]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/clang/lib/Sema/SemaAccess.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / clang / lib / Sema / SemaAccess.cpp
1 //===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides Sema routines for C++ access control semantics.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/Basic/Specifiers.h"
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclFriend.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DependentDiagnostic.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/Sema/DelayedDiagnostic.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Lookup.h"
25
26 using namespace clang;
27 using namespace sema;
28
29 /// A copy of Sema's enum without AR_delayed.
30 enum AccessResult {
31   AR_accessible,
32   AR_inaccessible,
33   AR_dependent
34 };
35
36 /// SetMemberAccessSpecifier - Set the access specifier of a member.
37 /// Returns true on error (when the previous member decl access specifier
38 /// is different from the new member decl access specifier).
39 bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
40                                     NamedDecl *PrevMemberDecl,
41                                     AccessSpecifier LexicalAS) {
42   if (!PrevMemberDecl) {
43     // Use the lexical access specifier.
44     MemberDecl->setAccess(LexicalAS);
45     return false;
46   }
47
48   // C++ [class.access.spec]p3: When a member is redeclared its access
49   // specifier must be same as its initial declaration.
50   if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
51     Diag(MemberDecl->getLocation(),
52          diag::err_class_redeclared_with_different_access)
53       << MemberDecl << LexicalAS;
54     Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
55       << PrevMemberDecl << PrevMemberDecl->getAccess();
56
57     MemberDecl->setAccess(LexicalAS);
58     return true;
59   }
60
61   MemberDecl->setAccess(PrevMemberDecl->getAccess());
62   return false;
63 }
64
65 static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
66   DeclContext *DC = D->getDeclContext();
67
68   // This can only happen at top: enum decls only "publish" their
69   // immediate members.
70   if (isa<EnumDecl>(DC))
71     DC = cast<EnumDecl>(DC)->getDeclContext();
72
73   CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
74   while (DeclaringClass->isAnonymousStructOrUnion())
75     DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
76   return DeclaringClass;
77 }
78
79 namespace {
80 struct EffectiveContext {
81   EffectiveContext() : Inner(nullptr), Dependent(false) {}
82
83   explicit EffectiveContext(DeclContext *DC)
84     : Inner(DC),
85       Dependent(DC->isDependentContext()) {
86
87     // C++11 [class.access.nest]p1:
88     //   A nested class is a member and as such has the same access
89     //   rights as any other member.
90     // C++11 [class.access]p2:
91     //   A member of a class can also access all the names to which
92     //   the class has access.  A local class of a member function
93     //   may access the same names that the member function itself
94     //   may access.
95     // This almost implies that the privileges of nesting are transitive.
96     // Technically it says nothing about the local classes of non-member
97     // functions (which can gain privileges through friendship), but we
98     // take that as an oversight.
99     while (true) {
100       // We want to add canonical declarations to the EC lists for
101       // simplicity of checking, but we need to walk up through the
102       // actual current DC chain.  Otherwise, something like a local
103       // extern or friend which happens to be the canonical
104       // declaration will really mess us up.
105
106       if (isa<CXXRecordDecl>(DC)) {
107         CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
108         Records.push_back(Record->getCanonicalDecl());
109         DC = Record->getDeclContext();
110       } else if (isa<FunctionDecl>(DC)) {
111         FunctionDecl *Function = cast<FunctionDecl>(DC);
112         Functions.push_back(Function->getCanonicalDecl());
113         if (Function->getFriendObjectKind())
114           DC = Function->getLexicalDeclContext();
115         else
116           DC = Function->getDeclContext();
117       } else if (DC->isFileContext()) {
118         break;
119       } else {
120         DC = DC->getParent();
121       }
122     }
123   }
124
125   bool isDependent() const { return Dependent; }
126
127   bool includesClass(const CXXRecordDecl *R) const {
128     R = R->getCanonicalDecl();
129     return llvm::find(Records, R) != Records.end();
130   }
131
132   /// Retrieves the innermost "useful" context.  Can be null if we're
133   /// doing access-control without privileges.
134   DeclContext *getInnerContext() const {
135     return Inner;
136   }
137
138   typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
139
140   DeclContext *Inner;
141   SmallVector<FunctionDecl*, 4> Functions;
142   SmallVector<CXXRecordDecl*, 4> Records;
143   bool Dependent;
144 };
145
146 /// Like sema::AccessedEntity, but kindly lets us scribble all over
147 /// it.
148 struct AccessTarget : public AccessedEntity {
149   AccessTarget(const AccessedEntity &Entity)
150     : AccessedEntity(Entity) {
151     initialize();
152   }
153
154   AccessTarget(ASTContext &Context,
155                MemberNonce _,
156                CXXRecordDecl *NamingClass,
157                DeclAccessPair FoundDecl,
158                QualType BaseObjectType)
159     : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass,
160                      FoundDecl, BaseObjectType) {
161     initialize();
162   }
163
164   AccessTarget(ASTContext &Context,
165                BaseNonce _,
166                CXXRecordDecl *BaseClass,
167                CXXRecordDecl *DerivedClass,
168                AccessSpecifier Access)
169     : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass,
170                      Access) {
171     initialize();
172   }
173
174   bool isInstanceMember() const {
175     return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember());
176   }
177
178   bool hasInstanceContext() const {
179     return HasInstanceContext;
180   }
181
182   class SavedInstanceContext {
183   public:
184     SavedInstanceContext(SavedInstanceContext &&S)
185         : Target(S.Target), Has(S.Has) {
186       S.Target = nullptr;
187     }
188     ~SavedInstanceContext() {
189       if (Target)
190         Target->HasInstanceContext = Has;
191     }
192
193   private:
194     friend struct AccessTarget;
195     explicit SavedInstanceContext(AccessTarget &Target)
196         : Target(&Target), Has(Target.HasInstanceContext) {}
197     AccessTarget *Target;
198     bool Has;
199   };
200
201   SavedInstanceContext saveInstanceContext() {
202     return SavedInstanceContext(*this);
203   }
204
205   void suppressInstanceContext() {
206     HasInstanceContext = false;
207   }
208
209   const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
210     assert(HasInstanceContext);
211     if (CalculatedInstanceContext)
212       return InstanceContext;
213
214     CalculatedInstanceContext = true;
215     DeclContext *IC = S.computeDeclContext(getBaseObjectType());
216     InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl()
217                           : nullptr);
218     return InstanceContext;
219   }
220
221   const CXXRecordDecl *getDeclaringClass() const {
222     return DeclaringClass;
223   }
224
225   /// The "effective" naming class is the canonical non-anonymous
226   /// class containing the actual naming class.
227   const CXXRecordDecl *getEffectiveNamingClass() const {
228     const CXXRecordDecl *namingClass = getNamingClass();
229     while (namingClass->isAnonymousStructOrUnion())
230       namingClass = cast<CXXRecordDecl>(namingClass->getParent());
231     return namingClass->getCanonicalDecl();
232   }
233
234 private:
235   void initialize() {
236     HasInstanceContext = (isMemberAccess() &&
237                           !getBaseObjectType().isNull() &&
238                           getTargetDecl()->isCXXInstanceMember());
239     CalculatedInstanceContext = false;
240     InstanceContext = nullptr;
241
242     if (isMemberAccess())
243       DeclaringClass = FindDeclaringClass(getTargetDecl());
244     else
245       DeclaringClass = getBaseClass();
246     DeclaringClass = DeclaringClass->getCanonicalDecl();
247   }
248
249   bool HasInstanceContext : 1;
250   mutable bool CalculatedInstanceContext : 1;
251   mutable const CXXRecordDecl *InstanceContext;
252   const CXXRecordDecl *DeclaringClass;
253 };
254
255 }
256
257 /// Checks whether one class might instantiate to the other.
258 static bool MightInstantiateTo(const CXXRecordDecl *From,
259                                const CXXRecordDecl *To) {
260   // Declaration names are always preserved by instantiation.
261   if (From->getDeclName() != To->getDeclName())
262     return false;
263
264   const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
265   const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
266   if (FromDC == ToDC) return true;
267   if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
268
269   // Be conservative.
270   return true;
271 }
272
273 /// Checks whether one class is derived from another, inclusively.
274 /// Properly indicates when it couldn't be determined due to
275 /// dependence.
276 ///
277 /// This should probably be donated to AST or at least Sema.
