]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/clang/lib/StaticAnalyzer/Core/ExplodedGraph.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / clang / lib / StaticAnalyzer / Core / ExplodedGraph.cpp
1 //===- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the template classes ExplodedNode and ExplodedGraph,
10 //  which represent a path-sensitive, intra-procedural "exploded graph."
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
15 #include "clang/AST/Expr.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ParentMap.h"
18 #include "clang/AST/Stmt.h"
19 #include "clang/Analysis/ProgramPoint.h"
20 #include "clang/Analysis/Support/BumpVector.h"
21 #include "clang/Basic/LLVM.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/FoldingSet.h"
27 #include "llvm/ADT/Optional.h"
28 #include "llvm/ADT/PointerUnion.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/Support/Casting.h"
31 #include <cassert>
32 #include <memory>
33
34 using namespace clang;
35 using namespace ento;
36
37 //===----------------------------------------------------------------------===//
38 // Cleanup.
39 //===----------------------------------------------------------------------===//
40
41 ExplodedGraph::ExplodedGraph() = default;
42
43 ExplodedGraph::~ExplodedGraph() = default;
44
45 //===----------------------------------------------------------------------===//
46 // Node reclamation.
47 //===----------------------------------------------------------------------===//
48
49 bool ExplodedGraph::isInterestingLValueExpr(const Expr *Ex) {
50   if (!Ex->isLValue())
51     return false;
52   return isa<DeclRefExpr>(Ex) ||
53          isa<MemberExpr>(Ex) ||
54          isa<ObjCIvarRefExpr>(Ex);
55 }
56
57 bool ExplodedGraph::shouldCollect(const ExplodedNode *node) {
58   // First, we only consider nodes for reclamation of the following
59   // conditions apply:
60   //
61   // (1) 1 predecessor (that has one successor)
62   // (2) 1 successor (that has one predecessor)
63   //
64   // If a node has no successor it is on the "frontier", while a node
65   // with no predecessor is a root.
66   //
67   // After these prerequisites, we discard all "filler" nodes that
68   // are used only for intermediate processing, and are not essential
69   // for analyzer history:
70   //
71   // (a) PreStmtPurgeDeadSymbols
72   //
73   // We then discard all other nodes where *all* of the following conditions
74   // apply:
75   //
76   // (3) The ProgramPoint is for a PostStmt, but not a PostStore.
77   // (4) There is no 'tag' for the ProgramPoint.
78   // (5) The 'store' is the same as the predecessor.
79   // (6) The 'GDM' is the same as the predecessor.
80   // (7) The LocationContext is the same as the predecessor.
81   // (8) Expressions that are *not* lvalue expressions.
82   // (9) The PostStmt isn't for a non-consumed Stmt or Expr.
83   // (10) The successor is neither a CallExpr StmtPoint nor a CallEnter or
84   //      PreImplicitCall (so that we would be able to find it when retrying a
85   //      call with no inlining).
86   // FIXME: It may be safe to reclaim PreCall and PostCall nodes as well.
87
88   // Conditions 1 and 2.
89   if (node->pred_size() != 1 || node->succ_size() != 1)
90     return false;
91
92   const ExplodedNode *pred = *(node->pred_begin());
93   if (pred->succ_size() != 1)
94     return false;
95
96   const ExplodedNode *succ = *(node->succ_begin());
97   if (succ->pred_size() != 1)
98     return false;
99
100   // Now reclaim any nodes that are (by definition) not essential to
101   // analysis history and are not consulted by any client code.
102   ProgramPoint progPoint = node->getLocation();
103   if (progPoint.getAs<PreStmtPurgeDeadSymbols>())
104     return !progPoint.getTag();
105
106   // Condition 3.
107   if (!progPoint.getAs<PostStmt>() || progPoint.getAs<PostStore>())
108     return false;
109
110   // Condition 4.
