]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/clang/utils/TableGen/NeonEmitter.cpp
THIS BRANCH IS OBSOLETE, PLEASE READ:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / clang / utils / TableGen / NeonEmitter.cpp
1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend is responsible for emitting arm_neon.h, which includes
10 // a declaration and definition of each function specified by the ARM NEON
11 // compiler interface.  See ARM document DUI0348B.
12 //
13 // Each NEON instruction is implemented in terms of 1 or more functions which
14 // are suffixed with the element type of the input vectors.  Functions may be
15 // implemented in terms of generic vector operations such as +, *, -, etc. or
16 // by calling a __builtin_-prefixed function which will be handled by clang's
17 // CodeGen library.
18 //
19 // Additional validation code can be generated by this file when runHeader() is
20 // called, rather than the normal run() entry point.
21 //
22 // See also the documentation in include/clang/Basic/arm_neon.td.
23 //
24 //===----------------------------------------------------------------------===//
25
26 #include "TableGenBackends.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/TableGen/Error.h"
39 #include "llvm/TableGen/Record.h"
40 #include "llvm/TableGen/SetTheory.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cctype>
44 #include <cstddef>
45 #include <cstdint>
46 #include <deque>
47 #include <map>
48 #include <set>
49 #include <sstream>
50 #include <string>
51 #include <utility>
52 #include <vector>
53
54 using namespace llvm;
55
56 namespace {
57
58 // While globals are generally bad, this one allows us to perform assertions
59 // liberally and somehow still trace them back to the def they indirectly
60 // came from.
61 static Record *CurrentRecord = nullptr;
62 static void assert_with_loc(bool Assertion, const std::string &Str) {
63   if (!Assertion) {
64     if (CurrentRecord)
65       PrintFatalError(CurrentRecord->getLoc(), Str);
66     else
67       PrintFatalError(Str);
68   }
69 }
70
71 enum ClassKind {
72   ClassNone,
73   ClassI,     // generic integer instruction, e.g., "i8" suffix
74   ClassS,     // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
75   ClassW,     // width-specific instruction, e.g., "8" suffix
76   ClassB,     // bitcast arguments with enum argument to specify type
77   ClassL,     // Logical instructions which are op instructions
78               // but we need to not emit any suffix for in our
79               // tests.
80   ClassNoTest // Instructions which we do not test since they are
81               // not TRUE instructions.
82 };
83
84 /// NeonTypeFlags - Flags to identify the types for overloaded Neon
85 /// builtins.  These must be kept in sync with the flags in
86 /// include/clang/Basic/TargetBuiltins.h.
87 namespace NeonTypeFlags {
88
89 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
90
91 enum EltType {
92   Int8,
93   Int16,
94   Int32,
95   Int64,
96   Poly8,
97   Poly16,
98   Poly64,
99   Poly128,
100   Float16,
101   Float32,
102   Float64,
103   BFloat16
104 };
105
106 } // end namespace NeonTypeFlags
107
108 class NeonEmitter;
109
110 //===----------------------------------------------------------------------===//
111 // TypeSpec
112 //===----------------------------------------------------------------------===//
113
114 /// A TypeSpec is just a simple wrapper around a string, but gets its own type
115 /// for strong typing purposes.
116 ///
117 /// A TypeSpec can be used to create a type.
118 class TypeSpec : public std::string {
119 public:
120   static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
121     std::vector<TypeSpec> Ret;
122     TypeSpec Acc;
123     for (char I : Str.str()) {
124       if (islower(I)) {
125         Acc.push_back(I);
126         Ret.push_back(TypeSpec(Acc));
127         Acc.clear();
128       } else {
129         Acc.push_back(I);
130       }
131     }
132     return Ret;
133   }
134 };
135
136 //===----------------------------------------------------------------------===//
137 // Type
138 //===----------------------------------------------------------------------===//
139
140 /// A Type. Not much more to say here.
141 class Type {
142 private:
143   TypeSpec TS;
144
145   enum TypeKind {
146     Void,
147     Float,
148     SInt,
149     UInt,
150     Poly,
151     BFloat16,
152   };
153   TypeKind Kind;
154   bool Immediate, Constant, Pointer;
155   // ScalarForMangling and NoManglingQ are really not suited to live here as
156   // they are not related to the type. But they live in the TypeSpec (not the
157   // prototype), so this is really the only place to store them.
158   bool ScalarForMangling, NoManglingQ;
159   unsigned Bitwidth, ElementBitwidth, NumVectors;
160
161 public:
162   Type()
163       : Kind(Void), Immediate(false), Constant(false),
164         Pointer(false), ScalarForMangling(false), NoManglingQ(false),
165         Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
166
167   Type(TypeSpec TS, StringRef CharMods)
168       : TS(std::move(TS)), Kind(Void), Immediate(false),
169         Constant(false), Pointer(false), ScalarForMangling(false),
170         NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
171     applyModifiers(CharMods);
172   }
173
174   /// Returns a type representing "void".
175   static Type getVoid() { return Type(); }
176
177   bool operator==(const Type &Other) const { return str() == Other.str(); }
178   bool operator!=(const Type &Other) const { return !operator==(Other); }
179
180   //
181   // Query functions
182   //
183   bool isScalarForMangling() const { return ScalarForMangling; }
184   bool noManglingQ() const { return NoManglingQ; }
185
186   bool isPointer() const { return Pointer; }
187   bool isValue() const { return !isVoid() && !isPointer(); }
188   bool isScalar() const { return isValue() && NumVectors == 0; }
189   bool isVector() const { return isValue() && NumVectors > 0; }
190   bool isConstPointer() const { return Constant; }
191   bool isFloating() const { return Kind == Float; }
192   bool isInteger() const { return Kind == SInt || Kind == UInt; }
193   bool isPoly() const { return Kind == Poly; }
194   bool isSigned() const { return Kind == SInt; }
195   bool isImmediate() const { return Immediate; }
196   bool isFloat() const { return isFloating() && ElementBitwidth == 32; }
197   bool isDouble() const { return isFloating() && ElementBitwidth == 64; }
198   bool isHalf() const { return isFloating() && ElementBitwidth == 16; }
199   bool isChar() const { return ElementBitwidth == 8; }
200   bool isShort() const { return isInteger() && ElementBitwidth == 16; }
201   bool isInt() const { return isInteger() && ElementBitwidth == 32; }
202   bool isLong() const { return isInteger() && ElementBitwidth == 64; }
203   bool isVoid() const { return Kind == Void; }
204   bool isBFloat16() const { return Kind == BFloat16; }
205   unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
206   unsigned getSizeInBits() const { return Bitwidth; }
207   unsigned getElementSizeInBits() const { return ElementBitwidth; }
208   unsigned getNumVectors() const { return NumVectors; }
209
210   //
211   // Mutator functions
212   //
213   void makeUnsigned() {
214     assert(!isVoid() && "not a potentially signed type");
215     Kind = UInt;
216   }
217   void makeSigned() {
218     assert(!isVoid() && "not a potentially signed type");
219     Kind = SInt;
220   }
221
222   void makeInteger(unsigned ElemWidth, bool Sign) {
223     assert(!isVoid() && "converting void to int probably not useful");
224     Kind = Sign ? SInt : UInt;
225     Immediate = false;
226     ElementBitwidth = ElemWidth;
227   }
228
229   void makeImmediate(unsigned ElemWidth) {
230     Kind = SInt;
231     Immediate = true;
232     ElementBitwidth = ElemWidth;
233   }
234
235   void makeScalar() {
236     Bitwidth = ElementBitwidth;
237     NumVectors = 0;
238   }
239
240   void makeOneVector() {
241     assert(isVector());
242     NumVectors = 1;
243   }
244
245   void make32BitElement() {
246     assert_with_loc(Bitwidth > 32, "Not enough bits to make it 32!");
247     ElementBitwidth = 32;
248   }
249
250   void doubleLanes() {
251     assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
252     Bitwidth = 128;
253   }
254
255   void halveLanes() {
256     assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
257     Bitwidth = 64;
258   }
259
260   /// Return the C string representation of a type, which is the typename
261   /// defined in stdint.h or arm_neon.h.
262   std::string str() const;
263
264   /// Return the string representation of a type, which is an encoded
265   /// string for passing to the BUILTIN() macro in Builtins.def.
266   std::string builtin_str() const;
267
268   /// Return the value in NeonTypeFlags for this type.
269   unsigned getNeonEnum() const;
270
271   /// Parse a type from a stdint.h or arm_neon.h typedef name,
272   /// for example uint32x2_t or int64_t.
273   static Type fromTypedefName(StringRef Name);
274
275 private:
276   /// Creates the type based on the typespec string in TS.
277   /// Sets "Quad" to true if the "Q" or "H" modifiers were
278   /// seen. This is needed by applyModifier as some modifiers
279   /// only take effect if the type size was changed by "Q" or "H".
280   void applyTypespec(bool &Quad);
281   /// Applies prototype modifiers to the type.
282   void applyModifiers(StringRef Mods);
283 };
284
285 //===----------------------------------------------------------------------===//
286 // Variable
287 //===----------------------------------------------------------------------===//
288
289 /// A variable is a simple class that just has a type and a name.
290 class Variable {
291   Type T;
292   std::string N;
293
294 public:
295   Variable() : T(Type::getVoid()), N("") {}
296   Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {}
297
298   Type getType() const { return T; }
299   std::string getName() const { return "__" + N; }
300 };
301
302 //===----------------------------------------------------------------------===//
303 // Intrinsic
304 //===----------------------------------------------------------------------===//
305
306 /// The main grunt class. This represents an instantiation of an intrinsic with
307 /// a particular typespec and prototype.
308 class Intrinsic {
309   /// The Record this intrinsic was created from.
310   Record *R;
311   /// The unmangled name.
312   std::string Name;
313   /// The input and output typespecs. InTS == OutTS except when
314   /// CartesianProductWith is non-empty - this is the case for vreinterpret.
315   TypeSpec OutTS, InTS;
316   /// The base class kind. Most intrinsics use ClassS, which has full type
317   /// info for integers (s32/u32). Some use ClassI, which doesn't care about
318   /// signedness (i32), while some (ClassB) have no type at all, only a width
319   /// (32).
320   ClassKind CK;
321   /// The list of DAGs for the body. May be empty, in which case we should
322   /// emit a builtin call.
323   ListInit *Body;
324   /// The architectural #ifdef guard.
325   std::string Guard;
326   /// Set if the Unavailable bit is 1. This means we don't generate a body,
327   /// just an "unavailable" attribute on a declaration.
328   bool IsUnavailable;
329   /// Is this intrinsic safe for big-endian? or does it need its arguments
330   /// reversing?
331   bool BigEndianSafe;
332
333   /// The types of return value [0] and parameters [1..].
334   std::vector<Type> Types;
335   /// The index of the key type passed to CGBuiltin.cpp for polymorphic calls.