278 static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
279                                            const CXXRecordDecl *Target) {
280   assert(Derived->getCanonicalDecl() == Derived);
281   assert(Target->getCanonicalDecl() == Target);
282
283   if (Derived == Target) return AR_accessible;
284
285   bool CheckDependent = Derived->isDependentContext();
286   if (CheckDependent && MightInstantiateTo(Derived, Target))
287     return AR_dependent;
288
289   AccessResult OnFailure = AR_inaccessible;
290   SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
291
292   while (true) {
293     if (Derived->isDependentContext() && !Derived->hasDefinition() &&
294         !Derived->isLambda())
295       return AR_dependent;
296
297     for (const auto &I : Derived->bases()) {
298       const CXXRecordDecl *RD;
299
300       QualType T = I.getType();
301       if (const RecordType *RT = T->getAs<RecordType>()) {
302         RD = cast<CXXRecordDecl>(RT->getDecl());
303       } else if (const InjectedClassNameType *IT
304                    = T->getAs<InjectedClassNameType>()) {
305         RD = IT->getDecl();
306       } else {
307         assert(T->isDependentType() && "non-dependent base wasn't a record?");
308         OnFailure = AR_dependent;
309         continue;
310       }
311
312       RD = RD->getCanonicalDecl();
313       if (RD == Target) return AR_accessible;
314       if (CheckDependent && MightInstantiateTo(RD, Target))
315         OnFailure = AR_dependent;
316
317       Queue.push_back(RD);
318     }
319
320     if (Queue.empty()) break;
321
322     Derived = Queue.pop_back_val();
323   }
324
325   return OnFailure;
326 }
327
328
329 static bool MightInstantiateTo(Sema &S, DeclContext *Context,
330                                DeclContext *Friend) {
331   if (Friend == Context)
332     return true;
333
334   assert(!Friend->isDependentContext() &&
335          "can't handle friends with dependent contexts here");
336
337   if (!Context->isDependentContext())
338     return false;
339
340   if (Friend->isFileContext())
341     return false;
342
343   // TODO: this is very conservative
344   return true;
345 }
346
347 // Asks whether the type in 'context' can ever instantiate to the type
348 // in 'friend'.
349 static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
350   if (Friend == Context)
351     return true;
352
353   if (!Friend->isDependentType() && !Context->isDependentType())
354     return false;
355
356   // TODO: this is very conservative.
357   return true;
358 }
359
360 static bool MightInstantiateTo(Sema &S,
361                                FunctionDecl *Context,
362                                FunctionDecl *Friend) {
363   if (Context->getDeclName() != Friend->getDeclName())
364     return false;
365
366   if (!MightInstantiateTo(S,
367                           Context->getDeclContext(),
368                           Friend->getDeclContext()))
369     return false;
370
371   CanQual<FunctionProtoType> FriendTy
372     = S.Context.getCanonicalType(Friend->getType())
373          ->getAs<FunctionProtoType>();
374   CanQual<FunctionProtoType> ContextTy
375     = S.Context.getCanonicalType(Context->getType())
376          ->getAs<FunctionProtoType>();
377
378   // There isn't any way that I know of to add qualifiers
379   // during instantiation.
380   if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
381     return false;
382
383   if (FriendTy->getNumParams() != ContextTy->getNumParams())
384     return false;
385
386   if (!MightInstantiateTo(S, ContextTy->getReturnType(),
387                           FriendTy->getReturnType()))
388     return false;
389
390   for (unsigned I = 0, E = FriendTy->getNumParams(); I != E; ++I)
391     if (!MightInstantiateTo(S, ContextTy->getParamType(I),
392                             FriendTy->getParamType(I)))
393       return false;
394
395   return true;
396 }
397
398 static bool MightInstantiateTo(Sema &S,
399                                FunctionTemplateDecl *Context,
400                                FunctionTemplateDecl *Friend) {
401   return MightInstantiateTo(S,
402                             Context->getTemplatedDecl(),
403                             Friend->getTemplatedDecl());
404 }
405
406 static AccessResult MatchesFriend(Sema &S,
407                                   const EffectiveContext &EC,
408                                   const CXXRecordDecl *Friend) {
409   if (EC.includesClass(Friend))
410     return AR_accessible;
411
412   if (EC.isDependent()) {
413     for (const CXXRecordDecl *Context : EC.Records) {
414       if (MightInstantiateTo(Context, Friend))
415         return AR_dependent;
416     }
417   }
418
419   return AR_inaccessible;
420 }
421
422 static AccessResult MatchesFriend(Sema &S,
423                                   const EffectiveContext &EC,
424                                   CanQualType Friend) {
425   if (const RecordType *RT = Friend->getAs<RecordType>())
426     return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
427
428   // TODO: we can do better than this
429   if (Friend->isDependentType())
430     return AR_dependent;
431
432   return AR_inaccessible;
433 }
434
435 /// Determines whether the given friend class template matches
436 /// anything in the effective context.
437 static AccessResult MatchesFriend(Sema &S,
438                                   const EffectiveContext &EC,
439                                   ClassTemplateDecl *Friend) {
440   AccessResult OnFailure = AR_inaccessible;
441
442   // Check whether the friend is the template of a class in the
443   // context chain.
444   for (SmallVectorImpl<CXXRecordDecl*>::const_iterator
445          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
446     CXXRecordDecl *Record = *I;
447
448     // Figure out whether the current class has a template:
449     ClassTemplateDecl *CTD;
450
451     // A specialization of the template...
452     if (isa<ClassTemplateSpecializationDecl>(Record)) {
453       CTD = cast<ClassTemplateSpecializationDecl>(Record)
454         ->getSpecializedTemplate();
455
456     // ... or the template pattern itself.
457     } else {
458       CTD = Record->getDescribedClassTemplate();
459       if (!CTD) continue;
460     }
461
462     // It's a match.
463     if (Friend == CTD->getCanonicalDecl())
464       return AR_accessible;
465
466     // If the context isn't dependent, it can't be a dependent match.
467     if (!EC.isDependent())
468       continue;
469
470     // If the template names don't match, it can't be a dependent
471     // match.
472     if (CTD->getDeclName() != Friend->getDeclName())
473       continue;
474
475     // If the class's context can't instantiate to the friend's
476     // context, it can't be a dependent match.
477     if (!MightInstantiateTo(S, CTD->getDeclContext(),
478                             Friend->getDeclContext()))
479       continue;
480
481     // Otherwise, it's a dependent match.
482     OnFailure = AR_dependent;
483   }
484
485   return OnFailure;
486 }
487
488 /// Determines whether the given friend function matches anything in
489 /// the effective context.
490 static AccessResult MatchesFriend(Sema &S,
491                                   const EffectiveContext &EC,
492                                   FunctionDecl *Friend) {
493   AccessResult OnFailure = AR_inaccessible;
494
495   for (SmallVectorImpl<FunctionDecl*>::const_iterator
496          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
497     if (Friend == *I)
498       return AR_accessible;
499
500     if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
501       OnFailure = AR_dependent;
502   }
503
504   return OnFailure;
505 }
506
507 /// Determines whether the given friend function template matches
508 /// anything in the effective context.
509 static AccessResult MatchesFriend(Sema &S,
510                                   const EffectiveContext &EC,
511                                   FunctionTemplateDecl *Friend) {
512   if (EC.Functions.empty()) return AR_inaccessible;
513
514   AccessResult OnFailure = AR_inaccessible;
515
516   for (SmallVectorImpl<FunctionDecl*>::const_iterator
517          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
518
519     FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
520     if (!FTD)
521       FTD = (*I)->getDescribedFunctionTemplate();
522     if (!FTD)
523       continue;
524
525     FTD = FTD->getCanonicalDecl();
526
527     if (Friend == FTD)
528       return AR_accessible;
529
530     if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
531       OnFailure = AR_dependent;
532   }
533
534   return OnFailure;
535 }
536
537 /// Determines whether the given friend declaration matches anything
538 /// in the effective context.
539 static AccessResult MatchesFriend(Sema &S,
540                                   const EffectiveContext &EC,
541                                   FriendDecl *FriendD) {
542   // Whitelist accesses if there's an invalid or unsupported friend
543   // declaration.
544   if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
545     return AR_accessible;
546
547   if (TypeSourceInfo *T = FriendD->getFriendType())
548     return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
549
550   NamedDecl *Friend
551     = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
552
553   // FIXME: declarations with dependent or templated scope.
554
555   if (isa<ClassTemplateDecl>(Friend))
556     return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
557
558   if (isa<FunctionTemplateDecl>(Friend))
559     return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
560
561   if (isa<CXXRecordDecl>(Friend))
562     return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
563
564   assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
565   return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
566 }
567
568 static AccessResult GetFriendKind(Sema &S,
569                                   const EffectiveContext &EC,
570                                   const CXXRecordDecl *Class) {
571   AccessResult OnFailure = AR_inaccessible;
572
573   // Okay, check friends.