111   if (progPoint.getTag())
112     return false;
113
114   // Conditions 5, 6, and 7.
115   ProgramStateRef state = node->getState();
116   ProgramStateRef pred_state = pred->getState();
117   if (state->store != pred_state->store || state->GDM != pred_state->GDM ||
118       progPoint.getLocationContext() != pred->getLocationContext())
119     return false;
120
121   // All further checks require expressions. As per #3, we know that we have
122   // a PostStmt.
123   const Expr *Ex = dyn_cast<Expr>(progPoint.castAs<PostStmt>().getStmt());
124   if (!Ex)
125     return false;
126
127   // Condition 8.
128   // Do not collect nodes for "interesting" lvalue expressions since they are
129   // used extensively for generating path diagnostics.
130   if (isInterestingLValueExpr(Ex))
131     return false;
132
133   // Condition 9.
134   // Do not collect nodes for non-consumed Stmt or Expr to ensure precise
135   // diagnostic generation; specifically, so that we could anchor arrows
136   // pointing to the beginning of statements (as written in code).
137   ParentMap &PM = progPoint.getLocationContext()->getParentMap();
138   if (!PM.isConsumedExpr(Ex))
139     return false;
140
141   // Condition 10.
142   const ProgramPoint SuccLoc = succ->getLocation();
143   if (Optional<StmtPoint> SP = SuccLoc.getAs<StmtPoint>())
144     if (CallEvent::isCallStmt(SP->getStmt()))
145       return false;
146
147   // Condition 10, continuation.
148   if (SuccLoc.getAs<CallEnter>() || SuccLoc.getAs<PreImplicitCall>())
149     return false;
150
151   return true;
152 }
153
154 void ExplodedGraph::collectNode(ExplodedNode *node) {
155   // Removing a node means:
156   // (a) changing the predecessors successor to the successor of this node
157   // (b) changing the successors predecessor to the predecessor of this node
158   // (c) Putting 'node' onto freeNodes.
159   assert(node->pred_size() == 1 || node->succ_size() == 1);
160   ExplodedNode *pred = *(node->pred_begin());
161   ExplodedNode *succ = *(node->succ_begin());
162   pred->replaceSuccessor(succ);
163   succ->replacePredecessor(pred);
164   FreeNodes.push_back(node);
165   Nodes.RemoveNode(node);
166   --NumNodes;
167   node->~ExplodedNode();
168 }
169
170 void ExplodedGraph::reclaimRecentlyAllocatedNodes() {
171   if (ChangedNodes.empty())
172     return;
173
174   // Only periodically reclaim nodes so that we can build up a set of
175   // nodes that meet the reclamation criteria.  Freshly created nodes
176   // by definition have no successor, and thus cannot be reclaimed (see below).
177   assert(ReclaimCounter > 0);
178   if (--ReclaimCounter != 0)
179     return;
180   ReclaimCounter = ReclaimNodeInterval;
181
182   for (const auto node : ChangedNodes)
183     if (shouldCollect(node))
184       collectNode(node);
185   ChangedNodes.clear();
186 }
187
188 //===----------------------------------------------------------------------===//
189 // ExplodedNode.
190 //===----------------------------------------------------------------------===//
191
192 // An NodeGroup's storage type is actually very much like a TinyPtrVector:
193 // it can be either a pointer to a single ExplodedNode, or a pointer to a
194 // BumpVector allocated with the ExplodedGraph's allocator. This allows the
195 // common case of single-node NodeGroups to be implemented with no extra memory.
196 //
197 // Consequently, each of the NodeGroup methods have up to four cases to handle:
198 // 1. The flag is set and this group does not actually contain any nodes.
199 // 2. The group is empty, in which case the storage value is null.
200 // 3. The group contains a single node.
201 // 4. The group contains more than one node.
