]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/lldb/include/lldb/Utility/ArchSpec.h
Move all sources from the llvm project into contrib/llvm-project.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / lldb / include / lldb / Utility / ArchSpec.h
1 //===-- ArchSpec.h ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #ifndef LLDB_UTILITY_ARCHSPEC_H
10 #define LLDB_UTILITY_ARCHSPEC_H
11
12 #include "lldb/Utility/CompletionRequest.h"
13 #include "lldb/Utility/ConstString.h"
14 #include "lldb/lldb-enumerations.h"
15 #include "lldb/lldb-forward.h"
16 #include "lldb/lldb-private-enumerations.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include <cstddef>
20 #include <cstdint>
21 #include <string>
22
23 namespace lldb_private {
24
25 /// \class ArchSpec ArchSpec.h "lldb/Utility/ArchSpec.h" An architecture
26 /// specification class.
27 ///
28 /// A class designed to be created from a cpu type and subtype, a
29 /// string representation, or an llvm::Triple.  Keeping all of the conversions
30 /// of strings to architecture enumeration values confined to this class
31 /// allows new architecture support to be added easily.
32 class ArchSpec {
33 public:
34   enum MIPSSubType {
35     eMIPSSubType_unknown,
36     eMIPSSubType_mips32,
37     eMIPSSubType_mips32r2,
38     eMIPSSubType_mips32r6,
39     eMIPSSubType_mips32el,
40     eMIPSSubType_mips32r2el,
41     eMIPSSubType_mips32r6el,
42     eMIPSSubType_mips64,
43     eMIPSSubType_mips64r2,
44     eMIPSSubType_mips64r6,
45     eMIPSSubType_mips64el,
46     eMIPSSubType_mips64r2el,
47     eMIPSSubType_mips64r6el,
48   };
49
50   // Masks for the ases word of an ABI flags structure.
51   enum MIPSASE {
52     eMIPSAse_dsp = 0x00000001,       // DSP ASE
53     eMIPSAse_dspr2 = 0x00000002,     // DSP R2 ASE
54     eMIPSAse_eva = 0x00000004,       // Enhanced VA Scheme
55     eMIPSAse_mcu = 0x00000008,       // MCU (MicroController) ASE
56     eMIPSAse_mdmx = 0x00000010,      // MDMX ASE
57     eMIPSAse_mips3d = 0x00000020,    // MIPS-3D ASE
58     eMIPSAse_mt = 0x00000040,        // MT ASE
59     eMIPSAse_smartmips = 0x00000080, // SmartMIPS ASE
60     eMIPSAse_virt = 0x00000100,      // VZ ASE
61     eMIPSAse_msa = 0x00000200,       // MSA ASE
62     eMIPSAse_mips16 = 0x00000400,    // MIPS16 ASE
63     eMIPSAse_micromips = 0x00000800, // MICROMIPS ASE
64     eMIPSAse_xpa = 0x00001000,       // XPA ASE
65     eMIPSAse_mask = 0x00001fff,
66     eMIPSABI_O32 = 0x00002000,
67     eMIPSABI_N32 = 0x00004000,
68     eMIPSABI_N64 = 0x00008000,
69     eMIPSABI_O64 = 0x00020000,
70     eMIPSABI_EABI32 = 0x00040000,
71     eMIPSABI_EABI64 = 0x00080000,
72     eMIPSABI_mask = 0x000ff000
73   };
74
75   // MIPS Floating point ABI Values
76   enum MIPS_ABI_FP {
77     eMIPS_ABI_FP_ANY = 0x00000000,
78     eMIPS_ABI_FP_DOUBLE = 0x00100000, // hard float / -mdouble-float
79     eMIPS_ABI_FP_SINGLE = 0x00200000, // hard float / -msingle-float
80     eMIPS_ABI_FP_SOFT = 0x00300000,   // soft float
81     eMIPS_ABI_FP_OLD_64 = 0x00400000, // -mips32r2 -mfp64
82     eMIPS_ABI_FP_XX = 0x00500000,     // -mfpxx
83     eMIPS_ABI_FP_64 = 0x00600000,     // -mips32r2 -mfp64
84     eMIPS_ABI_FP_64A = 0x00700000,    // -mips32r2 -mfp64 -mno-odd-spreg
85     eMIPS_ABI_FP_mask = 0x00700000
86   };
87
88   // ARM specific e_flags
89   enum ARMeflags {
90     eARM_abi_soft_float = 0x00000200,
91     eARM_abi_hard_float = 0x00000400
92   };
93
94   enum Core {
95     eCore_arm_generic,
96     eCore_arm_armv4,
97     eCore_arm_armv4t,
98     eCore_arm_armv5,