574   for (auto *Friend : Class->friends()) {
575     switch (MatchesFriend(S, EC, Friend)) {
576     case AR_accessible:
577       return AR_accessible;
578
579     case AR_inaccessible:
580       continue;
581
582     case AR_dependent:
583       OnFailure = AR_dependent;
584       break;
585     }
586   }
587
588   // That's it, give up.
589   return OnFailure;
590 }
591
592 namespace {
593
594 /// A helper class for checking for a friend which will grant access
595 /// to a protected instance member.
596 struct ProtectedFriendContext {
597   Sema &S;
598   const EffectiveContext &EC;
599   const CXXRecordDecl *NamingClass;
600   bool CheckDependent;
601   bool EverDependent;
602
603   /// The path down to the current base class.
604   SmallVector<const CXXRecordDecl*, 20> CurPath;
605
606   ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
607                          const CXXRecordDecl *InstanceContext,
608                          const CXXRecordDecl *NamingClass)
609     : S(S), EC(EC), NamingClass(NamingClass),
610       CheckDependent(InstanceContext->isDependentContext() ||
611                      NamingClass->isDependentContext()),
612       EverDependent(false) {}
613
614   /// Check classes in the current path for friendship, starting at
615   /// the given index.
616   bool checkFriendshipAlongPath(unsigned I) {
617     assert(I < CurPath.size());
618     for (unsigned E = CurPath.size(); I != E; ++I) {
619       switch (GetFriendKind(S, EC, CurPath[I])) {
620       case AR_accessible:   return true;
621       case AR_inaccessible: continue;
622       case AR_dependent:    EverDependent = true; continue;
623       }
624     }
625     return false;
626   }
627
628   /// Perform a search starting at the given class.
629   ///
630   /// PrivateDepth is the index of the last (least derived) class
631   /// along the current path such that a notional public member of
632   /// the final class in the path would have access in that class.
633   bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
634     // If we ever reach the naming class, check the current path for
635     // friendship.  We can also stop recursing because we obviously
636     // won't find the naming class there again.
637     if (Cur == NamingClass)
638       return checkFriendshipAlongPath(PrivateDepth);
639
640     if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
641       EverDependent = true;
642
643     // Recurse into the base classes.
644     for (const auto &I : Cur->bases()) {
645       // If this is private inheritance, then a public member of the
646       // base will not have any access in classes derived from Cur.
647       unsigned BasePrivateDepth = PrivateDepth;
648       if (I.getAccessSpecifier() == AS_private)
649         BasePrivateDepth = CurPath.size() - 1;
650
651       const CXXRecordDecl *RD;
652
653       QualType T = I.getType();
654       if (const RecordType *RT = T->getAs<RecordType>()) {
655         RD = cast<CXXRecordDecl>(RT->getDecl());
656       } else if (const InjectedClassNameType *IT
657                    = T->getAs<InjectedClassNameType>()) {
658         RD = IT->getDecl();
659       } else {
660         assert(T->isDependentType() && "non-dependent base wasn't a record?");
661         EverDependent = true;
662         continue;
663       }
664
665       // Recurse.  We don't need to clean up if this returns true.
666       CurPath.push_back(RD);
667       if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
668         return true;
669       CurPath.pop_back();
670     }
671
672     return false;
673   }
674
675   bool findFriendship(const CXXRecordDecl *Cur) {
676     assert(CurPath.empty());
677     CurPath.push_back(Cur);
678     return findFriendship(Cur, 0);
679   }
680 };
681 }
682
683 /// Search for a class P that EC is a friend of, under the constraint
684 ///   InstanceContext <= P
685 /// if InstanceContext exists, or else
686 ///   NamingClass <= P
687 /// and with the additional restriction that a protected member of
688 /// NamingClass would have some natural access in P, which implicitly
689 /// imposes the constraint that P <= NamingClass.
690 ///
691 /// This isn't quite the condition laid out in the standard.
692 /// Instead of saying that a notional protected member of NamingClass
693 /// would have to have some natural access in P, it says the actual
694 /// target has to have some natural access in P, which opens up the
695 /// possibility that the target (which is not necessarily a member
696 /// of NamingClass) might be more accessible along some path not
697 /// passing through it.  That's really a bad idea, though, because it
698 /// introduces two problems:
699 ///   - Most importantly, it breaks encapsulation because you can
700 ///     access a forbidden base class's members by directly subclassing
701 ///     it elsewhere.
702 ///   - It also makes access substantially harder to compute because it
703 ///     breaks the hill-climbing algorithm: knowing that the target is
704 ///     accessible in some base class would no longer let you change
705 ///     the question solely to whether the base class is accessible,
706 ///     because the original target might have been more accessible
707 ///     because of crazy subclassing.
708 /// So we don't implement that.
709 static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
710                                            const CXXRecordDecl *InstanceContext,
711                                            const CXXRecordDecl *NamingClass) {
712   assert(InstanceContext == nullptr ||
713          InstanceContext->getCanonicalDecl() == InstanceContext);
714   assert(NamingClass->getCanonicalDecl() == NamingClass);
715
716   // If we don't have an instance context, our constraints give us
717   // that NamingClass <= P <= NamingClass, i.e. P == NamingClass.
718   // This is just the usual friendship check.
719   if (!InstanceContext) return GetFriendKind(S, EC, NamingClass);
720
721   ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
722   if (PRC.findFriendship(InstanceContext)) return AR_accessible;
723   if (PRC.EverDependent) return AR_dependent;
724   return AR_inaccessible;
725 }
726
727 static AccessResult HasAccess(Sema &S,
728                               const EffectiveContext &EC,
729                               const CXXRecordDecl *NamingClass,
730                               AccessSpecifier Access,
731                               const AccessTarget &Target) {
732   assert(NamingClass->getCanonicalDecl() == NamingClass &&
733          "declaration should be canonicalized before being passed here");
734
735   if (Access == AS_public) return AR_accessible;
736   assert(Access == AS_private || Access == AS_protected);
737
738   AccessResult OnFailure = AR_inaccessible;
739
740   for (EffectiveContext::record_iterator
741          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
742     // All the declarations in EC have been canonicalized, so pointer
743     // equality from this point on will work fine.
744     const CXXRecordDecl *ECRecord = *I;
745
746     // [B2] and [M2]
747     if (Access == AS_private) {
748       if (ECRecord == NamingClass)
749         return AR_accessible;
750
751       if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
752         OnFailure = AR_dependent;
753
754     // [B3] and [M3]
755     } else {
756       assert(Access == AS_protected);
757       switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
758       case AR_accessible: break;
759       case AR_inaccessible: continue;
760       case AR_dependent: OnFailure = AR_dependent; continue;
761       }
762
763       // C++ [class.protected]p1:
764       //   An additional access check beyond those described earlier in
765       //   [class.access] is applied when a non-static data member or
766       //   non-static member function is a protected member of its naming
767       //   class.  As described earlier, access to a protected member is
768       //   granted because the reference occurs in a friend or member of
769       //   some class C.  If the access is to form a pointer to member,
770       //   the nested-name-specifier shall name C or a class derived from
771       //   C. All other accesses involve a (possibly implicit) object
772       //   expression. In this case, the class of the object expression
773       //   shall be C or a class derived from C.
774       //
775       // We interpret this as a restriction on [M3].
776
777       // In this part of the code, 'C' is just our context class ECRecord.
778
779       // These rules are different if we don't have an instance context.
780       if (!Target.hasInstanceContext()) {
781         // If it's not an instance member, these restrictions don't apply.
782         if (!Target.isInstanceMember()) return AR_accessible;
783
784         // If it's an instance member, use the pointer-to-member rule
785         // that the naming class has to be derived from the effective
786         // context.
787
788         // Emulate a MSVC bug where the creation of pointer-to-member
789         // to protected member of base class is allowed but only from
790         // static member functions.
791         if (S.getLangOpts().MSVCCompat && !EC.Functions.empty())
792           if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(EC.Functions.front()))
793             if (MD->isStatic()) return AR_accessible;
794
795         // Despite the standard's confident wording, there is a case
796         // where you can have an instance member that's neither in a
797         // pointer-to-member expression nor in a member access:  when
798         // it names a field in an unevaluated context that can't be an
799         // implicit member.  Pending clarification, we just apply the
800         // same naming-class restriction here.
801         //   FIXME: we're probably not correctly adding the
802         //   protected-member restriction when we retroactively convert
803         //   an expression to being evaluated.
804
805         // We know that ECRecord derives from NamingClass.  The
806         // restriction says to check whether NamingClass derives from
807         // ECRecord, but that's not really necessary: two distinct
808         // classes can't be recursively derived from each other.  So
809         // along this path, we just need to check whether the classes
810         // are equal.
