]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/lldb/include/lldb/Utility/ArchSpec.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / lldb / include / lldb / Utility / ArchSpec.h
1 //===-- ArchSpec.h ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #ifndef LLDB_UTILITY_ARCHSPEC_H
10 #define LLDB_UTILITY_ARCHSPEC_H
11
12 #include "lldb/Utility/CompletionRequest.h"
13 #include "lldb/Utility/ConstString.h"
14 #include "lldb/lldb-enumerations.h"
15 #include "lldb/lldb-forward.h"
16 #include "lldb/lldb-private-enumerations.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include <cstddef>
20 #include <cstdint>
21 #include <string>
22
23 namespace lldb_private {
24
25 /// \class ArchSpec ArchSpec.h "lldb/Utility/ArchSpec.h" An architecture
26 /// specification class.
27 ///
28 /// A class designed to be created from a cpu type and subtype, a
29 /// string representation, or an llvm::Triple.  Keeping all of the conversions
30 /// of strings to architecture enumeration values confined to this class
31 /// allows new architecture support to be added easily.
32 class ArchSpec {
33 public:
34   enum MIPSSubType {
35     eMIPSSubType_unknown,
36     eMIPSSubType_mips32,
37     eMIPSSubType_mips32r2,
38     eMIPSSubType_mips32r6,
39     eMIPSSubType_mips32el,
40     eMIPSSubType_mips32r2el,
41     eMIPSSubType_mips32r6el,
42     eMIPSSubType_mips64,
43     eMIPSSubType_mips64r2,
44     eMIPSSubType_mips64r6,
45     eMIPSSubType_mips64el,
46     eMIPSSubType_mips64r2el,
47     eMIPSSubType_mips64r6el,
48   };
49
50   // Masks for the ases word of an ABI flags structure.
51   enum MIPSASE {
52     eMIPSAse_dsp = 0x00000001,       // DSP ASE
53     eMIPSAse_dspr2 = 0x00000002,     // DSP R2 ASE
54     eMIPSAse_eva = 0x00000004,       // Enhanced VA Scheme
55     eMIPSAse_mcu = 0x00000008,       // MCU (MicroController) ASE
56     eMIPSAse_mdmx = 0x00000010,      // MDMX ASE
57     eMIPSAse_mips3d = 0x00000020,    // MIPS-3D ASE
58     eMIPSAse_mt = 0x00000040,        // MT ASE
59     eMIPSAse_smartmips = 0x00000080, // SmartMIPS ASE
60     eMIPSAse_virt = 0x00000100,      // VZ ASE
61     eMIPSAse_msa = 0x00000200,       // MSA ASE
62     eMIPSAse_mips16 = 0x00000400,    // MIPS16 ASE
63     eMIPSAse_micromips = 0x00000800, // MICROMIPS ASE
64     eMIPSAse_xpa = 0x00001000,       // XPA ASE
65     eMIPSAse_mask = 0x00001fff,
66     eMIPSABI_O32 = 0x00002000,
67     eMIPSABI_N32 = 0x00004000,
68     eMIPSABI_N64 = 0x00008000,
69     eMIPSABI_O64 = 0x00020000,
70     eMIPSABI_EABI32 = 0x00040000,
71     eMIPSABI_EABI64 = 0x00080000,
72     eMIPSABI_mask = 0x000ff000
73   };
74
75   // MIPS Floating point ABI Values
76   enum MIPS_ABI_FP {
77     eMIPS_ABI_FP_ANY = 0x00000000,
78     eMIPS_ABI_FP_DOUBLE = 0x00100000, // hard float / -mdouble-float
79     eMIPS_ABI_FP_SINGLE = 0x00200000, // hard float / -msingle-float
80     eMIPS_ABI_FP_SOFT = 0x00300000,   // soft float
81     eMIPS_ABI_FP_OLD_64 = 0x00400000, // -mips32r2 -mfp64
82     eMIPS_ABI_FP_XX = 0x00500000,     // -mfpxx
83     eMIPS_ABI_FP_64 = 0x00600000,     // -mips32r2 -mfp64
84     eMIPS_ABI_FP_64A = 0x00700000,    // -mips32r2 -mfp64 -mno-odd-spreg
85     eMIPS_ABI_FP_mask = 0x00700000
86   };
87
88   // ARM specific e_flags
89   enum ARMeflags {
90     eARM_abi_soft_float = 0x00000200,
91     eARM_abi_hard_float = 0x00000400
92   };
93
94   enum Core {
95     eCore_arm_generic,
96     eCore_arm_armv4,
97     eCore_arm_armv4t,
98     eCore_arm_armv5,
99     eCore_arm_armv5e,
100     eCore_arm_armv5t,
101     eCore_arm_armv6,
102     eCore_arm_armv6m,