99     eCore_arm_armv5e,
100     eCore_arm_armv5t,
101     eCore_arm_armv6,
102     eCore_arm_armv6m,
103     eCore_arm_armv7,
104     eCore_arm_armv7f,
105     eCore_arm_armv7s,
106     eCore_arm_armv7k,
107     eCore_arm_armv7m,
108     eCore_arm_armv7em,
109     eCore_arm_xscale,
110
111     eCore_thumb,
112     eCore_thumbv4t,
113     eCore_thumbv5,
114     eCore_thumbv5e,
115     eCore_thumbv6,
116     eCore_thumbv6m,
117     eCore_thumbv7,
118     eCore_thumbv7s,
119     eCore_thumbv7k,
120     eCore_thumbv7f,
121     eCore_thumbv7m,
122     eCore_thumbv7em,
123     eCore_arm_arm64,
124     eCore_arm_armv8,
125     eCore_arm_aarch64,
126
127     eCore_mips32,
128     eCore_mips32r2,
129     eCore_mips32r3,
130     eCore_mips32r5,
131     eCore_mips32r6,
132     eCore_mips32el,
133     eCore_mips32r2el,
134     eCore_mips32r3el,
135     eCore_mips32r5el,
136     eCore_mips32r6el,
137     eCore_mips64,
138     eCore_mips64r2,
139     eCore_mips64r3,
140     eCore_mips64r5,
141     eCore_mips64r6,
142     eCore_mips64el,
143     eCore_mips64r2el,
144     eCore_mips64r3el,
145     eCore_mips64r5el,
146     eCore_mips64r6el,
147
148     eCore_ppc_generic,
149     eCore_ppc_ppc601,
150     eCore_ppc_ppc602,
151     eCore_ppc_ppc603,
152     eCore_ppc_ppc603e,
153     eCore_ppc_ppc603ev,
154     eCore_ppc_ppc604,
155     eCore_ppc_ppc604e,
156     eCore_ppc_ppc620,
157     eCore_ppc_ppc750,
158     eCore_ppc_ppc7400,
159     eCore_ppc_ppc7450,
160     eCore_ppc_ppc970,
161
162     eCore_ppc64le_generic,
163     eCore_ppc64_generic,
164     eCore_ppc64_ppc970_64,
165
166     eCore_s390x_generic,
167
168     eCore_sparc_generic,
169
170     eCore_sparc9_generic,
171
172     eCore_x86_32_i386,
173     eCore_x86_32_i486,
174     eCore_x86_32_i486sx,
175     eCore_x86_32_i686,
176
177     eCore_x86_64_x86_64,
178     eCore_x86_64_x86_64h, // Haswell enabled x86_64
179     eCore_hexagon_generic,
180     eCore_hexagon_hexagonv4,
181     eCore_hexagon_hexagonv5,
182
183     eCore_uknownMach32,
184     eCore_uknownMach64,
185
186     kNumCores,
187
188     kCore_invalid,
189     // The following constants are used for wildcard matching only
190     kCore_any,
191     kCore_arm_any,
192     kCore_ppc_any,
193     kCore_ppc64_any,
194     kCore_x86_32_any,
195     kCore_x86_64_any,
196     kCore_hexagon_any,
197
198     kCore_arm_first = eCore_arm_generic,
199     kCore_arm_last = eCore_arm_xscale,
200
201     kCore_thumb_first = eCore_thumb,
202     kCore_thumb_last = eCore_thumbv7em,
203
204     kCore_ppc_first = eCore_ppc_generic,
205     kCore_ppc_last = eCore_ppc_ppc970,
206
207     kCore_ppc64_first = eCore_ppc64_generic,
208     kCore_ppc64_last = eCore_ppc64_ppc970_64,
209
210     kCore_x86_32_first = eCore_x86_32_i386,
211     kCore_x86_32_last = eCore_x86_32_i686,
212
213     kCore_x86_64_first = eCore_x86_64_x86_64,
214     kCore_x86_64_last = eCore_x86_64_x86_64h,
215
216     kCore_hexagon_first = eCore_hexagon_generic,
217     kCore_hexagon_last = eCore_hexagon_hexagonv5,
218
219     kCore_mips32_first = eCore_mips32,
220     kCore_mips32_last = eCore_mips32r6,
221
222     kCore_mips32el_first = eCore_mips32el,
223     kCore_mips32el_last = eCore_mips32r6el,
224
225     kCore_mips64_first = eCore_mips64,
226     kCore_mips64_last = eCore_mips64r6,
227
228     kCore_mips64el_first = eCore_mips64el,
229     kCore_mips64el_last = eCore_mips64r6el,
230
231     kCore_mips_first = eCore_mips32,
232     kCore_mips_last = eCore_mips64r6el
233
234   };
235
236   /// Default constructor.
