]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/include/llvm/ADT/STLExtras.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / include / llvm / ADT / STLExtras.h
1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains some templates that are useful if you are working with the
10 // STL at all.
11 //
12 // No library is required when using these functions.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_ADT_STLEXTRAS_H
17 #define LLVM_ADT_STLEXTRAS_H
18
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Config/abi-breaking.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <algorithm>
26 #include <cassert>
27 #include <cstddef>
28 #include <cstdint>
29 #include <cstdlib>
30 #include <functional>
31 #include <initializer_list>
32 #include <iterator>
33 #include <limits>
34 #include <memory>
35 #include <tuple>
36 #include <type_traits>
37 #include <utility>
38
39 #ifdef EXPENSIVE_CHECKS
40 #include <random> // for std::mt19937
41 #endif
42
43 namespace llvm {
44
45 // Only used by compiler if both template types are the same.  Useful when
46 // using SFINAE to test for the existence of member functions.
47 template <typename T, T> struct SameType;
48
49 namespace detail {
50
51 template <typename RangeT>
52 using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
53
54 template <typename RangeT>
55 using ValueOfRange = typename std::remove_reference<decltype(
56     *std::begin(std::declval<RangeT &>()))>::type;
57
58 } // end namespace detail
59
60 //===----------------------------------------------------------------------===//
61 //     Extra additions to <type_traits>
62 //===----------------------------------------------------------------------===//
63
64 template <typename T>
65 struct negation : std::integral_constant<bool, !bool(T::value)> {};
66
67 template <typename...> struct conjunction : std::true_type {};
68 template <typename B1> struct conjunction<B1> : B1 {};
69 template <typename B1, typename... Bn>
70 struct conjunction<B1, Bn...>
71     : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
72
73 template <typename T> struct make_const_ptr {
74   using type =
75       typename std::add_pointer<typename std::add_const<T>::type>::type;
76 };
77
78 template <typename T> struct make_const_ref {
79   using type = typename std::add_lvalue_reference<
80       typename std::add_const<T>::type>::type;
81 };
82
83 //===----------------------------------------------------------------------===//
84 //     Extra additions to <functional>
85 //===----------------------------------------------------------------------===//
86
87 template <class Ty> struct identity {
88   using argument_type = Ty;
89
90   Ty &operator()(Ty &self) const {
91     return self;
92   }
93   const Ty &operator()(const Ty &self) const {
94     return self;
95   }
96 };
97
98 template <class Ty> struct less_ptr {
99   bool operator()(const Ty* left, const Ty* right) const {
100     return *left < *right;
101   }
102 };
103
104 template <class Ty> struct greater_ptr {
105   bool operator()(const Ty* left, const Ty* right) const {
106     return *right < *left;
107   }
108 };
109
110 /// An efficient, type-erasing, non-owning reference to a callable. This is
111 /// intended for use as the type of a function parameter that is not used
112 /// after the function in question returns.
113 ///
114 /// This class does not own the callable, so it is not in general safe to store
115 /// a function_ref.
116 template<typename Fn> class function_ref;
117
118 template<typename Ret, typename ...Params>
119 class function_ref<Ret(Params...)> {
120   Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
121   intptr_t callable;
122
123   template<typename Callable>
124   static Ret callback_fn(intptr_t callable, Params ...params) {
125     return (*reinterpret_cast<Callable*>(callable))(
126         std::forward<Params>(params)...);
127   }
128
129 public:
130   function_ref() = default;
131   function_ref(std::nullptr_t) {}
132
133   template <typename Callable>
134   function_ref(Callable &&callable,
135                typename std::enable_if<
136                    !std::is_same<typename std::remove_reference<Callable>::type,
137                                  function_ref>::value>::type * = nullptr)
138       : callback(callback_fn<typename std::remove_reference<Callable>::type>),
139         callable(reinterpret_cast<intptr_t>(&callable)) {}
140
141   Ret operator()(Params ...params) const {
142     return callback(callable, std::forward<Params>(params)...);
143   }
144
145   operator bool() const { return callback; }
146 };
147
148 // deleter - Very very very simple method that is used to invoke operator
149 // delete on something.  It is used like this:
150 //
151 //   for_each(V.begin(), B.end(), deleter<Interval>);
152 template <class T>
153 inline void deleter(T *Ptr) {
154   delete Ptr;
155 }
156
157 //===----------------------------------------------------------------------===//
158 //     Extra additions to <iterator>
159 //===----------------------------------------------------------------------===//
160
161 namespace adl_detail {
162
163 using std::begin;
164
165 template <typename ContainerTy>
166 auto adl_begin(ContainerTy &&container)
167     -> decltype(begin(std::forward<ContainerTy>(container))) {
168   return begin(std::forward<ContainerTy>(container));
169 }
170
171 using std::end;
172
173 template <typename ContainerTy>
174 auto adl_end(ContainerTy &&container)
175     -> decltype(end(std::forward<ContainerTy>(container))) {
176   return end(std::forward<ContainerTy>(container));
177 }
178
179 using std::swap;
180
181 template <typename T>
182 void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
183                                                        std::declval<T>()))) {
184   swap(std::forward<T>(lhs), std::forward<T>(rhs));
185 }
186
187 } // end namespace adl_detail
188
189 template <typename ContainerTy>
190 auto adl_begin(ContainerTy &&container)
191     -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
192   return adl_detail::adl_begin(std::forward<ContainerTy>(container));
193 }
194
195 template <typename ContainerTy>
196 auto adl_end(ContainerTy &&container)
197     -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
198   return adl_detail::adl_end(std::forward<ContainerTy>(container));
199 }
200
201 template <typename T>
202 void adl_swap(T &&lhs, T &&rhs) noexcept(
203     noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
204   adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
205 }
206
207 /// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
208 template <typename T>
209 constexpr bool empty(const T &RangeOrContainer) {
210   return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
211 }
212
213 // mapped_iterator - This is a simple iterator adapter that causes a function to
214 // be applied whenever operator* is invoked on the iterator.
215
216 template <typename ItTy, typename FuncTy,
217           typename FuncReturnTy =
218             decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
219 class mapped_iterator
220     : public iterator_adaptor_base<
221              mapped_iterator<ItTy, FuncTy>, ItTy,
222              typename std::iterator_traits<ItTy>::iterator_category,
223              typename std::remove_reference<FuncReturnTy>::type> {
224 public:
225   mapped_iterator(ItTy U, FuncTy F)
226     : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
227
228   ItTy getCurrent() { return this->I; }
229
230   FuncReturnTy operator*() { return F(*this->I); }
231
232 private:
233   FuncTy F;
234 };
235
236 // map_iterator - Provide a convenient way to create mapped_iterators, just like
237 // make_pair is useful for creating pairs...
