker &Tracker,
6231                                      bool IsAmbiguous,
6232                                      bool RequiresArg) {
6233   assert(getCurScope()->isFunctionPrototypeScope() &&
6234          "Should call from a Function scope");
6235   // lparen is already consumed!
6236   assert(D.isPastIdentifier() && "Should not call before identifier!");
6237
6238   // This should be true when the function has typed arguments.
6239   // Otherwise, it is treated as a K&R-style function.
6240   bool HasProto = false;
6241   // Build up an array of information about the parsed arguments.
6242   SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
6243   // Remember where we see an ellipsis, if any.
6244   SourceLocation EllipsisLoc;
6245
6246   DeclSpec DS(AttrFactory);
6247   bool RefQualifierIsLValueRef = true;
6248   SourceLocation RefQualifierLoc;
6249   ExceptionSpecificationType ESpecType = EST_None;
6250   SourceRange ESpecRange;
6251   SmallVector<ParsedType, 2> DynamicExceptions;
6252   SmallVector<SourceRange, 2> DynamicExceptionRanges;
6253   ExprResult NoexceptExpr;
6254   CachedTokens *ExceptionSpecTokens = nullptr;
6255   ParsedAttributesWithRange FnAttrs(AttrFactory);
6256   TypeResult TrailingReturnType;
6257
6258   /* LocalEndLoc is the end location for the local FunctionTypeLoc.
6259      EndLoc is the end location for the function declarator.
6260      They differ for trailing return types. */
6261   SourceLocation StartLoc, LocalEndLoc, EndLoc;
6262   SourceLocation LParenLoc, RParenLoc;
6263   LParenLoc = Tracker.getOpenLocation();
6264   StartLoc = LParenLoc;
6265
6266   if (isFunctionDeclaratorIdentifierList()) {
6267     if (RequiresArg)
6268       Diag(Tok, diag::err_argument_required_after_attribute);
6269
6270     ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
6271
6272     Tracker.consumeClose();
6273     RParenLoc = Tracker.getCloseLocation();
6274     LocalEndLoc = RParenLoc;
6275     EndLoc = RParenLoc;
6276
6277     // If there are attributes following the identifier list, parse them and
6278     // prohibit them.
6279     MaybeParseCXX11Attributes(FnAttrs);
6280     ProhibitAttributes(FnAttrs);
6281   } else {
6282     if (Tok.isNot(tok::r_paren))
6283       ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo,
6284                                       EllipsisLoc);
6285     else if (RequiresArg)
6286       Diag(Tok, diag::err_argument_required_after_attribute);
6287
6288     HasProto = ParamInfo.size() || getLangOpts().CPlusPlus
6289                                 || getLangOpts().OpenCL;
6290
6291     // If we have the closing ')', eat it.
6292     Tracker.consumeClose();
6293     RParenLoc = Tracker.getCloseLocation();
6294     LocalEndLoc = RParenLoc;
6295     EndLoc = RParenLoc;
6296
6297     if (getLangOpts().CPlusPlus) {
6298       // FIXME: Accept these components in any order, and produce fixits to
6299       // correct the order if the user gets it wrong. Ideally we should deal
6300       // with the pure-specifier in the same way.
6301
6302       // Parse cv-qualifier-seq[opt].
6303       ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed,
6304                                 /*AtomicAllowed*/ false,
6305                                 /*IdentifierRequired=*/false,
6306                                 llvm::function_ref<void()>([&]() {
6307                                   Actions.CodeCompleteFunctionQualifiers(DS, D);
6308                                 }));
6309       if (!DS.getSourceRange().getEnd().isInvalid()) {
6310         EndLoc = DS.getSourceRange().getEnd();
6311       }
6312
6313       // Parse ref-qualifier[opt].
6314       if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc))
6315         EndLoc = RefQualifierLoc;
6316
6317       // C++11 [expr.prim.general]p3:
6318       //   If a declaration declares a member function or member function
6319       //   template of a class X, the expression this is a prvalue of type
6320       //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
6321       //   and the end of the function-definition, member-declarator, or
6322       //   declarator.
6323       // FIXME: currently, "static" case isn't handled correctly.
