]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/compiler-rt/lib/lsan/lsan_common.cpp
Unbreak DRM KMS build by adding the needed compatibility field in the LinuxKPI.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / compiler-rt / lib / lsan / lsan_common.cpp
1 //=-- lsan_common.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of LeakSanitizer.
10 // Implementation of common leak checking functionality.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "lsan_common.h"
15
16 #include "sanitizer_common/sanitizer_common.h"
17 #include "sanitizer_common/sanitizer_flag_parser.h"
18 #include "sanitizer_common/sanitizer_flags.h"
19 #include "sanitizer_common/sanitizer_placement_new.h"
20 #include "sanitizer_common/sanitizer_procmaps.h"
21 #include "sanitizer_common/sanitizer_report_decorator.h"
22 #include "sanitizer_common/sanitizer_stackdepot.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_suppressions.h"
25 #include "sanitizer_common/sanitizer_thread_registry.h"
26 #include "sanitizer_common/sanitizer_tls_get_addr.h"
27
28 #if CAN_SANITIZE_LEAKS
29 namespace __lsan {
30
31 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
32 // also to protect the global list of root regions.
33 BlockingMutex global_mutex(LINKER_INITIALIZED);
34
35 Flags lsan_flags;
36
37 void DisableCounterUnderflow() {
38   if (common_flags()->detect_leaks) {
39     Report("Unmatched call to __lsan_enable().\n");
40     Die();
41   }
42 }
43
44 void Flags::SetDefaults() {
45 #define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
46 #include "lsan_flags.inc"
47 #undef LSAN_FLAG
48 }
49
50 void RegisterLsanFlags(FlagParser *parser, Flags *f) {
51 #define LSAN_FLAG(Type, Name, DefaultValue, Description) \
52   RegisterFlag(parser, #Name, Description, &f->Name);
53 #include "lsan_flags.inc"
54 #undef LSAN_FLAG
55 }
56
57 #define LOG_POINTERS(...)                           \
58   do {                                              \
59     if (flags()->log_pointers) Report(__VA_ARGS__); \
60   } while (0)
61
62 #define LOG_THREADS(...)                           \
63   do {                                             \
64     if (flags()->log_threads) Report(__VA_ARGS__); \
65   } while (0)
66
67 ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)];
68 static SuppressionContext *suppression_ctx = nullptr;
69 static const char kSuppressionLeak[] = "leak";
70 static const char *kSuppressionTypes[] = { kSuppressionLeak };
71 static const char kStdSuppressions[] =
72 #if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
73   // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
74   // definition.
75   "leak:*pthread_exit*\n"
76 #endif  // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
77 #if SANITIZER_MAC
78   // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173
79   "leak:*_os_trace*\n"
80 #endif
81   // TLS leak in some glibc versions, described in
82   // https://sourceware.org/bugzilla/show_bug.cgi?id=12650.
83   "leak:*tls_get_addr*\n";
84
85 void InitializeSuppressions() {
86   CHECK_EQ(nullptr, suppression_ctx);
87   suppression_ctx = new (suppression_placeholder)
88       SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
89   suppression_ctx->ParseFromFile(flags()->suppressions);
90   if (&__lsan_default_suppressions)
91     suppression_ctx->Parse(__lsan_default_suppressions());
92   suppression_ctx->Parse(kStdSuppressions);
93 }
94
95 static SuppressionContext *GetSuppressionContext() {
96   CHECK(suppression_ctx);
97   return suppression_ctx;
98 }
99
100 static InternalMmapVector<RootRegion> *root_regions;
101
102 InternalMmapVector<RootRegion> const *GetRootRegions() { return root_regions; }
103
104 void InitializeRootRegions() {
105   CHECK(!root_regions);
106   ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)];
107   root_regions = new (placeholder) InternalMmapVector<RootRegion>();
108 }
109
110 const char *MaybeCallLsanDefaultOptions() {
111   return (&__lsan_default_options) ? __lsan_default_options() : "";
112 }
113
114 void InitCommonLsan() {
115   InitializeRootRegions();
116   if (common_flags()->detect_leaks) {
117     // Initialization which can fail or print warnings should only be done if
118     // LSan is actually enabled.