238 template <class ItTy, class FuncTy>
239 inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
240   return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
241 }
242
243 template <class ContainerTy, class FuncTy>
244 auto map_range(ContainerTy &&C, FuncTy F)
245     -> decltype(make_range(map_iterator(C.begin(), F),
246                            map_iterator(C.end(), F))) {
247   return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F));
248 }
249
250 /// Helper to determine if type T has a member called rbegin().
251 template <typename Ty> class has_rbegin_impl {
252   using yes = char[1];
253   using no = char[2];
254
255   template <typename Inner>
256   static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
257
258   template <typename>
259   static no& test(...);
260
261 public:
262   static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
263 };
264
265 /// Metafunction to determine if T& or T has a member called rbegin().
266 template <typename Ty>
267 struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
268 };
269
270 // Returns an iterator_range over the given container which iterates in reverse.
271 // Note that the container must have rbegin()/rend() methods for this to work.
272 template <typename ContainerTy>
273 auto reverse(ContainerTy &&C,
274              typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
275                  nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
276   return make_range(C.rbegin(), C.rend());
277 }
278
279 // Returns a std::reverse_iterator wrapped around the given iterator.
280 template <typename IteratorTy>
281 std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
282   return std::reverse_iterator<IteratorTy>(It);
283 }
284
285 // Returns an iterator_range over the given container which iterates in reverse.
286 // Note that the container must have begin()/end() methods which return
287 // bidirectional iterators for this to work.
288 template <typename ContainerTy>
289 auto reverse(
290     ContainerTy &&C,
291     typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
292     -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
293                            llvm::make_reverse_iterator(std::begin(C)))) {
294   return make_range(llvm::make_reverse_iterator(std::end(C)),
295                     llvm::make_reverse_iterator(std::begin(C)));
296 }
297
298 /// An iterator adaptor that filters the elements of given inner iterators.
299 ///
300 /// The predicate parameter should be a callable object that accepts the wrapped
301 /// iterator's reference type and returns a bool. When incrementing or
302 /// decrementing the iterator, it will call the predicate on each element and
303 /// skip any where it returns false.
304 ///
305 /// \code
306 ///   int A[] = { 1, 2, 3, 4 };
307 ///   auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
308 ///   // R contains { 1, 3 }.
309 /// \endcode
310 ///
311 /// Note: filter_iterator_base implements support for forward iteration.
312 /// filter_iterator_impl exists to provide support for bidirectional iteration,
313 /// conditional on whether the wrapped iterator supports it.
314 template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
315 class filter_iterator_base
316     : public iterator_adaptor_base<
317           filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
318           WrappedIteratorT,
319           typename std::common_type<
320               IterTag, typename std::iterator_traits<
321                            WrappedIteratorT>::iterator_category>::type> {
322   using BaseT = iterator_adaptor_base<
323       filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
324       WrappedIteratorT,
325       typename std::common_type<
326           IterTag, typename std::iterator_traits<
327                        WrappedIteratorT>::iterator_category>::type>;
328
329 protected:
330   WrappedIteratorT End;
331   PredicateT Pred;
332
333   void findNextValid() {
334     while (this->I != End && !Pred(*this->I))
335       BaseT::operator++();
336   }
337
338   // Construct the iterator. The begin iterator needs to know where the end
339   // is, so that it can properly stop when it gets there. The end iterator only
340   // needs the predicate to support bidirectional iteration.
341   filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
342                        PredicateT Pred)
343       : BaseT(Begin), End(End), Pred(Pred) {
344     findNextValid();
345   }
346
347 public:
348   using BaseT::operator++;
349
350   filter_iterator_base &operator++() {
351     BaseT::operator++();
352     findNextValid();
353     return *this;
354   }
355 };
356
357 /// Specialization of filter_iterator_base for forward iteration only.
358 template <typename WrappedIteratorT, typename PredicateT,
359           typename IterTag = std::forward_iterator_tag>
360 class filter_iterator_impl
361     : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
362   using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
363
364 public:
365   filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
366                        PredicateT Pred)
367       : BaseT(Begin, End, Pred) {}
368 };
369
370 /// Specialization of filter_iterator_base for bidirectional iteration.
371 template <typename WrappedIteratorT, typename PredicateT>
372 class filter_iterator_impl<WrappedIteratorT, PredicateT,
373                            std::bidirectional_iterator_tag>
374     : public filter_iterator_base<WrappedIteratorT, PredicateT,
375                                   std::bidirectional_iterator_tag> {
376   using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
377                                      std::bidirectional_iterator_tag>;
378   void findPrevValid() {
379     while (!this->Pred(*this->I))
380       BaseT::operator--();
381   }
382
383 public:
384   using BaseT::operator--;
385
386   filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
387                        PredicateT Pred)
388       : BaseT(Begin, End, Pred) {}
389
390   filter_iterator_impl &operator--() {
391     BaseT::operator--();
392     findPrevValid();
393     return *this;
394   }
395 };
396
397 namespace detail {
398
399 template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
400   using type = std::forward_iterator_tag;
401 };
402
403 template <> struct fwd_or_bidi_tag_impl<true> {
404   using type = std::bidirectional_iterator_tag;
405 };
406
407 /// Helper which sets its type member to forward_iterator_tag if the category
408 /// of \p IterT does not derive from bidirectional_iterator_tag, and to
409 /// bidirectional_iterator_tag otherwise.
410 template <typename IterT> struct fwd_or_bidi_tag {
411   using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
412       std::bidirectional_iterator_tag,
413       typename std::iterator_traits<IterT>::iterator_category>::value>::type;
414 };
415
416 } // namespace detail
417
418 /// Defines filter_iterator to a suitable specialization of
419 /// filter_iterator_impl, based on the underlying iterator's category.
420 template <typename WrappedIteratorT, typename PredicateT>
421 using filter_iterator = filter_iterator_impl<
422     WrappedIteratorT, PredicateT,
423     typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
424
425 /// Convenience function that takes a range of elements and a predicate,
426 /// and return a new filter_iterator range.
427 ///
428 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
429 /// lifetime of that temporary is not kept by the returned range object, and the
430 /// temporary is going to be dropped on the floor after the make_iterator_range
431 /// full expression that contains this function call.
432 template <typename RangeT, typename PredicateT>
433 iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
434 make_filter_range(RangeT &&Range, PredicateT Pred) {
435   using FilterIteratorT =
436       filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
437   return make_range(
438       FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
439                       std::end(std::forward<RangeT>(Range)), Pred),
440       FilterIteratorT(std::end(std::forward<RangeT>(Range)),
441                       std::end(std::forward<RangeT>(Range)), Pred));
442 }
443
444 /// A pseudo-iterator adaptor that is designed to implement "early increment"
445 /// style loops.