6324       bool IsCXX11MemberFunction =
6325         getLangOpts().CPlusPlus11 &&
6326         D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6327         (D.getContext() == DeclaratorContext::MemberContext
6328          ? !D.getDeclSpec().isFriendSpecified()
6329          : D.getContext() == DeclaratorContext::FileContext &&
6330            D.getCXXScopeSpec().isValid() &&
6331            Actions.CurContext->isRecord());
6332
6333       Qualifiers Q = Qualifiers::fromCVRUMask(DS.getTypeQualifiers());
6334       if (D.getDeclSpec().hasConstexprSpecifier() && !getLangOpts().CPlusPlus14)
6335         Q.addConst();
6336       // FIXME: Collect C++ address spaces.
6337       // If there are multiple different address spaces, the source is invalid.
6338       // Carry on using the first addr space for the qualifiers of 'this'.
6339       // The diagnostic will be given later while creating the function
6340       // prototype for the method.
6341       if (getLangOpts().OpenCLCPlusPlus) {
6342         for (ParsedAttr &attr : DS.getAttributes()) {
6343           LangAS ASIdx = attr.asOpenCLLangAS();
6344           if (ASIdx != LangAS::Default) {
6345             Q.addAddressSpace(ASIdx);
6346             break;
6347           }
6348         }
6349       }
6350
6351       Sema::CXXThisScopeRAII ThisScope(
6352           Actions, dyn_cast<CXXRecordDecl>(Actions.CurContext), Q,
6353           IsCXX11MemberFunction);
6354
6355       // Parse exception-specification[opt].
6356       bool Delayed = D.isFirstDeclarationOfMember() &&
6357                      D.isFunctionDeclaratorAFunctionDeclaration();
6358       if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
6359           GetLookAheadToken(0).is(tok::kw_noexcept) &&
6360           GetLookAheadToken(1).is(tok::l_paren) &&
6361           GetLookAheadToken(2).is(tok::kw_noexcept) &&
6362           GetLookAheadToken(3).is(tok::l_paren) &&
6363           GetLookAheadToken(4).is(tok::identifier) &&
6364           GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
6365         // HACK: We've got an exception-specification
6366         //   noexcept(noexcept(swap(...)))
6367         // or
6368         //   noexcept(noexcept(swap(...)) && noexcept(swap(...)))
6369         // on a 'swap' member function. This is a libstdc++ bug; the lookup
6370         // for 'swap' will only find the function we're currently declaring,
6371         // whereas it expects to find a non-member swap through ADL. Turn off
6372         // delayed parsing to give it a chance to find what it expects.
6373         Delayed = false;
6374       }
6375       ESpecType = tryParseExceptionSpecification(Delayed,
6376                                                  ESpecRange,
6377                                                  DynamicExceptions,
6378                                                  DynamicExceptionRanges,
6379                                                  NoexceptExpr,
6380                                                  ExceptionSpecTokens);
6381       if (ESpecType != EST_None)
6382         EndLoc = ESpecRange.getEnd();
6383
6384       // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
6385       // after the exception-specification.
6386       MaybeParseCXX11Attributes(FnAttrs);
6387
6388       // Parse trailing-return-type[opt].
6389       LocalEndLoc = EndLoc;
6390       if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
6391         Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
6392         if (D.getDeclSpec().getTypeSpecType() == TST_auto)
6393           StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
6394         LocalEndLoc = Tok.getLocation();
6395         SourceRange Range;
6396         TrailingReturnType =
6397             ParseTrailingReturnType(Range, D.mayBeFollowedByCXXDirectInit());
6398         EndLoc = Range.getEnd();
6399       }
6400     } else if (standardAttributesAllowed()) {
6401       MaybeParseCXX11Attributes(FnAttrs);
6402     }
6403   }
6404
6405   // Collect non-parameter declarations from the prototype if this is a function
6406   // declaration. They will be moved into the scope of the function. Only do
6407   // this in C and not C++, where the decls will continue to live in the
6408   // surrounding context.
6409   SmallVector<NamedDecl *, 0> DeclsInPrototype;
6410   if (getCurScope()->getFlags() & Scope::FunctionDeclarationScope &&
6411       !getLangOpts().CPlusPlus) {
6412     for (Decl *D : getCurScope()->decls()) {
6413       NamedDecl *ND = dyn_cast<NamedDecl>(D);
6414       if (!ND || isa<ParmVarDecl>(ND))
6415         continue;
6416       DeclsInPrototype.push_back(ND);
6417     }
6418   }
6419
6420   // Remember that we parsed a function type, and remember the attributes.