811         if (NamingClass == ECRecord) return AR_accessible;
812
813         // Otherwise, this context class tells us nothing;  on to the next.
814         continue;
815       }
816
817       assert(Target.isInstanceMember());
818
819       const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
820       if (!InstanceContext) {
821         OnFailure = AR_dependent;
822         continue;
823       }
824
825       switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
826       case AR_accessible: return AR_accessible;
827       case AR_inaccessible: continue;
828       case AR_dependent: OnFailure = AR_dependent; continue;
829       }
830     }
831   }
832
833   // [M3] and [B3] say that, if the target is protected in N, we grant
834   // access if the access occurs in a friend or member of some class P
835   // that's a subclass of N and where the target has some natural
836   // access in P.  The 'member' aspect is easy to handle because P
837   // would necessarily be one of the effective-context records, and we
838   // address that above.  The 'friend' aspect is completely ridiculous
839   // to implement because there are no restrictions at all on P
840   // *unless* the [class.protected] restriction applies.  If it does,
841   // however, we should ignore whether the naming class is a friend,
842   // and instead rely on whether any potential P is a friend.
843   if (Access == AS_protected && Target.isInstanceMember()) {
844     // Compute the instance context if possible.
845     const CXXRecordDecl *InstanceContext = nullptr;
846     if (Target.hasInstanceContext()) {
847       InstanceContext = Target.resolveInstanceContext(S);
848       if (!InstanceContext) return AR_dependent;
849     }
850
851     switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
852     case AR_accessible: return AR_accessible;
853     case AR_inaccessible: return OnFailure;
854     case AR_dependent: return AR_dependent;
855     }
856     llvm_unreachable("impossible friendship kind");
857   }
858
859   switch (GetFriendKind(S, EC, NamingClass)) {
860   case AR_accessible: return AR_accessible;
861   case AR_inaccessible: return OnFailure;
862   case AR_dependent: return AR_dependent;
863   }
864
865   // Silence bogus warnings
866   llvm_unreachable("impossible friendship kind");
867 }
868
869 /// Finds the best path from the naming class to the declaring class,
870 /// taking friend declarations into account.
871 ///
872 /// C++0x [class.access.base]p5:
873 ///   A member m is accessible at the point R when named in class N if
874 ///   [M1] m as a member of N is public, or
875 ///   [M2] m as a member of N is private, and R occurs in a member or
876 ///        friend of class N, or
877 ///   [M3] m as a member of N is protected, and R occurs in a member or
878 ///        friend of class N, or in a member or friend of a class P
879 ///        derived from N, where m as a member of P is public, private,
880 ///        or protected, or
881 ///   [M4] there exists a base class B of N that is accessible at R, and
882 ///        m is accessible at R when named in class B.
883 ///
884 /// C++0x [class.access.base]p4:
885 ///   A base class B of N is accessible at R, if
886 ///   [B1] an invented public member of B would be a public member of N, or
887 ///   [B2] R occurs in a member or friend of class N, and an invented public
888 ///        member of B would be a private or protected member of N, or
889 ///   [B3] R occurs in a member or friend of a class P derived from N, and an
890 ///        invented public member of B would be a private or protected member
891 ///        of P, or
892 ///   [B4] there exists a class S such that B is a base class of S accessible
893 ///        at R and S is a base class of N accessible at R.
894 ///
895 /// Along a single inheritance path we can restate both of these
896 /// iteratively:
897 ///
898 /// First, we note that M1-4 are equivalent to B1-4 if the member is
899 /// treated as a notional base of its declaring class with inheritance
900 /// access equivalent to the member's access.  Therefore we need only
901 /// ask whether a class B is accessible from a class N in context R.
902 ///
903 /// Let B_1 .. B_n be the inheritance path in question (i.e. where
904 /// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
905 /// B_i).  For i in 1..n, we will calculate ACAB(i), the access to the
906 /// closest accessible base in the path:
907 ///   Access(a, b) = (* access on the base specifier from a to b *)
908 ///   Merge(a, forbidden) = forbidden
909 ///   Merge(a, private) = forbidden
910 ///   Merge(a, b) = min(a,b)
911 ///   Accessible(c, forbidden) = false
912 ///   Accessible(c, private) = (R is c) || IsFriend(c, R)
913 ///   Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
914 ///   Accessible(c, public) = true
915 ///   ACAB(n) = public
916 ///   ACAB(i) =
917 ///     let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
918 ///     if Accessible(B_i, AccessToBase) then public else AccessToBase
919 ///
920 /// B is an accessible base of N at R iff ACAB(1) = public.
921 ///
922 /// \param FinalAccess the access of the "final step", or AS_public if
923 ///   there is no final step.
924 /// \return null if friendship is dependent
925 static CXXBasePath *FindBestPath(Sema &S,
926                                  const EffectiveContext &EC,
927                                  AccessTarget &Target,
928                                  AccessSpecifier FinalAccess,
929                                  CXXBasePaths &Paths) {
930   // Derive the paths to the desired base.
931   const CXXRecordDecl *Derived = Target.getNamingClass();
932   const CXXRecordDecl *Base = Target.getDeclaringClass();
933
934   // FIXME: fail correctly when there are dependent paths.
935   bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
936                                           Paths);
937   assert(isDerived && "derived class not actually derived from base");
938   (void) isDerived;
939
940   CXXBasePath *BestPath = nullptr;
941
942   assert(FinalAccess != AS_none && "forbidden access after declaring class");
943
944   bool AnyDependent = false;
945
946   // Derive the friend-modified access along each path.
947   for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
948          PI != PE; ++PI) {
949     AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
950
951     // Walk through the path backwards.
952     AccessSpecifier PathAccess = FinalAccess;
953     CXXBasePath::iterator I = PI->end(), E = PI->begin();
954     while (I != E) {
955       --I;
956
957       assert(PathAccess != AS_none);
958
959       // If the declaration is a private member of a base class, there
960       // is no level of friendship in derived classes that can make it
961       // accessible.
962       if (PathAccess == AS_private) {
963         PathAccess = AS_none;
964         break;
965       }
966
967       const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
968
969       AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
970       PathAccess = std::max(PathAccess, BaseAccess);
971
972       switch (HasAccess(S, EC, NC, PathAccess, Target)) {
973       case AR_inaccessible: break;
974       case AR_accessible:
975         PathAccess = AS_public;
976
977         // Future tests are not against members and so do not have
978         // instance context.
979         Target.suppressInstanceContext();
980         break;
981       case AR_dependent:
982         AnyDependent = true;
983         goto Next;
984       }
985     }
986
987     // Note that we modify the path's Access field to the
988     // friend-modified access.
989     if (BestPath == nullptr || PathAccess < BestPath->Access) {
990       BestPath = &*PI;
991       BestPath->Access = PathAccess;
992
993       // Short-circuit if we found a public path.
994       if (BestPath->Access == AS_public)
995         return BestPath;
996     }
997
998   Next: ;
999   }
1000
1001   assert((!BestPath || BestPath->Access != AS_public) &&
1002          "fell out of loop with public path");
1003
1004   // We didn't find a public path, but at least one path was subject
1005   // to dependent friendship, so delay the check.
1006   if (AnyDependent)
1007     return nullptr;
1008
1009   return BestPath;
1010 }
1011
1012 /// Given that an entity has protected natural access, check whether
1013 /// access might be denied because of the protected member access
1014 /// restriction.
1015 ///
1016 /// \return true if a note was emitted
1017 static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
1018                                        AccessTarget &Target) {
1019   // Only applies to instance accesses.
1020   if (!Target.isInstanceMember())
1021     return false;
1022
1023   assert(Target.isMemberAccess());
1024
1025   const CXXRecordDecl *NamingClass = Target.getEffectiveNamingClass();
1026
1027   for (EffectiveContext::record_iterator
1028          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
1029     const CXXRecordDecl *ECRecord = *I;
1030     switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
1031     case AR_accessible: break;
1032     case AR_inaccessible: continue;
1033     case AR_dependent: continue;
1034     }
1035
1036     // The effective context is a subclass of the declaring class.
1037     // Check whether the [class.protected] restriction is limiting
1038     // access.
1039
1040     // To get this exactly right, this might need to be checked more
1041     // holistically;  it's not necessarily the case that gaining
1042     // access here would grant us access overall.
1043
1044     NamedDecl *D = Target.getTargetDecl();
1045
1046     // If we don't have an instance context, [class.protected] says the
1047     // naming class has to equal the context class.
1048     if (!Target.hasInstanceContext()) {
1049       // If it does, the restriction doesn't apply.
