]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/compiler-rt/lib/fuzzer/FuzzerSHA1.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / compiler-rt / lib / fuzzer / FuzzerSHA1.cpp
1 //===- FuzzerSHA1.h - Private copy of the SHA1 implementation ---*- C++ -* ===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This code is taken from public domain
9 // (http://oauth.googlecode.com/svn/code/c/liboauth/src/sha1.c)
10 // and modified by adding anonymous namespace, adding an interface
11 // function fuzzer::ComputeSHA1() and removing unnecessary code.
12 //
13 // lib/Fuzzer can not use SHA1 implementation from openssl because
14 // openssl may not be available and because we may be fuzzing openssl itself.
15 // For the same reason we do not want to depend on SHA1 from LLVM tree.
16 //===----------------------------------------------------------------------===//
17
18 #include "FuzzerSHA1.h"
19 #include "FuzzerDefs.h"
20
21 /* This code is public-domain - it is based on libcrypt
22  * placed in the public domain by Wei Dai and other contributors.
23  */
24
25 #include <iomanip>
26 #include <sstream>
27 #include <stdint.h>
28 #include <string.h>
29
30 namespace {  // Added for LibFuzzer
31
32 #ifdef __BIG_ENDIAN__
33 # define SHA_BIG_ENDIAN
34 // Windows is always little endian and MSVC doesn't have <endian.h>
35 #elif defined __LITTLE_ENDIAN__ || LIBFUZZER_WINDOWS
36 /* override */
37 #elif defined __BYTE_ORDER
38 # if __BYTE_ORDER__ ==  __ORDER_BIG_ENDIAN__
39 # define SHA_BIG_ENDIAN
40 # endif
41 #else // ! defined __LITTLE_ENDIAN__
42 # include <endian.h> // machine/endian.h
43 # if __BYTE_ORDER__ ==  __ORDER_BIG_ENDIAN__
44 #  define SHA_BIG_ENDIAN
45 # endif
46 #endif
47
48
49 /* header */
50
51 #define HASH_LENGTH 20
52 #define BLOCK_LENGTH 64
53
54 typedef struct sha1nfo {
55         uint32_t buffer[BLOCK_LENGTH/4];
56         uint32_t state[HASH_LENGTH/4];
57         uint32_t byteCount;
58         uint8_t bufferOffset;
59         uint8_t keyBuffer[BLOCK_LENGTH];
60         uint8_t innerHash[HASH_LENGTH];
61 } sha1nfo;
62
63 /* public API - prototypes - TODO: doxygen*/
64
65 /**
66  */
67 void sha1_init(sha1nfo *s);
68 /**
69  */
70 void sha1_writebyte(sha1nfo *s, uint8_t data);
71 /**
72  */
73 void sha1_write(sha1nfo *s, const char *data, size_t len);
74 /**
75  */
76 uint8_t* sha1_result(sha1nfo *s);
77
78
79 /* code */
80 #define SHA1_K0  0x5a827999
81 #define SHA1_K20 0x6ed9eba1
82 #define SHA1_K40 0x8f1bbcdc
83 #define SHA1_K60 0xca62c1d6
84
85 void sha1_init(sha1nfo *s) {
86         s->state[0] = 0x67452301;
87         s->state[1] = 0xefcdab89;
88         s->state[2] = 0x98badcfe;
89         s->state[3] = 0x10325476;
90         s->state[4] = 0xc3d2e1f0;
91         s->byteCount = 0;
92         s->bufferOffset = 0;
93 }
94
95 uint32_t sha1_rol32(uint32_t number, uint8_t bits) {
96         return ((number << bits) | (number >> (32-bits)));
97 }
98
99 void sha1_hashBlock(sha1nfo *s) {
100         uint8_t i;
101         uint32_t a,b,c,d,e,t;
102
103         a=s->state[0];
104         b=s->state[1];
105         c=s->state[2];
106         d=s->state[3];
107         e=s->state[4];
108         for (i=0; i<80; i++) {
109                 if (i>=16) {
110                         t = s->buffer[(i+13)&15] ^ s->buffer[(i+8)&15] ^ s->buffer[(i+2)&15] ^ s->buffer[i&15];
111                         s->buffer[i&15] = sha1_rol32(t,1);
112                 }
113                 if (i<20) {
114                         t = (d ^ (b & (c ^ d))) + SHA1_K0;
115                 } else if (i<40) {
116                         t = (b ^ c ^ d) + SHA1_K20;