237   ///
238   /// Default constructor that initializes the object with invalid cpu type
239   /// and subtype values.
240   ArchSpec();
241
242   /// Constructor over triple.
243   ///
244   /// Constructs an ArchSpec with properties consistent with the given Triple.
245   explicit ArchSpec(const llvm::Triple &triple);
246   explicit ArchSpec(const char *triple_cstr);
247   explicit ArchSpec(llvm::StringRef triple_str);
248   /// Constructor over architecture name.
249   ///
250   /// Constructs an ArchSpec with properties consistent with the given object
251   /// type and architecture name.
252   explicit ArchSpec(ArchitectureType arch_type, uint32_t cpu_type,
253                     uint32_t cpu_subtype);
254
255   /// Destructor.
256   ~ArchSpec();
257
258   /// Assignment operator.
259   ///
260   /// \param[in] rhs another ArchSpec object to copy.
261   ///
262   /// \return A const reference to this object.
263   const ArchSpec &operator=(const ArchSpec &rhs);
264
265   /// Returns true if the OS, vendor and environment fields of the triple are
266   /// unset. The triple is expected to be normalized
267   /// (llvm::Triple::normalize).
268   static bool ContainsOnlyArch(const llvm::Triple &normalized_triple);
269
270   static void ListSupportedArchNames(StringList &list);
271   static size_t AutoComplete(CompletionRequest &request);
272
273   /// Returns a static string representing the current architecture.
274   ///
275   /// \return A static string corresponding to the current
276   ///         architecture.
277   const char *GetArchitectureName() const;
278
279   /// if MIPS architecture return true.
280   ///
281   ///  \return a boolean value.
282   bool IsMIPS() const;
283
284   /// Returns a string representing current architecture as a target CPU for
285   /// tools like compiler, disassembler etc.
286   ///
287   /// \return A string representing target CPU for the current
288   ///         architecture.
289   std::string GetClangTargetCPU() const;
290
291   /// Return a string representing target application ABI.
292   ///
293   /// \return A string representing target application ABI.
294   std::string GetTargetABI() const;
295
296   /// Clears the object state.
297   ///
298   /// Clears the object state back to a default invalid state.
299   void Clear();
300
301   /// Returns the size in bytes of an address of the current architecture.
302   ///
303   /// \return The byte size of an address of the current architecture.
304   uint32_t GetAddressByteSize() const;
305
306   /// Returns a machine family for the current architecture.
307   ///
308   /// \return An LLVM arch type.
309   llvm::Triple::ArchType GetMachine() const;
310
311   /// Returns the distribution id of the architecture.
312   ///
313   /// This will be something like "ubuntu", "fedora", etc. on Linux.
314   ///
315   /// \return A ConstString ref containing the distribution id,
316   ///         potentially empty.
317   ConstString GetDistributionId() const;
318
319   /// Set the distribution id of the architecture.
320   ///
321   /// This will be something like "ubuntu", "fedora", etc. on Linux. This
322   /// should be the same value returned by HostInfo::GetDistributionId ().
323   void SetDistributionId(const char *distribution_id);
324
325   /// Tests if this ArchSpec is valid.
326   ///
327   /// \return True if the current architecture is valid, false
328   ///         otherwise.