1050       if (NamingClass == ECRecord) continue;
1051
1052       // TODO: it would be great to have a fixit here, since this is
1053       // such an obvious error.
1054       S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject)
1055         << S.Context.getTypeDeclType(ECRecord);
1056       return true;
1057     }
1058
1059     const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
1060     assert(InstanceContext && "diagnosing dependent access");
1061
1062     switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
1063     case AR_accessible: continue;
1064     case AR_dependent: continue;
1065     case AR_inaccessible:
1066       break;
1067     }
1068
1069     // Okay, the restriction seems to be what's limiting us.
1070
1071     // Use a special diagnostic for constructors and destructors.
1072     if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D) ||
1073         (isa<FunctionTemplateDecl>(D) &&
1074          isa<CXXConstructorDecl>(
1075                 cast<FunctionTemplateDecl>(D)->getTemplatedDecl()))) {
1076       return S.Diag(D->getLocation(),
1077                     diag::note_access_protected_restricted_ctordtor)
1078              << isa<CXXDestructorDecl>(D->getAsFunction());
1079     }
1080
1081     // Otherwise, use the generic diagnostic.
1082     return S.Diag(D->getLocation(),
1083                   diag::note_access_protected_restricted_object)
1084            << S.Context.getTypeDeclType(ECRecord);
1085   }
1086
1087   return false;
1088 }
1089
1090 /// We are unable to access a given declaration due to its direct
1091 /// access control;  diagnose that.
1092 static void diagnoseBadDirectAccess(Sema &S,
1093                                     const EffectiveContext &EC,
1094                                     AccessTarget &entity) {
1095   assert(entity.isMemberAccess());
1096   NamedDecl *D = entity.getTargetDecl();
1097
1098   if (D->getAccess() == AS_protected &&
1099       TryDiagnoseProtectedAccess(S, EC, entity))
1100     return;
1101
1102   // Find an original declaration.
1103   while (D->isOutOfLine()) {
1104     NamedDecl *PrevDecl = nullptr;
1105     if (VarDecl *VD = dyn_cast<VarDecl>(D))
1106       PrevDecl = VD->getPreviousDecl();
1107     else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
1108       PrevDecl = FD->getPreviousDecl();
1109     else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D))
1110       PrevDecl = TND->getPreviousDecl();
1111     else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
1112       if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
1113         break;
1114       PrevDecl = TD->getPreviousDecl();
1115     }
1116     if (!PrevDecl) break;
1117     D = PrevDecl;
1118   }
1119
1120   CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
1121   Decl *ImmediateChild;
1122   if (D->getDeclContext() == DeclaringClass)
1123     ImmediateChild = D;
1124   else {
1125     DeclContext *DC = D->getDeclContext();
1126     while (DC->getParent() != DeclaringClass)
1127       DC = DC->getParent();
1128     ImmediateChild = cast<Decl>(DC);
1129   }
1130
1131   // Check whether there's an AccessSpecDecl preceding this in the
1132   // chain of the DeclContext.
1133   bool isImplicit = true;
1134   for (const auto *I : DeclaringClass->decls()) {
1135     if (I == ImmediateChild) break;
1136     if (isa<AccessSpecDecl>(I)) {
1137       isImplicit = false;
1138       break;
1139     }
1140   }
1141
1142   S.Diag(D->getLocation(), diag::note_access_natural)
1143     << (unsigned) (D->getAccess() == AS_protected)
1144     << isImplicit;
1145 }
1146
1147 /// Diagnose the path which caused the given declaration or base class
1148 /// to become inaccessible.
1149 static void DiagnoseAccessPath(Sema &S,
1150                                const EffectiveContext &EC,
1151                                AccessTarget &entity) {
1152   // Save the instance context to preserve invariants.
1153   AccessTarget::SavedInstanceContext _ = entity.saveInstanceContext();
1154
1155   // This basically repeats the main algorithm but keeps some more
1156   // information.
1157
1158   // The natural access so far.
1159   AccessSpecifier accessSoFar = AS_public;
1160
1161   // Check whether we have special rights to the declaring class.
1162   if (entity.isMemberAccess()) {
1163     NamedDecl *D = entity.getTargetDecl();
1164     accessSoFar = D->getAccess();
1165     const CXXRecordDecl *declaringClass = entity.getDeclaringClass();
1166
1167     switch (HasAccess(S, EC, declaringClass, accessSoFar, entity)) {
1168     // If the declaration is accessible when named in its declaring
1169     // class, then we must be constrained by the path.
1170     case AR_accessible:
1171       accessSoFar = AS_public;
1172       entity.suppressInstanceContext();
1173       break;
1174
1175     case AR_inaccessible:
1176       if (accessSoFar == AS_private ||
1177           declaringClass == entity.getEffectiveNamingClass())
1178         return diagnoseBadDirectAccess(S, EC, entity);
1179       break;
1180
1181     case AR_dependent:
1182       llvm_unreachable("cannot diagnose dependent access");
1183     }
1184   }
1185
1186   CXXBasePaths paths;
1187   CXXBasePath &path = *FindBestPath(S, EC, entity, accessSoFar, paths);
1188   assert(path.Access != AS_public);
1189
1190   CXXBasePath::iterator i = path.end(), e = path.begin();
1191   CXXBasePath::iterator constrainingBase = i;
1192   while (i != e) {
1193     --i;
1194
1195     assert(accessSoFar != AS_none && accessSoFar != AS_private);
1196
1197     // Is the entity accessible when named in the deriving class, as
1198     // modified by the base specifier?
1199     const CXXRecordDecl *derivingClass = i->Class->getCanonicalDecl();
1200     const CXXBaseSpecifier *base = i->Base;
1201
1202     // If the access to this base is worse than the access we have to
1203     // the declaration, remember it.
1204     AccessSpecifier baseAccess = base->getAccessSpecifier();
1205     if (baseAccess > accessSoFar) {
1206       constrainingBase = i;
1207       accessSoFar = baseAccess;
1208     }
1209
1210     switch (HasAccess(S, EC, derivingClass, accessSoFar, entity)) {
1211     case AR_inaccessible: break;
1212     case AR_accessible:
1213       accessSoFar = AS_public;
1214       entity.suppressInstanceContext();
1215       constrainingBase = nullptr;
1216       break;
1217     case AR_dependent:
1218       llvm_unreachable("cannot diagnose dependent access");
1219     }
1220
1221     // If this was private inheritance, but we don't have access to
1222     // the deriving class, we're done.
1223     if (accessSoFar == AS_private) {
1224       assert(baseAccess == AS_private);
1225       assert(constrainingBase == i);
1226       break;
1227     }
1228   }
1229
1230   // If we don't have a constraining base, the access failure must be
1231   // due to the original declaration.
1232   if (constrainingBase == path.end())
1233     return diagnoseBadDirectAccess(S, EC, entity);
1234
1235   // We're constrained by inheritance, but we want to say
1236   // "declared private here" if we're diagnosing a hierarchy
1237   // conversion and this is the final step.
1238   unsigned diagnostic;
1239   if (entity.isMemberAccess() ||
1240       constrainingBase + 1 != path.end()) {
1241     diagnostic = diag::note_access_constrained_by_path;
1242   } else {
1243     diagnostic = diag::note_access_natural;
1244   }
1245
1246   const CXXBaseSpecifier *base = constrainingBase->Base;
1247
1248   S.Diag(base->getSourceRange().getBegin(), diagnostic)
1249     << base->getSourceRange()
1250     << (base->getAccessSpecifier() == AS_protected)
1251     << (base->getAccessSpecifierAsWritten() == AS_none);
1252
1253   if (entity.isMemberAccess())
1254     S.Diag(entity.getTargetDecl()->getLocation(),
1255            diag::note_member_declared_at);
1256 }
1257
1258 static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
1259                               const EffectiveContext &EC,
1260                               AccessTarget &Entity) {
1261   const CXXRecordDecl *NamingClass = Entity.getNamingClass();
1262   const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1263   NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : nullptr);
1264
1265   S.Diag(Loc, Entity.getDiag())
1266     << (Entity.getAccess() == AS_protected)
1267     << (D ? D->getDeclName() : DeclarationName())
1268     << S.Context.getTypeDeclType(NamingClass)
1269     << S.Context.getTypeDeclType(DeclaringClass);
1270   DiagnoseAccessPath(S, EC, Entity);
1271 }
1272
1273 /// MSVC has a bug where if during an using declaration name lookup,
1274 /// the declaration found is unaccessible (private) and that declaration
1275 /// was bring into scope via another using declaration whose target
1276 /// declaration is accessible (public) then no error is generated.