6421   D.AddTypeInfo(DeclaratorChunk::getFunction(
6422                     HasProto, IsAmbiguous, LParenLoc, ParamInfo.data(),
6423                     ParamInfo.size(), EllipsisLoc, RParenLoc,
6424                     RefQualifierIsLValueRef, RefQualifierLoc,
6425                     /*MutableLoc=*/SourceLocation(),
6426                     ESpecType, ESpecRange, DynamicExceptions.data(),
6427                     DynamicExceptionRanges.data(), DynamicExceptions.size(),
6428                     NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
6429                     ExceptionSpecTokens, DeclsInPrototype, StartLoc,
6430                     LocalEndLoc, D, TrailingReturnType, &DS),
6431                 std::move(FnAttrs), EndLoc);
6432 }
6433
6434 /// ParseRefQualifier - Parses a member function ref-qualifier. Returns
6435 /// true if a ref-qualifier is found.
6436 bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef,
6437                                SourceLocation &RefQualifierLoc) {
6438   if (Tok.isOneOf(tok::amp, tok::ampamp)) {
6439     Diag(Tok, getLangOpts().CPlusPlus11 ?
6440          diag::warn_cxx98_compat_ref_qualifier :
6441          diag::ext_ref_qualifier);
6442
6443     RefQualifierIsLValueRef = Tok.is(tok::amp);
6444     RefQualifierLoc = ConsumeToken();
6445     return true;
6446   }
6447   return false;
6448 }
6449
6450 /// isFunctionDeclaratorIdentifierList - This parameter list may have an
6451 /// identifier list form for a K&R-style function:  void foo(a,b,c)
6452 ///
6453 /// Note that identifier-lists are only allowed for normal declarators, not for
6454 /// abstract-declarators.
6455 bool Parser::isFunctionDeclaratorIdentifierList() {
6456   return !getLangOpts().CPlusPlus
6457          && Tok.is(tok::identifier)
6458          && !TryAltiVecVectorToken()
6459          // K&R identifier lists can't have typedefs as identifiers, per C99
6460          // 6.7.5.3p11.
6461          && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
6462          // Identifier lists follow a really simple grammar: the identifiers can
6463          // be followed *only* by a ", identifier" or ")".  However, K&R
6464          // identifier lists are really rare in the brave new modern world, and
6465          // it is very common for someone to typo a type in a non-K&R style
6466          // list.  If we are presented with something like: "void foo(intptr x,
6467          // float y)", we don't want to start parsing the function declarator as
6468          // though it is a K&R style declarator just because intptr is an
6469          // invalid type.
6470          //
6471          // To handle this, we check to see if the token after the first
6472          // identifier is a "," or ")".  Only then do we parse it as an
6473          // identifier list.
6474          && (!Tok.is(tok::eof) &&
6475              (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)));
6476 }
6477
6478 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
6479 /// we found a K&R-style identifier list instead of a typed parameter list.
6480 ///
6481 /// After returning, ParamInfo will hold the parsed parameters.
6482 ///
6483 ///       identifier-list: [C99 6.7.5]
6484 ///         identifier
6485 ///         identifier-list ',' identifier
6486 ///
6487 void Parser::ParseFunctionDeclaratorIdentifierList(
6488        Declarator &D,
6489        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
6490   // If there was no identifier specified for the declarator, either we are in
6491   // an abstract-declarator, or we are in a parameter declarator which was found
6492   // to be abstract.  In abstract-declarators, identifier lists are not valid:
6493   // diagnose this.
6494   if (!D.getIdentifier())
6495     Diag(Tok, diag::ext_ident_list_in_param);
6496
6497   // Maintain an efficient lookup of params we have seen so far.
6498   llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
6499
6500   do {
6501     // If this isn't an identifier, report the error and skip until ')'.
6502     if (Tok.isNot(tok::identifier)) {
6503       Diag(Tok, diag::err_expected) << tok::identifier;
6504       SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
6505       // Forget we parsed anything.
6506       ParamInfo.clear();
6507       return;
6508     }
6509
6510     IdentifierInfo *ParmII = Tok.getIdentifierInfo();
6511
6512     // Reject 'typedef int y; int test(x, y)', but continue parsing.
6513     if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
6514       Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
6515
6516     // Verify that the argument identifier has not already been mentioned.
6517     if (!ParamsSoFar.insert(ParmII).second) {
6518       Diag(Tok, diag::err_param_redefinition) << ParmII;
6519     } else {
6520       // Remember this identifier in ParamInfo.