119     InitializeSuppressions();
120     InitializePlatformSpecificModules();
121   }
122 }
123
124 class Decorator: public __sanitizer::SanitizerCommonDecorator {
125  public:
126   Decorator() : SanitizerCommonDecorator() { }
127   const char *Error() { return Red(); }
128   const char *Leak() { return Blue(); }
129 };
130
131 static inline bool CanBeAHeapPointer(uptr p) {
132   // Since our heap is located in mmap-ed memory, we can assume a sensible lower
133   // bound on heap addresses.
134   const uptr kMinAddress = 4 * 4096;
135   if (p < kMinAddress) return false;
136 #if defined(__x86_64__)
137   // Accept only canonical form user-space addresses.
138   return ((p >> 47) == 0);
139 #elif defined(__mips64)
140   return ((p >> 40) == 0);
141 #elif defined(__aarch64__)
142   unsigned runtimeVMA =
143     (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
144   return ((p >> runtimeVMA) == 0);
145 #else
146   return true;
147 #endif
148 }
149
150 // Scans the memory range, looking for byte patterns that point into allocator
151 // chunks. Marks those chunks with |tag| and adds them to |frontier|.
152 // There are two usage modes for this function: finding reachable chunks
153 // (|tag| = kReachable) and finding indirectly leaked chunks
154 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
155 // so |frontier| = 0.
156 void ScanRangeForPointers(uptr begin, uptr end,
157                           Frontier *frontier,
158                           const char *region_type, ChunkTag tag) {
159   CHECK(tag == kReachable || tag == kIndirectlyLeaked);
160   const uptr alignment = flags()->pointer_alignment();
161   LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end);
162   uptr pp = begin;
163   if (pp % alignment)
164     pp = pp + alignment - pp % alignment;
165   for (; pp + sizeof(void *) <= end; pp += alignment) {
166     void *p = *reinterpret_cast<void **>(pp);
167     if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
168     uptr chunk = PointsIntoChunk(p);
169     if (!chunk) continue;
170     // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
171     if (chunk == begin) continue;
172     LsanMetadata m(chunk);
173     if (m.tag() == kReachable || m.tag() == kIgnored) continue;
174
175     // Do this check relatively late so we can log only the interesting cases.
176     if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
177       LOG_POINTERS(
178           "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
179           "%zu.\n",
180           pp, p, chunk, chunk + m.requested_size(), m.requested_size());
181       continue;
182     }
183
184     m.set_tag(tag);
185     LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
186                  chunk, chunk + m.requested_size(), m.requested_size());
187     if (frontier)
188       frontier->push_back(chunk);
189   }
190 }
191
192 // Scans a global range for pointers
193 void ScanGlobalRange(uptr begin, uptr end, Frontier *frontier) {
194   uptr allocator_begin = 0, allocator_end = 0;
195   GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
196   if (begin <= allocator_begin && allocator_begin < end) {
197     CHECK_LE(allocator_begin, allocator_end);
198     CHECK_LE(allocator_end, end);
199     if (begin < allocator_begin)
200       ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
201                            kReachable);
202     if (allocator_end < end)
203       ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable);
204   } else {
205     ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
206   }
207 }
208
209 void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
210   Frontier *frontier = reinterpret_cast<Frontier *>(arg);
211   ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
212 }
213
214 // Scans thread data (stacks and TLS) for heap pointers.
215 static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
216                            Frontier *frontier) {
217   InternalMmapVector<uptr> registers(suspended_threads.RegisterCount());
218   uptr registers_begin = reinterpret_cast<uptr>(registers.data());
219   uptr registers_end =
220       reinterpret_cast<uptr>(registers.data() + registers.size());
221   for (uptr i = 0; i < suspended_threads.ThreadCount(); i++) {
222     tid_t os_id = static_cast<tid_t>(suspended_threads.GetThreadID(i));
223     LOG_THREADS("Processing thread %d.\n", os_id);
224     uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
225     DTLS *dtls;
226     bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
227                                               &tls_begin, &tls_end,
228                                               &cache_begin, &cache_end, &dtls);
229     if (!thread_found) {
230       // If a thread can't be found in the thread registry, it's probably in the
231       // process of destruction. Log this event and move on.