446 ///
447 /// This is *not a normal iterator* and should almost never be used directly. It
448 /// is intended primarily to be used with range based for loops and some range
449 /// algorithms.
450 ///
451 /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
452 /// somewhere between them. The constraints of these iterators are:
453 ///
454 /// - On construction or after being incremented, it is comparable and
455 ///   dereferencable. It is *not* incrementable.
456 /// - After being dereferenced, it is neither comparable nor dereferencable, it
457 ///   is only incrementable.
458 ///
459 /// This means you can only dereference the iterator once, and you can only
460 /// increment it once between dereferences.
461 template <typename WrappedIteratorT>
462 class early_inc_iterator_impl
463     : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
464                                    WrappedIteratorT, std::input_iterator_tag> {
465   using BaseT =
466       iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
467                             WrappedIteratorT, std::input_iterator_tag>;
468
469   using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
470
471 protected:
472 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
473   bool IsEarlyIncremented = false;
474 #endif
475
476 public:
477   early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
478
479   using BaseT::operator*;
480   typename BaseT::reference operator*() {
481 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
482     assert(!IsEarlyIncremented && "Cannot dereference twice!");
483     IsEarlyIncremented = true;
484 #endif
485     return *(this->I)++;
486   }
487
488   using BaseT::operator++;
489   early_inc_iterator_impl &operator++() {
490 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
491     assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
492     IsEarlyIncremented = false;
493 #endif
494     return *this;
495   }
496
497   using BaseT::operator==;
498   bool operator==(const early_inc_iterator_impl &RHS) const {
499 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
500     assert(!IsEarlyIncremented && "Cannot compare after dereferencing!");
501 #endif
502     return BaseT::operator==(RHS);
503   }
504 };
505
506 /// Make a range that does early increment to allow mutation of the underlying
507 /// range without disrupting iteration.
508 ///
509 /// The underlying iterator will be incremented immediately after it is
510 /// dereferenced, allowing deletion of the current node or insertion of nodes to
511 /// not disrupt iteration provided they do not invalidate the *next* iterator --
512 /// the current iterator can be invalidated.
513 ///
514 /// This requires a very exact pattern of use that is only really suitable to
515 /// range based for loops and other range algorithms that explicitly guarantee
516 /// to dereference exactly once each element, and to increment exactly once each
517 /// element.
518 template <typename RangeT>
519 iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
520 make_early_inc_range(RangeT &&Range) {
521   using EarlyIncIteratorT =
522       early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
523   return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
524                     EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
525 }
526
527 // forward declarations required by zip_shortest/zip_first/zip_longest
528 template <typename R, typename UnaryPredicate>
529 bool all_of(R &&range, UnaryPredicate P);
530 template <typename R, typename UnaryPredicate>
531 bool any_of(R &&range, UnaryPredicate P);
532
533 template <size_t... I> struct index_sequence;
534
535 template <class... Ts> struct index_sequence_for;
536
537 namespace detail {
538
539 using std::declval;
540
541 // We have to alias this since inlining the actual type at the usage site
542 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
543 template<typename... Iters> struct ZipTupleType {
544   using type = std::tuple<decltype(*declval<Iters>())...>;
545 };
546
547 template <typename ZipType, typename... Iters>
548 using zip_traits = iterator_facade_base<
549     ZipType, typename std::common_type<std::bidirectional_iterator_tag,
550                                        typename std::iterator_traits<
551                                            Iters>::iterator_category...>::type,
552     // ^ TODO: Implement random access methods.
553     typename ZipTupleType<Iters...>::type,
554     typename std::iterator_traits<typename std::tuple_element<
555         0, std::tuple<Iters...>>::type>::difference_type,
556     // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
557     // inner iterators have the same difference_type. It would fail if, for
558     // instance, the second field's difference_type were non-numeric while the
559     // first is.
560     typename ZipTupleType<Iters...>::type *,
561     typename ZipTupleType<Iters...>::type>;
562
563 template <typename ZipType, typename... Iters>
564 struct zip_common : public zip_traits<ZipType, Iters...> {
565   using Base = zip_traits<ZipType, Iters...>;
566   using value_type = typename Base::value_type;
567
568   std::tuple<Iters...> iterators;
569
570 protected:
571   template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
572     return value_type(*std::get<Ns>(iterators)...);
573   }
574
575   template <size_t... Ns>
576   decltype(iterators) tup_inc(index_sequence<Ns...>) const {
577     return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
578   }
579
580   template <size_t... Ns>
581   decltype(iterators) tup_dec(index_sequence<Ns...>) const {
582     return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
583   }
584
585 public:
586   zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
587
588   value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
589
590   const value_type operator*() const {
591     return deref(index_sequence_for<Iters...>{});
592   }
593
594   ZipType &operator++() {
595     iterators = tup_inc(index_sequence_for<Iters...>{});
596     return *reinterpret_cast<ZipType *>(this);
597   }
598
599   ZipType &operator--() {
600     static_assert(Base::IsBidirectional,
601                   "All inner iterators must be at least bidirectional.");
602     iterators = tup_dec(index_sequence_for<Iters...>{});
603     return *reinterpret_cast<ZipType *>(this);
604   }
605 };
606
607 template <typename... Iters>
608 struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
609   using Base = zip_common<zip_first<Iters...>, Iters...>;
610
611   bool operator==(const zip_first<Iters...> &other) const {
612     return std::get<0>(this->iterators) == std::get<0>(other.iterators);
613   }
614
615   zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
616 };
617
618 template <typename... Iters>
619 class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
620   template <size_t... Ns>
621   bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
622     return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
623                                               std::get<Ns>(other.iterators)...},
624                   identity<bool>{});
625   }
626
627 public:
628   using Base = zip_common<zip_shortest<Iters...>, Iters...>;
629
630   zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
631
632   bool operator==(const zip_shortest<Iters...> &other) const {
633     return !test(other, index_sequence_for<Iters...>{});
634   }
635 };
636
637 template <template <typename...> class ItType, typename... Args> class zippy {
638 public:
639   using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
640   using iterator_category = typename iterator::iterator_category;
641   using value_type = typename iterator::value_type;
642   using difference_type = typename iterator::difference_type;
643   using pointer = typename iterator::pointer;
644   using reference = typename iterator::reference;
645
646 private:
647   std::tuple<Args...> ts;
648
649   template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
650     return iterator(std::begin(std::get<Ns>(ts))...);
651   }
652   template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
653     return iterator(std::end(std::get<Ns>(ts))...);
654   }
655
656 public:
657   zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
658
659   iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
660   iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
661 };
662
663 } // end namespace detail
664
665 /// zip iterator for two or more iteratable types.