6521       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
6522                                                      Tok.getLocation(),
6523                                                      nullptr));
6524     }
6525
6526     // Eat the identifier.
6527     ConsumeToken();
6528     // The list continues if we see a comma.
6529   } while (TryConsumeToken(tok::comma));
6530 }
6531
6532 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
6533 /// after the opening parenthesis. This function will not parse a K&R-style
6534 /// identifier list.
6535 ///
6536 /// D is the declarator being parsed.  If FirstArgAttrs is non-null, then the
6537 /// caller parsed those arguments immediately after the open paren - they should
6538 /// be considered to be part of the first parameter.
6539 ///
6540 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
6541 /// be the location of the ellipsis, if any was parsed.
6542 ///
6543 ///       parameter-type-list: [C99 6.7.5]
6544 ///         parameter-list
6545 ///         parameter-list ',' '...'
6546 /// [C++]   parameter-list '...'
6547 ///
6548 ///       parameter-list: [C99 6.7.5]
6549 ///         parameter-declaration
6550 ///         parameter-list ',' parameter-declaration
6551 ///
6552 ///       parameter-declaration: [C99 6.7.5]
6553 ///         declaration-specifiers declarator
6554 /// [C++]   declaration-specifiers declarator '=' assignment-expression
6555 /// [C++11]                                       initializer-clause
6556 /// [GNU]   declaration-specifiers declarator attributes
6557 ///         declaration-specifiers abstract-declarator[opt]
6558 /// [C++]   declaration-specifiers abstract-declarator[opt]
6559 ///           '=' assignment-expression
6560 /// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
6561 /// [C++11] attribute-specifier-seq parameter-declaration
6562 ///
6563 void Parser::ParseParameterDeclarationClause(
6564        Declarator &D,
6565        ParsedAttributes &FirstArgAttrs,
6566        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
6567        SourceLocation &EllipsisLoc) {
6568   do {
6569     // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
6570     // before deciding this was a parameter-declaration-clause.
6571     if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
6572       break;
6573
6574     // Parse the declaration-specifiers.
6575     // Just use the ParsingDeclaration "scope" of the declarator.
6576     DeclSpec DS(AttrFactory);
6577
6578     // Parse any C++11 attributes.
6579     MaybeParseCXX11Attributes(DS.getAttributes());
6580
6581     // Skip any Microsoft attributes before a param.
6582     MaybeParseMicrosoftAttributes(DS.getAttributes());
6583
6584     SourceLocation DSStart = Tok.getLocation();
6585
6586     // If the caller parsed attributes for the first argument, add them now.
6587     // Take them so that we only apply the attributes to the first parameter.
6588     // FIXME: If we can leave the attributes in the token stream somehow, we can
6589     // get rid of a parameter (FirstArgAttrs) and this statement. It might be
6590     // too much hassle.
6591     DS.takeAttributesFrom(FirstArgAttrs);
6592
6593     ParseDeclarationSpecifiers(DS);
6594
6595
6596     // Parse the declarator.  This is "PrototypeContext" or
6597     // "LambdaExprParameterContext", because we must accept either
6598     // 'declarator' or 'abstract-declarator' here.
6599     Declarator ParmDeclarator(
6600         DS, D.getContext() == DeclaratorContext::LambdaExprContext
6601                 ? DeclaratorContext::LambdaExprParameterContext
6602                 : DeclaratorContext::PrototypeContext);
6603     ParseDeclarator(ParmDeclarator);
6604
6605     // Parse GNU attributes, if present.
6606     MaybeParseGNUAttributes(ParmDeclarator);
6607
6608     // Remember this parsed parameter in ParamInfo.
6609     IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
6610
6611     // DefArgToks is used when the parsing of default arguments needs
6612     // to be delayed.
6613     std::unique_ptr<CachedTokens> DefArgToks;
6614
6615     // If no parameter was specified, verify that *something* was specified,
6616     // otherwise we have a missing type and identifier.
6617     if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
6618         ParmDeclarator.getNumTypeObjects() == 0) {
6619       // Completely missing, emit error.
6620       Diag(DSStart, diag::err_missing_param);
6621     } else {
6622       // Otherwise, we have something.  Add it and let semantic analysis try
6623       // to grok it and add the result to the ParamInfo we are building.
6624
6625       // Last chance to recover from a misplaced ellipsis in an attempted
6626       // parameter pack declaration.