336   int PolymorphicKeyType;
337   /// The local variables defined.
338   std::map<std::string, Variable> Variables;
339   /// NeededEarly - set if any other intrinsic depends on this intrinsic.
340   bool NeededEarly;
341   /// UseMacro - set if we should implement using a macro or unset for a
342   ///            function.
343   bool UseMacro;
344   /// The set of intrinsics that this intrinsic uses/requires.
345   std::set<Intrinsic *> Dependencies;
346   /// The "base type", which is Type('d', OutTS). InBaseType is only
347   /// different if CartesianProductWith is non-empty (for vreinterpret).
348   Type BaseType, InBaseType;
349   /// The return variable.
350   Variable RetVar;
351   /// A postfix to apply to every variable. Defaults to "".
352   std::string VariablePostfix;
353
354   NeonEmitter &Emitter;
355   std::stringstream OS;
356
357   bool isBigEndianSafe() const {
358     if (BigEndianSafe)
359       return true;
360
361     for (const auto &T : Types){
362       if (T.isVector() && T.getNumElements() > 1)
363         return false;
364     }
365     return true;
366   }
367
368 public:
369   Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
370             TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
371             StringRef Guard, bool IsUnavailable, bool BigEndianSafe)
372       : R(R), Name(Name.str()), OutTS(OutTS), InTS(InTS), CK(CK), Body(Body),
373         Guard(Guard.str()), IsUnavailable(IsUnavailable),
374         BigEndianSafe(BigEndianSafe), PolymorphicKeyType(0), NeededEarly(false),
375         UseMacro(false), BaseType(OutTS, "."), InBaseType(InTS, "."),
376         Emitter(Emitter) {
377     // Modify the TypeSpec per-argument to get a concrete Type, and create
378     // known variables for each.
379     // Types[0] is the return value.
380     unsigned Pos = 0;
381     Types.emplace_back(OutTS, getNextModifiers(Proto, Pos));
382     StringRef Mods = getNextModifiers(Proto, Pos);
383     while (!Mods.empty()) {
384       Types.emplace_back(InTS, Mods);
385       if (Mods.find("!") != StringRef::npos)
386         PolymorphicKeyType = Types.size() - 1;
387
388       Mods = getNextModifiers(Proto, Pos);
389     }
390
391     for (auto Type : Types) {
392       // If this builtin takes an immediate argument, we need to #define it rather
393       // than use a standard declaration, so that SemaChecking can range check
394       // the immediate passed by the user.
395
396       // Pointer arguments need to use macros to avoid hiding aligned attributes
397       // from the pointer type.
398
399       // It is not permitted to pass or return an __fp16 by value, so intrinsics
400       // taking a scalar float16_t must be implemented as macros.
401       if (Type.isImmediate() || Type.isPointer() ||
402           (Type.isScalar() && Type.isHalf()))
403         UseMacro = true;
404     }
405   }
406
407   /// Get the Record that this intrinsic is based off.
408   Record *getRecord() const { return R; }
409   /// Get the set of Intrinsics that this intrinsic calls.
410   /// this is the set of immediate dependencies, NOT the
411   /// transitive closure.
412   const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
413   /// Get the architectural guard string (#ifdef).
414   std::string getGuard() const { return Guard; }
415   /// Get the non-mangled name.
416   std::string getName() const { return Name; }
417
418   /// Return true if the intrinsic takes an immediate operand.
419   bool hasImmediate() const {
420     return std::any_of(Types.begin(), Types.end(),
421                        [](const Type &T) { return T.isImmediate(); });
422   }
423
424   /// Return the parameter index of the immediate operand.
425   unsigned getImmediateIdx() const {
426     for (unsigned Idx = 0; Idx < Types.size(); ++Idx)
427       if (Types[Idx].isImmediate())
428         return Idx - 1;
429     llvm_unreachable("Intrinsic has no immediate");
430   }
431
432
433   unsigned getNumParams() const { return Types.size() - 1; }
434   Type getReturnType() const { return Types[0]; }
435   Type getParamType(unsigned I) const { return Types[I + 1]; }
436   Type getBaseType() const { return BaseType; }
437   Type getPolymorphicKeyType() const { return Types[PolymorphicKeyType]; }
438
439   /// Return true if the prototype has a scalar argument.
440   bool protoHasScalar() const;
441
442   /// Return the index that parameter PIndex will sit at
443   /// in a generated function call. This is often just PIndex,
444   /// but may not be as things such as multiple-vector operands
445   /// and sret parameters need to be taken into accont.
446   unsigned getGeneratedParamIdx(unsigned PIndex) {
447     unsigned Idx = 0;
448     if (getReturnType().getNumVectors() > 1)
449       // Multiple vectors are passed as sret.
450       ++Idx;
451
452     for (unsigned I = 0; I < PIndex; ++I)
453       Idx += std::max(1U, getParamType(I).getNumVectors());
454
455     return Idx;
456   }
457
458   bool hasBody() const { return Body && !Body->getValues().empty(); }
459
460   void setNeededEarly() { NeededEarly = true; }
461
462   bool operator<(const Intrinsic &Other) const {
463     // Sort lexicographically on a two-tuple (Guard, Name)
464     if (Guard != Other.Guard)
465       return Guard < Other.Guard;
466     return Name < Other.Name;
467   }
468
469   ClassKind getClassKind(bool UseClassBIfScalar = false) {
470     if (UseClassBIfScalar && !protoHasScalar())
471       return ClassB;
472     return CK;
473   }
474
475   /// Return the name, mangled with type information.
476   /// If ForceClassS is true, use ClassS (u32/s32) instead
477   /// of the intrinsic's own type class.
478   std::string getMangledName(bool ForceClassS = false) const;
479   /// Return the type code for a builtin function call.
480   std::string getInstTypeCode(Type T, ClassKind CK) const;
481   /// Return the type string for a BUILTIN() macro in Builtins.def.
482   std::string getBuiltinTypeStr();
483
484   /// Generate the intrinsic, returning code.
485   std::string generate();
486   /// Perform type checking and populate the dependency graph, but
487   /// don't generate code yet.
488   void indexBody();
489
490 private:
491   StringRef getNextModifiers(StringRef Proto, unsigned &Pos) const;
492
493   std::string mangleName(std::string Name, ClassKind CK) const;
494
495   void initVariables();
496   std::string replaceParamsIn(std::string S);
497
498   void emitBodyAsBuiltinCall();
499
500   void generateImpl(bool ReverseArguments,
501                     StringRef NamePrefix, StringRef CallPrefix);
502   void emitReturn();
503   void emitBody(StringRef CallPrefix);
504   void emitShadowedArgs();
505   void emitArgumentReversal();
506   void emitReturnReversal();
507   void emitReverseVariable(Variable &Dest, Variable &Src);
508   void emitNewLine();
509   void emitClosingBrace();
510   void emitOpeningBrace();
511   void emitPrototype(StringRef NamePrefix);
512
513   class DagEmitter {
514     Intrinsic &Intr;
515     StringRef CallPrefix;
516
517   public:
518     DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
519       Intr(Intr), CallPrefix(CallPrefix) {
520     }
521     std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
522     std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
523     std::pair<Type, std::string> emitDagSplat(DagInit *DI);
524     std::pair<Type, std::string> emitDagDup(DagInit *DI);
525     std::pair<Type, std::string> emitDagDupTyped(DagInit *DI);
526     std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
527     std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
528     std::pair<Type, std::string> emitDagCall(DagInit *DI,
529                                              bool MatchMangledName);
530     std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
531     std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
532     std::pair<Type, std::string> emitDagOp(DagInit *DI);
533     std::pair<Type, std::string> emitDag(DagInit *DI);
534   };
535 };
536
537 //===----------------------------------------------------------------------===//
538 // NeonEmitter
539 //===----------------------------------------------------------------------===//
540
541 class NeonEmitter {
542   RecordKeeper &Records;
543   DenseMap<Record *, ClassKind> ClassMap;
544   std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
545   unsigned UniqueNumber;
546
547   void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
548   void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
549   void genOverloadTypeCheckCode(raw_ostream &OS,
550                                 SmallVectorImpl<Intrinsic *> &Defs);
551   void genIntrinsicRangeCheckCode(raw_ostream &OS,
552                                   SmallVectorImpl<Intrinsic *> &Defs);
553
554 public:
555   /// Called by Intrinsic - this attempts to get an intrinsic that takes
556   /// the given types as arguments.
557   Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types,
558                           Optional<std::string> MangledName);
559
560   /// Called by Intrinsic - returns a globally-unique number.
561   unsigned getUniqueNumber() { return UniqueNumber++; }
562
563   NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
564     Record *SI = R.getClass("SInst");
565     Record *II = R.getClass("IInst");
566     Record *WI = R.getClass("WInst");
567     Record *SOpI = R.getClass("SOpInst");
568     Record *IOpI = R.getClass("IOpInst");
569     Record *WOpI = R.getClass("WOpInst");
570     Record *LOpI = R.getClass("LOpInst");
571     Record *NoTestOpI = R.getClass("NoTestOpInst");
572
573     ClassMap[SI] = ClassS;
574     ClassMap[II] = ClassI;
575     ClassMap[WI] = ClassW;
576     ClassMap[SOpI] = ClassS;
577     ClassMap[IOpI] = ClassI;
578     ClassMap[WOpI] = ClassW;
579     ClassMap[LOpI] = ClassL;
580     ClassMap[NoTestOpI] = ClassNoTest;
581   }
582
583   // run - Emit arm_neon.h.inc
584   void run(raw_ostream &o);
585
586   // runFP16 - Emit arm_fp16.h.inc
587   void runFP16(raw_ostream &o);
588
589   // runBF16 - Emit arm_bf16.h.inc
590   void runBF16(raw_ostream &o);
591
592   // runHeader - Emit all the __builtin prototypes used in arm_neon.h,
593   // arm_fp16.h and arm_bf16.h
594   void runHeader(raw_ostream &o);
595
596   // runTests - Emit tests for all the Neon intrinsics.
597   void runTests(raw_ostream &o);
598 };
599
600 } // end anonymous namespace
601
602 //===----------------------------------------------------------------------===//
603 // Type implementation
604 //===----------------------------------------------------------------------===//
605
606 std::string Type::str() const {
607   if (isVoid())
608     return "void";
609   std::string S;
610
611   if (isInteger() && !isSigned())
612     S += "u";
613
614   if (isPoly())
615     S += "poly";
616   else if (isFloating())
617     S += "float";
618   else if (isBFloat16())
619     S += "bfloat";
620   else
621     S += "int";
622
623   S += utostr(ElementBitwidth);
624   if (isVector())
625     S += "x" + utostr(getNumElements());
626   if (NumVectors > 1)
627     S += "x" + utostr(NumVectors);
628   S += "_t";
629
630   if (Constant)
631     S += " const";
632   if (Pointer)
633     S += " *";
634
635   return S;
636 }
637
638 std::string Type::builtin_str() const {
639   std::string S;
640   if (isVoid())
641     return "v";
642
643   if (isPointer()) {
644     // All pointers are void pointers.