666 template <typename T, typename U, typename... Args>
667 detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
668                                                        Args &&... args) {
669   return detail::zippy<detail::zip_shortest, T, U, Args...>(
670       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
671 }
672
673 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to
674 /// be the shortest.
675 template <typename T, typename U, typename... Args>
676 detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
677                                                           Args &&... args) {
678   return detail::zippy<detail::zip_first, T, U, Args...>(
679       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
680 }
681
682 namespace detail {
683 template <typename Iter>
684 static Iter next_or_end(const Iter &I, const Iter &End) {
685   if (I == End)
686     return End;
687   return std::next(I);
688 }
689
690 template <typename Iter>
691 static auto deref_or_none(const Iter &I, const Iter &End)
692     -> llvm::Optional<typename std::remove_const<
693         typename std::remove_reference<decltype(*I)>::type>::type> {
694   if (I == End)
695     return None;
696   return *I;
697 }
698
699 template <typename Iter> struct ZipLongestItemType {
700   using type =
701       llvm::Optional<typename std::remove_const<typename std::remove_reference<
702           decltype(*std::declval<Iter>())>::type>::type>;
703 };
704
705 template <typename... Iters> struct ZipLongestTupleType {
706   using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
707 };
708
709 template <typename... Iters>
710 class zip_longest_iterator
711     : public iterator_facade_base<
712           zip_longest_iterator<Iters...>,
713           typename std::common_type<
714               std::forward_iterator_tag,
715               typename std::iterator_traits<Iters>::iterator_category...>::type,
716           typename ZipLongestTupleType<Iters...>::type,
717           typename std::iterator_traits<typename std::tuple_element<
718               0, std::tuple<Iters...>>::type>::difference_type,
719           typename ZipLongestTupleType<Iters...>::type *,
720           typename ZipLongestTupleType<Iters...>::type> {
721 public:
722   using value_type = typename ZipLongestTupleType<Iters...>::type;
723
724 private:
725   std::tuple<Iters...> iterators;
726   std::tuple<Iters...> end_iterators;
727
728   template <size_t... Ns>
729   bool test(const zip_longest_iterator<Iters...> &other,
730             index_sequence<Ns...>) const {
731     return llvm::any_of(
732         std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
733                                     std::get<Ns>(other.iterators)...},
734         identity<bool>{});
735   }
736
737   template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
738     return value_type(
739         deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
740   }
741
742   template <size_t... Ns>
743   decltype(iterators) tup_inc(index_sequence<Ns...>) const {
744     return std::tuple<Iters...>(
745         next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
746   }
747
748 public:
749   zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
750       : iterators(std::forward<Iters>(ts.first)...),
751         end_iterators(std::forward<Iters>(ts.second)...) {}
752
753   value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
754
755   value_type operator*() const { return deref(index_sequence_for<Iters...>{}); }
756
757   zip_longest_iterator<Iters...> &operator++() {
758     iterators = tup_inc(index_sequence_for<Iters...>{});
759     return *this;
760   }
761
762   bool operator==(const zip_longest_iterator<Iters...> &other) const {
763     return !test(other, index_sequence_for<Iters...>{});
764   }
765 };
766
767 template <typename... Args> class zip_longest_range {
768 public:
769   using iterator =
770       zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
771   using iterator_category = typename iterator::iterator_category;
772   using value_type = typename iterator::value_type;
773   using difference_type = typename iterator::difference_type;
774   using pointer = typename iterator::pointer;
775   using reference = typename iterator::reference;
776
777 private:
778   std::tuple<Args...> ts;
779
780   template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
781     return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
782                                    adl_end(std::get<Ns>(ts)))...);
783   }
784
785   template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
786     return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
787                                    adl_end(std::get<Ns>(ts)))...);
788   }
789
790 public:
791   zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
792
793   iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
794   iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
795 };
796 } // namespace detail
797
798 /// Iterate over two or more iterators at the same time. Iteration continues
799 /// until all iterators reach the end. The llvm::Optional only contains a value
800 /// if the iterator has not reached the end.
801 template <typename T, typename U, typename... Args>
802 detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
803                                                      Args &&... args) {
804   return detail::zip_longest_range<T, U, Args...>(
805       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
806 }
807
808 /// Iterator wrapper that concatenates sequences together.
809 ///
810 /// This can concatenate different iterators, even with different types, into
811 /// a single iterator provided the value types of all the concatenated
812 /// iterators expose `reference` and `pointer` types that can be converted to
813 /// `ValueT &` and `ValueT *` respectively. It doesn't support more
814 /// interesting/customized pointer or reference types.
815 ///
816 /// Currently this only supports forward or higher iterator categories as
817 /// inputs and always exposes a forward iterator interface.
818 template <typename ValueT, typename... IterTs>
819 class concat_iterator
820     : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
821                                   std::forward_iterator_tag, ValueT> {
822   using BaseT = typename concat_iterator::iterator_facade_base;
823
824   /// We store both the current and end iterators for each concatenated
825   /// sequence in a tuple of pairs.
826   ///
827   /// Note that something like iterator_range seems nice at first here, but the
828   /// range properties are of little benefit and end up getting in the way
829   /// because we need to do mutation on the current iterators.
830   std::tuple<IterTs...> Begins;
831   std::tuple<IterTs...> Ends;
832
833   /// Attempts to increment a specific iterator.
834   ///
835   /// Returns true if it was able to increment the iterator. Returns false if
836   /// the iterator is already at the end iterator.
837   template <size_t Index> bool incrementHelper() {
838     auto &Begin = std::get<Index>(Begins);
839     auto &End = std::get<Index>(Ends);
840     if (Begin == End)
841       return false;
842
843     ++Begin;
844     return true;
845   }
846
847   /// Increments the first non-end iterator.
848   ///
849   /// It is an error to call this with all iterators at the end.
850   template <size_t... Ns> void increment(index_sequence<Ns...>) {
851     // Build a sequence of functions to increment each iterator if possible.
852     bool (concat_iterator::*IncrementHelperFns[])() = {
853         &concat_iterator::incrementHelper<Ns>...};
854
855     // Loop over them, and stop as soon as we succeed at incrementing one.
856     for (auto &IncrementHelperFn : IncrementHelperFns)
857       if ((this->*IncrementHelperFn)())
858         return;
859
860     llvm_unreachable("Attempted to increment an end concat iterator!");
861   }
862
863   /// Returns null if the specified iterator is at the end. Otherwise,
864   /// dereferences the iterator and returns the address of the resulting
865   /// reference.