202 using ExplodedNodeVector = BumpVector<ExplodedNode *>;
203 using GroupStorage = llvm::PointerUnion<ExplodedNode *, ExplodedNodeVector *>;
204
205 void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) {
206   assert(!V->isSink());
207   Preds.addNode(V, G);
208   V->Succs.addNode(this, G);
209 }
210
211 void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) {
212   assert(!getFlag());
213
214   GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P);
215   assert(Storage.is<ExplodedNode *>());
216   Storage = node;
217   assert(Storage.is<ExplodedNode *>());
218 }
219
220 void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) {
221   assert(!getFlag());
222
223   GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P);
224   if (Storage.isNull()) {
225     Storage = N;
226     assert(Storage.is<ExplodedNode *>());
227     return;
228   }
229
230   ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>();
231
232   if (!V) {
233     // Switch from single-node to multi-node representation.
234     ExplodedNode *Old = Storage.get<ExplodedNode *>();
235
236     BumpVectorContext &Ctx = G.getNodeAllocator();
237     V = G.getAllocator().Allocate<ExplodedNodeVector>();
238     new (V) ExplodedNodeVector(Ctx, 4);
239     V->push_back(Old, Ctx);
240
241     Storage = V;
242     assert(!getFlag());
243     assert(Storage.is<ExplodedNodeVector *>());
244   }
245
246   V->push_back(N, G.getNodeAllocator());
247 }
248
249 unsigned ExplodedNode::NodeGroup::size() const {
250   if (getFlag())
251     return 0;
252
253   const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
254   if (Storage.isNull())
255     return 0;
256   if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
257     return V->size();
258   return 1;
259 }
260
261 ExplodedNode * const *ExplodedNode::NodeGroup::begin() const {
262   if (getFlag())
263     return nullptr;
264
265   const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
266   if (Storage.isNull())
267     return nullptr;
268   if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
269     return V->begin();
270   return Storage.getAddrOfPtr1();
271 }
272
273 ExplodedNode * const *ExplodedNode::NodeGroup::end() const {
274   if (getFlag())
275     return nullptr;
276
277   const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
278   if (Storage.isNull())
279     return nullptr;
280   if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
281     return V->end();
282   return Storage.getAddrOfPtr1() + 1;
283 }
284
285 int64_t ExplodedNode::getID(ExplodedGraph *G) const {
286   return G->getAllocator().identifyKnownAlignedObject<ExplodedNode>(this);
287 }
288
289 bool ExplodedNode::isTrivial() const {
290   return pred_size() == 1 && succ_size() == 1 &&
291          getFirstPred()->getState()->getID() == getState()->getID() &&
292          getFirstPred()->succ_size() == 1;
293 }
294
295 ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L,
296                                      ProgramStateRef State,
297                                      bool IsSink,
298                                      bool* IsNew) {
299   // Profile 'State' to determine if we already have an existing node.
300   llvm::FoldingSetNodeID profile;
301   void *InsertPos = nullptr;
302
303   NodeTy::Profile(profile, L, State, IsSink);
304   NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
305
306   if (!V) {
307     if (!FreeNodes.empty()) {
308       V = FreeNodes.back();
309       FreeNodes.pop_back();
310     }
311     else {
312       // Allocate a new node.
313       V = (NodeTy*) getAllocator().Allocate<NodeTy>();
314     }
315
316     new (V) NodeTy(L, State, IsSink);
317
318     if (ReclaimNodeInterval)
319       ChangedNodes.push_back(V);
320
321     // Insert the node into the node set and return it.