1277 /// Example:
1278 ///   class A {
1279 ///   public:
1280 ///     int f();
1281 ///   };
1282 ///   class B : public A {
1283 ///   private:
1284 ///     using A::f;
1285 ///   };
1286 ///   class C : public B {
1287 ///   private:
1288 ///     using B::f;
1289 ///   };
1290 ///
1291 /// Here, B::f is private so this should fail in Standard C++, but
1292 /// because B::f refers to A::f which is public MSVC accepts it.
1293 static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S,
1294                                                  SourceLocation AccessLoc,
1295                                                  AccessTarget &Entity) {
1296   if (UsingShadowDecl *Shadow =
1297                          dyn_cast<UsingShadowDecl>(Entity.getTargetDecl())) {
1298     const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
1299     if (Entity.getTargetDecl()->getAccess() == AS_private &&
1300         (OrigDecl->getAccess() == AS_public ||
1301          OrigDecl->getAccess() == AS_protected)) {
1302       S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible)
1303         << Shadow->getUsingDecl()->getQualifiedNameAsString()
1304         << OrigDecl->getQualifiedNameAsString();
1305       return true;
1306     }
1307   }
1308   return false;
1309 }
1310
1311 /// Determines whether the accessed entity is accessible.  Public members
1312 /// have been weeded out by this point.
1313 static AccessResult IsAccessible(Sema &S,
1314                                  const EffectiveContext &EC,
1315                                  AccessTarget &Entity) {
1316   // Determine the actual naming class.
1317   const CXXRecordDecl *NamingClass = Entity.getEffectiveNamingClass();
1318
1319   AccessSpecifier UnprivilegedAccess = Entity.getAccess();
1320   assert(UnprivilegedAccess != AS_public && "public access not weeded out");
1321
1322   // Before we try to recalculate access paths, try to white-list
1323   // accesses which just trade in on the final step, i.e. accesses
1324   // which don't require [M4] or [B4]. These are by far the most
1325   // common forms of privileged access.
1326   if (UnprivilegedAccess != AS_none) {
1327     switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
1328     case AR_dependent:
1329       // This is actually an interesting policy decision.  We don't
1330       // *have* to delay immediately here: we can do the full access
1331       // calculation in the hope that friendship on some intermediate
1332       // class will make the declaration accessible non-dependently.
1333       // But that's not cheap, and odds are very good (note: assertion
1334       // made without data) that the friend declaration will determine
1335       // access.
1336       return AR_dependent;
1337
1338     case AR_accessible: return AR_accessible;
1339     case AR_inaccessible: break;
1340     }
1341   }
1342
1343   AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
1344
1345   // We lower member accesses to base accesses by pretending that the
1346   // member is a base class of its declaring class.
1347   AccessSpecifier FinalAccess;
1348
1349   if (Entity.isMemberAccess()) {
1350     // Determine if the declaration is accessible from EC when named
1351     // in its declaring class.
1352     NamedDecl *Target = Entity.getTargetDecl();
1353     const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1354
1355     FinalAccess = Target->getAccess();
1356     switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
1357     case AR_accessible:
1358       // Target is accessible at EC when named in its declaring class.
1359       // We can now hill-climb and simply check whether the declaring
1360       // class is accessible as a base of the naming class.  This is
1361       // equivalent to checking the access of a notional public
1362       // member with no instance context.
1363       FinalAccess = AS_public;
1364       Entity.suppressInstanceContext();
1365       break;
1366     case AR_inaccessible: break;
1367     case AR_dependent: return AR_dependent; // see above
1368     }
1369
1370     if (DeclaringClass == NamingClass)
1371       return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
1372   } else {
1373     FinalAccess = AS_public;
1374   }
1375
1376   assert(Entity.getDeclaringClass() != NamingClass);
1377
1378   // Append the declaration's access if applicable.
1379   CXXBasePaths Paths;
1380   CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
1381   if (!Path)
1382     return AR_dependent;
1383
1384   assert(Path->Access <= UnprivilegedAccess &&
1385          "access along best path worse than direct?");
1386   if (Path->Access == AS_public)
1387     return AR_accessible;
1388   return AR_inaccessible;
1389 }
1390
1391 static void DelayDependentAccess(Sema &S,
1392                                  const EffectiveContext &EC,
1393                                  SourceLocation Loc,
1394                                  const AccessTarget &Entity) {
1395   assert(EC.isDependent() && "delaying non-dependent access");
1396   DeclContext *DC = EC.getInnerContext();
1397   assert(DC->isDependentContext() && "delaying non-dependent access");
1398   DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
1399                               Loc,
1400                               Entity.isMemberAccess(),
1401                               Entity.getAccess(),
1402                               Entity.getTargetDecl(),
1403                               Entity.getNamingClass(),
1404                               Entity.getBaseObjectType(),
1405                               Entity.getDiag());
1406 }
1407
1408 /// Checks access to an entity from the given effective context.
1409 static AccessResult CheckEffectiveAccess(Sema &S,
1410                                          const EffectiveContext &EC,
1411                                          SourceLocation Loc,
1412                                          AccessTarget &Entity) {
1413   assert(Entity.getAccess() != AS_public && "called for public access!");
1414
1415   switch (IsAccessible(S, EC, Entity)) {
1416   case AR_dependent:
1417     DelayDependentAccess(S, EC, Loc, Entity);
1418     return AR_dependent;
1419
1420   case AR_inaccessible:
1421     if (S.getLangOpts().MSVCCompat &&
1422         IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity))
1423       return AR_accessible;
1424     if (!Entity.isQuiet())
1425       DiagnoseBadAccess(S, Loc, EC, Entity);
1426     return AR_inaccessible;
1427
1428   case AR_accessible:
1429     return AR_accessible;
1430   }
1431
1432   // silence unnecessary warning
1433   llvm_unreachable("invalid access result");
1434 }
1435
1436 static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
1437                                       AccessTarget &Entity) {
1438   // If the access path is public, it's accessible everywhere.
1439   if (Entity.getAccess() == AS_public)
1440     return Sema::AR_accessible;
1441
1442   // If we're currently parsing a declaration, we may need to delay
1443   // access control checking, because our effective context might be
1444   // different based on what the declaration comes out as.
1445   //
1446   // For example, we might be parsing a declaration with a scope
1447   // specifier, like this:
1448   //   A::private_type A::foo() { ... }
1449   //
1450   // Or we might be parsing something that will turn out to be a friend:
1451   //   void foo(A::private_type);
1452   //   void B::foo(A::private_type);
1453   if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1454     S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity));
1455     return Sema::AR_delayed;
1456   }
1457
1458   EffectiveContext EC(S.CurContext);
1459   switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
1460   case AR_accessible: return Sema::AR_accessible;
1461   case AR_inaccessible: return Sema::AR_inaccessible;
1462   case AR_dependent: return Sema::AR_dependent;
1463   }
1464   llvm_unreachable("invalid access result");
1465 }
1466
1467 void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *D) {
1468   // Access control for names used in the declarations of functions
1469   // and function templates should normally be evaluated in the context
1470   // of the declaration, just in case it's a friend of something.
1471   // However, this does not apply to local extern declarations.
1472
1473   DeclContext *DC = D->getDeclContext();
1474   if (D->isLocalExternDecl()) {
1475     DC = D->getLexicalDeclContext();
1476   } else if (FunctionDecl *FN = dyn_cast<FunctionDecl>(D)) {
1477     DC = FN;
1478   } else if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) {
1479     DC = cast<DeclContext>(TD->getTemplatedDecl());
1480   }
1481
1482   EffectiveContext EC(DC);
1483
1484   AccessTarget Target(DD.getAccessData());
1485
1486   if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
1487     DD.Triggered = true;
1488 }
1489
1490 void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
1491                         const MultiLevelTemplateArgumentList &TemplateArgs) {
1492   SourceLocation Loc = DD.getAccessLoc();
1493   AccessSpecifier Access = DD.getAccess();
1494
1495   Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
1496                                        TemplateArgs);
1497   if (!NamingD) return;
1498   Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
1499                                        TemplateArgs);
1500   if (!TargetD) return;
1501
1502   if (DD.isAccessToMember()) {
1503     CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
1504     NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
1505     QualType BaseObjectType = DD.getAccessBaseObjectType();
1506     if (!BaseObjectType.isNull()) {
1507       BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
1508                                  DeclarationName());
1509       if (BaseObjectType.isNull()) return;
1510     }
1511
1512     AccessTarget Entity(Context,
1513                         AccessTarget::Member,
1514                         NamingClass,
1515                         DeclAccessPair::make(TargetDecl, Access),
1516                         BaseObjectType);
1517     Entity.setDiag(DD.getDiagnostic());
1518     CheckAccess(*this, Loc, Entity);
1519   } else {
1520     AccessTarget Entity(Context,
1521                         AccessTarget::Base,
1522                         cast<CXXRecordDecl>(TargetD),
1523                         cast<CXXRecordDecl>(NamingD),
1524                         Access);
1525     Entity.setDiag(DD.getDiagnostic());
1526     CheckAccess(*this, Loc, Entity);
1527   }
1528 }
1529
1530 Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
1531                                                      DeclAccessPair Found) {
1532   if (!getLangOpts().AccessControl ||
1533       !E->getNamingClass() ||
1534       Found.getAccess() == AS_public)
1535     return AR_accessible;
1536
1537   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1538                       Found, QualType());
1539   Entity.setDiag(diag::err_access) << E->getSourceRange();
1540
1541   return CheckAccess(*this, E->getNameLoc(), Entity);
1542 }
1543
1544 /// Perform access-control checking on a previously-unresolved member
1545 /// access which has now been resolved to a member.
