]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/lld/ELF/ICF.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / lld / ELF / ICF.cpp
1 //===- ICF.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ICF is short for Identical Code Folding. This is a size optimization to
10 // identify and merge two or more read-only sections (typically functions)
11 // that happened to have the same contents. It usually reduces output size
12 // by a few percent.
13 //
14 // In ICF, two sections are considered identical if they have the same
15 // section flags, section data, and relocations. Relocations are tricky,
16 // because two relocations are considered the same if they have the same
17 // relocation types, values, and if they point to the same sections *in
18 // terms of ICF*.
19 //
20 // Here is an example. If foo and bar defined below are compiled to the
21 // same machine instructions, ICF can and should merge the two, although
22 // their relocations point to each other.
23 //
24 //   void foo() { bar(); }
25 //   void bar() { foo(); }
26 //
27 // If you merge the two, their relocations point to the same section and
28 // thus you know they are mergeable, but how do you know they are
29 // mergeable in the first place? This is not an easy problem to solve.
30 //
31 // What we are doing in LLD is to partition sections into equivalence
32 // classes. Sections in the same equivalence class when the algorithm
33 // terminates are considered identical. Here are details:
34 //
35 // 1. First, we partition sections using their hash values as keys. Hash
36 //    values contain section types, section contents and numbers of
37 //    relocations. During this step, relocation targets are not taken into
38 //    account. We just put sections that apparently differ into different
39 //    equivalence classes.
40 //
41 // 2. Next, for each equivalence class, we visit sections to compare
42 //    relocation targets. Relocation targets are considered equivalent if
43 //    their targets are in the same equivalence class. Sections with
44 //    different relocation targets are put into different equivalence
45 //    clases.
46 //
47 // 3. If we split an equivalence class in step 2, two relocations
48 //    previously target the same equivalence class may now target
49 //    different equivalence classes. Therefore, we repeat step 2 until a
50 //    convergence is obtained.
51 //
52 // 4. For each equivalence class C, pick an arbitrary section in C, and
53 //    merge all the other sections in C with it.
54 //
55 // For small programs, this algorithm needs 3-5 iterations. For large
56 // programs such as Chromium, it takes more than 20 iterations.
57 //
58 // This algorithm was mentioned as an "optimistic algorithm" in [1],
59 // though gold implements a different algorithm than this.
60 //
61 // We parallelize each step so that multiple threads can work on different
62 // equivalence classes concurrently. That gave us a large performance
63 // boost when applying ICF on large programs. For example, MSVC link.exe
64 // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
65 // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
66 // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
67 // faster than MSVC or gold though.
68 //
69 // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
70 // in the Gold Linker
71 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
72 //
73 //===----------------------------------------------------------------------===//
74
75 #include "ICF.h"
76 #include "Config.h"
77 #include "SymbolTable.h"
78 #include "Symbols.h"
79 #include "SyntheticSections.h"
80 #include "Writer.h"
81 #include "lld/Common/Threads.h"
82 #include "llvm/ADT/StringExtras.h"
83 #include "llvm/BinaryFormat/ELF.h"
84 #include "llvm/Object/ELF.h"
85 #include "llvm/Support/xxhash.h"
86 #include <algorithm>
87 #include <atomic>
88
89 using namespace lld;
90 using namespace lld::elf;
91 using namespace llvm;
92 using namespace llvm::ELF;
93 using namespace llvm::object;
94
95 namespace {
96 template <class ELFT> class ICF {
97 public:
98   void run();
99
100 private:
101   void segregate(size_t begin, size_t end, bool constant);
102
103   template <class RelTy>
104   bool constantEq(const InputSection *a, ArrayRef<RelTy> relsA,
105                   const InputSection *b, ArrayRef<RelTy> relsB);
106
107   template <class RelTy>
108   bool variableEq(const InputSection *a, ArrayRef<RelTy> relsA,
109                   const InputSection *b, ArrayRef<RelTy> relsB);
110
111   bool equalsConstant(const InputSection *a, const InputSection *b);
112   bool equalsVariable(const InputSection *a, const InputSection *b);
113
114   size_t findBoundary(size_t begin, size_t end);
115
116   void forEachClassRange(size_t begin, size_t end,
117                          llvm::function_ref<void(size_t, size_t)> fn);
118
119   void forEachClass(llvm::function_ref<void(size_t, size_t)> fn);
120
121   std::vector<InputSection *> sections;
122
123   // We repeat the main loop while `Repeat` is true.
124   std::atomic<bool> repeat;
125
126   // The main loop counter.