103     eCore_arm_armv7,
104     eCore_arm_armv7l,
105     eCore_arm_armv7f,
106     eCore_arm_armv7s,
107     eCore_arm_armv7k,
108     eCore_arm_armv7m,
109     eCore_arm_armv7em,
110     eCore_arm_xscale,
111
112     eCore_thumb,
113     eCore_thumbv4t,
114     eCore_thumbv5,
115     eCore_thumbv5e,
116     eCore_thumbv6,
117     eCore_thumbv6m,
118     eCore_thumbv7,
119     eCore_thumbv7s,
120     eCore_thumbv7k,
121     eCore_thumbv7f,
122     eCore_thumbv7m,
123     eCore_thumbv7em,
124     eCore_arm_arm64,
125     eCore_arm_armv8,
126     eCore_arm_armv8l,
127     eCore_arm_arm64_32,
128     eCore_arm_aarch64,
129
130     eCore_mips32,
131     eCore_mips32r2,
132     eCore_mips32r3,
133     eCore_mips32r5,
134     eCore_mips32r6,
135     eCore_mips32el,
136     eCore_mips32r2el,
137     eCore_mips32r3el,
138     eCore_mips32r5el,
139     eCore_mips32r6el,
140     eCore_mips64,
141     eCore_mips64r2,
142     eCore_mips64r3,
143     eCore_mips64r5,
144     eCore_mips64r6,
145     eCore_mips64el,
146     eCore_mips64r2el,
147     eCore_mips64r3el,
148     eCore_mips64r5el,
149     eCore_mips64r6el,
150
151     eCore_ppc_generic,
152     eCore_ppc_ppc601,
153     eCore_ppc_ppc602,
154     eCore_ppc_ppc603,
155     eCore_ppc_ppc603e,
156     eCore_ppc_ppc603ev,
157     eCore_ppc_ppc604,
158     eCore_ppc_ppc604e,
159     eCore_ppc_ppc620,
160     eCore_ppc_ppc750,
161     eCore_ppc_ppc7400,
162     eCore_ppc_ppc7450,
163     eCore_ppc_ppc970,
164
165     eCore_ppc64le_generic,
166     eCore_ppc64_generic,
167     eCore_ppc64_ppc970_64,
168
169     eCore_s390x_generic,
170
171     eCore_sparc_generic,
172
173     eCore_sparc9_generic,
174
175     eCore_x86_32_i386,
176     eCore_x86_32_i486,
177     eCore_x86_32_i486sx,
178     eCore_x86_32_i686,
179
180     eCore_x86_64_x86_64,
181     eCore_x86_64_x86_64h, // Haswell enabled x86_64
182     eCore_hexagon_generic,
183     eCore_hexagon_hexagonv4,
184     eCore_hexagon_hexagonv5,
185
186     eCore_uknownMach32,
187     eCore_uknownMach64,
188
189     eCore_arc, // little endian ARC
190
191     kNumCores,
192
193     kCore_invalid,
194     // The following constants are used for wildcard matching only
195     kCore_any,
196     kCore_arm_any,
197     kCore_ppc_any,
198     kCore_ppc64_any,
199     kCore_x86_32_any,
200     kCore_x86_64_any,
201     kCore_hexagon_any,
202
203     kCore_arm_first = eCore_arm_generic,
204     kCore_arm_last = eCore_arm_xscale,
205
206     kCore_thumb_first = eCore_thumb,
207     kCore_thumb_last = eCore_thumbv7em,
208
209     kCore_ppc_first = eCore_ppc_generic,
210     kCore_ppc_last = eCore_ppc_ppc970,
211
212     kCore_ppc64_first = eCore_ppc64_generic,
213     kCore_ppc64_last = eCore_ppc64_ppc970_64,
214
215     kCore_x86_32_first = eCore_x86_32_i386,
216     kCore_x86_32_last = eCore_x86_32_i686,
217
218     kCore_x86_64_first = eCore_x86_64_x86_64,
219     kCore_x86_64_last = eCore_x86_64_x86_64h,
220
221     kCore_hexagon_first = eCore_hexagon_generic,
222     kCore_hexagon_last = eCore_hexagon_hexagonv5,
223
224     kCore_mips32_first = eCore_mips32,
225     kCore_mips32_last = eCore_mips32r6,
226
227     kCore_mips32el_first = eCore_mips32el,
228     kCore_mips32el_last = eCore_mips32r6el,
229
230     kCore_mips64_first = eCore_mips64,
231     kCore_mips64_last = eCore_mips64r6,
232
233     kCore_mips64el_first = eCore_mips64el,
234     kCore_mips64el_last = eCore_mips64r6el,
235
236     kCore_mips_first = eCore_mips32,
237     kCore_mips_last = eCore_mips64r6el
238
239   };
240
241   /// Default constructor.