645     S = "v";
646     if (isConstPointer())
647       S += "C";
648     S += "*";
649     return S;
650   } else if (isInteger())
651     switch (ElementBitwidth) {
652     case 8: S += "c"; break;
653     case 16: S += "s"; break;
654     case 32: S += "i"; break;
655     case 64: S += "Wi"; break;
656     case 128: S += "LLLi"; break;
657     default: llvm_unreachable("Unhandled case!");
658     }
659   else if (isBFloat16()) {
660     assert(ElementBitwidth == 16 && "BFloat16 can only be 16 bits");
661     S += "y";
662   } else
663     switch (ElementBitwidth) {
664     case 16: S += "h"; break;
665     case 32: S += "f"; break;
666     case 64: S += "d"; break;
667     default: llvm_unreachable("Unhandled case!");
668     }
669
670   // FIXME: NECESSARY???????????????????????????????????????????????????????????????????????
671   if (isChar() && !isPointer() && isSigned())
672     // Make chars explicitly signed.
673     S = "S" + S;
674   else if (isInteger() && !isSigned())
675     S = "U" + S;
676
677   // Constant indices are "int", but have the "constant expression" modifier.
678   if (isImmediate()) {
679     assert(isInteger() && isSigned());
680     S = "I" + S;
681   }
682
683   if (isScalar())
684     return S;
685
686   std::string Ret;
687   for (unsigned I = 0; I < NumVectors; ++I)
688     Ret += "V" + utostr(getNumElements()) + S;
689
690   return Ret;
691 }
692
693 unsigned Type::getNeonEnum() const {
694   unsigned Addend;
695   switch (ElementBitwidth) {
696   case 8: Addend = 0; break;
697   case 16: Addend = 1; break;
698   case 32: Addend = 2; break;
699   case 64: Addend = 3; break;
700   case 128: Addend = 4; break;
701   default: llvm_unreachable("Unhandled element bitwidth!");
702   }
703
704   unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
705   if (isPoly()) {
706     // Adjustment needed because Poly32 doesn't exist.
707     if (Addend >= 2)
708       --Addend;
709     Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
710   }
711   if (isFloating()) {
712     assert(Addend != 0 && "Float8 doesn't exist!");
713     Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
714   }
715
716   if (isBFloat16()) {
717     assert(Addend == 1 && "BFloat16 is only 16 bit");
718     Base = (unsigned)NeonTypeFlags::BFloat16;
719   }
720
721   if (Bitwidth == 128)
722     Base |= (unsigned)NeonTypeFlags::QuadFlag;
723   if (isInteger() && !isSigned())
724     Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
725
726   return Base;
727 }
728
729 Type Type::fromTypedefName(StringRef Name) {
730   Type T;
731   T.Kind = SInt;
732
733   if (Name.front() == 'u') {
734     T.Kind = UInt;
735     Name = Name.drop_front();
736   }
737
738   if (Name.startswith("float")) {
739     T.Kind = Float;
740     Name = Name.drop_front(5);
741   } else if (Name.startswith("poly")) {
742     T.Kind = Poly;
743     Name = Name.drop_front(4);
744   } else if (Name.startswith("bfloat")) {
745     T.Kind = BFloat16;
746     Name = Name.drop_front(6);
747   } else {
748     assert(Name.startswith("int"));
749     Name = Name.drop_front(3);
750   }
751
752   unsigned I = 0;
753   for (I = 0; I < Name.size(); ++I) {
754     if (!isdigit(Name[I]))
755       break;
756   }
757   Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
758   Name = Name.drop_front(I);
759
760   T.Bitwidth = T.ElementBitwidth;
761   T.NumVectors = 1;
762
763   if (Name.front() == 'x') {
764     Name = Name.drop_front();
765     unsigned I = 0;
766     for (I = 0; I < Name.size(); ++I) {
767       if (!isdigit(Name[I]))
768         break;
769     }
770     unsigned NumLanes;
771     Name.substr(0, I).getAsInteger(10, NumLanes);
772     Name = Name.drop_front(I);
773     T.Bitwidth = T.ElementBitwidth * NumLanes;
774   } else {
775     // Was scalar.
776     T.NumVectors = 0;
777   }
778   if (Name.front() == 'x') {
779     Name = Name.drop_front();
780     unsigned I = 0;
781     for (I = 0; I < Name.size(); ++I) {
782       if (!isdigit(Name[I]))
783         break;
784     }
785     Name.substr(0, I).getAsInteger(10, T.NumVectors);
786     Name = Name.drop_front(I);
787   }
788
789   assert(Name.startswith("_t") && "Malformed typedef!");
790   return T;
791 }
792
793 void Type::applyTypespec(bool &Quad) {
794   std::string S = TS;
795   ScalarForMangling = false;
796   Kind = SInt;
797   ElementBitwidth = ~0U;
798   NumVectors = 1;
799
800   for (char I : S) {
801     switch (I) {
802     case 'S':
803       ScalarForMangling = true;
804       break;
805     case 'H':
806       NoManglingQ = true;
807       Quad = true;
808       break;
809     case 'Q':
810       Quad = true;
811       break;
812     case 'P':
813       Kind = Poly;
814       break;
815     case 'U':
816       Kind = UInt;
817       break;
818     case 'c':
819       ElementBitwidth = 8;
820       break;
821     case 'h':
822       Kind = Float;
823       LLVM_FALLTHROUGH;
824     case 's':
825       ElementBitwidth = 16;
826       break;
827     case 'f':
828       Kind = Float;
829       LLVM_FALLTHROUGH;
830     case 'i':
831       ElementBitwidth = 32;
832       break;
833     case 'd':
834       Kind = Float;
835       LLVM_FALLTHROUGH;
836     case 'l':
837       ElementBitwidth = 64;
838       break;
839     case 'k':
840       ElementBitwidth = 128;
841       // Poly doesn't have a 128x1 type.
842       if (isPoly())
843         NumVectors = 0;
844       break;
845     case 'b':
846       Kind = BFloat16;
847       ElementBitwidth = 16;
848       break;
849     default:
850       llvm_unreachable("Unhandled type code!");
851     }
852   }
853   assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
854
855   Bitwidth = Quad ? 128 : 64;
856 }
857
858 void Type::applyModifiers(StringRef Mods) {
859   bool AppliedQuad = false;
860   applyTypespec(AppliedQuad);
861
862   for (char Mod : Mods) {
863     switch (Mod) {
864     case '.':
865       break;
866     case 'v':
867       Kind = Void;
868       break;
869     case 'S':
870       Kind = SInt;
871       break;
872     case 'U':
873       Kind = UInt;
874       break;
875     case 'B':
876       Kind = BFloat16;
877       ElementBitwidth = 16;
878       break;
879     case 'F':
880       Kind = Float;
881       break;
882     case 'P':
883       Kind = Poly;
884       break;
885     case '>':
886       assert(ElementBitwidth < 128);
887       ElementBitwidth *= 2;
888       break;
889     case '<':
890       assert(ElementBitwidth > 8);
891       ElementBitwidth /= 2;
892       break;
893     case '1':
894       NumVectors = 0;
895       break;
896     case '2':
897       NumVectors = 2;
898       break;
899     case '3':
900       NumVectors = 3;
901       break;
902     case '4':
903       NumVectors = 4;
904       break;
905     case '*':
906       Pointer = true;
907       break;
908     case 'c':
909       Constant = true;
910       break;
911     case 'Q':
912       Bitwidth = 128;
913       break;
914     case 'q':
915       Bitwidth = 64;
916       break;
917     case 'I':
918       Kind = SInt;
919       ElementBitwidth = Bitwidth = 32;
920       NumVectors = 0;
921       Immediate = true;
922       break;
923     case 'p':
924       if (isPoly())
925         Kind = UInt;
926       break;
927     case '!':
928       // Key type, handled elsewhere.
929       break;
930     default:
931       llvm_unreachable("Unhandled character!");
932     }
933   }
934 }
935
936 //===----------------------------------------------------------------------===//
937 // Intrinsic implementation
938 //===----------------------------------------------------------------------===//
939
940 StringRef Intrinsic::getNextModifiers(StringRef Proto, unsigned &Pos) const {
941   if (Proto.size() == Pos)
942     return StringRef();
943   else if (Proto[Pos] != '(')
944     return Proto.substr(Pos++, 1);
945
946   size_t Start = Pos + 1;
947   size_t End = Proto.find(')', Start);
948   assert_with_loc(End != StringRef::npos, "unmatched modifier group paren");
949   Pos = End + 1;
950   return Proto.slice(Start, End);
951 }
952
953 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
954   char typeCode = '\0';
955   bool printNumber = true;
956
957   if (CK == ClassB)
958     return "";
959
960   if (T.isBFloat16())
961     return "bf16";
962
963   if (T.isPoly())
964     typeCode = 'p';
965   else if (T.isInteger())
966     typeCode = T.isSigned() ? 's' : 'u';
967   else
968     typeCode = 'f';
969
970   if (CK == ClassI) {
971     switch (typeCode) {
972     default:
973       break;
974     case 's':
975     case 'u':
976     case 'p':
977       typeCode = 'i';
978       break;
979     }
980   }
981   if (CK == ClassB) {
982     typeCode = '\0';
983   }
984
985   std::string S;
986   if (typeCode != '\0')
987     S.push_back(typeCode);
988   if (printNumber)
989     S += utostr(T.getElementSizeInBits());
990
991   return S;
992 }
993
994 std::string Intrinsic::getBuiltinTypeStr() {
995   ClassKind LocalCK = getClassKind(true);
996   std::string S;
997
998   Type RetT = getReturnType();
999   if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
1000       !RetT.isFloating() && !RetT.isBFloat16())
1001     RetT.makeInteger(RetT.getElementSizeInBits(), false);
1002
1003   // Since the return value must be one type, return a vector type of the
1004   // appropriate width which we will bitcast.  An exception is made for
1005   // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
1006   // fashion, storing them to a pointer arg.
1007   if (RetT.getNumVectors() > 1) {
1008     S += "vv*"; // void result with void* first argument
1009   } else {
1010     if (RetT.isPoly())
1011       RetT.makeInteger(RetT.getElementSizeInBits(), false);
1012     if (!RetT.isScalar() && RetT.isInteger() && !RetT.isSigned())
1013       RetT.makeSigned();
1014
1015     if (LocalCK == ClassB && RetT.isValue() && !RetT.isScalar())
1016       // Cast to vector of 8-bit elements.