866   template <size_t Index> ValueT *getHelper() const {
867     auto &Begin = std::get<Index>(Begins);
868     auto &End = std::get<Index>(Ends);
869     if (Begin == End)
870       return nullptr;
871
872     return &*Begin;
873   }
874
875   /// Finds the first non-end iterator, dereferences, and returns the resulting
876   /// reference.
877   ///
878   /// It is an error to call this with all iterators at the end.
879   template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
880     // Build a sequence of functions to get from iterator if possible.
881     ValueT *(concat_iterator::*GetHelperFns[])() const = {
882         &concat_iterator::getHelper<Ns>...};
883
884     // Loop over them, and return the first result we find.
885     for (auto &GetHelperFn : GetHelperFns)
886       if (ValueT *P = (this->*GetHelperFn)())
887         return *P;
888
889     llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
890   }
891
892 public:
893   /// Constructs an iterator from a squence of ranges.
894   ///
895   /// We need the full range to know how to switch between each of the
896   /// iterators.
897   template <typename... RangeTs>
898   explicit concat_iterator(RangeTs &&... Ranges)
899       : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
900
901   using BaseT::operator++;
902
903   concat_iterator &operator++() {
904     increment(index_sequence_for<IterTs...>());
905     return *this;
906   }
907
908   ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
909
910   bool operator==(const concat_iterator &RHS) const {
911     return Begins == RHS.Begins && Ends == RHS.Ends;
912   }
913 };
914
915 namespace detail {
916
917 /// Helper to store a sequence of ranges being concatenated and access them.
918 ///
919 /// This is designed to facilitate providing actual storage when temporaries
920 /// are passed into the constructor such that we can use it as part of range
921 /// based for loops.
922 template <typename ValueT, typename... RangeTs> class concat_range {
923 public:
924   using iterator =
925       concat_iterator<ValueT,
926                       decltype(std::begin(std::declval<RangeTs &>()))...>;
927
928 private:
929   std::tuple<RangeTs...> Ranges;
930
931   template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
932     return iterator(std::get<Ns>(Ranges)...);
933   }
934   template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
935     return iterator(make_range(std::end(std::get<Ns>(Ranges)),
936                                std::end(std::get<Ns>(Ranges)))...);
937   }
938
939 public:
940   concat_range(RangeTs &&... Ranges)
941       : Ranges(std::forward<RangeTs>(Ranges)...) {}
942
943   iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
944   iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
945 };
946
947 } // end namespace detail
948
949 /// Concatenated range across two or more ranges.
950 ///
951 /// The desired value type must be explicitly specified.
952 template <typename ValueT, typename... RangeTs>
953 detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
954   static_assert(sizeof...(RangeTs) > 1,
955                 "Need more than one range to concatenate!");
956   return detail::concat_range<ValueT, RangeTs...>(
957       std::forward<RangeTs>(Ranges)...);
958 }
959
960 //===----------------------------------------------------------------------===//
961 //     Extra additions to <utility>
962 //===----------------------------------------------------------------------===//
963
964 /// Function object to check whether the first component of a std::pair
965 /// compares less than the first component of another std::pair.
966 struct less_first {
967   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
968     return lhs.first < rhs.first;
969   }
970 };
971
972 /// Function object to check whether the second component of a std::pair
973 /// compares less than the second component of another std::pair.
974 struct less_second {
975   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
976     return lhs.second < rhs.second;
977   }
978 };
979
980 /// \brief Function object to apply a binary function to the first component of
981 /// a std::pair.
982 template<typename FuncTy>
983 struct on_first {
984   FuncTy func;
985
986   template <typename T>
987   auto operator()(const T &lhs, const T &rhs) const
988       -> decltype(func(lhs.first, rhs.first)) {
989     return func(lhs.first, rhs.first);
990   }
991 };
992
993 // A subset of N3658. More stuff can be added as-needed.
994
995 /// Represents a compile-time sequence of integers.
996 template <class T, T... I> struct integer_sequence {
997   using value_type = T;
998
999   static constexpr size_t size() { return sizeof...(I); }
1000 };
1001
1002 /// Alias for the common case of a sequence of size_ts.
1003 template <size_t... I>
1004 struct index_sequence : integer_sequence<std::size_t, I...> {};
1005
1006 template <std::size_t N, std::size_t... I>
1007 struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
1008 template <std::size_t... I>
1009 struct build_index_impl<0, I...> : index_sequence<I...> {};
1010
1011 /// Creates a compile-time integer sequence for a parameter pack.
1012 template <class... Ts>
1013 struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
1014
1015 /// Utility type to build an inheritance chain that makes it easy to rank
1016 /// overload candidates.
1017 template <int N> struct rank : rank<N - 1> {};
1018 template <> struct rank<0> {};
1019
1020 /// traits class for checking whether type T is one of any of the given
1021 /// types in the variadic list.
1022 template <typename T, typename... Ts> struct is_one_of {
1023   static const bool value = false;
1024 };
1025
1026 template <typename T, typename U, typename... Ts>
1027 struct is_one_of<T, U, Ts...> {
1028   static const bool value =
1029       std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
1030 };
1031
1032 /// traits class for checking whether type T is a base class for all
1033 ///  the given types in the variadic list.
1034 template <typename T, typename... Ts> struct are_base_of {
1035   static const bool value = true;
1036 };
1037
1038 template <typename T, typename U, typename... Ts>
1039 struct are_base_of<T, U, Ts...> {
1040   static const bool value =
1041       std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
1042 };
1043
1044 //===----------------------------------------------------------------------===//
1045 //     Extra additions for arrays
1046 //===----------------------------------------------------------------------===//
1047
1048 /// Find the length of an array.
1049 template <class T, std::size_t N>
1050 constexpr inline size_t array_lengthof(T (&)[N]) {
1051   return N;
1052 }
1053
1054 /// Adapt std::less<T> for array_pod_sort.
1055 template<typename T>
1056 inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1057   if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1058                      *reinterpret_cast<const T*>(P2)))
1059     return -1;
1060   if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1061                      *reinterpret_cast<const T*>(P1)))
1062     return 1;
1063   return 0;
1064 }
1065
1066 /// get_array_pod_sort_comparator - This is an internal helper function used to
1067 /// get type deduction of T right.