6627       if (Tok.is(tok::ellipsis) &&
6628           (NextToken().isNot(tok::r_paren) ||
6629            (!ParmDeclarator.getEllipsisLoc().isValid() &&
6630             !Actions.isUnexpandedParameterPackPermitted())) &&
6631           Actions.containsUnexpandedParameterPacks(ParmDeclarator))
6632         DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
6633
6634       // Inform the actions module about the parameter declarator, so it gets
6635       // added to the current scope.
6636       Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator);
6637       // Parse the default argument, if any. We parse the default
6638       // arguments in all dialects; the semantic analysis in
6639       // ActOnParamDefaultArgument will reject the default argument in
6640       // C.
6641       if (Tok.is(tok::equal)) {
6642         SourceLocation EqualLoc = Tok.getLocation();
6643
6644         // Parse the default argument
6645         if (D.getContext() == DeclaratorContext::MemberContext) {
6646           // If we're inside a class definition, cache the tokens
6647           // corresponding to the default argument. We'll actually parse
6648           // them when we see the end of the class definition.
6649           DefArgToks.reset(new CachedTokens);
6650
6651           SourceLocation ArgStartLoc = NextToken().getLocation();
6652           if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) {
6653             DefArgToks.reset();
6654             Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
6655           } else {
6656             Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
6657                                                       ArgStartLoc);
6658           }
6659         } else {
6660           // Consume the '='.
6661           ConsumeToken();
6662
6663           // The argument isn't actually potentially evaluated unless it is
6664           // used.
6665           EnterExpressionEvaluationContext Eval(
6666               Actions,
6667               Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed,
6668               Param);
6669
6670           ExprResult DefArgResult;
6671           if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
6672             Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
6673             DefArgResult = ParseBraceInitializer();
6674           } else
6675             DefArgResult = ParseAssignmentExpression();
6676           DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
6677           if (DefArgResult.isInvalid()) {
6678             Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
6679             SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
6680           } else {
6681             // Inform the actions module about the default argument
6682             Actions.ActOnParamDefaultArgument(Param, EqualLoc,
6683                                               DefArgResult.get());
6684           }
6685         }
6686       }
6687
6688       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
6689                                           ParmDeclarator.getIdentifierLoc(),
6690                                           Param, std::move(DefArgToks)));
6691     }
6692
6693     if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
6694       if (!getLangOpts().CPlusPlus) {
6695         // We have ellipsis without a preceding ',', which is ill-formed
6696         // in C. Complain and provide the fix.
6697         Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
6698             << FixItHint::CreateInsertion(EllipsisLoc, ", ");
6699       } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
6700                  Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
6701         // It looks like this was supposed to be a parameter pack. Warn and
6702         // point out where the ellipsis should have gone.
6703         SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
6704         Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
6705           << ParmEllipsis.isValid() << ParmEllipsis;
6706         if (ParmEllipsis.isValid()) {
6707           Diag(ParmEllipsis,
6708                diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
6709         } else {
6710           Diag(ParmDeclarator.getIdentifierLoc(),
6711                diag::note_misplaced_ellipsis_vararg_add_ellipsis)
6712             << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
6713                                           "...")
6714             << !ParmDeclarator.hasName();
6715         }
6716         Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
6717           << FixItHint::CreateInsertion(EllipsisLoc, ", ");
6718       }
6719
6720       // We can't have any more parameters after an ellipsis.
6721       break;
6722     }
6723
6724     // If the next token is a comma, consume it and keep reading arguments.
6725   } while (TryConsumeToken(tok::comma));
6726 }
6727
6728 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
6729 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
6730 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
6731 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
6732 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
6733 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
6734 ///                           attribute-specifier-seq[opt]
6735 void Parser::ParseBracketDeclarator(Declarator &D) {
6736   if (CheckProhibitedCXX11Attribute())
6737     return;
6738
6739   BalancedDelimiterTracker T(*this, tok::l_square);
6740   T.consumeOpen();
6741
6742   // C array syntax has many features, but by-far the most common is [] and [4].
6743   // This code does a fast path to handle some of the most obvious cases.
6744   if (Tok.getKind() == tok::r_square) {
6745     T.consumeClose();
6746     ParsedAttributes attrs(AttrFactory);
6747     MaybeParseCXX11Attributes(attrs);
6748
6749     // Remember that we parsed the empty array type.