127   int cnt = 0;
128
129   // We have two locations for equivalence classes. On the first iteration
130   // of the main loop, Class[0] has a valid value, and Class[1] contains
131   // garbage. We read equivalence classes from slot 0 and write to slot 1.
132   // So, Class[0] represents the current class, and Class[1] represents
133   // the next class. On each iteration, we switch their roles and use them
134   // alternately.
135   //
136   // Why are we doing this? Recall that other threads may be working on
137   // other equivalence classes in parallel. They may read sections that we
138   // are updating. We cannot update equivalence classes in place because
139   // it breaks the invariance that all possibly-identical sections must be
140   // in the same equivalence class at any moment. In other words, the for
141   // loop to update equivalence classes is not atomic, and that is
142   // observable from other threads. By writing new classes to other
143   // places, we can keep the invariance.
144   //
145   // Below, `Current` has the index of the current class, and `Next` has
146   // the index of the next class. If threading is enabled, they are either
147   // (0, 1) or (1, 0).
148   //
149   // Note on single-thread: if that's the case, they are always (0, 0)
150   // because we can safely read the next class without worrying about race
151   // conditions. Using the same location makes this algorithm converge
152   // faster because it uses results of the same iteration earlier.
153   int current = 0;
154   int next = 0;
155 };
156 }
157
158 // Returns true if section S is subject of ICF.
159 static bool isEligible(InputSection *s) {
160   if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC))
161     return false;
162
163   // Don't merge writable sections. .data.rel.ro sections are marked as writable
164   // but are semantically read-only.
165   if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" &&
166       !s->name.startswith(".data.rel.ro."))
167     return false;
168
169   // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
170   // so we don't consider them for ICF individually.
171   if (s->flags & SHF_LINK_ORDER)
172     return false;
173
174   // Don't merge synthetic sections as their Data member is not valid and empty.
175   // The Data member needs to be valid for ICF as it is used by ICF to determine
176   // the equality of section contents.
177   if (isa<SyntheticSection>(s))
178     return false;
179
180   // .init and .fini contains instructions that must be executed to initialize
181   // and finalize the process. They cannot and should not be merged.
182   if (s->name == ".init" || s->name == ".fini")
183     return false;
184
185   // A user program may enumerate sections named with a C identifier using
186   // __start_* and __stop_* symbols. We cannot ICF any such sections because
187   // that could change program semantics.
188   if (isValidCIdentifier(s->name))
189     return false;
190
191   return true;
192 }
193
194 // Split an equivalence class into smaller classes.
195 template <class ELFT>
196 void ICF<ELFT>::segregate(size_t begin, size_t end, bool constant) {
197   // This loop rearranges sections in [Begin, End) so that all sections
198   // that are equal in terms of equals{Constant,Variable} are contiguous
199   // in [Begin, End).
200   //
201   // The algorithm is quadratic in the worst case, but that is not an
202   // issue in practice because the number of the distinct sections in
203   // each range is usually very small.
204
205   while (begin < end) {
206     // Divide [Begin, End) into two. Let Mid be the start index of the
207     // second group.
208     auto bound =
209         std::stable_partition(sections.begin() + begin + 1,
210                               sections.begin() + end, [&](InputSection *s) {
211                                 if (constant)
212                                   return equalsConstant(sections[begin], s);
213                                 return equalsVariable(sections[begin], s);
214                               });
215     size_t mid = bound - sections.begin();
216
217     // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
218     // updating the sections in [Begin, Mid). We use Mid as an equivalence
219     // class ID because every group ends with a unique index.
220     for (size_t i = begin; i < mid; ++i)
221       sections[i]->eqClass[next] = mid;
222
223     // If we created a group, we need to iterate the main loop again.
224     if (mid != end)
225       repeat = true;
226
227     begin = mid;
228   }
229 }
230
231 // Compare two lists of relocations.
232 template <class ELFT>
233 template <class RelTy>
234 bool ICF<ELFT>::constantEq(const InputSection *secA, ArrayRef<RelTy> ra,
235                            const InputSection *secB, ArrayRef<RelTy> rb) {
236   for (size_t i = 0; i < ra.size(); ++i) {
237     if (ra[i].r_offset != rb[i].r_offset ||
238         ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL))
239       return false;
240
241     uint64_t addA = getAddend<ELFT>(ra[i]);
242     uint64_t addB = getAddend<ELFT>(rb[i]);
243
244     Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
245     Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
246     if (&sa == &sb) {
247       if (addA == addB)
248         continue;
249       return false;
250     }
251
252     auto *da = dyn_cast<Defined>(&sa);
253     auto *db = dyn_cast<Defined>(&sb);
254
255     // Placeholder symbols generated by linker scripts look the same now but
256     // may have different values later.