1068 template<typename T>
1069 inline int (*get_array_pod_sort_comparator(const T &))
1070              (const void*, const void*) {
1071   return array_pod_sort_comparator<T>;
1072 }
1073
1074 /// array_pod_sort - This sorts an array with the specified start and end
1075 /// extent.  This is just like std::sort, except that it calls qsort instead of
1076 /// using an inlined template.  qsort is slightly slower than std::sort, but
1077 /// most sorts are not performance critical in LLVM and std::sort has to be
1078 /// template instantiated for each type, leading to significant measured code
1079 /// bloat.  This function should generally be used instead of std::sort where
1080 /// possible.
1081 ///
1082 /// This function assumes that you have simple POD-like types that can be
1083 /// compared with std::less and can be moved with memcpy.  If this isn't true,
1084 /// you should use std::sort.
1085 ///
1086 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
1087 /// default to std::less.
1088 template<class IteratorTy>
1089 inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1090   // Don't inefficiently call qsort with one element or trigger undefined
1091   // behavior with an empty sequence.
1092   auto NElts = End - Start;
1093   if (NElts <= 1) return;
1094 #ifdef EXPENSIVE_CHECKS
1095   std::mt19937 Generator(std::random_device{}());
1096   std::shuffle(Start, End, Generator);
1097 #endif
1098   qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1099 }
1100
1101 template <class IteratorTy>
1102 inline void array_pod_sort(
1103     IteratorTy Start, IteratorTy End,
1104     int (*Compare)(
1105         const typename std::iterator_traits<IteratorTy>::value_type *,
1106         const typename std::iterator_traits<IteratorTy>::value_type *)) {
1107   // Don't inefficiently call qsort with one element or trigger undefined
1108   // behavior with an empty sequence.
1109   auto NElts = End - Start;
1110   if (NElts <= 1) return;
1111 #ifdef EXPENSIVE_CHECKS
1112   std::mt19937 Generator(std::random_device{}());
1113   std::shuffle(Start, End, Generator);
1114 #endif
1115   qsort(&*Start, NElts, sizeof(*Start),
1116         reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1117 }
1118
1119 // Provide wrappers to std::sort which shuffle the elements before sorting
1120 // to help uncover non-deterministic behavior (PR35135).
1121 template <typename IteratorTy>
1122 inline void sort(IteratorTy Start, IteratorTy End) {
1123 #ifdef EXPENSIVE_CHECKS
1124   std::mt19937 Generator(std::random_device{}());
1125   std::shuffle(Start, End, Generator);
1126 #endif
1127   std::sort(Start, End);
1128 }
1129
1130 template <typename Container> inline void sort(Container &&C) {
1131   llvm::sort(adl_begin(C), adl_end(C));
1132 }
1133
1134 template <typename IteratorTy, typename Compare>
1135 inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1136 #ifdef EXPENSIVE_CHECKS
1137   std::mt19937 Generator(std::random_device{}());
1138   std::shuffle(Start, End, Generator);
1139 #endif
1140   std::sort(Start, End, Comp);
1141 }
1142
1143 template <typename Container, typename Compare>
1144 inline void sort(Container &&C, Compare Comp) {
1145   llvm::sort(adl_begin(C), adl_end(C), Comp);
1146 }
1147
1148 //===----------------------------------------------------------------------===//
1149 //     Extra additions to <algorithm>
1150 //===----------------------------------------------------------------------===//
1151
1152 /// For a container of pointers, deletes the pointers and then clears the
1153 /// container.
1154 template<typename Container>
1155 void DeleteContainerPointers(Container &C) {
1156   for (auto V : C)
1157     delete V;
1158   C.clear();
1159 }
1160
1161 /// In a container of pairs (usually a map) whose second element is a pointer,
1162 /// deletes the second elements and then clears the container.
1163 template<typename Container>
1164 void DeleteContainerSeconds(Container &C) {
1165   for (auto &V : C)
1166     delete V.second;
1167   C.clear();
1168 }
1169
1170 /// Get the size of a range. This is a wrapper function around std::distance
1171 /// which is only enabled when the operation is O(1).
1172 template <typename R>
1173 auto size(R &&Range, typename std::enable_if<
1174                          std::is_same<typename std::iterator_traits<decltype(
1175                                           Range.begin())>::iterator_category,
1176                                       std::random_access_iterator_tag>::value,
1177                          void>::type * = nullptr)
1178     -> decltype(std::distance(Range.begin(), Range.end())) {
1179   return std::distance(Range.begin(), Range.end());
1180 }
1181
1182 /// Provide wrappers to std::for_each which take ranges instead of having to
1183 /// pass begin/end explicitly.
1184 template <typename R, typename UnaryPredicate>
1185 UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1186   return std::for_each(adl_begin(Range), adl_end(Range), P);
1187 }
1188
1189 /// Provide wrappers to std::all_of which take ranges instead of having to pass
1190 /// begin/end explicitly.
1191 template <typename R, typename UnaryPredicate>
1192 bool all_of(R &&Range, UnaryPredicate P) {
1193   return std::all_of(adl_begin(Range), adl_end(Range), P);
1194 }
1195
1196 /// Provide wrappers to std::any_of which take ranges instead of having to pass
1197 /// begin/end explicitly.
1198 template <typename R, typename UnaryPredicate>
1199 bool any_of(R &&Range, UnaryPredicate P) {
1200   return std::any_of(adl_begin(Range), adl_end(Range), P);
1201 }
1202
1203 /// Provide wrappers to std::none_of which take ranges instead of having to pass
1204 /// begin/end explicitly.
1205 template <typename R, typename UnaryPredicate>
1206 bool none_of(R &&Range, UnaryPredicate P) {
1207   return std::none_of(adl_begin(Range), adl_end(Range), P);
1208 }
1209
1210 /// Provide wrappers to std::find which take ranges instead of having to pass
1211 /// begin/end explicitly.
1212 template <typename R, typename T>
1213 auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1214   return std::find(adl_begin(Range), adl_end(Range), Val);
1215 }
1216
1217 /// Provide wrappers to std::find_if which take ranges instead of having to pass
1218 /// begin/end explicitly.
1219 template <typename R, typename UnaryPredicate>
1220 auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1221   return std::find_if(adl_begin(Range), adl_end(Range), P);
1222 }
1223
1224 template <typename R, typename UnaryPredicate>
1225 auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1226   return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1227 }
1228
1229 /// Provide wrappers to std::remove_if which take ranges instead of having to
1230 /// pass begin/end explicitly.
1231 template <typename R, typename UnaryPredicate>
1232 auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1233   return std::remove_if(adl_begin(Range), adl_end(Range), P);
1234 }
1235
1236 /// Provide wrappers to std::copy_if which take ranges instead of having to
1237 /// pass begin/end explicitly.