329   bool IsValid() const {
330     return m_core >= eCore_arm_generic && m_core < kNumCores;
331   }
332   explicit operator bool() const { return IsValid(); }
333
334   bool TripleVendorWasSpecified() const {
335     return !m_triple.getVendorName().empty();
336   }
337
338   bool TripleOSWasSpecified() const { return !m_triple.getOSName().empty(); }
339
340   bool TripleEnvironmentWasSpecified() const {
341     return m_triple.hasEnvironment();
342   }
343
344   /// Merges fields from another ArchSpec into this ArchSpec.
345   ///
346   /// This will use the supplied ArchSpec to fill in any fields of the triple
347   /// in this ArchSpec which were unspecified.  This can be used to refine a
348   /// generic ArchSpec with a more specific one. For example, if this
349   /// ArchSpec's triple is something like i386-unknown-unknown-unknown, and we
350   /// have a triple which is x64-pc-windows-msvc, then merging that triple
351   /// into this one will result in the triple i386-pc-windows-msvc.
352   ///
353   void MergeFrom(const ArchSpec &other);
354
355   /// Change the architecture object type, CPU type and OS type.
356   ///
357   /// \param[in] arch_type The object type of this ArchSpec.
358   ///
359   /// \param[in] cpu The required CPU type.
360   ///
361   /// \param[in] os The optional OS type
362   /// The default value of 0 was chosen to from the ELF spec value
363   /// ELFOSABI_NONE.  ELF is the only one using this parameter.  If another
364   /// format uses this parameter and 0 does not work, use a value over
365   /// 255 because in the ELF header this is value is only a byte.
366   ///
367   /// \return True if the object, and CPU were successfully set.
368   ///
369   /// As a side effect, the vendor value is usually set to unknown. The
370   /// exceptions are
371   ///   aarch64-apple-ios
372   ///   arm-apple-ios
373   ///   thumb-apple-ios
374   ///   x86-apple-
375   ///   x86_64-apple-
376   ///
377   /// As a side effect, the os value is usually set to unknown The exceptions
378   /// are
379   ///   *-*-aix
380   ///   aarch64-apple-ios
381   ///   arm-apple-ios
382   ///   thumb-apple-ios
383   ///   powerpc-apple-darwin
384   ///   *-*-freebsd
385   ///   *-*-linux
386   ///   *-*-netbsd
387   ///   *-*-openbsd
388   ///   *-*-solaris
389   bool SetArchitecture(ArchitectureType arch_type, uint32_t cpu, uint32_t sub,
390                        uint32_t os = 0);
391
392   /// Returns the byte order for the architecture specification.
393   ///
394   /// \return The endian enumeration for the current endianness of
395   ///     the architecture specification
396   lldb::ByteOrder GetByteOrder() const;
397
398   /// Sets this ArchSpec's byte order.
399   ///
400   /// In the common case there is no need to call this method as the byte
401   /// order can almost always be determined by the architecture. However, many
402   /// CPU's are bi-endian (ARM, Alpha, PowerPC, etc) and the default/assumed
403   /// byte order may be incorrect.
404   void SetByteOrder(lldb::ByteOrder byte_order) { m_byte_order = byte_order; }
405
406   uint32_t GetMinimumOpcodeByteSize() const;
407
408   uint32_t GetMaximumOpcodeByteSize() const;
409
410   Core GetCore() const { return m_core; }
411
412   uint32_t GetMachOCPUType() const;
413
414   uint32_t GetMachOCPUSubType() const;
415
416   /// Architecture data byte width accessor
417   ///
418   /// \return the size in 8-bit (host) bytes of a minimum addressable unit
419   /// from the Architecture's data bus
420   uint32_t GetDataByteSize() const;
421
422   /// Architecture code byte width accessor
423   ///
424   /// \return the size in 8-bit (host) bytes of a minimum addressable unit
425   /// from the Architecture's code bus
426   uint32_t GetCodeByteSize() const;
427
428   /// Architecture triple accessor.
429   ///
430   /// \return A triple describing this ArchSpec.
431   llvm::Triple &GetTriple() { return m_triple; }
432
433   /// Architecture triple accessor.
434   ///
435   /// \return A triple describing this ArchSpec.
436   const llvm::Triple &GetTriple() const { return m_triple; }
437
438   void DumpTriple(Stream &s) const;
439
440   /// Architecture triple setter.