1017       RetT.makeInteger(8, true);
1018
1019     S += RetT.builtin_str();
1020   }
1021
1022   for (unsigned I = 0; I < getNumParams(); ++I) {
1023     Type T = getParamType(I);
1024     if (T.isPoly())
1025       T.makeInteger(T.getElementSizeInBits(), false);
1026
1027     if (LocalCK == ClassB && !T.isScalar())
1028       T.makeInteger(8, true);
1029     // Halves always get converted to 8-bit elements.
1030     if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
1031       T.makeInteger(8, true);
1032
1033     if (LocalCK == ClassI && T.isInteger())
1034       T.makeSigned();
1035
1036     if (hasImmediate() && getImmediateIdx() == I)
1037       T.makeImmediate(32);
1038
1039     S += T.builtin_str();
1040   }
1041
1042   // Extra constant integer to hold type class enum for this function, e.g. s8
1043   if (LocalCK == ClassB)
1044     S += "i";
1045
1046   return S;
1047 }
1048
1049 std::string Intrinsic::getMangledName(bool ForceClassS) const {
1050   // Check if the prototype has a scalar operand with the type of the vector
1051   // elements.  If not, bitcasting the args will take care of arg checking.
1052   // The actual signedness etc. will be taken care of with special enums.
1053   ClassKind LocalCK = CK;
1054   if (!protoHasScalar())
1055     LocalCK = ClassB;
1056
1057   return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1058 }
1059
1060 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
1061   std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1062   std::string S = Name;
1063
1064   if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
1065       Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32" ||
1066       Name == "vcvt_f32_bf16")
1067     return Name;
1068
1069   if (!typeCode.empty()) {
1070     // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1071     if (Name.size() >= 3 && isdigit(Name.back()) &&
1072         Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1073       S.insert(S.length() - 3, "_" + typeCode);
1074     else
1075       S += "_" + typeCode;
1076   }
1077
1078   if (BaseType != InBaseType) {
1079     // A reinterpret - out the input base type at the end.
1080     S += "_" + getInstTypeCode(InBaseType, LocalCK);
1081   }
1082
1083   if (LocalCK == ClassB)
1084     S += "_v";
1085
1086   // Insert a 'q' before the first '_' character so that it ends up before
1087   // _lane or _n on vector-scalar operations.
1088   if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1089     size_t Pos = S.find('_');
1090     S.insert(Pos, "q");
1091   }
1092
1093   char Suffix = '\0';
1094   if (BaseType.isScalarForMangling()) {
1095     switch (BaseType.getElementSizeInBits()) {
1096     case 8: Suffix = 'b'; break;
1097     case 16: Suffix = 'h'; break;
1098     case 32: Suffix = 's'; break;
1099     case 64: Suffix = 'd'; break;
1100     default: llvm_unreachable("Bad suffix!");
1101     }
1102   }
1103   if (Suffix != '\0') {
1104     size_t Pos = S.find('_');
1105     S.insert(Pos, &Suffix, 1);
1106   }
1107
1108   return S;
1109 }
1110
1111 std::string Intrinsic::replaceParamsIn(std::string S) {
1112   while (S.find('$') != std::string::npos) {
1113     size_t Pos = S.find('$');
1114     size_t End = Pos + 1;
1115     while (isalpha(S[End]))
1116       ++End;
1117
1118     std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1119     assert_with_loc(Variables.find(VarName) != Variables.end(),
1120                     "Variable not defined!");
1121     S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1122   }
1123
1124   return S;
1125 }
1126
1127 void Intrinsic::initVariables() {
1128   Variables.clear();
1129
1130   // Modify the TypeSpec per-argument to get a concrete Type, and create
1131   // known variables for each.
1132   for (unsigned I = 1; I < Types.size(); ++I) {
1133     char NameC = '0' + (I - 1);
1134     std::string Name = "p";
1135     Name.push_back(NameC);
1136
1137     Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1138   }
1139   RetVar = Variable(Types[0], "ret" + VariablePostfix);
1140 }
1141
1142 void Intrinsic::emitPrototype(StringRef NamePrefix) {
1143   if (UseMacro)
1144     OS << "#define ";
1145   else
1146     OS << "__ai " << Types[0].str() << " ";
1147
1148   OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1149
1150   for (unsigned I = 0; I < getNumParams(); ++I) {
1151     if (I != 0)
1152       OS << ", ";
1153
1154     char NameC = '0' + I;
1155     std::string Name = "p";
1156     Name.push_back(NameC);
1157     assert(Variables.find(Name) != Variables.end());
1158     Variable &V = Variables[Name];
1159
1160     if (!UseMacro)
1161       OS << V.getType().str() << " ";
1162     OS << V.getName();
1163   }
1164
1165   OS << ")";
1166 }
1167
1168 void Intrinsic::emitOpeningBrace() {
1169   if (UseMacro)
1170     OS << " __extension__ ({";
1171   else
1172     OS << " {";
1173   emitNewLine();
1174 }
1175
1176 void Intrinsic::emitClosingBrace() {
1177   if (UseMacro)
1178     OS << "})";
1179   else
1180     OS << "}";
1181 }
1182
1183 void Intrinsic::emitNewLine() {
1184   if (UseMacro)
1185     OS << " \\\n";
1186   else
1187     OS << "\n";
1188 }
1189
1190 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1191   if (Dest.getType().getNumVectors() > 1) {
1192     emitNewLine();
1193
1194     for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1195       OS << "  " << Dest.getName() << ".val[" << K << "] = "
1196          << "__builtin_shufflevector("
1197          << Src.getName() << ".val[" << K << "], "
1198          << Src.getName() << ".val[" << K << "]";
1199       for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1200         OS << ", " << J;
1201       OS << ");";
1202       emitNewLine();
1203     }
1204   } else {
1205     OS << "  " << Dest.getName()
1206        << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1207     for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1208       OS << ", " << J;
1209     OS << ");";
1210     emitNewLine();
1211   }
1212 }
1213
1214 void Intrinsic::emitArgumentReversal() {
1215   if (isBigEndianSafe())
1216     return;
1217
1218   // Reverse all vector arguments.
1219   for (unsigned I = 0; I < getNumParams(); ++I) {
1220     std::string Name = "p" + utostr(I);
1221     std::string NewName = "rev" + utostr(I);
1222
1223     Variable &V = Variables[Name];
1224     Variable NewV(V.getType(), NewName + VariablePostfix);
1225
1226     if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1227       continue;
1228
1229     OS << "  " << NewV.getType().str() << " " << NewV.getName() << ";";
1230     emitReverseVariable(NewV, V);
1231     V = NewV;
1232   }
1233 }
1234
1235 void Intrinsic::emitReturnReversal() {
1236   if (isBigEndianSafe())
1237     return;
1238   if (!getReturnType().isVector() || getReturnType().isVoid() ||
1239       getReturnType().getNumElements() == 1)
1240     return;
1241   emitReverseVariable(RetVar, RetVar);
1242 }
1243
1244 void Intrinsic::emitShadowedArgs() {
1245   // Macro arguments are not type-checked like inline function arguments,
1246   // so assign them to local temporaries to get the right type checking.
1247   if (!UseMacro)
1248     return;
1249
1250   for (unsigned I = 0; I < getNumParams(); ++I) {
1251     // Do not create a temporary for an immediate argument.
1252     // That would defeat the whole point of using a macro!
1253     if (getParamType(I).isImmediate())
1254       continue;
1255     // Do not create a temporary for pointer arguments. The input
1256     // pointer may have an alignment hint.
1257     if (getParamType(I).isPointer())
1258       continue;
1259
1260     std::string Name = "p" + utostr(I);
1261
1262     assert(Variables.find(Name) != Variables.end());
1263     Variable &V = Variables[Name];
1264
1265     std::string NewName = "s" + utostr(I);
1266     Variable V2(V.getType(), NewName + VariablePostfix);
1267
1268     OS << "  " << V2.getType().str() << " " << V2.getName() << " = "
1269        << V.getName() << ";";
1270     emitNewLine();
1271
1272     V = V2;
1273   }
1274 }
1275
1276 bool Intrinsic::protoHasScalar() const {
1277   return std::any_of(Types.begin(), Types.end(), [](const Type &T) {
1278     return T.isScalar() && !T.isImmediate();
1279   });
1280 }
1281
1282 void Intrinsic::emitBodyAsBuiltinCall() {
1283   std::string S;
1284
1285   // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1286   // sret-like argument.
1287   bool SRet = getReturnType().getNumVectors() >= 2;
1288
1289   StringRef N = Name;
1290   ClassKind LocalCK = CK;
1291   if (!protoHasScalar())
1292     LocalCK = ClassB;
1293
1294   if (!getReturnType().isVoid() && !SRet)
1295     S += "(" + RetVar.getType().str() + ") ";
1296
1297   S += "__builtin_neon_" + mangleName(std::string(N), LocalCK) + "(";
1298
1299   if (SRet)
1300     S += "&" + RetVar.getName() + ", ";
1301
1302   for (unsigned I = 0; I < getNumParams(); ++I) {
1303     Variable &V = Variables["p" + utostr(I)];
1304     Type T = V.getType();
1305
1306     // Handle multiple-vector values specially, emitting each subvector as an
1307     // argument to the builtin.
1308     if (T.getNumVectors() > 1) {
1309       // Check if an explicit cast is needed.
1310       std::string Cast;
1311       if (LocalCK == ClassB) {
1312         Type T2 = T;
1313         T2.makeOneVector();
1314         T2.makeInteger(8, /*Signed=*/true);
1315         Cast = "(" + T2.str() + ")";
1316       }
1317
1318       for (unsigned J = 0; J < T.getNumVectors(); ++J)
1319         S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1320       continue;
1321     }
1322
1323     std::string Arg = V.getName();
1324     Type CastToType = T;
1325
1326     // Check if an explicit cast is needed.
1327     if (CastToType.isVector() &&
1328         (LocalCK == ClassB || (T.isHalf() && !T.isScalarForMangling()))) {
1329       CastToType.makeInteger(8, true);
1330       Arg = "(" + CastToType.str() + ")" + Arg;
1331     } else if (CastToType.isVector() && LocalCK == ClassI) {
1332       if (CastToType.isInteger())
1333         CastToType.makeSigned();
1334       Arg = "(" + CastToType.str() + ")" + Arg;
1335     }
1336
1337     S += Arg + ", ";
1338   }
1339
1340   // Extra constant integer to hold type class enum for this function, e.g. s8
1341   if (getClassKind(true) == ClassB) {
1342     S += utostr(getPolymorphicKeyType().getNeonEnum());
1343   } else {
1344     // Remove extraneous ", ".
1345     S.pop_back();
1346     S.pop_back();
1347   }
1348   S += ");";
1349
1350   std::string RetExpr;
1351   if (!SRet && !RetVar.getType().isVoid())
1352     RetExpr = RetVar.getName() + " = ";
1353
1354   OS << "  " << RetExpr << S;
1355   emitNewLine();
1356 }
1357
1358 void Intrinsic::emitBody(StringRef CallPrefix) {
1359   std::vector<std::string> Lines;
1360
1361   assert(RetVar.getType() == Types[0]);
1362   // Create a return variable, if we're not void.