232       LOG_THREADS("Thread %d not found in registry.\n", os_id);
233       continue;
234     }
235     uptr sp;
236     PtraceRegistersStatus have_registers =
237         suspended_threads.GetRegistersAndSP(i, registers.data(), &sp);
238     if (have_registers != REGISTERS_AVAILABLE) {
239       Report("Unable to get registers from thread %d.\n", os_id);
240       // If unable to get SP, consider the entire stack to be reachable unless
241       // GetRegistersAndSP failed with ESRCH.
242       if (have_registers == REGISTERS_UNAVAILABLE_FATAL) continue;
243       sp = stack_begin;
244     }
245
246     if (flags()->use_registers && have_registers)
247       ScanRangeForPointers(registers_begin, registers_end, frontier,
248                            "REGISTERS", kReachable);
249
250     if (flags()->use_stacks) {
251       LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp);
252       if (sp < stack_begin || sp >= stack_end) {
253         // SP is outside the recorded stack range (e.g. the thread is running a
254         // signal handler on alternate stack, or swapcontext was used).
255         // Again, consider the entire stack range to be reachable.
256         LOG_THREADS("WARNING: stack pointer not in stack range.\n");
257         uptr page_size = GetPageSizeCached();
258         int skipped = 0;
259         while (stack_begin < stack_end &&
260                !IsAccessibleMemoryRange(stack_begin, 1)) {
261           skipped++;
262           stack_begin += page_size;
263         }
264         LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
265                     skipped, stack_begin, stack_end);
266       } else {
267         // Shrink the stack range to ignore out-of-scope values.
268         stack_begin = sp;
269       }
270       ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
271                            kReachable);
272       ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
273     }
274
275     if (flags()->use_tls) {
276       if (tls_begin) {
277         LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end);
278         // If the tls and cache ranges don't overlap, scan full tls range,
279         // otherwise, only scan the non-overlapping portions
280         if (cache_begin == cache_end || tls_end < cache_begin ||
281             tls_begin > cache_end) {
282           ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
283         } else {
284           if (tls_begin < cache_begin)
285             ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
286                                  kReachable);
287           if (tls_end > cache_end)
288             ScanRangeForPointers(cache_end, tls_end, frontier, "TLS",
289                                  kReachable);
290         }
291       }
292       if (dtls && !DTLSInDestruction(dtls)) {
293         for (uptr j = 0; j < dtls->dtv_size; ++j) {
294           uptr dtls_beg = dtls->dtv[j].beg;
295           uptr dtls_end = dtls_beg + dtls->dtv[j].size;
296           if (dtls_beg < dtls_end) {
297             LOG_THREADS("DTLS %zu at %p-%p.\n", j, dtls_beg, dtls_end);
298             ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS",
299                                  kReachable);
300           }
301         }
302       } else {
303         // We are handling a thread with DTLS under destruction. Log about
304         // this and continue.
305         LOG_THREADS("Thread %d has DTLS under destruction.\n", os_id);
306       }
307     }
308   }
309 }
310
311 void ScanRootRegion(Frontier *frontier, const RootRegion &root_region,
312                     uptr region_begin, uptr region_end, bool is_readable) {
313   uptr intersection_begin = Max(root_region.begin, region_begin);
314   uptr intersection_end = Min(region_end, root_region.begin + root_region.size);
315   if (intersection_begin >= intersection_end) return;
316   LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
317                root_region.begin, root_region.begin + root_region.size,
318                region_begin, region_end,
319                is_readable ? "readable" : "unreadable");
320   if (is_readable)
321     ScanRangeForPointers(intersection_begin, intersection_end, frontier, "ROOT",
322                          kReachable);
323 }
324
325 static void ProcessRootRegion(Frontier *frontier,
326                               const RootRegion &root_region) {
327   MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
328   MemoryMappedSegment segment;
329   while (proc_maps.Next(&segment)) {
330     ScanRootRegion(frontier, root_region, segment.start, segment.end,
331                    segment.IsReadable());
332   }
333 }
334
335 // Scans root regions for heap pointers.