441   ///
442   /// Configures this ArchSpec according to the given triple.  If the triple
443   /// has unknown components in all of the vendor, OS, and the optional
444   /// environment field (i.e. "i386-unknown-unknown") then default values are
445   /// taken from the host.  Architecture and environment components are used
446   /// to further resolve the CPU type and subtype, endian characteristics,
447   /// etc.
448   ///
449   /// \return A triple describing this ArchSpec.
450   bool SetTriple(const llvm::Triple &triple);
451
452   bool SetTriple(llvm::StringRef triple_str);
453
454   /// Returns the default endianness of the architecture.
455   ///
456   /// \return The endian enumeration for the default endianness of
457   ///         the architecture.
458   lldb::ByteOrder GetDefaultEndian() const;
459
460   /// Returns true if 'char' is a signed type by default in the architecture
461   /// false otherwise
462   ///
463   /// \return True if 'char' is a signed type by default on the
464   ///         architecture and false otherwise.
465   bool CharIsSignedByDefault() const;
466
467   /// Compare an ArchSpec to another ArchSpec, requiring an exact cpu type
468   /// match between them. e.g. armv7s is not an exact match with armv7 - this
469   /// would return false
470   ///
471   /// \return true if the two ArchSpecs match.
472   bool IsExactMatch(const ArchSpec &rhs) const;
473
474   /// Compare an ArchSpec to another ArchSpec, requiring a compatible cpu type
475   /// match between them. e.g. armv7s is compatible with armv7 - this method
476   /// would return true
477   ///
478   /// \return true if the two ArchSpecs are compatible
479   bool IsCompatibleMatch(const ArchSpec &rhs) const;
480
481   bool IsFullySpecifiedTriple() const;
482
483   void PiecewiseTripleCompare(const ArchSpec &other, bool &arch_different,
484                               bool &vendor_different, bool &os_different,
485                               bool &os_version_different,
486                               bool &env_different) const;
487
488   /// Detect whether this architecture uses thumb code exclusively
489   ///
490   /// Some embedded ARM chips (e.g. the ARM Cortex M0-7 line) can only execute
491   /// the Thumb instructions, never Arm.  We should normally pick up
492   /// arm/thumbness from their the processor status bits (cpsr/xpsr) or hints
493   /// on each function - but when doing bare-boards low level debugging
494   /// (especially common with these embedded processors), we may not have
495   /// those things easily accessible.
496   ///
497   /// \return true if this is an arm ArchSpec which can only execute Thumb
498   ///         instructions
499   bool IsAlwaysThumbInstructions() const;
500
501   uint32_t GetFlags() const { return m_flags; }
502
503   void SetFlags(uint32_t flags) { m_flags = flags; }
504
505   void SetFlags(std::string elf_abi);
506
507 protected:
508   bool IsEqualTo(const ArchSpec &rhs, bool exact_match) const;
509   void UpdateCore();
510
511   llvm::Triple m_triple;
512   Core m_core = kCore_invalid;
513   lldb::ByteOrder m_byte_order = lldb::eByteOrderInvalid;
514
515   // Additional arch flags which we cannot get from triple and core For MIPS
516   // these are application specific extensions like micromips, mips16 etc.
517   uint32_t m_flags = 0;
518
519   ConstString m_distribution_id;
520
521   // Called when m_def or m_entry are changed.  Fills in all remaining members
522   // with default values.
523   void CoreUpdated(bool update_triple);
524 };
525
526 /// \fn bool operator< (const ArchSpec& lhs, const ArchSpec& rhs) Less than
527 /// operator.
528 ///
529 /// Tests two ArchSpec objects to see if \a lhs is less than \a rhs.
530 ///
531 /// \param[in] lhs The Left Hand Side ArchSpec object to compare. \param[in]
532 /// rhs The Left Hand Side ArchSpec object to compare.
533 ///
534 /// \return true if \a lhs is less than \a rhs
535 bool operator<(const ArchSpec &lhs, const ArchSpec &rhs);
536 bool operator==(const ArchSpec &lhs, const ArchSpec &rhs);
537
538 bool ParseMachCPUDashSubtypeTriple(llvm::StringRef triple_str, ArchSpec &arch);
539
540 } // namespace lldb_private
541
542 #endif // #ifndef LLDB_UTILITY_ARCHSPEC_H