1546 Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
1547                                                      DeclAccessPair Found) {
1548   if (!getLangOpts().AccessControl ||
1549       Found.getAccess() == AS_public)
1550     return AR_accessible;
1551
1552   QualType BaseType = E->getBaseType();
1553   if (E->isArrow())
1554     BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1555
1556   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1557                       Found, BaseType);
1558   Entity.setDiag(diag::err_access) << E->getSourceRange();
1559
1560   return CheckAccess(*this, E->getMemberLoc(), Entity);
1561 }
1562
1563 /// Is the given special member function accessible for the purposes of
1564 /// deciding whether to define a special member function as deleted?
1565 bool Sema::isSpecialMemberAccessibleForDeletion(CXXMethodDecl *decl,
1566                                                 AccessSpecifier access,
1567                                                 QualType objectType) {
1568   // Fast path.
1569   if (access == AS_public || !getLangOpts().AccessControl) return true;
1570
1571   AccessTarget entity(Context, AccessTarget::Member, decl->getParent(),
1572                       DeclAccessPair::make(decl, access), objectType);
1573
1574   // Suppress diagnostics.
1575   entity.setDiag(PDiag());
1576
1577   switch (CheckAccess(*this, SourceLocation(), entity)) {
1578   case AR_accessible: return true;
1579   case AR_inaccessible: return false;
1580   case AR_dependent: llvm_unreachable("dependent for =delete computation");
1581   case AR_delayed: llvm_unreachable("cannot delay =delete computation");
1582   }
1583   llvm_unreachable("bad access result");
1584 }
1585
1586 Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
1587                                                CXXDestructorDecl *Dtor,
1588                                                const PartialDiagnostic &PDiag,
1589                                                QualType ObjectTy) {
1590   if (!getLangOpts().AccessControl)
1591     return AR_accessible;
1592
1593   // There's never a path involved when checking implicit destructor access.
1594   AccessSpecifier Access = Dtor->getAccess();
1595   if (Access == AS_public)
1596     return AR_accessible;
1597
1598   CXXRecordDecl *NamingClass = Dtor->getParent();
1599   if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass);
1600
1601   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1602                       DeclAccessPair::make(Dtor, Access),
1603                       ObjectTy);
1604   Entity.setDiag(PDiag); // TODO: avoid copy
1605
1606   return CheckAccess(*this, Loc, Entity);
1607 }
1608
1609 /// Checks access to a constructor.
1610 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1611                                                 CXXConstructorDecl *Constructor,
1612                                                 DeclAccessPair Found,
1613                                                 const InitializedEntity &Entity,
1614                                                 bool IsCopyBindingRefToTemp) {
1615   if (!getLangOpts().AccessControl || Found.getAccess() == AS_public)
1616     return AR_accessible;
1617
1618   PartialDiagnostic PD(PDiag());
1619   switch (Entity.getKind()) {
1620   default:
1621     PD = PDiag(IsCopyBindingRefToTemp
1622                  ? diag::ext_rvalue_to_reference_access_ctor
1623                  : diag::err_access_ctor);
1624
1625     break;
1626
1627   case InitializedEntity::EK_Base:
1628     PD = PDiag(diag::err_access_base_ctor);
1629     PD << Entity.isInheritedVirtualBase()
1630        << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
1631     break;
1632
1633   case InitializedEntity::EK_Member: {
1634     const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
1635     PD = PDiag(diag::err_access_field_ctor);
1636     PD << Field->getType() << getSpecialMember(Constructor);
1637     break;
1638   }
1639
1640   case InitializedEntity::EK_LambdaCapture: {
1641     StringRef VarName = Entity.getCapturedVarName();
1642     PD = PDiag(diag::err_access_lambda_capture);
1643     PD << VarName << Entity.getType() << getSpecialMember(Constructor);
1644     break;
1645   }
1646
1647   }
1648
1649   return CheckConstructorAccess(UseLoc, Constructor, Found, Entity, PD);
1650 }
1651
1652 /// Checks access to a constructor.
1653 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1654                                                 CXXConstructorDecl *Constructor,
1655                                                 DeclAccessPair Found,
1656                                                 const InitializedEntity &Entity,
1657                                                 const PartialDiagnostic &PD) {
1658   if (!getLangOpts().AccessControl ||
1659       Found.getAccess() == AS_public)
1660     return AR_accessible;
1661
1662   CXXRecordDecl *NamingClass = Constructor->getParent();
1663
1664   // Initializing a base sub-object is an instance method call on an
1665   // object of the derived class.  Otherwise, we have an instance method
1666   // call on an object of the constructed type.
1667   //
1668   // FIXME: If we have a parent, we're initializing the base class subobject
1669   // in aggregate initialization. It's not clear whether the object class
1670   // should be the base class or the derived class in that case.
1671   CXXRecordDecl *ObjectClass;
1672   if ((Entity.getKind() == InitializedEntity::EK_Base ||
1673        Entity.getKind() == InitializedEntity::EK_Delegating) &&
1674       !Entity.getParent()) {
1675     ObjectClass = cast<CXXConstructorDecl>(CurContext)->getParent();
1676   } else if (auto *Shadow =
1677                  dyn_cast<ConstructorUsingShadowDecl>(Found.getDecl())) {
1678     // If we're using an inheriting constructor to construct an object,
1679     // the object class is the derived class, not the base class.
1680     ObjectClass = Shadow->getParent();
1681   } else {
1682     ObjectClass = NamingClass;
1683   }
1684
1685   AccessTarget AccessEntity(
1686       Context, AccessTarget::Member, NamingClass,
1687       DeclAccessPair::make(Constructor, Found.getAccess()),
1688       Context.getTypeDeclType(ObjectClass));
1689   AccessEntity.setDiag(PD);
1690
1691   return CheckAccess(*this, UseLoc, AccessEntity);
1692 }
1693
1694 /// Checks access to an overloaded operator new or delete.
1695 Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
1696                                                SourceRange PlacementRange,
1697                                                CXXRecordDecl *NamingClass,
1698                                                DeclAccessPair Found,
1699                                                bool Diagnose) {
1700   if (!getLangOpts().AccessControl ||
1701       !NamingClass ||
1702       Found.getAccess() == AS_public)
1703     return AR_accessible;
1704
1705   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1706                       QualType());
1707   if (Diagnose)
1708     Entity.setDiag(diag::err_access)
1709       << PlacementRange;
1710
1711   return CheckAccess(*this, OpLoc, Entity);
1712 }
1713
1714 /// Checks access to a member.
1715 Sema::AccessResult Sema::CheckMemberAccess(SourceLocation UseLoc,
1716                                            CXXRecordDecl *NamingClass,
1717                                            DeclAccessPair Found) {
1718   if (!getLangOpts().AccessControl ||
1719       !NamingClass ||
1720       Found.getAccess() == AS_public)
1721     return AR_accessible;
1722
1723   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1724                       Found, QualType());
1725
1726   return CheckAccess(*this, UseLoc, Entity);
1727 }
1728
1729 /// Checks implicit access to a member in a structured binding.
1730 Sema::AccessResult
1731 Sema::CheckStructuredBindingMemberAccess(SourceLocation UseLoc,
1732                                          CXXRecordDecl *DecomposedClass,
1733                                          DeclAccessPair Field) {
1734   if (!getLangOpts().AccessControl ||
1735       Field.getAccess() == AS_public)
1736     return AR_accessible;
1737
1738   AccessTarget Entity(Context, AccessTarget::Member, DecomposedClass, Field,
1739                       Context.getRecordType(DecomposedClass));
1740   Entity.setDiag(diag::err_decomp_decl_inaccessible_field);
1741
1742   return CheckAccess(*this, UseLoc, Entity);
1743 }
1744
1745 /// Checks access to an overloaded member operator, including
1746 /// conversion operators.