6750     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
6751                                             T.getOpenLocation(),
6752                                             T.getCloseLocation()),
6753                   std::move(attrs), T.getCloseLocation());
6754     return;
6755   } else if (Tok.getKind() == tok::numeric_constant &&
6756              GetLookAheadToken(1).is(tok::r_square)) {
6757     // [4] is very common.  Parse the numeric constant expression.
6758     ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
6759     ConsumeToken();
6760
6761     T.consumeClose();
6762     ParsedAttributes attrs(AttrFactory);
6763     MaybeParseCXX11Attributes(attrs);
6764
6765     // Remember that we parsed a array type, and remember its features.
6766     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, ExprRes.get(),
6767                                             T.getOpenLocation(),
6768                                             T.getCloseLocation()),
6769                   std::move(attrs), T.getCloseLocation());
6770     return;
6771   } else if (Tok.getKind() == tok::code_completion) {
6772     Actions.CodeCompleteBracketDeclarator(getCurScope());
6773     return cutOffParsing();
6774   }
6775
6776   // If valid, this location is the position where we read the 'static' keyword.
6777   SourceLocation StaticLoc;
6778   TryConsumeToken(tok::kw_static, StaticLoc);
6779
6780   // If there is a type-qualifier-list, read it now.
6781   // Type qualifiers in an array subscript are a C99 feature.
6782   DeclSpec DS(AttrFactory);
6783   ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
6784
6785   // If we haven't already read 'static', check to see if there is one after the
6786   // type-qualifier-list.
6787   if (!StaticLoc.isValid())
6788     TryConsumeToken(tok::kw_static, StaticLoc);
6789
6790   // Handle "direct-declarator [ type-qual-list[opt] * ]".
6791   bool isStar = false;
6792   ExprResult NumElements;
6793
6794   // Handle the case where we have '[*]' as the array size.  However, a leading
6795   // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
6796   // the token after the star is a ']'.  Since stars in arrays are
6797   // infrequent, use of lookahead is not costly here.
6798   if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
6799     ConsumeToken();  // Eat the '*'.
6800
6801     if (StaticLoc.isValid()) {
6802       Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
6803       StaticLoc = SourceLocation();  // Drop the static.
6804     }
6805     isStar = true;
6806   } else if (Tok.isNot(tok::r_square)) {
6807     // Note, in C89, this production uses the constant-expr production instead
6808     // of assignment-expr.  The only difference is that assignment-expr allows
6809     // things like '=' and '*='.  Sema rejects these in C89 mode because they
6810     // are not i-c-e's, so we don't need to distinguish between the two here.
6811
6812     // Parse the constant-expression or assignment-expression now (depending
6813     // on dialect).
6814     if (getLangOpts().CPlusPlus) {
6815       NumElements = ParseConstantExpression();
6816     } else {
6817       EnterExpressionEvaluationContext Unevaluated(
6818           Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6819       NumElements =
6820           Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
6821     }
6822   } else {
6823     if (StaticLoc.isValid()) {
6824       Diag(StaticLoc, diag::err_unspecified_size_with_static);
6825       StaticLoc = SourceLocation();  // Drop the static.
6826     }
6827   }
6828
6829   // If there was an error parsing the assignment-expression, recover.
6830   if (NumElements.isInvalid()) {
6831     D.setInvalidType(true);
6832     // If the expression was invalid, skip it.
6833     SkipUntil(tok::r_square, StopAtSemi);
6834     return;
6835   }
6836
6837   T.consumeClose();
6838
6839   MaybeParseCXX11Attributes(DS.getAttributes());
6840
6841   // Remember that we parsed a array type, and remember its features.
6842   D.AddTypeInfo(
6843       DeclaratorChunk::getArray(DS.getTypeQualifiers(), StaticLoc.isValid(),
6844                                 isStar, NumElements.get(), T.getOpenLocation(),
6845                                 T.getCloseLocation()),
6846       std::move(DS.getAttributes()), T.getCloseLocation());
6847 }
6848
6849 /// Diagnose brackets before an identifier.
6850 void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
6851   assert(Tok.is(tok::l_square) && "Missing opening bracket");
6852   assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
6853
6854   SourceLocation StartBracketLoc = Tok.getLocation();
6855   Declarator TempDeclarator(D.getDeclSpec(), D.getContext());
6856
6857   while (Tok.is(tok::l_square)) {
6858     ParseBracketDeclarator(TempDeclarator);
6859   }
6860
6861   // Stuff the location of the start of the brackets into the Declarator.
