]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_thread_list.h
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / compiler-rt / lib / hwasan / hwasan_thread_list.h
1 //===-- hwasan_thread_list.h ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of HWAddressSanitizer.
10 //
11 //===----------------------------------------------------------------------===//
12
13 // HwasanThreadList is a registry for live threads, as well as an allocator for
14 // HwasanThread objects and their stack history ring buffers. There are
15 // constraints on memory layout of the shadow region and CompactRingBuffer that
16 // are part of the ABI contract between compiler-rt and llvm.
17 //
18 // * Start of the shadow memory region is aligned to 2**kShadowBaseAlignment.
19 // * All stack ring buffers are located within (2**kShadowBaseAlignment)
20 // sized region below and adjacent to the shadow region.
21 // * Each ring buffer has a size of (2**N)*4096 where N is in [0, 8), and is
22 // aligned to twice its size. The value of N can be different for each buffer.
23 //
24 // These constrains guarantee that, given an address A of any element of the
25 // ring buffer,
26 //     A_next = (A + sizeof(uptr)) & ~((1 << (N + 13)) - 1)
27 //   is the address of the next element of that ring buffer (with wrap-around).
28 // And, with K = kShadowBaseAlignment,
29 //     S = (A | ((1 << K) - 1)) + 1
30 //   (align up to kShadowBaseAlignment) is the start of the shadow region.
31 //
32 // These calculations are used in compiler instrumentation to update the ring
33 // buffer and obtain the base address of shadow using only two inputs: address
34 // of the current element of the ring buffer, and N (i.e. size of the ring
35 // buffer). Since the value of N is very limited, we pack both inputs into a
36 // single thread-local word as
37 //   (1 << (N + 56)) | A
38 // See the implementation of class CompactRingBuffer, which is what is stored in
39 // said thread-local word.
40 //
41 // Note the unusual way of aligning up the address of the shadow:
42 //   (A | ((1 << K) - 1)) + 1
43 // It is only correct if A is not already equal to the shadow base address, but
44 // it saves 2 instructions on AArch64.
45
46 #include "hwasan.h"
47 #include "hwasan_allocator.h"
48 #include "hwasan_flags.h"
49 #include "hwasan_thread.h"
50
51 #include "sanitizer_common/sanitizer_placement_new.h"
52
53 namespace __hwasan {
54
55 static uptr RingBufferSize() {
56   uptr desired_bytes = flags()->stack_history_size * sizeof(uptr);
57   // FIXME: increase the limit to 8 once this bug is fixed:
58   // https://bugs.llvm.org/show_bug.cgi?id=39030
59   for (int shift = 1; shift < 7; ++shift) {
60     uptr size = 4096 * (1ULL << shift);
61     if (size >= desired_bytes)
62       return size;
63   }
64   Printf("stack history size too large: %d\n", flags()->stack_history_size);
65   CHECK(0);
66   return 0;
67 }
68
69 struct ThreadListHead {
70   Thread *list_;
71
72   ThreadListHead() : list_(nullptr) {}
73
74   void Push(Thread *t) {
75     t->next_ = list_;
76     list_ = t;
77   }
78
79   Thread *Pop() {
80     Thread *t = list_;
81     if (t)
82       list_ = t->next_;
83     return t;
84   }
85
86   void Remove(Thread *t) {
87     Thread **cur = &list_;
88     while (*cur != t) cur = &(*cur)->next_;
89     CHECK(*cur && "thread not found");
90     *cur = (*cur)->next_;
91   }
92
93   template <class CB>
94   void ForEach(CB cb) {
95     Thread *t = list_;
96     while (t) {
97       cb(t);
98       t = t->next_;
99     }
100   }
101 };
102
103 struct ThreadStats {
104   uptr n_live_threads;
105   uptr total_stack_size;
106 };
107
108 class HwasanThreadList {
109  public:
110   HwasanThreadList(uptr storage, uptr size)
111       : free_space_(storage), free_space_end_(storage + size) {
112     // [storage, storage + size) is used as a vector of
113     // thread_alloc_size_-sized, ring_buffer_size_*2-aligned elements.
114     // Each element contains
115     // * a ring buffer at offset 0,
116     // * a Thread object at offset ring_buffer_size_.
117     ring_buffer_size_ = RingBufferSize();
118     thread_alloc_size_ =
119         RoundUpTo(ring_buffer_size_ + sizeof(Thread), ring_buffer_size_ * 2);
120   }
121
122   Thread *CreateCurrentThread() {
123     Thread *t;
124     {
125       SpinMutexLock l(&list_mutex_);
126       t = free_list_.Pop();
127       if (t) {
128         uptr start = (uptr)t - ring_buffer_size_;
129         internal_memset((void *)start, 0, ring_buffer_size_ + sizeof(Thread));
130       } else {
131         t = AllocThread();
132       }
133       live_list_.Push(t);
134     }
135     t->Init((uptr)t - ring_buffer_size_, ring_buffer_size_);
136     AddThreadStats(t);
137     return t;
138   }
139
140   void DontNeedThread(Thread *t) {
141     uptr start = (uptr)t - ring_buffer_size_;
142     ReleaseMemoryPagesToOS(start, start + thread_alloc_size_);
143   }
144
145   void ReleaseThread(Thread *t) {
146     RemoveThreadStats(t);
147     t->Destroy();
148     SpinMutexLock l(&list_mutex_);
149     live_list_.Remove(t);
150     free_list_.Push(t);
151     DontNeedThread(t);
152   }
153
154   Thread *GetThreadByBufferAddress(uptr p) {
155     return (Thread *)(RoundDownTo(p, ring_buffer_size_ * 2) +
156                       ring_buffer_size_);
157   }
158
159   uptr MemoryUsedPerThread() {
160     uptr res = sizeof(Thread) + ring_buffer_size_;
161     if (auto sz = flags()->heap_history_size)
162       res += HeapAllocationsRingBuffer::SizeInBytes(sz);
163     return res;
164   }
165
166   template <class CB>
167   void VisitAllLiveThreads(CB cb) {
168     SpinMutexLock l(&list_mutex_);
169     live_list_.ForEach(cb);
170   }
171
172   void AddThreadStats(Thread *t) {
173     SpinMutexLock l(&stats_mutex_);
174     stats_.n_live_threads++;
175     stats_.total_stack_size += t->stack_size();
176   }
177
178   void RemoveThreadStats(Thread *t) {
179     SpinMutexLock l(&stats_mutex_);
180     stats_.n_live_threads--;
181     stats_.total_stack_size -= t->stack_size();
182   }
183
184   ThreadStats GetThreadStats() {
185     SpinMutexLock l(&stats_mutex_);
186     return stats_;
187   }
188
189  private:
190   Thread *AllocThread() {
191     uptr align = ring_buffer_size_ * 2;
192     CHECK(IsAligned(free_space_, align));
193     Thread *t = (Thread *)(free_space_ + ring_buffer_size_);
194     free_space_ += thread_alloc_size_;
195     CHECK(free_space_ <= free_space_end_ && "out of thread memory");
196     return t;
197   }
198
199   uptr free_space_;
200   uptr free_space_end_;
201   uptr ring_buffer_size_;
202   uptr thread_alloc_size_;
203
204   ThreadListHead free_list_;
205   ThreadListHead live_list_;
206   SpinMutex list_mutex_;
207
208   ThreadStats stats_;
209   SpinMutex stats_mutex_;
210 };
211
212 void InitThreadList(uptr storage, uptr size);
213 HwasanThreadList &hwasanThreadList();
214
215 } // namespace