1238 template <typename R, typename OutputIt, typename UnaryPredicate>
1239 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1240   return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1241 }
1242
1243 template <typename R, typename OutputIt>
1244 OutputIt copy(R &&Range, OutputIt Out) {
1245   return std::copy(adl_begin(Range), adl_end(Range), Out);
1246 }
1247
1248 /// Wrapper function around std::find to detect if an element exists
1249 /// in a container.
1250 template <typename R, typename E>
1251 bool is_contained(R &&Range, const E &Element) {
1252   return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1253 }
1254
1255 /// Wrapper function around std::count to count the number of times an element
1256 /// \p Element occurs in the given range \p Range.
1257 template <typename R, typename E>
1258 auto count(R &&Range, const E &Element) ->
1259     typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1260   return std::count(adl_begin(Range), adl_end(Range), Element);
1261 }
1262
1263 /// Wrapper function around std::count_if to count the number of times an
1264 /// element satisfying a given predicate occurs in a range.
1265 template <typename R, typename UnaryPredicate>
1266 auto count_if(R &&Range, UnaryPredicate P) ->
1267     typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1268   return std::count_if(adl_begin(Range), adl_end(Range), P);
1269 }
1270
1271 /// Wrapper function around std::transform to apply a function to a range and
1272 /// store the result elsewhere.
1273 template <typename R, typename OutputIt, typename UnaryPredicate>
1274 OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1275   return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1276 }
1277
1278 /// Provide wrappers to std::partition which take ranges instead of having to
1279 /// pass begin/end explicitly.
1280 template <typename R, typename UnaryPredicate>
1281 auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1282   return std::partition(adl_begin(Range), adl_end(Range), P);
1283 }
1284
1285 /// Provide wrappers to std::lower_bound which take ranges instead of having to
1286 /// pass begin/end explicitly.
1287 template <typename R, typename T>
1288 auto lower_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1289   return std::lower_bound(adl_begin(Range), adl_end(Range),
1290                           std::forward<T>(Value));
1291 }
1292
1293 template <typename R, typename T, typename Compare>
1294 auto lower_bound(R &&Range, T &&Value, Compare C)
1295     -> decltype(adl_begin(Range)) {
1296   return std::lower_bound(adl_begin(Range), adl_end(Range),
1297                           std::forward<T>(Value), C);
1298 }
1299
1300 /// Provide wrappers to std::upper_bound which take ranges instead of having to
1301 /// pass begin/end explicitly.
1302 template <typename R, typename T>
1303 auto upper_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1304   return std::upper_bound(adl_begin(Range), adl_end(Range),
1305                           std::forward<T>(Value));
1306 }
1307
1308 template <typename R, typename T, typename Compare>
1309 auto upper_bound(R &&Range, T &&Value, Compare C)
1310     -> decltype(adl_begin(Range)) {
1311   return std::upper_bound(adl_begin(Range), adl_end(Range),
1312                           std::forward<T>(Value), C);
1313 }
1314
1315 template <typename R>
1316 void stable_sort(R &&Range) {
1317   std::stable_sort(adl_begin(Range), adl_end(Range));
1318 }
1319
1320 template <typename R, typename Compare>
1321 void stable_sort(R &&Range, Compare C) {
1322   std::stable_sort(adl_begin(Range), adl_end(Range), C);
1323 }
1324
1325 /// Binary search for the first iterator in a range where a predicate is false.
1326 /// Requires that C is always true below some limit, and always false above it.
1327 template <typename R, typename Predicate,
1328           typename Val = decltype(*adl_begin(std::declval<R>()))>
1329 auto partition_point(R &&Range, Predicate P) -> decltype(adl_begin(Range)) {
1330   return std::partition_point(adl_begin(Range), adl_end(Range), P);
1331 }
1332
1333 /// Wrapper function around std::equal to detect if all elements
1334 /// in a container are same.
1335 template <typename R>
1336 bool is_splat(R &&Range) {
1337   size_t range_size = size(Range);
1338   return range_size != 0 && (range_size == 1 ||
1339          std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1340 }
1341
1342 /// Given a range of type R, iterate the entire range and return a
1343 /// SmallVector with elements of the vector.  This is useful, for example,
1344 /// when you want to iterate a range and then sort the results.
1345 template <unsigned Size, typename R>
1346 SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1347 to_vector(R &&Range) {
1348   return {adl_begin(Range), adl_end(Range)};
1349 }
1350
1351 /// Provide a container algorithm similar to C++ Library Fundamentals v2's
1352 /// `erase_if` which is equivalent to:
1353 ///
1354 ///   C.erase(remove_if(C, pred), C.end());
1355 ///
1356 /// This version works for any container with an erase method call accepting
1357 /// two iterators.
1358 template <typename Container, typename UnaryPredicate>
1359 void erase_if(Container &C, UnaryPredicate P) {
1360   C.erase(remove_if(C, P), C.end());
1361 }
1362
1363 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
1364 /// the range [ValIt, ValEnd) (which is not from the same container).
1365 template<typename Container, typename RandomAccessIterator>
1366 void replace(Container &Cont, typename Container::iterator ContIt,
1367              typename Container::iterator ContEnd, RandomAccessIterator ValIt,
1368              RandomAccessIterator ValEnd) {
1369   while (true) {
1370     if (ValIt == ValEnd) {
1371       Cont.erase(ContIt, ContEnd);
1372       return;
1373     } else if (ContIt == ContEnd) {
1374       Cont.insert(ContIt, ValIt, ValEnd);
1375       return;
1376     }
1377     *ContIt++ = *ValIt++;
1378   }
1379 }
1380
1381 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
1382 /// the range R.
1383 template<typename Container, typename Range = std::initializer_list<
1384                                  typename Container::value_type>>
1385 void replace(Container &Cont, typename Container::iterator ContIt,
1386              typename Container::iterator ContEnd, Range R) {
1387   replace(Cont, ContIt, ContEnd, R.begin(), R.end());
1388 }
1389
1390 //===----------------------------------------------------------------------===//
1391 //     Extra additions to <memory>
1392 //===----------------------------------------------------------------------===//
1393
1394 // Implement make_unique according to N3656.
1395
1396 /// Constructs a `new T()` with the given args and returns a
1397 ///        `unique_ptr<T>` which owns the object.
1398 ///
1399 /// Example:
1400 ///
1401 ///     auto p = make_unique<int>();
1402 ///     auto p = make_unique<std::tuple<int, int>>(0, 1);
1403 template <class T, class... Args>
1404 typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1405 make_unique(Args &&... args) {
1406   return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
1407 }
1408
1409 /// Constructs a `new T[n]` with the given args and returns a
1410 ///        `unique_ptr<T[]>` which owns the object.
1411 ///
1412 /// \param n size of the new array.