6862   // The diagnostics from ParseDirectDeclarator will make more sense if
6863   // they use this location instead.
6864   if (Tok.is(tok::semi))
6865     D.getName().EndLocation = StartBracketLoc;
6866
6867   SourceLocation SuggestParenLoc = Tok.getLocation();
6868
6869   // Now that the brackets are removed, try parsing the declarator again.
6870   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
6871
6872   // Something went wrong parsing the brackets, in which case,
6873   // ParseBracketDeclarator has emitted an error, and we don't need to emit
6874   // one here.
6875   if (TempDeclarator.getNumTypeObjects() == 0)
6876     return;
6877
6878   // Determine if parens will need to be suggested in the diagnostic.
6879   bool NeedParens = false;
6880   if (D.getNumTypeObjects() != 0) {
6881     switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
6882     case DeclaratorChunk::Pointer:
6883     case DeclaratorChunk::Reference:
6884     case DeclaratorChunk::BlockPointer:
6885     case DeclaratorChunk::MemberPointer:
6886     case DeclaratorChunk::Pipe:
6887       NeedParens = true;
6888       break;
6889     case DeclaratorChunk::Array:
6890     case DeclaratorChunk::Function:
6891     case DeclaratorChunk::Paren:
6892       break;
6893     }
6894   }
6895
6896   if (NeedParens) {
6897     // Create a DeclaratorChunk for the inserted parens.
6898     SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc());
6899     D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc),
6900                   SourceLocation());
6901   }
6902
6903   // Adding back the bracket info to the end of the Declarator.
6904   for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
6905     const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
6906     D.AddTypeInfo(Chunk, SourceLocation());
6907   }
6908
6909   // The missing identifier would have been diagnosed in ParseDirectDeclarator.
6910   // If parentheses are required, always suggest them.
6911   if (!D.getIdentifier() && !NeedParens)
6912     return;
6913
6914   SourceLocation EndBracketLoc = TempDeclarator.getEndLoc();
6915
6916   // Generate the move bracket error message.
6917   SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
6918   SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc());
6919
6920   if (NeedParens) {
6921     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
6922         << getLangOpts().CPlusPlus
6923         << FixItHint::CreateInsertion(SuggestParenLoc, "(")
6924         << FixItHint::CreateInsertion(EndLoc, ")")
6925         << FixItHint::CreateInsertionFromRange(
6926                EndLoc, CharSourceRange(BracketRange, true))
6927         << FixItHint::CreateRemoval(BracketRange);
6928   } else {
6929     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
6930         << getLangOpts().CPlusPlus
6931         << FixItHint::CreateInsertionFromRange(
6932                EndLoc, CharSourceRange(BracketRange, true))
6933         << FixItHint::CreateRemoval(BracketRange);
6934   }
6935 }
6936
6937 /// [GNU]   typeof-specifier:
6938 ///           typeof ( expressions )
6939 ///           typeof ( type-name )
6940 /// [GNU/C++] typeof unary-expression
6941 ///
6942 void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
6943   assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
6944   Token OpTok = Tok;
6945   SourceLocation StartLoc = ConsumeToken();
6946
6947   const bool hasParens = Tok.is(tok::l_paren);
6948
6949   EnterExpressionEvaluationContext Unevaluated(
6950       Actions, Sema::ExpressionEvaluationContext::Unevaluated,
6951       Sema::ReuseLambdaContextDecl);
6952
6953   bool isCastExpr;
6954   ParsedType CastTy;
6955   SourceRange CastRange;
6956   ExprResult Operand = Actions.CorrectDelayedTyposInExpr(
6957       ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
6958   if (hasParens)
6959     DS.setTypeofParensRange(CastRange);
6960
6961   if (CastRange.getEnd().isInvalid())
6962     // FIXME: Not accurate, the range gets one token more than it should.
6963     DS.SetRangeEnd(Tok.getLocation());
6964   else
6965     DS.SetRangeEnd(CastRange.getEnd());
6966
6967   if (isCastExpr) {
6968     if (!CastTy) {
6969       DS.SetTypeSpecError();
6970       return;
6971     }
6972
6973     const char *PrevSpec = nullptr;
6974     unsigned DiagID;
6975     // Check for duplicate type specifiers (e.g. "int typeof(int)").