336 static void ProcessRootRegions(Frontier *frontier) {
337   if (!flags()->use_root_regions) return;
338   CHECK(root_regions);
339   for (uptr i = 0; i < root_regions->size(); i++) {
340     ProcessRootRegion(frontier, (*root_regions)[i]);
341   }
342 }
343
344 static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
345   while (frontier->size()) {
346     uptr next_chunk = frontier->back();
347     frontier->pop_back();
348     LsanMetadata m(next_chunk);
349     ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
350                          "HEAP", tag);
351   }
352 }
353
354 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
355 // which are reachable from it as indirectly leaked.
356 static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
357   chunk = GetUserBegin(chunk);
358   LsanMetadata m(chunk);
359   if (m.allocated() && m.tag() != kReachable) {
360     ScanRangeForPointers(chunk, chunk + m.requested_size(),
361                          /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
362   }
363 }
364
365 // ForEachChunk callback. If chunk is marked as ignored, adds its address to
366 // frontier.
367 static void CollectIgnoredCb(uptr chunk, void *arg) {
368   CHECK(arg);
369   chunk = GetUserBegin(chunk);
370   LsanMetadata m(chunk);
371   if (m.allocated() && m.tag() == kIgnored) {
372     LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n",
373                  chunk, chunk + m.requested_size(), m.requested_size());
374     reinterpret_cast<Frontier *>(arg)->push_back(chunk);
375   }
376 }
377
378 static uptr GetCallerPC(u32 stack_id, StackDepotReverseMap *map) {
379   CHECK(stack_id);
380   StackTrace stack = map->Get(stack_id);
381   // The top frame is our malloc/calloc/etc. The next frame is the caller.
382   if (stack.size >= 2)
383     return stack.trace[1];
384   return 0;
385 }
386
387 struct InvalidPCParam {
388   Frontier *frontier;
389   StackDepotReverseMap *stack_depot_reverse_map;
390   bool skip_linker_allocations;
391 };
392
393 // ForEachChunk callback. If the caller pc is invalid or is within the linker,
394 // mark as reachable. Called by ProcessPlatformSpecificAllocations.
395 static void MarkInvalidPCCb(uptr chunk, void *arg) {
396   CHECK(arg);
397   InvalidPCParam *param = reinterpret_cast<InvalidPCParam *>(arg);
398   chunk = GetUserBegin(chunk);
399   LsanMetadata m(chunk);
400   if (m.allocated() && m.tag() != kReachable && m.tag() != kIgnored) {
401     u32 stack_id = m.stack_trace_id();
402     uptr caller_pc = 0;
403     if (stack_id > 0)
404       caller_pc = GetCallerPC(stack_id, param->stack_depot_reverse_map);
405     // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
406     // it as reachable, as we can't properly report its allocation stack anyway.
407     if (caller_pc == 0 || (param->skip_linker_allocations &&
408                            GetLinker()->containsAddress(caller_pc))) {
409       m.set_tag(kReachable);
410       param->frontier->push_back(chunk);
411     }
412   }
413 }
414
415 // On Linux, treats all chunks allocated from ld-linux.so as reachable, which
416 // covers dynamically allocated TLS blocks, internal dynamic loader's loaded
417 // modules accounting etc.
418 // Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
419 // They are allocated with a __libc_memalign() call in allocate_and_init()
420 // (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
421 // blocks, but we can make sure they come from our own allocator by intercepting
422 // __libc_memalign(). On top of that, there is no easy way to reach them. Their
423 // addresses are stored in a dynamically allocated array (the DTV) which is
424 // referenced from the static TLS. Unfortunately, we can't just rely on the DTV
425 // being reachable from the static TLS, and the dynamic TLS being reachable from
426 // the DTV. This is because the initial DTV is allocated before our interception
427 // mechanism kicks in, and thus we don't recognize it as allocated memory. We
428 // can't special-case it either, since we don't know its size.
429 // Our solution is to include in the root set all allocations made from
430 // ld-linux.so (which is where allocate_and_init() is implemented). This is
431 // guaranteed to include all dynamic TLS blocks (and possibly other allocations
432 // which we don't care about).
433 // On all other platforms, this simply checks to ensure that the caller pc is
434 // valid before reporting chunks as leaked.
435 void ProcessPC(Frontier *frontier) {
436   StackDepotReverseMap stack_depot_reverse_map;
437   InvalidPCParam arg;
438   arg.frontier = frontier;
439   arg.stack_depot_reverse_map = &stack_depot_reverse_map;
440   arg.skip_linker_allocations =
441       flags()->use_tls && flags()->use_ld_allocations && GetLinker() != nullptr;
442   ForEachChunk(MarkInvalidPCCb, &arg);
443 }
444
445 // Sets the appropriate tag on each chunk.