1363   if (!RetVar.getType().isVoid()) {
1364     OS << "  " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1365     emitNewLine();
1366   }
1367
1368   if (!Body || Body->getValues().empty()) {
1369     // Nothing specific to output - must output a builtin.
1370     emitBodyAsBuiltinCall();
1371     return;
1372   }
1373
1374   // We have a list of "things to output". The last should be returned.
1375   for (auto *I : Body->getValues()) {
1376     if (StringInit *SI = dyn_cast<StringInit>(I)) {
1377       Lines.push_back(replaceParamsIn(SI->getAsString()));
1378     } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1379       DagEmitter DE(*this, CallPrefix);
1380       Lines.push_back(DE.emitDag(DI).second + ";");
1381     }
1382   }
1383
1384   assert(!Lines.empty() && "Empty def?");
1385   if (!RetVar.getType().isVoid())
1386     Lines.back().insert(0, RetVar.getName() + " = ");
1387
1388   for (auto &L : Lines) {
1389     OS << "  " << L;
1390     emitNewLine();
1391   }
1392 }
1393
1394 void Intrinsic::emitReturn() {
1395   if (RetVar.getType().isVoid())
1396     return;
1397   if (UseMacro)
1398     OS << "  " << RetVar.getName() << ";";
1399   else
1400     OS << "  return " << RetVar.getName() << ";";
1401   emitNewLine();
1402 }
1403
1404 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1405   // At this point we should only be seeing a def.
1406   DefInit *DefI = cast<DefInit>(DI->getOperator());
1407   std::string Op = DefI->getAsString();
1408
1409   if (Op == "cast" || Op == "bitcast")
1410     return emitDagCast(DI, Op == "bitcast");
1411   if (Op == "shuffle")
1412     return emitDagShuffle(DI);
1413   if (Op == "dup")
1414     return emitDagDup(DI);
1415   if (Op == "dup_typed")
1416     return emitDagDupTyped(DI);
1417   if (Op == "splat")
1418     return emitDagSplat(DI);
1419   if (Op == "save_temp")
1420     return emitDagSaveTemp(DI);
1421   if (Op == "op")
1422     return emitDagOp(DI);
1423   if (Op == "call" || Op == "call_mangled")
1424     return emitDagCall(DI, Op == "call_mangled");
1425   if (Op == "name_replace")
1426     return emitDagNameReplace(DI);
1427   if (Op == "literal")
1428     return emitDagLiteral(DI);
1429   assert_with_loc(false, "Unknown operation!");
1430   return std::make_pair(Type::getVoid(), "");
1431 }
1432
1433 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1434   std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1435   if (DI->getNumArgs() == 2) {
1436     // Unary op.
1437     std::pair<Type, std::string> R =
1438         emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1439     return std::make_pair(R.first, Op + R.second);
1440   } else {
1441     assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1442     std::pair<Type, std::string> R1 =
1443         emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1444     std::pair<Type, std::string> R2 =
1445         emitDagArg(DI->getArg(2), std::string(DI->getArgNameStr(2)));
1446     assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1447     return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1448   }
1449 }
1450
1451 std::pair<Type, std::string>
1452 Intrinsic::DagEmitter::emitDagCall(DagInit *DI, bool MatchMangledName) {
1453   std::vector<Type> Types;
1454   std::vector<std::string> Values;
1455   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1456     std::pair<Type, std::string> R =
1457         emitDagArg(DI->getArg(I + 1), std::string(DI->getArgNameStr(I + 1)));
1458     Types.push_back(R.first);
1459     Values.push_back(R.second);
1460   }
1461
1462   // Look up the called intrinsic.
1463   std::string N;
1464   if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1465     N = SI->getAsUnquotedString();
1466   else
1467     N = emitDagArg(DI->getArg(0), "").second;
1468   Optional<std::string> MangledName;
1469   if (MatchMangledName) {
1470     if (Intr.getRecord()->getValueAsBit("isLaneQ"))
1471       N += "q";
1472     MangledName = Intr.mangleName(N, ClassS);
1473   }
1474   Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types, MangledName);
1475
1476   // Make sure the callee is known as an early def.
1477   Callee.setNeededEarly();
1478   Intr.Dependencies.insert(&Callee);
1479
1480   // Now create the call itself.
1481   std::string S = "";
1482   if (!Callee.isBigEndianSafe())
1483     S += CallPrefix.str();
1484   S += Callee.getMangledName(true) + "(";
1485   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1486     if (I != 0)
1487       S += ", ";
1488     S += Values[I];
1489   }
1490   S += ")";
1491
1492   return std::make_pair(Callee.getReturnType(), S);
1493 }
1494
1495 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1496                                                                 bool IsBitCast){
1497   // (cast MOD* VAL) -> cast VAL to type given by MOD.
1498   std::pair<Type, std::string> R =
1499       emitDagArg(DI->getArg(DI->getNumArgs() - 1),
1500                  std::string(DI->getArgNameStr(DI->getNumArgs() - 1)));
1501   Type castToType = R.first;
1502   for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1503
1504     // MOD can take several forms:
1505     //   1. $X - take the type of parameter / variable X.
1506     //   2. The value "R" - take the type of the return type.
1507     //   3. a type string
1508     //   4. The value "U" or "S" to switch the signedness.
1509     //   5. The value "H" or "D" to half or double the bitwidth.
1510     //   6. The value "8" to convert to 8-bit (signed) integer lanes.
1511     if (!DI->getArgNameStr(ArgIdx).empty()) {
1512       assert_with_loc(Intr.Variables.find(std::string(
1513                           DI->getArgNameStr(ArgIdx))) != Intr.Variables.end(),
1514                       "Variable not found");
1515       castToType =
1516           Intr.Variables[std::string(DI->getArgNameStr(ArgIdx))].getType();
1517     } else {
1518       StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1519       assert_with_loc(SI, "Expected string type or $Name for cast type");
1520
1521       if (SI->getAsUnquotedString() == "R") {
1522         castToType = Intr.getReturnType();
1523       } else if (SI->getAsUnquotedString() == "U") {
1524         castToType.makeUnsigned();
1525       } else if (SI->getAsUnquotedString() == "S") {
1526         castToType.makeSigned();
1527       } else if (SI->getAsUnquotedString() == "H") {
1528         castToType.halveLanes();
1529       } else if (SI->getAsUnquotedString() == "D") {
1530         castToType.doubleLanes();
1531       } else if (SI->getAsUnquotedString() == "8") {
1532         castToType.makeInteger(8, true);
1533       } else if (SI->getAsUnquotedString() == "32") {
1534         castToType.make32BitElement();
1535       } else {
1536         castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1537         assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1538       }
1539     }
1540   }
1541
1542   std::string S;
1543   if (IsBitCast) {
1544     // Emit a reinterpret cast. The second operand must be an lvalue, so create
1545     // a temporary.
1546     std::string N = "reint";
1547     unsigned I = 0;
1548     while (Intr.Variables.find(N) != Intr.Variables.end())
1549       N = "reint" + utostr(++I);
1550     Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1551
1552     Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1553             << R.second << ";";
1554     Intr.emitNewLine();
1555
1556     S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1557   } else {
1558     // Emit a normal (static) cast.
1559     S = "(" + castToType.str() + ")(" + R.second + ")";
1560   }
1561
1562   return std::make_pair(castToType, S);
1563 }
1564
1565 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1566   // See the documentation in arm_neon.td for a description of these operators.
1567   class LowHalf : public SetTheory::Operator {
1568   public:
1569     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1570                ArrayRef<SMLoc> Loc) override {
1571       SetTheory::RecSet Elts2;
1572       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1573       Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1574     }
1575   };
1576
1577   class HighHalf : public SetTheory::Operator {
1578   public:
1579     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1580                ArrayRef<SMLoc> Loc) override {
1581       SetTheory::RecSet Elts2;
1582       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1583       Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1584     }
1585   };
1586
1587   class Rev : public SetTheory::Operator {
1588     unsigned ElementSize;
1589
1590   public:
1591     Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1592
1593     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1594                ArrayRef<SMLoc> Loc) override {
1595       SetTheory::RecSet Elts2;
1596       ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1597
1598       int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1599       VectorSize /= ElementSize;
1600
1601       std::vector<Record *> Revved;
1602       for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1603         for (int LI = VectorSize - 1; LI >= 0; --LI) {
1604           Revved.push_back(Elts2[VI + LI]);
1605         }
1606       }
1607
1608       Elts.insert(Revved.begin(), Revved.end());
1609     }
1610   };
1611
1612   class MaskExpander : public SetTheory::Expander {
1613     unsigned N;
1614
1615   public:
1616     MaskExpander(unsigned N) : N(N) {}
1617
1618     void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
1619       unsigned Addend = 0;
1620       if (R->getName() == "mask0")
1621         Addend = 0;
1622       else if (R->getName() == "mask1")
1623         Addend = N;
1624       else
1625         return;
1626       for (unsigned I = 0; I < N; ++I)
1627         Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1628     }
1629   };
1630
1631   // (shuffle arg1, arg2, sequence)
1632   std::pair<Type, std::string> Arg1 =
1633       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1634   std::pair<Type, std::string> Arg2 =
1635       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1636   assert_with_loc(Arg1.first == Arg2.first,
1637                   "Different types in arguments to shuffle!");
1638
1639   SetTheory ST;
1640   SetTheory::RecSet Elts;
1641   ST.addOperator("lowhalf", std::make_unique<LowHalf>());
1642   ST.addOperator("highhalf", std::make_unique<HighHalf>());
1643   ST.addOperator("rev",
1644                  std::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
1645   ST.addExpander("MaskExpand",
1646                  std::make_unique<MaskExpander>(Arg1.first.getNumElements()));
1647   ST.evaluate(DI->getArg(2), Elts, None);
1648
1649   std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1650   for (auto &E : Elts) {
1651     StringRef Name = E->getName();
1652     assert_with_loc(Name.startswith("sv"),
1653                     "Incorrect element kind in shuffle mask!");
1654     S += ", " + Name.drop_front(2).str();
1655   }
1656   S += ")";
1657
1658   // Recalculate the return type - the shuffle may have halved or doubled it.