322     Nodes.InsertNode(V, InsertPos);
323     ++NumNodes;
324
325     if (IsNew) *IsNew = true;
326   }
327   else
328     if (IsNew) *IsNew = false;
329
330   return V;
331 }
332
333 ExplodedNode *ExplodedGraph::createUncachedNode(const ProgramPoint &L,
334                                                 ProgramStateRef State,
335                                                 bool IsSink) {
336   NodeTy *V = (NodeTy *) getAllocator().Allocate<NodeTy>();
337   new (V) NodeTy(L, State, IsSink);
338   return V;
339 }
340
341 std::unique_ptr<ExplodedGraph>
342 ExplodedGraph::trim(ArrayRef<const NodeTy *> Sinks,
343                     InterExplodedGraphMap *ForwardMap,
344                     InterExplodedGraphMap *InverseMap) const {
345   if (Nodes.empty())
346     return nullptr;
347
348   using Pass1Ty = llvm::DenseSet<const ExplodedNode *>;
349   Pass1Ty Pass1;
350
351   using Pass2Ty = InterExplodedGraphMap;
352   InterExplodedGraphMap Pass2Scratch;
353   Pass2Ty &Pass2 = ForwardMap ? *ForwardMap : Pass2Scratch;
354
355   SmallVector<const ExplodedNode*, 10> WL1, WL2;
356
357   // ===- Pass 1 (reverse DFS) -===
358   for (const auto Sink : Sinks)
359     if (Sink)
360       WL1.push_back(Sink);
361
362   // Process the first worklist until it is empty.
363   while (!WL1.empty()) {
364     const ExplodedNode *N = WL1.pop_back_val();
365
366     // Have we already visited this node?  If so, continue to the next one.
367     if (!Pass1.insert(N).second)
368       continue;
369
370     // If this is a root enqueue it to the second worklist.
371     if (N->Preds.empty()) {
372       WL2.push_back(N);
373       continue;
374     }
375
376     // Visit our predecessors and enqueue them.
377     WL1.append(N->Preds.begin(), N->Preds.end());
378   }
379
380   // We didn't hit a root? Return with a null pointer for the new graph.
381   if (WL2.empty())
382     return nullptr;
383
384   // Create an empty graph.
385   std::unique_ptr<ExplodedGraph> G = MakeEmptyGraph();
386
387   // ===- Pass 2 (forward DFS to construct the new graph) -===
388   while (!WL2.empty()) {
389     const ExplodedNode *N = WL2.pop_back_val();
390
391     // Skip this node if we have already processed it.
392     if (Pass2.find(N) != Pass2.end())
393       continue;
394
395     // Create the corresponding node in the new graph and record the mapping
396     // from the old node to the new node.
397     ExplodedNode *NewN = G->createUncachedNode(N->getLocation(), N->State, N->isSink());
398     Pass2[N] = NewN;
399
400     // Also record the reverse mapping from the new node to the old node.
401     if (InverseMap) (*InverseMap)[NewN] = N;
402
403     // If this node is a root, designate it as such in the graph.
404     if (N->Preds.empty())
405       G->addRoot(NewN);
406
407     // In the case that some of the intended predecessors of NewN have already
408     // been created, we should hook them up as predecessors.
409
410     // Walk through the predecessors of 'N' and hook up their corresponding
411     // nodes in the new graph (if any) to the freshly created node.
412     for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end();
413          I != E; ++I) {
414       Pass2Ty::iterator PI = Pass2.find(*I);
415       if (PI == Pass2.end())
416         continue;
417
418       NewN->addPredecessor(const_cast<ExplodedNode *>(PI->second), *G);
419     }
420
421     // In the case that some of the intended successors of NewN have already
422     // been created, we should hook them up as successors.  Otherwise, enqueue
423     // the new nodes from the original graph that should have nodes created
424     // in the new graph.
425     for (ExplodedNode::succ_iterator I = N->Succs.begin(), E = N->Succs.end();
426          I != E; ++I) {
427       Pass2Ty::iterator PI = Pass2.find(*I);
428       if (PI != Pass2.end()) {
429         const_cast<ExplodedNode *>(PI->second)->addPredecessor(NewN, *G);
430         continue;
431       }
432
433       // Enqueue nodes to the worklist that were marked during pass 1.
434       if (Pass1.count(*I))
435         WL2.push_back(*I);
436     }
437   }
438
439   return G;
440 }