446 static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
447   // Holds the flood fill frontier.
448   Frontier frontier;
449
450   ForEachChunk(CollectIgnoredCb, &frontier);
451   ProcessGlobalRegions(&frontier);
452   ProcessThreads(suspended_threads, &frontier);
453   ProcessRootRegions(&frontier);
454   FloodFillTag(&frontier, kReachable);
455
456   CHECK_EQ(0, frontier.size());
457   ProcessPC(&frontier);
458
459   // The check here is relatively expensive, so we do this in a separate flood
460   // fill. That way we can skip the check for chunks that are reachable
461   // otherwise.
462   LOG_POINTERS("Processing platform-specific allocations.\n");
463   ProcessPlatformSpecificAllocations(&frontier);
464   FloodFillTag(&frontier, kReachable);
465
466   // Iterate over leaked chunks and mark those that are reachable from other
467   // leaked chunks.
468   LOG_POINTERS("Scanning leaked chunks.\n");
469   ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
470 }
471
472 // ForEachChunk callback. Resets the tags to pre-leak-check state.
473 static void ResetTagsCb(uptr chunk, void *arg) {
474   (void)arg;
475   chunk = GetUserBegin(chunk);
476   LsanMetadata m(chunk);
477   if (m.allocated() && m.tag() != kIgnored)
478     m.set_tag(kDirectlyLeaked);
479 }
480
481 static void PrintStackTraceById(u32 stack_trace_id) {
482   CHECK(stack_trace_id);
483   StackDepotGet(stack_trace_id).Print();
484 }
485
486 // ForEachChunk callback. Aggregates information about unreachable chunks into
487 // a LeakReport.
488 static void CollectLeaksCb(uptr chunk, void *arg) {
489   CHECK(arg);
490   LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
491   chunk = GetUserBegin(chunk);
492   LsanMetadata m(chunk);
493   if (!m.allocated()) return;
494   if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
495     u32 resolution = flags()->resolution;
496     u32 stack_trace_id = 0;
497     if (resolution > 0) {
498       StackTrace stack = StackDepotGet(m.stack_trace_id());
499       stack.size = Min(stack.size, resolution);
500       stack_trace_id = StackDepotPut(stack);
501     } else {
502       stack_trace_id = m.stack_trace_id();
503     }
504     leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(),
505                                 m.tag());
506   }
507 }
508
509 static void PrintMatchedSuppressions() {
510   InternalMmapVector<Suppression *> matched;
511   GetSuppressionContext()->GetMatched(&matched);
512   if (!matched.size())
513     return;
514   const char *line = "-----------------------------------------------------";
515   Printf("%s\n", line);
516   Printf("Suppressions used:\n");
517   Printf("  count      bytes template\n");
518   for (uptr i = 0; i < matched.size(); i++)
519     Printf("%7zu %10zu %s\n", static_cast<uptr>(atomic_load_relaxed(
520         &matched[i]->hit_count)), matched[i]->weight, matched[i]->templ);
521   Printf("%s\n\n", line);
522 }
523
524 struct CheckForLeaksParam {
525   bool success;
526   LeakReport leak_report;
527 };
528
529 static void ReportIfNotSuspended(ThreadContextBase *tctx, void *arg) {
530   const InternalMmapVector<tid_t> &suspended_threads =
531       *(const InternalMmapVector<tid_t> *)arg;
532   if (tctx->status == ThreadStatusRunning) {
533     uptr i = InternalLowerBound(suspended_threads, 0, suspended_threads.size(),
534                                 tctx->os_id, CompareLess<int>());
535     if (i >= suspended_threads.size() || suspended_threads[i] != tctx->os_id)
536       Report("Running thread %d was not suspended. False leaks are possible.\n",
537              tctx->os_id);
538   }
539 }
540
541 static void ReportUnsuspendedThreads(
542     const SuspendedThreadsList &suspended_threads) {
543   InternalMmapVector<tid_t> threads(suspended_threads.ThreadCount());
544   for (uptr i = 0; i < suspended_threads.ThreadCount(); ++i)
545     threads[i] = suspended_threads.GetThreadID(i);
546
547   Sort(threads.data(), threads.size());
548
549   GetThreadRegistryLocked()->RunCallbackForEachThreadLocked(
550       &ReportIfNotSuspended, &threads);
551 }
552
553 static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
554                                   void *arg) {
555   CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
556   CHECK(param);
557   CHECK(!param->success);
558   ReportUnsuspendedThreads(suspended_threads);
559   ClassifyAllChunks(suspended_threads);
560   ForEachChunk(CollectLeaksCb, &param->leak_report);
561   // Clean up for subsequent leak checks. This assumes we did not overwrite any
562   // kIgnored tags.