257     if (!da || !db || da->scriptDefined || db->scriptDefined)
258       return false;
259
260     // Relocations referring to absolute symbols are constant-equal if their
261     // values are equal.
262     if (!da->section && !db->section && da->value + addA == db->value + addB)
263       continue;
264     if (!da->section || !db->section)
265       return false;
266
267     if (da->section->kind() != db->section->kind())
268       return false;
269
270     // Relocations referring to InputSections are constant-equal if their
271     // section offsets are equal.
272     if (isa<InputSection>(da->section)) {
273       if (da->value + addA == db->value + addB)
274         continue;
275       return false;
276     }
277
278     // Relocations referring to MergeInputSections are constant-equal if their
279     // offsets in the output section are equal.
280     auto *x = dyn_cast<MergeInputSection>(da->section);
281     if (!x)
282       return false;
283     auto *y = cast<MergeInputSection>(db->section);
284     if (x->getParent() != y->getParent())
285       return false;
286
287     uint64_t offsetA =
288         sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA;
289     uint64_t offsetB =
290         sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB;
291     if (offsetA != offsetB)
292       return false;
293   }
294
295   return true;
296 }
297
298 // Compare "non-moving" part of two InputSections, namely everything
299 // except relocation targets.
300 template <class ELFT>
301 bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) {
302   if (a->numRelocations != b->numRelocations || a->flags != b->flags ||
303       a->getSize() != b->getSize() || a->data() != b->data())
304     return false;
305
306   // If two sections have different output sections, we cannot merge them.
307   // FIXME: This doesn't do the right thing in the case where there is a linker
308   // script. We probably need to move output section assignment before ICF to
309   // get the correct behaviour here.
310   if (getOutputSectionName(a) != getOutputSectionName(b))
311     return false;
312
313   if (a->areRelocsRela)
314     return constantEq(a, a->template relas<ELFT>(), b,
315                       b->template relas<ELFT>());
316   return constantEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>());
317 }
318
319 // Compare two lists of relocations. Returns true if all pairs of
320 // relocations point to the same section in terms of ICF.
321 template <class ELFT>
322 template <class RelTy>
323 bool ICF<ELFT>::variableEq(const InputSection *secA, ArrayRef<RelTy> ra,
324                            const InputSection *secB, ArrayRef<RelTy> rb) {
325   assert(ra.size() == rb.size());
326
327   for (size_t i = 0; i < ra.size(); ++i) {
328     // The two sections must be identical.
329     Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
330     Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
331     if (&sa == &sb)
332       continue;
333
334     auto *da = cast<Defined>(&sa);
335     auto *db = cast<Defined>(&sb);
336
337     // We already dealt with absolute and non-InputSection symbols in
338     // constantEq, and for InputSections we have already checked everything
339     // except the equivalence class.
340     if (!da->section)
341       continue;
342     auto *x = dyn_cast<InputSection>(da->section);
343     if (!x)
344       continue;
345     auto *y = cast<InputSection>(db->section);
346
347     // Ineligible sections are in the special equivalence class 0.
348     // They can never be the same in terms of the equivalence class.
349     if (x->eqClass[current] == 0)
350       return false;
351     if (x->eqClass[current] != y->eqClass[current])
352       return false;
353   };
354
355   return true;
356 }
357
358 // Compare "moving" part of two InputSections, namely relocation targets.
359 template <class ELFT>
360 bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) {
361   if (a->areRelocsRela)
362     return variableEq(a, a->template relas<ELFT>(), b,
363                       b->template relas<ELFT>());
364   return variableEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>());
365 }
366
367 template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) {
368   uint32_t eqClass = sections[begin]->eqClass[current];
369   for (size_t i = begin + 1; i < end; ++i)
370     if (eqClass != sections[i]->eqClass[current])
371       return i;
372   return end;
373 }
374
375 // Sections in the same equivalence class are contiguous in Sections
376 // vector. Therefore, Sections vector can be considered as contiguous
377 // groups of sections, grouped by the class.
378 //
379 // This function calls Fn on every group within [Begin, End).
380 template <class ELFT>
381 void ICF<ELFT>::forEachClassRange(size_t begin, size_t end,
382                                   llvm::function_ref<void(size_t, size_t)> fn) {
383   while (begin < end) {
384     size_t mid = findBoundary(begin, end);
385     fn(begin, mid);
386     begin = mid;
387   }
388 }
389
390 // Call Fn on each equivalence class.