117                 } else if (i<60) {
118                         t = ((b & c) | (d & (b | c))) + SHA1_K40;
119                 } else {
120                         t = (b ^ c ^ d) + SHA1_K60;
121                 }
122                 t+=sha1_rol32(a,5) + e + s->buffer[i&15];
123                 e=d;
124                 d=c;
125                 c=sha1_rol32(b,30);
126                 b=a;
127                 a=t;
128         }
129         s->state[0] += a;
130         s->state[1] += b;
131         s->state[2] += c;
132         s->state[3] += d;
133         s->state[4] += e;
134 }
135
136 void sha1_addUncounted(sha1nfo *s, uint8_t data) {
137         uint8_t * const b = (uint8_t*) s->buffer;
138 #ifdef SHA_BIG_ENDIAN
139         b[s->bufferOffset] = data;
140 #else
141         b[s->bufferOffset ^ 3] = data;
142 #endif
143         s->bufferOffset++;
144         if (s->bufferOffset == BLOCK_LENGTH) {
145                 sha1_hashBlock(s);
146                 s->bufferOffset = 0;
147         }
148 }
149
150 void sha1_writebyte(sha1nfo *s, uint8_t data) {
151         ++s->byteCount;
152         sha1_addUncounted(s, data);
153 }
154
155 void sha1_write(sha1nfo *s, const char *data, size_t len) {
156         for (;len--;) sha1_writebyte(s, (uint8_t) *data++);
157 }
158
159 void sha1_pad(sha1nfo *s) {
160         // Implement SHA-1 padding (fips180-2 §5.1.1)
161
162         // Pad with 0x80 followed by 0x00 until the end of the block
163         sha1_addUncounted(s, 0x80);
164         while (s->bufferOffset != 56) sha1_addUncounted(s, 0x00);
165
166         // Append length in the last 8 bytes
167         sha1_addUncounted(s, 0); // We're only using 32 bit lengths
168         sha1_addUncounted(s, 0); // But SHA-1 supports 64 bit lengths
169         sha1_addUncounted(s, 0); // So zero pad the top bits
170         sha1_addUncounted(s, s->byteCount >> 29); // Shifting to multiply by 8
171         sha1_addUncounted(s, s->byteCount >> 21); // as SHA-1 supports bitstreams as well as
172         sha1_addUncounted(s, s->byteCount >> 13); // byte.
173         sha1_addUncounted(s, s->byteCount >> 5);
174         sha1_addUncounted(s, s->byteCount << 3);
175 }
176
177 uint8_t* sha1_result(sha1nfo *s) {
178         // Pad to complete the last block
179         sha1_pad(s);
180
181 #ifndef SHA_BIG_ENDIAN
182         // Swap byte order back
183         int i;
184         for (i=0; i<5; i++) {
185                 s->state[i]=
186                           (((s->state[i])<<24)& 0xff000000)
187                         | (((s->state[i])<<8) & 0x00ff0000)
188                         | (((s->state[i])>>8) & 0x0000ff00)
189                         | (((s->state[i])>>24)& 0x000000ff);
190         }
191 #endif
192
193         // Return pointer to hash (20 characters)
194         return (uint8_t*) s->state;
195 }
196
197 }  // namespace; Added for LibFuzzer
198
199 namespace fuzzer {
200
201 // The rest is added for LibFuzzer
202 void ComputeSHA1(const uint8_t *Data, size_t Len, uint8_t *Out) {
203   sha1nfo s;
204   sha1_init(&s);
205   sha1_write(&s, (const char*)Data, Len);
206   memcpy(Out, sha1_result(&s), HASH_LENGTH);
207 }
208
209 std::string Sha1ToString(const uint8_t Sha1[kSHA1NumBytes]) {
210   std::stringstream SS;
211   for (int i = 0; i < kSHA1NumBytes; i++)
212     SS << std::hex << std::setfill('0') << std::setw(2) << (unsigned)Sha1[i];
213   return SS.str();
214 }
215
216 std::string Hash(const Unit &U) {
217   uint8_t Hash[kSHA1NumBytes];
218   ComputeSHA1(U.data(), U.size(), Hash);
219   return Sha1ToString(Hash);
220 }
221
222 }