242   ///
243   /// Default constructor that initializes the object with invalid cpu type
244   /// and subtype values.
245   ArchSpec();
246
247   /// Constructor over triple.
248   ///
249   /// Constructs an ArchSpec with properties consistent with the given Triple.
250   explicit ArchSpec(const llvm::Triple &triple);
251   explicit ArchSpec(const char *triple_cstr);
252   explicit ArchSpec(llvm::StringRef triple_str);
253   /// Constructor over architecture name.
254   ///
255   /// Constructs an ArchSpec with properties consistent with the given object
256   /// type and architecture name.
257   explicit ArchSpec(ArchitectureType arch_type, uint32_t cpu_type,
258                     uint32_t cpu_subtype);
259
260   /// Destructor.
261   ~ArchSpec();
262
263   /// Returns true if the OS, vendor and environment fields of the triple are
264   /// unset. The triple is expected to be normalized
265   /// (llvm::Triple::normalize).
266   static bool ContainsOnlyArch(const llvm::Triple &normalized_triple);
267
268   static void ListSupportedArchNames(StringList &list);
269   static void AutoComplete(CompletionRequest &request);
270
271   /// Returns a static string representing the current architecture.
272   ///
273   /// \return A static string corresponding to the current
274   ///         architecture.
275   const char *GetArchitectureName() const;
276
277   /// if MIPS architecture return true.
278   ///
279   ///  \return a boolean value.
280   bool IsMIPS() const;
281
282   /// Returns a string representing current architecture as a target CPU for
283   /// tools like compiler, disassembler etc.
284   ///
285   /// \return A string representing target CPU for the current
286   ///         architecture.
287   std::string GetClangTargetCPU() const;
288
289   /// Return a string representing target application ABI.
290   ///
291   /// \return A string representing target application ABI.
292   std::string GetTargetABI() const;
293
294   /// Clears the object state.
295   ///
296   /// Clears the object state back to a default invalid state.
297   void Clear();
298
299   /// Returns the size in bytes of an address of the current architecture.
300   ///
301   /// \return The byte size of an address of the current architecture.
302   uint32_t GetAddressByteSize() const;
303
304   /// Returns a machine family for the current architecture.
305   ///
306   /// \return An LLVM arch type.
307   llvm::Triple::ArchType GetMachine() const;
308
309   /// Returns the distribution id of the architecture.
310   ///
311   /// This will be something like "ubuntu", "fedora", etc. on Linux.
312   ///
313   /// \return A ConstString ref containing the distribution id,
314   ///         potentially empty.
315   ConstString GetDistributionId() const;
316
317   /// Set the distribution id of the architecture.
318   ///
319   /// This will be something like "ubuntu", "fedora", etc. on Linux. This
320   /// should be the same value returned by HostInfo::GetDistributionId ().
321   void SetDistributionId(const char *distribution_id);
322
323   /// Tests if this ArchSpec is valid.
324   ///
325   /// \return True if the current architecture is valid, false
326   ///         otherwise.