1659   Type T(Arg1.first);
1660   if (Elts.size() > T.getNumElements()) {
1661     assert_with_loc(
1662         Elts.size() == T.getNumElements() * 2,
1663         "Can only double or half the number of elements in a shuffle!");
1664     T.doubleLanes();
1665   } else if (Elts.size() < T.getNumElements()) {
1666     assert_with_loc(
1667         Elts.size() == T.getNumElements() / 2,
1668         "Can only double or half the number of elements in a shuffle!");
1669     T.halveLanes();
1670   }
1671
1672   return std::make_pair(T, S);
1673 }
1674
1675 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1676   assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1677   std::pair<Type, std::string> A =
1678       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1679   assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1680
1681   Type T = Intr.getBaseType();
1682   assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1683   std::string S = "(" + T.str() + ") {";
1684   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1685     if (I != 0)
1686       S += ", ";
1687     S += A.second;
1688   }
1689   S += "}";
1690
1691   return std::make_pair(T, S);
1692 }
1693
1694 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDupTyped(DagInit *DI) {
1695   assert_with_loc(DI->getNumArgs() == 2, "dup_typed() expects two arguments");
1696   std::pair<Type, std::string> A =
1697       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1698   std::pair<Type, std::string> B =
1699       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1700   assert_with_loc(B.first.isScalar(),
1701                   "dup_typed() requires a scalar as the second argument");
1702
1703   Type T = A.first;
1704   assert_with_loc(T.isVector(), "dup_typed() used but target type is scalar!");
1705   std::string S = "(" + T.str() + ") {";
1706   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1707     if (I != 0)
1708       S += ", ";
1709     S += B.second;
1710   }
1711   S += "}";
1712
1713   return std::make_pair(T, S);
1714 }
1715
1716 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1717   assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1718   std::pair<Type, std::string> A =
1719       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1720   std::pair<Type, std::string> B =
1721       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1722
1723   assert_with_loc(B.first.isScalar(),
1724                   "splat() requires a scalar int as the second argument");
1725
1726   std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1727   for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1728     S += ", " + B.second;
1729   }
1730   S += ")";
1731
1732   return std::make_pair(Intr.getBaseType(), S);
1733 }
1734
1735 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1736   assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1737   std::pair<Type, std::string> A =
1738       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1739
1740   assert_with_loc(!A.first.isVoid(),
1741                   "Argument to save_temp() must have non-void type!");
1742
1743   std::string N = std::string(DI->getArgNameStr(0));
1744   assert_with_loc(!N.empty(),
1745                   "save_temp() expects a name as the first argument");
1746
1747   assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1748                   "Variable already defined!");
1749   Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1750
1751   std::string S =
1752       A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1753
1754   return std::make_pair(Type::getVoid(), S);
1755 }
1756
1757 std::pair<Type, std::string>
1758 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1759   std::string S = Intr.Name;
1760
1761   assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1762   std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1763   std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1764
1765   size_t Idx = S.find(ToReplace);
1766
1767   assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1768   S.replace(Idx, ToReplace.size(), ReplaceWith);
1769
1770   return std::make_pair(Type::getVoid(), S);
1771 }
1772
1773 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1774   std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1775   std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1776   return std::make_pair(Type::fromTypedefName(Ty), Value);
1777 }
1778
1779 std::pair<Type, std::string>
1780 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1781   if (!ArgName.empty()) {
1782     assert_with_loc(!Arg->isComplete(),
1783                     "Arguments must either be DAGs or names, not both!");
1784     assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1785                     "Variable not defined!");
1786     Variable &V = Intr.Variables[ArgName];
1787     return std::make_pair(V.getType(), V.getName());
1788   }
1789
1790   assert(Arg && "Neither ArgName nor Arg?!");
1791   DagInit *DI = dyn_cast<DagInit>(Arg);
1792   assert_with_loc(DI, "Arguments must either be DAGs or names!");
1793
1794   return emitDag(DI);
1795 }
1796
1797 std::string Intrinsic::generate() {
1798   // Avoid duplicated code for big and little endian
1799   if (isBigEndianSafe()) {
1800     generateImpl(false, "", "");
1801     return OS.str();
1802   }
1803   // Little endian intrinsics are simple and don't require any argument
1804   // swapping.
1805   OS << "#ifdef __LITTLE_ENDIAN__\n";
1806
1807   generateImpl(false, "", "");
1808
1809   OS << "#else\n";
1810
1811   // Big endian intrinsics are more complex. The user intended these
1812   // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1813   // but we load as-if (V)LD1. So we should swap all arguments and
1814   // swap the return value too.
1815   //
1816   // If we call sub-intrinsics, we should call a version that does
1817   // not re-swap the arguments!
1818   generateImpl(true, "", "__noswap_");
1819
1820   // If we're needed early, create a non-swapping variant for
1821   // big-endian.
1822   if (NeededEarly) {
1823     generateImpl(false, "__noswap_", "__noswap_");
1824   }
1825   OS << "#endif\n\n";
1826
1827   return OS.str();
1828 }
1829
1830 void Intrinsic::generateImpl(bool ReverseArguments,
1831                              StringRef NamePrefix, StringRef CallPrefix) {
1832   CurrentRecord = R;
1833
1834   // If we call a macro, our local variables may be corrupted due to
1835   // lack of proper lexical scoping. So, add a globally unique postfix
1836   // to every variable.
1837   //
1838   // indexBody() should have set up the Dependencies set by now.
1839   for (auto *I : Dependencies)
1840     if (I->UseMacro) {
1841       VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1842       break;
1843     }
1844
1845   initVariables();
1846
1847   emitPrototype(NamePrefix);
1848
1849   if (IsUnavailable) {
1850     OS << " __attribute__((unavailable));";
1851   } else {
1852     emitOpeningBrace();
1853     emitShadowedArgs();
1854     if (ReverseArguments)
1855       emitArgumentReversal();
1856     emitBody(CallPrefix);
1857     if (ReverseArguments)
1858       emitReturnReversal();
1859     emitReturn();
1860     emitClosingBrace();
1861   }
1862   OS << "\n";
1863
1864   CurrentRecord = nullptr;
1865 }
1866
1867 void Intrinsic::indexBody() {
1868   CurrentRecord = R;
1869
1870   initVariables();
1871   emitBody("");
1872   OS.str("");
1873
1874   CurrentRecord = nullptr;
1875 }
1876
1877 //===----------------------------------------------------------------------===//
1878 // NeonEmitter implementation
1879 //===----------------------------------------------------------------------===//
1880
1881 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types,
1882                                      Optional<std::string> MangledName) {
1883   // First, look up the name in the intrinsic map.
1884   assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1885                   ("Intrinsic '" + Name + "' not found!").str());
1886   auto &V = IntrinsicMap.find(Name.str())->second;
1887   std::vector<Intrinsic *> GoodVec;
1888
1889   // Create a string to print if we end up failing.
1890   std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1891   for (unsigned I = 0; I < Types.size(); ++I) {
1892     if (I != 0)
1893       ErrMsg += ", ";
1894     ErrMsg += Types[I].str();
1895   }
1896   ErrMsg += ")'\n";
1897   ErrMsg += "Available overloads:\n";
1898
1899   // Now, look through each intrinsic implementation and see if the types are
1900   // compatible.
1901   for (auto &I : V) {
1902     ErrMsg += "  - " + I.getReturnType().str() + " " + I.getMangledName();
1903     ErrMsg += "(";
1904     for (unsigned A = 0; A < I.getNumParams(); ++A) {
1905       if (A != 0)
1906         ErrMsg += ", ";
1907       ErrMsg += I.getParamType(A).str();
1908     }
1909     ErrMsg += ")\n";
1910
1911     if (MangledName && MangledName != I.getMangledName(true))
1912       continue;
1913
1914     if (I.getNumParams() != Types.size())
1915       continue;
1916
1917     unsigned ArgNum = 0;
1918     bool MatchingArgumentTypes =
1919         std::all_of(Types.begin(), Types.end(), [&](const auto &Type) {
1920           return Type == I.getParamType(ArgNum++);
1921         });
1922
1923     if (MatchingArgumentTypes)
1924       GoodVec.push_back(&I);
1925   }
1926
1927   assert_with_loc(!GoodVec.empty(),
1928                   "No compatible intrinsic found - " + ErrMsg);
1929   assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
1930
1931   return *GoodVec.front();
1932 }
1933
1934 void NeonEmitter::createIntrinsic(Record *R,
1935                                   SmallVectorImpl<Intrinsic *> &Out) {
1936   std::string Name = std::string(R->getValueAsString("Name"));
1937   std::string Proto = std::string(R->getValueAsString("Prototype"));
1938   std::string Types = std::string(R->getValueAsString("Types"));
1939   Record *OperationRec = R->getValueAsDef("Operation");
1940   bool BigEndianSafe  = R->getValueAsBit("BigEndianSafe");
1941   std::string Guard = std::string(R->getValueAsString("ArchGuard"));
1942   bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
1943   std::string CartesianProductWith = std::string(R->getValueAsString("CartesianProductWith"));
1944
1945   // Set the global current record. This allows assert_with_loc to produce
1946   // decent location information even when highly nested.
1947   CurrentRecord = R;
1948
1949   ListInit *Body = OperationRec->getValueAsListInit("Ops");
1950
1951   std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
1952
1953   ClassKind CK = ClassNone;
1954   if (R->getSuperClasses().size() >= 2)
1955     CK = ClassMap[R->getSuperClasses()[1].first];
1956
1957   std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
1958   if (!CartesianProductWith.empty()) {
1959     std::vector<TypeSpec> ProductTypeSpecs = TypeSpec::fromTypeSpecs(CartesianProductWith);
1960     for (auto TS : TypeSpecs) {
1961       Type DefaultT(TS, ".");
1962       for (auto SrcTS : ProductTypeSpecs) {
1963         Type DefaultSrcT(SrcTS, ".");
1964         if (TS == SrcTS ||
1965             DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
1966           continue;
1967         NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
1968       }
1969     }
1970   } else {
1971     for (auto TS : TypeSpecs) {
1972       NewTypeSpecs.push_back(std::make_pair(TS, TS));
1973     }
1974   }
1975
1976   llvm::sort(NewTypeSpecs);
1977   NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
1978                      NewTypeSpecs.end());
1979   auto &Entry = IntrinsicMap[Name];
1980
1981   for (auto &I : NewTypeSpecs) {
1982     Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
1983                        Guard, IsUnavailable, BigEndianSafe);
1984     Out.push_back(&Entry.back());
1985   }
1986
1987   CurrentRecord = nullptr;
1988 }
1989
1990 /// genBuiltinsDef: Generate the BuiltinsARM.def and  BuiltinsAArch64.def
1991 /// declaration of builtins, checking for unique builtin declarations.
1992 void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
1993                                  SmallVectorImpl<Intrinsic *> &Defs) {
1994   OS << "#ifdef GET_NEON_BUILTINS\n";
1995
1996   // We only want to emit a builtin once, and we want to emit them in
1997   // alphabetical order, so use a std::set.
1998   std::set<std::string> Builtins;
1999
2000   for (auto *Def : Defs) {
2001     if (Def->hasBody())
2002       continue;
2003
2004     std::string S = "BUILTIN(__builtin_neon_" + Def->getMangledName() + ", \"";
2005
2006     S += Def->getBuiltinTypeStr();
2007     S += "\", \"n\")";
2008
2009     Builtins.insert(S);
2010   }
2011
2012   for (auto &S : Builtins)
2013     OS << S << "\n";
2014   OS << "#endif\n\n";
2015 }
2016
2017 /// Generate the ARM and AArch64 overloaded type checking code for
2018 /// SemaChecking.cpp, checking for unique builtin declarations.