1747 Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1748                                                    Expr *ObjectExpr,
1749                                                    Expr *ArgExpr,
1750                                                    DeclAccessPair Found) {
1751   if (!getLangOpts().AccessControl ||
1752       Found.getAccess() == AS_public)
1753     return AR_accessible;
1754
1755   const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>();
1756   CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
1757
1758   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1759                       ObjectExpr->getType());
1760   Entity.setDiag(diag::err_access)
1761     << ObjectExpr->getSourceRange()
1762     << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());
1763
1764   return CheckAccess(*this, OpLoc, Entity);
1765 }
1766
1767 /// Checks access to the target of a friend declaration.
1768 Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) {
1769   assert(isa<CXXMethodDecl>(target->getAsFunction()));
1770
1771   // Friendship lookup is a redeclaration lookup, so there's never an
1772   // inheritance path modifying access.
1773   AccessSpecifier access = target->getAccess();
1774
1775   if (!getLangOpts().AccessControl || access == AS_public)
1776     return AR_accessible;
1777
1778   CXXMethodDecl *method = cast<CXXMethodDecl>(target->getAsFunction());
1779
1780   AccessTarget entity(Context, AccessTarget::Member,
1781                       cast<CXXRecordDecl>(target->getDeclContext()),
1782                       DeclAccessPair::make(target, access),
1783                       /*no instance context*/ QualType());
1784   entity.setDiag(diag::err_access_friend_function)
1785       << (method->getQualifier() ? method->getQualifierLoc().getSourceRange()
1786                                  : method->getNameInfo().getSourceRange());
1787
1788   // We need to bypass delayed-diagnostics because we might be called
1789   // while the ParsingDeclarator is active.
1790   EffectiveContext EC(CurContext);
1791   switch (CheckEffectiveAccess(*this, EC, target->getLocation(), entity)) {
1792   case ::AR_accessible: return Sema::AR_accessible;
1793   case ::AR_inaccessible: return Sema::AR_inaccessible;
1794   case ::AR_dependent: return Sema::AR_dependent;
1795   }
1796   llvm_unreachable("invalid access result");
1797 }
1798
1799 Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
1800                                                     DeclAccessPair Found) {
1801   if (!getLangOpts().AccessControl ||
1802       Found.getAccess() == AS_none ||
1803       Found.getAccess() == AS_public)
1804     return AR_accessible;
1805
1806   OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
1807   CXXRecordDecl *NamingClass = Ovl->getNamingClass();
1808
1809   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1810                       /*no instance context*/ QualType());
1811   Entity.setDiag(diag::err_access)
1812     << Ovl->getSourceRange();
1813
1814   return CheckAccess(*this, Ovl->getNameLoc(), Entity);
1815 }
1816
1817 /// Checks access for a hierarchy conversion.
1818 ///
1819 /// \param ForceCheck true if this check should be performed even if access
1820 ///     control is disabled;  some things rely on this for semantics
1821 /// \param ForceUnprivileged true if this check should proceed as if the
1822 ///     context had no special privileges
1823 Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
1824                                               QualType Base,
1825                                               QualType Derived,
1826                                               const CXXBasePath &Path,
1827                                               unsigned DiagID,
1828                                               bool ForceCheck,
1829                                               bool ForceUnprivileged) {
1830   if (!ForceCheck && !getLangOpts().AccessControl)
1831     return AR_accessible;
1832
1833   if (Path.Access == AS_public)
1834     return AR_accessible;
1835
1836   CXXRecordDecl *BaseD, *DerivedD;
1837   BaseD = cast<CXXRecordDecl>(Base->getAs<RecordType>()->getDecl());
1838   DerivedD = cast<CXXRecordDecl>(Derived->getAs<RecordType>()->getDecl());
1839
1840   AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
1841                       Path.Access);
1842   if (DiagID)
1843     Entity.setDiag(DiagID) << Derived << Base;
1844
1845   if (ForceUnprivileged) {
1846     switch (CheckEffectiveAccess(*this, EffectiveContext(),
1847                                  AccessLoc, Entity)) {
1848     case ::AR_accessible: return Sema::AR_accessible;
1849     case ::AR_inaccessible: return Sema::AR_inaccessible;
1850     case ::AR_dependent: return Sema::AR_dependent;
1851     }
1852     llvm_unreachable("unexpected result from CheckEffectiveAccess");
1853   }
1854   return CheckAccess(*this, AccessLoc, Entity);
1855 }
1856
1857 /// Checks access to all the declarations in the given result set.
1858 void Sema::CheckLookupAccess(const LookupResult &R) {
1859   assert(getLangOpts().AccessControl
1860          && "performing access check without access control");
1861   assert(R.getNamingClass() && "performing access check without naming class");
1862
1863   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1864     if (I.getAccess() != AS_public) {
1865       AccessTarget Entity(Context, AccessedEntity::Member,
1866                           R.getNamingClass(), I.getPair(),
1867                           R.getBaseObjectType());
1868       Entity.setDiag(diag::err_access);
1869       CheckAccess(*this, R.getNameLoc(), Entity);
1870     }
1871   }
1872 }
1873
1874 /// Checks access to Target from the given class. The check will take access
1875 /// specifiers into account, but no member access expressions and such.
1876 ///
1877 /// \param Target the declaration to check if it can be accessed
1878 /// \param NamingClass the class in which the lookup was started.
1879 /// \param BaseType type of the left side of member access expression.
1880 ///        \p BaseType and \p NamingClass are used for C++ access control.
1881 ///        Depending on the lookup case, they should be set to the following:
1882 ///        - lhs.target (member access without a qualifier):
1883 ///          \p BaseType and \p NamingClass are both the type of 'lhs'.
1884 ///        - lhs.X::target (member access with a qualifier):
1885 ///          BaseType is the type of 'lhs', NamingClass is 'X'
1886 ///        - X::target (qualified lookup without member access):
1887 ///          BaseType is null, NamingClass is 'X'.
1888 ///        - target (unqualified lookup).
1889 ///          BaseType is null, NamingClass is the parent class of 'target'.
1890 /// \return true if the Target is accessible from the Class, false otherwise.
1891 bool Sema::IsSimplyAccessible(NamedDecl *Target, CXXRecordDecl *NamingClass,
1892                               QualType BaseType) {
1893   // Perform the C++ accessibility checks first.
1894   if (Target->isCXXClassMember() && NamingClass) {
1895     if (!getLangOpts().CPlusPlus)
1896       return false;
1897     // The unprivileged access is AS_none as we don't know how the member was
1898     // accessed, which is described by the access in DeclAccessPair.
1899     // `IsAccessible` will examine the actual access of Target (i.e.
1900     // Decl->getAccess()) when calculating the access.
1901     AccessTarget Entity(Context, AccessedEntity::Member, NamingClass,
1902                         DeclAccessPair::make(Target, AS_none), BaseType);
1903     EffectiveContext EC(CurContext);
1904     return ::IsAccessible(*this, EC, Entity) != ::AR_inaccessible;
1905   }
1906
1907   if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Target)) {
1908     // @public and @package ivars are always accessible.
1909     if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public ||
1910         Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package)
1911       return true;
1912
1913     // If we are inside a class or category implementation, determine the
1914     // interface we're in.
1915     ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1916     if (ObjCMethodDecl *MD = getCurMethodDecl())
1917       ClassOfMethodDecl =  MD->getClassInterface();
1918     else if (FunctionDecl *FD = getCurFunctionDecl()) {
1919       if (ObjCImplDecl *Impl
1920             = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) {
1921         if (ObjCImplementationDecl *IMPD
1922               = dyn_cast<ObjCImplementationDecl>(Impl))
1923           ClassOfMethodDecl = IMPD->getClassInterface();
1924         else if (ObjCCategoryImplDecl* CatImplClass
1925                    = dyn_cast<ObjCCategoryImplDecl>(Impl))
1926           ClassOfMethodDecl = CatImplClass->getClassInterface();
1927       }
1928     }
1929
1930     // If we're not in an interface, this ivar is inaccessible.
1931     if (!ClassOfMethodDecl)
1932       return false;
1933
1934     // If we're inside the same interface that owns the ivar, we're fine.
1935     if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface()))
1936       return true;
1937
1938     // If the ivar is private, it's inaccessible.
1939     if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private)
1940       return false;
1941
1942     return Ivar->getContainingInterface()->isSuperClassOf(ClassOfMethodDecl);
1943   }
1944
1945   return true;
1946 }