327   bool IsValid() const {
328     return m_core >= eCore_arm_generic && m_core < kNumCores;
329   }
330   explicit operator bool() const { return IsValid(); }
331
332   bool TripleVendorWasSpecified() const {
333     return !m_triple.getVendorName().empty();
334   }
335
336   bool TripleOSWasSpecified() const { return !m_triple.getOSName().empty(); }
337
338   bool TripleEnvironmentWasSpecified() const {
339     return m_triple.hasEnvironment();
340   }
341
342   /// Merges fields from another ArchSpec into this ArchSpec.
343   ///
344   /// This will use the supplied ArchSpec to fill in any fields of the triple
345   /// in this ArchSpec which were unspecified.  This can be used to refine a
346   /// generic ArchSpec with a more specific one. For example, if this
347   /// ArchSpec's triple is something like i386-unknown-unknown-unknown, and we
348   /// have a triple which is x64-pc-windows-msvc, then merging that triple
349   /// into this one will result in the triple i386-pc-windows-msvc.
350   ///
351   void MergeFrom(const ArchSpec &other);
352
353   /// Change the architecture object type, CPU type and OS type.
354   ///
355   /// \param[in] arch_type The object type of this ArchSpec.
356   ///
357   /// \param[in] cpu The required CPU type.
358   ///
359   /// \param[in] os The optional OS type
360   /// The default value of 0 was chosen to from the ELF spec value
361   /// ELFOSABI_NONE.  ELF is the only one using this parameter.  If another
362   /// format uses this parameter and 0 does not work, use a value over
363   /// 255 because in the ELF header this is value is only a byte.
364   ///
365   /// \return True if the object, and CPU were successfully set.
366   ///
367   /// As a side effect, the vendor value is usually set to unknown. The
368   /// exceptions are
369   ///   aarch64-apple-ios
370   ///   arm-apple-ios
371   ///   thumb-apple-ios
372   ///   x86-apple-
373   ///   x86_64-apple-
374   ///
375   /// As a side effect, the os value is usually set to unknown The exceptions
376   /// are
377   ///   *-*-aix
378   ///   aarch64-apple-ios
379   ///   arm-apple-ios
380   ///   thumb-apple-ios
381   ///   powerpc-apple-darwin
382   ///   *-*-freebsd
383   ///   *-*-linux
384   ///   *-*-netbsd
385   ///   *-*-openbsd
386   ///   *-*-solaris
387   bool SetArchitecture(ArchitectureType arch_type, uint32_t cpu, uint32_t sub,
388                        uint32_t os = 0);
389
390   /// Returns the byte order for the architecture specification.
391   ///
392   /// \return The endian enumeration for the current endianness of
393   ///     the architecture specification
394   lldb::ByteOrder GetByteOrder() const;
395
396   /// Sets this ArchSpec's byte order.
397   ///
398   /// In the common case there is no need to call this method as the byte
399   /// order can almost always be determined by the architecture. However, many
400   /// CPU's are bi-endian (ARM, Alpha, PowerPC, etc) and the default/assumed
401   /// byte order may be incorrect.
402   void SetByteOrder(lldb::ByteOrder byte_order) { m_byte_order = byte_order; }
403
404   uint32_t GetMinimumOpcodeByteSize() const;
405
406   uint32_t GetMaximumOpcodeByteSize() const;
407
408   Core GetCore() const { return m_core; }
409
410   uint32_t GetMachOCPUType() const;
411
412   uint32_t GetMachOCPUSubType() const;
413
414   /// Architecture data byte width accessor
415   ///
416   /// \return the size in 8-bit (host) bytes of a minimum addressable unit
417   /// from the Architecture's data bus
418   uint32_t GetDataByteSize() const;
419
420   /// Architecture code byte width accessor
421   ///
422   /// \return the size in 8-bit (host) bytes of a minimum addressable unit
423   /// from the Architecture's code bus
424   uint32_t GetCodeByteSize() const;
425
426   /// Architecture triple accessor.
427   ///
428   /// \return A triple describing this ArchSpec.
429   llvm::Triple &GetTriple() { return m_triple; }
430
431   /// Architecture triple accessor.
432   ///
433   /// \return A triple describing this ArchSpec.
434   const llvm::Triple &GetTriple() const { return m_triple; }
435
436   void DumpTriple(llvm::raw_ostream &s) const;
437
438   /// Architecture triple setter.