563   ForEachChunk(ResetTagsCb, nullptr);
564   param->success = true;
565 }
566
567 static bool CheckForLeaks() {
568   if (&__lsan_is_turned_off && __lsan_is_turned_off())
569       return false;
570   EnsureMainThreadIDIsCorrect();
571   CheckForLeaksParam param;
572   param.success = false;
573   LockStuffAndStopTheWorld(CheckForLeaksCallback, &param);
574
575   if (!param.success) {
576     Report("LeakSanitizer has encountered a fatal error.\n");
577     Report(
578         "HINT: For debugging, try setting environment variable "
579         "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
580     Report(
581         "HINT: LeakSanitizer does not work under ptrace (strace, gdb, etc)\n");
582     Die();
583   }
584   param.leak_report.ApplySuppressions();
585   uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount();
586   if (unsuppressed_count > 0) {
587     Decorator d;
588     Printf("\n"
589            "================================================================="
590            "\n");
591     Printf("%s", d.Error());
592     Report("ERROR: LeakSanitizer: detected memory leaks\n");
593     Printf("%s", d.Default());
594     param.leak_report.ReportTopLeaks(flags()->max_leaks);
595   }
596   if (common_flags()->print_suppressions)
597     PrintMatchedSuppressions();
598   if (unsuppressed_count > 0) {
599     param.leak_report.PrintSummary();
600     return true;
601   }
602   return false;
603 }
604
605 static bool has_reported_leaks = false;
606 bool HasReportedLeaks() { return has_reported_leaks; }
607
608 void DoLeakCheck() {
609   BlockingMutexLock l(&global_mutex);
610   static bool already_done;
611   if (already_done) return;
612   already_done = true;
613   has_reported_leaks = CheckForLeaks();
614   if (has_reported_leaks) HandleLeaks();
615 }
616
617 static int DoRecoverableLeakCheck() {
618   BlockingMutexLock l(&global_mutex);
619   bool have_leaks = CheckForLeaks();
620   return have_leaks ? 1 : 0;
621 }
622
623 void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); }
624
625 static Suppression *GetSuppressionForAddr(uptr addr) {
626   Suppression *s = nullptr;
627
628   // Suppress by module name.
629   SuppressionContext *suppressions = GetSuppressionContext();
630   if (const char *module_name =
631           Symbolizer::GetOrInit()->GetModuleNameForPc(addr))
632     if (suppressions->Match(module_name, kSuppressionLeak, &s))
633       return s;
634
635   // Suppress by file or function name.
636   SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
637   for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
638     if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) ||
639         suppressions->Match(cur->info.file, kSuppressionLeak, &s)) {
640       break;
641     }
642   }
643   frames->ClearAll();
644   return s;
645 }
646
647 static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
648   StackTrace stack = StackDepotGet(stack_trace_id);
649   for (uptr i = 0; i < stack.size; i++) {
650     Suppression *s = GetSuppressionForAddr(
651         StackTrace::GetPreviousInstructionPc(stack.trace[i]));
652     if (s) return s;
653   }
654   return nullptr;
655 }
656
657 ///// LeakReport implementation. /////
658
659 // A hard limit on the number of distinct leaks, to avoid quadratic complexity
660 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
661 // in real-world applications.
662 // FIXME: Get rid of this limit by changing the implementation of LeakReport to
663 // use a hash table.