2019 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
2020                                            SmallVectorImpl<Intrinsic *> &Defs) {
2021   OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
2022
2023   // We record each overload check line before emitting because subsequent Inst
2024   // definitions may extend the number of permitted types (i.e. augment the
2025   // Mask). Use std::map to avoid sorting the table by hash number.
2026   struct OverloadInfo {
2027     uint64_t Mask;
2028     int PtrArgNum;
2029     bool HasConstPtr;
2030     OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
2031   };
2032   std::map<std::string, OverloadInfo> OverloadMap;
2033
2034   for (auto *Def : Defs) {
2035     // If the def has a body (that is, it has Operation DAGs), it won't call
2036     // __builtin_neon_* so we don't need to generate a definition for it.
2037     if (Def->hasBody())
2038       continue;
2039     // Functions which have a scalar argument cannot be overloaded, no need to
2040     // check them if we are emitting the type checking code.
2041     if (Def->protoHasScalar())
2042       continue;
2043
2044     uint64_t Mask = 0ULL;
2045     Mask |= 1ULL << Def->getPolymorphicKeyType().getNeonEnum();
2046
2047     // Check if the function has a pointer or const pointer argument.
2048     int PtrArgNum = -1;
2049     bool HasConstPtr = false;
2050     for (unsigned I = 0; I < Def->getNumParams(); ++I) {
2051       const auto &Type = Def->getParamType(I);
2052       if (Type.isPointer()) {
2053         PtrArgNum = I;
2054         HasConstPtr = Type.isConstPointer();
2055       }
2056     }
2057
2058     // For sret builtins, adjust the pointer argument index.
2059     if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2060       PtrArgNum += 1;
2061
2062     std::string Name = Def->getName();
2063     // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2064     // and vst1_lane intrinsics.  Using a pointer to the vector element
2065     // type with one of those operations causes codegen to select an aligned
2066     // load/store instruction.  If you want an unaligned operation,
2067     // the pointer argument needs to have less alignment than element type,
2068     // so just accept any pointer type.
2069     if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") {
2070       PtrArgNum = -1;
2071       HasConstPtr = false;
2072     }
2073
2074     if (Mask) {
2075       std::string Name = Def->getMangledName();
2076       OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2077       OverloadInfo &OI = OverloadMap[Name];
2078       OI.Mask |= Mask;
2079       OI.PtrArgNum |= PtrArgNum;
2080       OI.HasConstPtr = HasConstPtr;
2081     }
2082   }
2083
2084   for (auto &I : OverloadMap) {
2085     OverloadInfo &OI = I.second;
2086
2087     OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2088     OS << "mask = 0x" << Twine::utohexstr(OI.Mask) << "ULL";
2089     if (OI.PtrArgNum >= 0)
2090       OS << "; PtrArgNum = " << OI.PtrArgNum;
2091     if (OI.HasConstPtr)
2092       OS << "; HasConstPtr = true";
2093     OS << "; break;\n";
2094   }
2095   OS << "#endif\n\n";
2096 }
2097
2098 void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2099                                         SmallVectorImpl<Intrinsic *> &Defs) {
2100   OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2101
2102   std::set<std::string> Emitted;
2103
2104   for (auto *Def : Defs) {
2105     if (Def->hasBody())
2106       continue;
2107     // Functions which do not have an immediate do not need to have range
2108     // checking code emitted.
2109     if (!Def->hasImmediate())
2110       continue;
2111     if (Emitted.find(Def->getMangledName()) != Emitted.end())
2112       continue;
2113
2114     std::string LowerBound, UpperBound;
2115
2116     Record *R = Def->getRecord();
2117     if (R->getValueAsBit("isVCVT_N")) {
2118       // VCVT between floating- and fixed-point values takes an immediate
2119       // in the range [1, 32) for f32 or [1, 64) for f64 or [1, 16) for f16.
2120       LowerBound = "1";
2121           if (Def->getBaseType().getElementSizeInBits() == 16 ||
2122                   Def->getName().find('h') != std::string::npos)
2123                 // VCVTh operating on FP16 intrinsics in range [1, 16)
2124                 UpperBound = "15";
2125           else if (Def->getBaseType().getElementSizeInBits() == 32)
2126         UpperBound = "31";
2127           else
2128         UpperBound = "63";
2129     } else if (R->getValueAsBit("isScalarShift")) {
2130       // Right shifts have an 'r' in the name, left shifts do not. Convert
2131       // instructions have the same bounds and right shifts.
2132       if (Def->getName().find('r') != std::string::npos ||
2133           Def->getName().find("cvt") != std::string::npos)
2134         LowerBound = "1";
2135
2136       UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2137     } else if (R->getValueAsBit("isShift")) {
2138       // Builtins which are overloaded by type will need to have their upper
2139       // bound computed at Sema time based on the type constant.
2140
2141       // Right shifts have an 'r' in the name, left shifts do not.
2142       if (Def->getName().find('r') != std::string::npos)
2143         LowerBound = "1";
2144       UpperBound = "RFT(TV, true)";
2145     } else if (Def->getClassKind(true) == ClassB) {
2146       // ClassB intrinsics have a type (and hence lane number) that is only
2147       // known at runtime.
2148       if (R->getValueAsBit("isLaneQ"))
2149         UpperBound = "RFT(TV, false, true)";
2150       else
2151         UpperBound = "RFT(TV, false, false)";
2152     } else {
2153       // The immediate generally refers to a lane in the preceding argument.
2154       assert(Def->getImmediateIdx() > 0);
2155       Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2156       UpperBound = utostr(T.getNumElements() - 1);
2157     }
2158
2159     // Calculate the index of the immediate that should be range checked.
2160     unsigned Idx = Def->getNumParams();
2161     if (Def->hasImmediate())
2162       Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2163
2164     OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2165        << "i = " << Idx << ";";
2166     if (!LowerBound.empty())
2167       OS << " l = " << LowerBound << ";";
2168     if (!UpperBound.empty())
2169       OS << " u = " << UpperBound << ";";
2170     OS << " break;\n";
2171
2172     Emitted.insert(Def->getMangledName());
2173   }
2174
2175   OS << "#endif\n\n";
2176 }
2177
2178 /// runHeader - Emit a file with sections defining:
2179 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2180 /// 2. the SemaChecking code for the type overload checking.
2181 /// 3. the SemaChecking code for validation of intrinsic immediate arguments.
2182 void NeonEmitter::runHeader(raw_ostream &OS) {
2183   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2184
2185   SmallVector<Intrinsic *, 128> Defs;
2186   for (auto *R : RV)
2187     createIntrinsic(R, Defs);
2188
2189   // Generate shared BuiltinsXXX.def
2190   genBuiltinsDef(OS, Defs);
2191
2192   // Generate ARM overloaded type checking code for SemaChecking.cpp
2193   genOverloadTypeCheckCode(OS, Defs);
2194
2195   // Generate ARM range checking code for shift/lane immediates.
2196   genIntrinsicRangeCheckCode(OS, Defs);
2197 }
2198
2199 static void emitNeonTypeDefs(const std::string& types, raw_ostream &OS) {
2200   std::string TypedefTypes(types);
2201   std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2202
2203   // Emit vector typedefs.
2204   bool InIfdef = false;
2205   for (auto &TS : TDTypeVec) {
2206     bool IsA64 = false;
2207     Type T(TS, ".");
2208     if (T.isDouble())
2209       IsA64 = true;
2210
2211     if (InIfdef && !IsA64) {
2212       OS << "#endif\n";
2213       InIfdef = false;
2214     }
2215     if (!InIfdef && IsA64) {
2216       OS << "#ifdef __aarch64__\n";
2217       InIfdef = true;
2218     }
2219
2220     if (T.isPoly())
2221       OS << "typedef __attribute__((neon_polyvector_type(";
2222     else
2223       OS << "typedef __attribute__((neon_vector_type(";
2224
2225     Type T2 = T;
2226     T2.makeScalar();
2227     OS << T.getNumElements() << "))) ";
2228     OS << T2.str();
2229     OS << " " << T.str() << ";\n";
2230   }
2231   if (InIfdef)
2232     OS << "#endif\n";
2233   OS << "\n";
2234
2235   // Emit struct typedefs.
2236   InIfdef = false;
2237   for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2238     for (auto &TS : TDTypeVec) {
2239       bool IsA64 = false;
2240       Type T(TS, ".");
2241       if (T.isDouble())
2242         IsA64 = true;
2243
2244       if (InIfdef && !IsA64) {
2245         OS << "#endif\n";
2246         InIfdef = false;
2247       }
2248       if (!InIfdef && IsA64) {
2249         OS << "#ifdef __aarch64__\n";
2250         InIfdef = true;
2251       }
2252
2253       const char Mods[] = { static_cast<char>('2' + (NumMembers - 2)), 0};
2254       Type VT(TS, Mods);
2255       OS << "typedef struct " << VT.str() << " {\n";
2256       OS << "  " << T.str() << " val";
2257       OS << "[" << NumMembers << "]";
2258       OS << ";\n} ";
2259       OS << VT.str() << ";\n";
2260       OS << "\n";
2261     }
2262   }
2263   if (InIfdef)
2264     OS << "#endif\n";
2265 }
2266
2267 /// run - Read the records in arm_neon.td and output arm_neon.h.  arm_neon.h
2268 /// is comprised of type definitions and function declarations.
2269 void NeonEmitter::run(raw_ostream &OS) {
2270   OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2271         "------------------------------"
2272         "---===\n"
2273         " *\n"
2274         " * Permission is hereby granted, free of charge, to any person "
2275         "obtaining "
2276         "a copy\n"
2277         " * of this software and associated documentation files (the "
2278         "\"Software\"),"
2279         " to deal\n"
2280         " * in the Software without restriction, including without limitation "
2281         "the "
2282         "rights\n"
2283         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2284         "and/or sell\n"
2285         " * copies of the Software, and to permit persons to whom the Software "
2286         "is\n"
2287         " * furnished to do so, subject to the following conditions:\n"
2288         " *\n"
2289         " * The above copyright notice and this permission notice shall be "
2290         "included in\n"
2291         " * all copies or substantial portions of the Software.\n"
2292         " *\n"
2293         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2294         "EXPRESS OR\n"
2295         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2296         "MERCHANTABILITY,\n"
2297         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2298         "SHALL THE\n"
2299         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2300         "OTHER\n"
2301         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2302         "ARISING FROM,\n"
2303         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2304         "DEALINGS IN\n"
2305         " * THE SOFTWARE.\n"
2306         " *\n"
2307         " *===-----------------------------------------------------------------"
2308         "---"
2309         "---===\n"
2310         " */\n\n";
2311
2312   OS << "#ifndef __ARM_NEON_H\n";
2313   OS << "#define __ARM_NEON_H\n\n";
2314
2315   OS << "#ifndef __ARM_FP\n";
2316   OS << "#error \"NEON intrinsics not available with the soft-float ABI. "
2317         "Please use -mfloat-abi=softfp or -mfloat-abi=hard\"\n";
2318   OS << "#else\n\n";
2319
2320   OS << "#if !defined(__ARM_NEON)\n";
2321   OS << "#error \"NEON support not enabled\"\n";
2322   OS << "#else\n\n";
2323
2324   OS << "#include <stdint.h>\n\n";
2325
2326   OS << "#ifdef __ARM_FEATURE_BF16\n";
2327   OS << "#include <arm_bf16.h>\n";
2328   OS << "typedef __bf16 bfloat16_t;\n";
2329   OS << "#endif\n\n";
2330
2331   // Emit NEON-specific scalar typedefs.