391 template <class ELFT>
392 void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) {
393   // If threading is disabled or the number of sections are
394   // too small to use threading, call Fn sequentially.
395   if (!threadsEnabled || sections.size() < 1024) {
396     forEachClassRange(0, sections.size(), fn);
397     ++cnt;
398     return;
399   }
400
401   current = cnt % 2;
402   next = (cnt + 1) % 2;
403
404   // Shard into non-overlapping intervals, and call Fn in parallel.
405   // The sharding must be completed before any calls to Fn are made
406   // so that Fn can modify the Chunks in its shard without causing data
407   // races.
408   const size_t numShards = 256;
409   size_t step = sections.size() / numShards;
410   size_t boundaries[numShards + 1];
411   boundaries[0] = 0;
412   boundaries[numShards] = sections.size();
413
414   parallelForEachN(1, numShards, [&](size_t i) {
415     boundaries[i] = findBoundary((i - 1) * step, sections.size());
416   });
417
418   parallelForEachN(1, numShards + 1, [&](size_t i) {
419     if (boundaries[i - 1] < boundaries[i])
420       forEachClassRange(boundaries[i - 1], boundaries[i], fn);
421   });
422   ++cnt;
423 }
424
425 // Combine the hashes of the sections referenced by the given section into its
426 // hash.
427 template <class ELFT, class RelTy>
428 static void combineRelocHashes(unsigned cnt, InputSection *isec,
429                                ArrayRef<RelTy> rels) {
430   uint32_t hash = isec->eqClass[cnt % 2];
431   for (RelTy rel : rels) {
432     Symbol &s = isec->template getFile<ELFT>()->getRelocTargetSym(rel);
433     if (auto *d = dyn_cast<Defined>(&s))
434       if (auto *relSec = dyn_cast_or_null<InputSection>(d->section))
435         hash += relSec->eqClass[cnt % 2];
436   }
437   // Set MSB to 1 to avoid collisions with non-hash IDs.
438   isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
439 }
440
441 static void print(const Twine &s) {
442   if (config->printIcfSections)
443     message(s);
444 }
445
446 // The main function of ICF.
447 template <class ELFT> void ICF<ELFT>::run() {
448   // Collect sections to merge.
449   for (InputSectionBase *sec : inputSections)
450     if (auto *s = dyn_cast<InputSection>(sec))
451       if (isEligible(s))
452         sections.push_back(s);
453
454   // Initially, we use hash values to partition sections.
455   parallelForEach(sections, [&](InputSection *s) {
456     s->eqClass[0] = xxHash64(s->data());
457   });
458
459   for (unsigned cnt = 0; cnt != 2; ++cnt) {
460     parallelForEach(sections, [&](InputSection *s) {
461       if (s->areRelocsRela)
462         combineRelocHashes<ELFT>(cnt, s, s->template relas<ELFT>());
463       else
464         combineRelocHashes<ELFT>(cnt, s, s->template rels<ELFT>());
465     });
466   }
467
468   // From now on, sections in Sections vector are ordered so that sections
469   // in the same equivalence class are consecutive in the vector.
470   llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) {
471     return a->eqClass[0] < b->eqClass[0];
472   });
473
474   // Compare static contents and assign unique IDs for each static content.
475   forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); });
476
477   // Split groups by comparing relocations until convergence is obtained.
478   do {
479     repeat = false;
480     forEachClass(
481         [&](size_t begin, size_t end) { segregate(begin, end, false); });
482   } while (repeat);
483
484   log("ICF needed " + Twine(cnt) + " iterations");
485
486   // Merge sections by the equivalence class.
487   forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) {
488     if (end - begin == 1)
489       return;
490     print("selected section " + toString(sections[begin]));
491     for (size_t i = begin + 1; i < end; ++i) {
492       print("  removing identical section " + toString(sections[i]));
493       sections[begin]->replace(sections[i]);
494
495       // At this point we know sections merged are fully identical and hence
496       // we want to remove duplicate implicit dependencies such as link order
497       // and relocation sections.
498       for (InputSection *isec : sections[i]->dependentSections)
499         isec->markDead();
500     }
501   });
502 }
503
504 // ICF entry point function.
505 template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); }
506
507 template void elf::doIcf<ELF32LE>();
508 template void elf::doIcf<ELF32BE>();
509 template void elf::doIcf<ELF64LE>();
510 template void elf::doIcf<ELF64BE>();