664 const uptr kMaxLeaksConsidered = 5000;
665
666 void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id,
667                                 uptr leaked_size, ChunkTag tag) {
668   CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
669   bool is_directly_leaked = (tag == kDirectlyLeaked);
670   uptr i;
671   for (i = 0; i < leaks_.size(); i++) {
672     if (leaks_[i].stack_trace_id == stack_trace_id &&
673         leaks_[i].is_directly_leaked == is_directly_leaked) {
674       leaks_[i].hit_count++;
675       leaks_[i].total_size += leaked_size;
676       break;
677     }
678   }
679   if (i == leaks_.size()) {
680     if (leaks_.size() == kMaxLeaksConsidered) return;
681     Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id,
682                   is_directly_leaked, /* is_suppressed */ false };
683     leaks_.push_back(leak);
684   }
685   if (flags()->report_objects) {
686     LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
687     leaked_objects_.push_back(obj);
688   }
689 }
690
691 static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
692   if (leak1.is_directly_leaked == leak2.is_directly_leaked)
693     return leak1.total_size > leak2.total_size;
694   else
695     return leak1.is_directly_leaked;
696 }
697
698 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
699   CHECK(leaks_.size() <= kMaxLeaksConsidered);
700   Printf("\n");
701   if (leaks_.size() == kMaxLeaksConsidered)
702     Printf("Too many leaks! Only the first %zu leaks encountered will be "
703            "reported.\n",
704            kMaxLeaksConsidered);
705
706   uptr unsuppressed_count = UnsuppressedLeakCount();
707   if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
708     Printf("The %zu top leak(s):\n", num_leaks_to_report);
709   Sort(leaks_.data(), leaks_.size(), &LeakComparator);
710   uptr leaks_reported = 0;
711   for (uptr i = 0; i < leaks_.size(); i++) {
712     if (leaks_[i].is_suppressed) continue;
713     PrintReportForLeak(i);
714     leaks_reported++;
715     if (leaks_reported == num_leaks_to_report) break;
716   }
717   if (leaks_reported < unsuppressed_count) {
718     uptr remaining = unsuppressed_count - leaks_reported;
719     Printf("Omitting %zu more leak(s).\n", remaining);
720   }
721 }
722
723 void LeakReport::PrintReportForLeak(uptr index) {
724   Decorator d;
725   Printf("%s", d.Leak());
726   Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
727          leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
728          leaks_[index].total_size, leaks_[index].hit_count);
729   Printf("%s", d.Default());
730
731   PrintStackTraceById(leaks_[index].stack_trace_id);
732
733   if (flags()->report_objects) {
734     Printf("Objects leaked above:\n");
735     PrintLeakedObjectsForLeak(index);
736     Printf("\n");
737   }
738 }
739
740 void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
741   u32 leak_id = leaks_[index].id;
742   for (uptr j = 0; j < leaked_objects_.size(); j++) {
743     if (leaked_objects_[j].leak_id == leak_id)
744       Printf("%p (%zu bytes)\n", leaked_objects_[j].addr,
745              leaked_objects_[j].size);
746   }
747 }
748
749 void LeakReport::PrintSummary() {
750   CHECK(leaks_.size() <= kMaxLeaksConsidered);
751   uptr bytes = 0, allocations = 0;
752   for (uptr i = 0; i < leaks_.size(); i++) {
753       if (leaks_[i].is_suppressed) continue;
754       bytes += leaks_[i].total_size;
755       allocations += leaks_[i].hit_count;
756   }
757   InternalScopedString summary(kMaxSummaryLength);
758   summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes,
759                  allocations);
760   ReportErrorSummary(summary.data());
761 }
762
763 void LeakReport::ApplySuppressions() {
764   for (uptr i = 0; i < leaks_.size(); i++) {
765     Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
766     if (s) {
767       s->weight += leaks_[i].total_size;
768       atomic_store_relaxed(&s->hit_count, atomic_load_relaxed(&s->hit_count) +
769           leaks_[i].hit_count);
770       leaks_[i].is_suppressed = true;
771     }
772   }
773 }
774
775 uptr LeakReport::UnsuppressedLeakCount() {
776   uptr result = 0;
777   for (uptr i = 0; i < leaks_.size(); i++)
778     if (!leaks_[i].is_suppressed) result++;
779   return result;
780 }
781
782 } // namespace __lsan
783 #else // CAN_SANITIZE_LEAKS
784 namespace __lsan {
785 void InitCommonLsan() { }
786 void DoLeakCheck() { }
787 void DoRecoverableLeakCheckVoid() { }
788 void DisableInThisThread() { }
789 void EnableInThisThread() { }
790 }
791 #endif // CAN_SANITIZE_LEAKS
792
793 using namespace __lsan;
794
795 extern "C" {
796 SANITIZER_INTERFACE_ATTRIBUTE
797 void __lsan_ignore_object(const void *p) {
798 #if CAN_SANITIZE_LEAKS
799   if (!common_flags()->detect_leaks)
800     return;
801   // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
802   // locked.