2332   OS << "typedef float float32_t;\n";
2333   OS << "typedef __fp16 float16_t;\n";
2334
2335   OS << "#ifdef __aarch64__\n";
2336   OS << "typedef double float64_t;\n";
2337   OS << "#endif\n\n";
2338
2339   // For now, signedness of polynomial types depends on target
2340   OS << "#ifdef __aarch64__\n";
2341   OS << "typedef uint8_t poly8_t;\n";
2342   OS << "typedef uint16_t poly16_t;\n";
2343   OS << "typedef uint64_t poly64_t;\n";
2344   OS << "typedef __uint128_t poly128_t;\n";
2345   OS << "#else\n";
2346   OS << "typedef int8_t poly8_t;\n";
2347   OS << "typedef int16_t poly16_t;\n";
2348   OS << "typedef int64_t poly64_t;\n";
2349   OS << "#endif\n";
2350
2351   emitNeonTypeDefs("cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl", OS);
2352
2353   OS << "#ifdef __ARM_FEATURE_BF16\n";
2354   emitNeonTypeDefs("bQb", OS);
2355   OS << "#endif\n\n";
2356
2357   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2358         "__nodebug__))\n\n";
2359
2360   SmallVector<Intrinsic *, 128> Defs;
2361   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2362   for (auto *R : RV)
2363     createIntrinsic(R, Defs);
2364
2365   for (auto *I : Defs)
2366     I->indexBody();
2367
2368   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2369
2370   // Only emit a def when its requirements have been met.
2371   // FIXME: This loop could be made faster, but it's fast enough for now.
2372   bool MadeProgress = true;
2373   std::string InGuard;
2374   while (!Defs.empty() && MadeProgress) {
2375     MadeProgress = false;
2376
2377     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2378          I != Defs.end(); /*No step*/) {
2379       bool DependenciesSatisfied = true;
2380       for (auto *II : (*I)->getDependencies()) {
2381         if (llvm::is_contained(Defs, II))
2382           DependenciesSatisfied = false;
2383       }
2384       if (!DependenciesSatisfied) {
2385         // Try the next one.
2386         ++I;
2387         continue;
2388       }
2389
2390       // Emit #endif/#if pair if needed.
2391       if ((*I)->getGuard() != InGuard) {
2392         if (!InGuard.empty())
2393           OS << "#endif\n";
2394         InGuard = (*I)->getGuard();
2395         if (!InGuard.empty())
2396           OS << "#if " << InGuard << "\n";
2397       }
2398
2399       // Actually generate the intrinsic code.
2400       OS << (*I)->generate();
2401
2402       MadeProgress = true;
2403       I = Defs.erase(I);
2404     }
2405   }
2406   assert(Defs.empty() && "Some requirements were not satisfied!");
2407   if (!InGuard.empty())
2408     OS << "#endif\n";
2409
2410   OS << "\n";
2411   OS << "#undef __ai\n\n";
2412   OS << "#endif /* if !defined(__ARM_NEON) */\n";
2413   OS << "#endif /* ifndef __ARM_FP */\n";
2414   OS << "#endif /* __ARM_NEON_H */\n";
2415 }
2416
2417 /// run - Read the records in arm_fp16.td and output arm_fp16.h.  arm_fp16.h
2418 /// is comprised of type definitions and function declarations.
2419 void NeonEmitter::runFP16(raw_ostream &OS) {
2420   OS << "/*===---- arm_fp16.h - ARM FP16 intrinsics "
2421         "------------------------------"
2422         "---===\n"
2423         " *\n"
2424         " * Permission is hereby granted, free of charge, to any person "
2425         "obtaining a copy\n"
2426         " * of this software and associated documentation files (the "
2427                                 "\"Software\"), to deal\n"
2428         " * in the Software without restriction, including without limitation "
2429                                 "the rights\n"
2430         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2431                                 "and/or sell\n"
2432         " * copies of the Software, and to permit persons to whom the Software "
2433                                 "is\n"
2434         " * furnished to do so, subject to the following conditions:\n"
2435         " *\n"
2436         " * The above copyright notice and this permission notice shall be "
2437         "included in\n"
2438         " * all copies or substantial portions of the Software.\n"
2439         " *\n"
2440         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2441         "EXPRESS OR\n"
2442         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2443         "MERCHANTABILITY,\n"
2444         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2445         "SHALL THE\n"
2446         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2447         "OTHER\n"
2448         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2449         "ARISING FROM,\n"
2450         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2451         "DEALINGS IN\n"
2452         " * THE SOFTWARE.\n"
2453         " *\n"
2454         " *===-----------------------------------------------------------------"
2455         "---"
2456         "---===\n"
2457         " */\n\n";
2458
2459   OS << "#ifndef __ARM_FP16_H\n";
2460   OS << "#define __ARM_FP16_H\n\n";
2461
2462   OS << "#include <stdint.h>\n\n";
2463
2464   OS << "typedef __fp16 float16_t;\n";
2465
2466   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2467         "__nodebug__))\n\n";
2468
2469   SmallVector<Intrinsic *, 128> Defs;
2470   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2471   for (auto *R : RV)
2472     createIntrinsic(R, Defs);
2473
2474   for (auto *I : Defs)
2475     I->indexBody();
2476
2477   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2478
2479   // Only emit a def when its requirements have been met.
2480   // FIXME: This loop could be made faster, but it's fast enough for now.
2481   bool MadeProgress = true;
2482   std::string InGuard;
2483   while (!Defs.empty() && MadeProgress) {
2484     MadeProgress = false;
2485
2486     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2487          I != Defs.end(); /*No step*/) {
2488       bool DependenciesSatisfied = true;
2489       for (auto *II : (*I)->getDependencies()) {
2490         if (llvm::is_contained(Defs, II))
2491           DependenciesSatisfied = false;
2492       }
2493       if (!DependenciesSatisfied) {
2494         // Try the next one.
2495         ++I;
2496         continue;
2497       }
2498
2499       // Emit #endif/#if pair if needed.
2500       if ((*I)->getGuard() != InGuard) {
2501         if (!InGuard.empty())
2502           OS << "#endif\n";
2503         InGuard = (*I)->getGuard();
2504         if (!InGuard.empty())
2505           OS << "#if " << InGuard << "\n";
2506       }
2507
2508       // Actually generate the intrinsic code.
2509       OS << (*I)->generate();
2510
2511       MadeProgress = true;
2512       I = Defs.erase(I);
2513     }
2514   }
2515   assert(Defs.empty() && "Some requirements were not satisfied!");
2516   if (!InGuard.empty())
2517     OS << "#endif\n";
2518
2519   OS << "\n";
2520   OS << "#undef __ai\n\n";
2521   OS << "#endif /* __ARM_FP16_H */\n";
2522 }
2523
2524 void NeonEmitter::runBF16(raw_ostream &OS) {
2525   OS << "/*===---- arm_bf16.h - ARM BF16 intrinsics "
2526         "-----------------------------------===\n"
2527         " *\n"
2528         " *\n"
2529         " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
2530         "Exceptions.\n"
2531         " * See https://llvm.org/LICENSE.txt for license information.\n"
2532         " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
2533         " *\n"
2534         " *===-----------------------------------------------------------------"
2535         "------===\n"
2536         " */\n\n";
2537
2538   OS << "#ifndef __ARM_BF16_H\n";
2539   OS << "#define __ARM_BF16_H\n\n";
2540
2541   OS << "typedef __bf16 bfloat16_t;\n";
2542
2543   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2544         "__nodebug__))\n\n";
2545
2546   SmallVector<Intrinsic *, 128> Defs;
2547   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2548   for (auto *R : RV)
2549     createIntrinsic(R, Defs);
2550
2551   for (auto *I : Defs)
2552     I->indexBody();
2553
2554   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2555
2556   // Only emit a def when its requirements have been met.
2557   // FIXME: This loop could be made faster, but it's fast enough for now.
2558   bool MadeProgress = true;
2559   std::string InGuard;
2560   while (!Defs.empty() && MadeProgress) {
2561     MadeProgress = false;
2562
2563     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2564          I != Defs.end(); /*No step*/) {
2565       bool DependenciesSatisfied = true;
2566       for (auto *II : (*I)->getDependencies()) {
2567         if (llvm::is_contained(Defs, II))
2568           DependenciesSatisfied = false;
2569       }
2570       if (!DependenciesSatisfied) {
2571         // Try the next one.
2572         ++I;
2573         continue;
2574       }
2575
2576       // Emit #endif/#if pair if needed.
2577       if ((*I)->getGuard() != InGuard) {
2578         if (!InGuard.empty())
2579           OS << "#endif\n";
2580         InGuard = (*I)->getGuard();
2581         if (!InGuard.empty())
2582           OS << "#if " << InGuard << "\n";
2583       }
2584
2585       // Actually generate the intrinsic code.
2586       OS << (*I)->generate();
2587
2588       MadeProgress = true;
2589       I = Defs.erase(I);
2590     }
2591   }
2592   assert(Defs.empty() && "Some requirements were not satisfied!");
2593   if (!InGuard.empty())
2594     OS << "#endif\n";
2595
2596   OS << "\n";
2597   OS << "#undef __ai\n\n";
2598
2599   OS << "#endif\n";
2600 }
2601
2602 void clang::EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2603   NeonEmitter(Records).run(OS);
2604 }
2605
2606 void clang::EmitFP16(RecordKeeper &Records, raw_ostream &OS) {
2607   NeonEmitter(Records).runFP16(OS);
2608 }
2609
2610 void clang::EmitBF16(RecordKeeper &Records, raw_ostream &OS) {
2611   NeonEmitter(Records).runBF16(OS);
2612 }
2613
2614 void clang::EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2615   NeonEmitter(Records).runHeader(OS);
2616 }
2617
2618 void clang::EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2619   llvm_unreachable("Neon test generation no longer implemented!");
2620 }