6976     if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
6977                            DiagID, CastTy,
6978                            Actions.getASTContext().getPrintingPolicy()))
6979       Diag(StartLoc, DiagID) << PrevSpec;
6980     return;
6981   }
6982
6983   // If we get here, the operand to the typeof was an expression.
6984   if (Operand.isInvalid()) {
6985     DS.SetTypeSpecError();
6986     return;
6987   }
6988
6989   // We might need to transform the operand if it is potentially evaluated.
6990   Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
6991   if (Operand.isInvalid()) {
6992     DS.SetTypeSpecError();
6993     return;
6994   }
6995
6996   const char *PrevSpec = nullptr;
6997   unsigned DiagID;
6998   // Check for duplicate type specifiers (e.g. "int typeof(int)").
6999   if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
7000                          DiagID, Operand.get(),
7001                          Actions.getASTContext().getPrintingPolicy()))
7002     Diag(StartLoc, DiagID) << PrevSpec;
7003 }
7004
7005 /// [C11]   atomic-specifier:
7006 ///           _Atomic ( type-name )
7007 ///
7008 void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
7009   assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
7010          "Not an atomic specifier");
7011
7012   SourceLocation StartLoc = ConsumeToken();
7013   BalancedDelimiterTracker T(*this, tok::l_paren);
7014   if (T.consumeOpen())
7015     return;
7016
7017   TypeResult Result = ParseTypeName();
7018   if (Result.isInvalid()) {
7019     SkipUntil(tok::r_paren, StopAtSemi);
7020     return;
7021   }
7022
7023   // Match the ')'
7024   T.consumeClose();
7025
7026   if (T.getCloseLocation().isInvalid())
7027     return;
7028
7029   DS.setTypeofParensRange(T.getRange());
7030   DS.SetRangeEnd(T.getCloseLocation());
7031
7032   const char *PrevSpec = nullptr;
7033   unsigned DiagID;
7034   if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
7035                          DiagID, Result.get(),
7036                          Actions.getASTContext().getPrintingPolicy()))
7037     Diag(StartLoc, DiagID) << PrevSpec;
7038 }
7039
7040 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
7041 /// from TryAltiVecVectorToken.
7042 bool Parser::TryAltiVecVectorTokenOutOfLine() {
7043   Token Next = NextToken();
7044   switch (Next.getKind()) {
7045   default: return false;
7046   case tok::kw_short:
7047   case tok::kw_long:
7048   case tok::kw_signed:
7049   case tok::kw_unsigned:
7050   case tok::kw_void:
7051   case tok::kw_char:
7052   case tok::kw_int:
7053   case tok::kw_float:
7054   case tok::kw_double:
7055   case tok::kw_bool:
7056   case tok::kw___bool:
7057   case tok::kw___pixel:
7058     Tok.setKind(tok::kw___vector);
7059     return true;
7060   case tok::identifier:
7061     if (Next.getIdentifierInfo() == Ident_pixel) {
7062       Tok.setKind(tok::kw___vector);
7063       return true;
7064     }
7065     if (Next.getIdentifierInfo() == Ident_bool) {
7066       Tok.setKind(tok::kw___vector);
7067       return true;
7068     }
7069     return false;
7070   }
7071 }
7072
7073 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
7074                                       const char *&PrevSpec, unsigned &DiagID,
7075                                       bool &isInvalid) {
7076   const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
7077   if (Tok.getIdentifierInfo() == Ident_vector) {
7078     Token Next = NextToken();
7079     switch (Next.getKind()) {
7080     case tok::kw_short:
7081     case tok::kw_long:
7082     case tok::kw_signed:
7083     case tok::kw_unsigned:
7084     case tok::kw_void:
7085     case tok::kw_char:
7086     case tok::kw_int:
7087     case tok::kw_float:
7088     case tok::kw_double:
7089     case tok::kw_bool:
7090     case tok::kw___bool:
7091     case tok::kw___pixel:
7092       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
7093       return true;
7094     case tok::identifier:
7095       if (Next.getIdentifierInfo() == Ident_pixel) {
7096         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
7097         return true;
7098       }
7099       if (Next.getIdentifierInfo() == Ident_bool) {
7100         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
7101         return true;
7102       }
7103       break;
7104     default:
7105       break;
7106     }
7107   } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
7108              DS.isTypeAltiVecVector()) {
7109     isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
7110     return true;
7111   } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
7112              DS.isTypeAltiVecVector()) {
7113     isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
7114     return true;
7115   }
7116   return false;
7117 }