803   BlockingMutexLock l(&global_mutex);
804   IgnoreObjectResult res = IgnoreObjectLocked(p);
805   if (res == kIgnoreObjectInvalid)
806     VReport(1, "__lsan_ignore_object(): no heap object found at %p", p);
807   if (res == kIgnoreObjectAlreadyIgnored)
808     VReport(1, "__lsan_ignore_object(): "
809            "heap object at %p is already being ignored\n", p);
810   if (res == kIgnoreObjectSuccess)
811     VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
812 #endif // CAN_SANITIZE_LEAKS
813 }
814
815 SANITIZER_INTERFACE_ATTRIBUTE
816 void __lsan_register_root_region(const void *begin, uptr size) {
817 #if CAN_SANITIZE_LEAKS
818   BlockingMutexLock l(&global_mutex);
819   CHECK(root_regions);
820   RootRegion region = {reinterpret_cast<uptr>(begin), size};
821   root_regions->push_back(region);
822   VReport(1, "Registered root region at %p of size %llu\n", begin, size);
823 #endif // CAN_SANITIZE_LEAKS
824 }
825
826 SANITIZER_INTERFACE_ATTRIBUTE
827 void __lsan_unregister_root_region(const void *begin, uptr size) {
828 #if CAN_SANITIZE_LEAKS
829   BlockingMutexLock l(&global_mutex);
830   CHECK(root_regions);
831   bool removed = false;
832   for (uptr i = 0; i < root_regions->size(); i++) {
833     RootRegion region = (*root_regions)[i];
834     if (region.begin == reinterpret_cast<uptr>(begin) && region.size == size) {
835       removed = true;
836       uptr last_index = root_regions->size() - 1;
837       (*root_regions)[i] = (*root_regions)[last_index];
838       root_regions->pop_back();
839       VReport(1, "Unregistered root region at %p of size %llu\n", begin, size);
840       break;
841     }
842   }
843   if (!removed) {
844     Report(
845         "__lsan_unregister_root_region(): region at %p of size %llu has not "
846         "been registered.\n",
847         begin, size);
848     Die();
849   }
850 #endif // CAN_SANITIZE_LEAKS
851 }
852
853 SANITIZER_INTERFACE_ATTRIBUTE
854 void __lsan_disable() {
855 #if CAN_SANITIZE_LEAKS
856   __lsan::DisableInThisThread();
857 #endif
858 }
859
860 SANITIZER_INTERFACE_ATTRIBUTE
861 void __lsan_enable() {
862 #if CAN_SANITIZE_LEAKS
863   __lsan::EnableInThisThread();
864 #endif
865 }
866
867 SANITIZER_INTERFACE_ATTRIBUTE
868 void __lsan_do_leak_check() {
869 #if CAN_SANITIZE_LEAKS
870   if (common_flags()->detect_leaks)
871     __lsan::DoLeakCheck();
872 #endif // CAN_SANITIZE_LEAKS
873 }
874
875 SANITIZER_INTERFACE_ATTRIBUTE
876 int __lsan_do_recoverable_leak_check() {
877 #if CAN_SANITIZE_LEAKS
878   if (common_flags()->detect_leaks)
879     return __lsan::DoRecoverableLeakCheck();
880 #endif // CAN_SANITIZE_LEAKS
881   return 0;
882 }
883
884 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
885 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
886 const char * __lsan_default_options() {
887   return "";
888 }
889
890 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
891 int __lsan_is_turned_off() {
892   return 0;
893 }
894
895 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
896 const char *__lsan_default_suppressions() {
897   return "";
898 }
899 #endif
900 } // extern "C"