439   ///
440   /// Configures this ArchSpec according to the given triple.  If the triple
441   /// has unknown components in all of the vendor, OS, and the optional
442   /// environment field (i.e. "i386-unknown-unknown") then default values are
443   /// taken from the host.  Architecture and environment components are used
444   /// to further resolve the CPU type and subtype, endian characteristics,
445   /// etc.
446   ///
447   /// \return A triple describing this ArchSpec.
448   bool SetTriple(const llvm::Triple &triple);
449
450   bool SetTriple(llvm::StringRef triple_str);
451
452   /// Returns the default endianness of the architecture.
453   ///
454   /// \return The endian enumeration for the default endianness of
455   ///         the architecture.
456   lldb::ByteOrder GetDefaultEndian() const;
457
458   /// Returns true if 'char' is a signed type by default in the architecture
459   /// false otherwise
460   ///
461   /// \return True if 'char' is a signed type by default on the
462   ///         architecture and false otherwise.
463   bool CharIsSignedByDefault() const;
464
465   /// Compare an ArchSpec to another ArchSpec, requiring an exact cpu type
466   /// match between them. e.g. armv7s is not an exact match with armv7 - this
467   /// would return false
468   ///
469   /// \return true if the two ArchSpecs match.
470   bool IsExactMatch(const ArchSpec &rhs) const;
471
472   /// Compare an ArchSpec to another ArchSpec, requiring a compatible cpu type
473   /// match between them. e.g. armv7s is compatible with armv7 - this method
474   /// would return true
475   ///
476   /// \return true if the two ArchSpecs are compatible
477   bool IsCompatibleMatch(const ArchSpec &rhs) const;
478
479   bool IsFullySpecifiedTriple() const;
480
481   void PiecewiseTripleCompare(const ArchSpec &other, bool &arch_different,
482                               bool &vendor_different, bool &os_different,
483                               bool &os_version_different,
484                               bool &env_different) const;
485
486   /// Detect whether this architecture uses thumb code exclusively
487   ///
488   /// Some embedded ARM chips (e.g. the ARM Cortex M0-7 line) can only execute
489   /// the Thumb instructions, never Arm.  We should normally pick up
490   /// arm/thumbness from their the processor status bits (cpsr/xpsr) or hints
491   /// on each function - but when doing bare-boards low level debugging
492   /// (especially common with these embedded processors), we may not have
493   /// those things easily accessible.
494   ///
495   /// \return true if this is an arm ArchSpec which can only execute Thumb
496   ///         instructions
497   bool IsAlwaysThumbInstructions() const;
498
499   uint32_t GetFlags() const { return m_flags; }
500
501   void SetFlags(uint32_t flags) { m_flags = flags; }
502
503   void SetFlags(std::string elf_abi);
504
505 protected:
506   bool IsEqualTo(const ArchSpec &rhs, bool exact_match) const;
507   void UpdateCore();
508
509   llvm::Triple m_triple;
510   Core m_core = kCore_invalid;
511   lldb::ByteOrder m_byte_order = lldb::eByteOrderInvalid;
512
513   // Additional arch flags which we cannot get from triple and core For MIPS
514   // these are application specific extensions like micromips, mips16 etc.
515   uint32_t m_flags = 0;
516
517   ConstString m_distribution_id;
518
519   // Called when m_def or m_entry are changed.  Fills in all remaining members
520   // with default values.
521   void CoreUpdated(bool update_triple);
522 };
523
524 /// \fn bool operator< (const ArchSpec& lhs, const ArchSpec& rhs) Less than
525 /// operator.
526 ///
527 /// Tests two ArchSpec objects to see if \a lhs is less than \a rhs.
528 ///
529 /// \param[in] lhs The Left Hand Side ArchSpec object to compare. \param[in]
530 /// rhs The Left Hand Side ArchSpec object to compare.
531 ///
532 /// \return true if \a lhs is less than \a rhs
533 bool operator<(const ArchSpec &lhs, const ArchSpec &rhs);
534 bool operator==(const ArchSpec &lhs, const ArchSpec &rhs);
535
536 bool ParseMachCPUDashSubtypeTriple(llvm::StringRef triple_str, ArchSpec &arch);
537
538 } // namespace lldb_private
539
540 #endif // #ifndef LLDB_UTILITY_ARCHSPEC_H