1413 ///
1414 /// Example:
1415 ///
1416 ///     auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1417 template <class T>
1418 typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1419                         std::unique_ptr<T>>::type
1420 make_unique(size_t n) {
1421   return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1422 }
1423
1424 /// This function isn't used and is only here to provide better compile errors.
1425 template <class T, class... Args>
1426 typename std::enable_if<std::extent<T>::value != 0>::type
1427 make_unique(Args &&...) = delete;
1428
1429 struct FreeDeleter {
1430   void operator()(void* v) {
1431     ::free(v);
1432   }
1433 };
1434
1435 template<typename First, typename Second>
1436 struct pair_hash {
1437   size_t operator()(const std::pair<First, Second> &P) const {
1438     return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1439   }
1440 };
1441
1442 /// A functor like C++14's std::less<void> in its absence.
1443 struct less {
1444   template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1445     return std::forward<A>(a) < std::forward<B>(b);
1446   }
1447 };
1448
1449 /// A functor like C++14's std::equal<void> in its absence.
1450 struct equal {
1451   template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1452     return std::forward<A>(a) == std::forward<B>(b);
1453   }
1454 };
1455
1456 /// Binary functor that adapts to any other binary functor after dereferencing
1457 /// operands.
1458 template <typename T> struct deref {
1459   T func;
1460
1461   // Could be further improved to cope with non-derivable functors and
1462   // non-binary functors (should be a variadic template member function
1463   // operator()).
1464   template <typename A, typename B>
1465   auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1466     assert(lhs);
1467     assert(rhs);
1468     return func(*lhs, *rhs);
1469   }
1470 };
1471
1472 namespace detail {
1473
1474 template <typename R> class enumerator_iter;
1475
1476 template <typename R> struct result_pair {
1477   using value_reference =
1478       typename std::iterator_traits<IterOfRange<R>>::reference;
1479
1480   friend class enumerator_iter<R>;
1481
1482   result_pair() = default;
1483   result_pair(std::size_t Index, IterOfRange<R> Iter)
1484       : Index(Index), Iter(Iter) {}
1485
1486   result_pair<R> &operator=(const result_pair<R> &Other) {
1487     Index = Other.Index;
1488     Iter = Other.Iter;
1489     return *this;
1490   }
1491
1492   std::size_t index() const { return Index; }
1493   const value_reference value() const { return *Iter; }
1494   value_reference value() { return *Iter; }
1495
1496 private:
1497   std::size_t Index = std::numeric_limits<std::size_t>::max();
1498   IterOfRange<R> Iter;
1499 };
1500
1501 template <typename R>
1502 class enumerator_iter
1503     : public iterator_facade_base<
1504           enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1505           typename std::iterator_traits<IterOfRange<R>>::difference_type,
1506           typename std::iterator_traits<IterOfRange<R>>::pointer,
1507           typename std::iterator_traits<IterOfRange<R>>::reference> {
1508   using result_type = result_pair<R>;
1509
1510 public:
1511   explicit enumerator_iter(IterOfRange<R> EndIter)
1512       : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1513
1514   enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1515       : Result(Index, Iter) {}
1516
1517   result_type &operator*() { return Result; }
1518   const result_type &operator*() const { return Result; }
1519
1520   enumerator_iter<R> &operator++() {
1521     assert(Result.Index != std::numeric_limits<size_t>::max());
1522     ++Result.Iter;
1523     ++Result.Index;
1524     return *this;
1525   }
1526
1527   bool operator==(const enumerator_iter<R> &RHS) const {
1528     // Don't compare indices here, only iterators.  It's possible for an end
1529     // iterator to have different indices depending on whether it was created
1530     // by calling std::end() versus incrementing a valid iterator.
1531     return Result.Iter == RHS.Result.Iter;
1532   }
1533
1534   enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1535     Result = Other.Result;
1536     return *this;
1537   }
1538
1539 private:
1540   result_type Result;
1541 };
1542
1543 template <typename R> class enumerator {
1544 public:
1545   explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1546
1547   enumerator_iter<R> begin() {
1548     return enumerator_iter<R>(0, std::begin(TheRange));
1549   }
1550
1551   enumerator_iter<R> end() {
1552     return enumerator_iter<R>(std::end(TheRange));
1553   }
1554
1555 private:
1556   R TheRange;
1557 };
1558
1559 } // end namespace detail
1560
1561 /// Given an input range, returns a new range whose values are are pair (A,B)
1562 /// such that A is the 0-based index of the item in the sequence, and B is
1563 /// the value from the original sequence.  Example:
1564 ///
1565 /// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1566 /// for (auto X : enumerate(Items)) {
1567 ///   printf("Item %d - %c\n", X.index(), X.value());
1568 /// }
1569 ///
1570 /// Output:
1571 ///   Item 0 - A
1572 ///   Item 1 - B
1573 ///   Item 2 - C
1574 ///   Item 3 - D
1575 ///
1576 template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1577   return detail::enumerator<R>(std::forward<R>(TheRange));
1578 }
1579
1580 namespace detail {
1581
1582 template <typename F, typename Tuple, std::size_t... I>
1583 auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1584     -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1585   return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1586 }
1587
1588 } // end namespace detail
1589
1590 /// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1591 /// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1592 /// return the result.
1593 template <typename F, typename Tuple>
1594 auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1595     std::forward<F>(f), std::forward<Tuple>(t),
1596     build_index_impl<
1597         std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1598   using Indices = build_index_impl<
1599       std::tuple_size<typename std::decay<Tuple>::type>::value>;
1600
1601   return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1602                                   Indices{});
1603 }
1604
1605 /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
1606 /// time. Not meant for use with random-access iterators.
1607 template <typename IterTy>
1608 bool hasNItems(
1609     IterTy &&Begin, IterTy &&End, unsigned N,
1610     typename std::enable_if<
1611         !std::is_same<
1612             typename std::iterator_traits<typename std::remove_reference<
1613                 decltype(Begin)>::type>::iterator_category,
1614             std::random_access_iterator_tag>::value,
1615         void>::type * = nullptr) {
1616   for (; N; --N, ++Begin)
1617     if (Begin == End)
1618       return false; // Too few.
1619   return Begin == End;
1620 }
1621
1622 /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
1623 /// time. Not meant for use with random-access iterators.
1624 template <typename IterTy>
1625 bool hasNItemsOrMore(
1626     IterTy &&Begin, IterTy &&End, unsigned N,
1627     typename std::enable_if<
1628         !std::is_same<
1629             typename std::iterator_traits<typename std::remove_reference<
1630                 decltype(Begin)>::type>::iterator_category,
1631             std::random_access_iterator_tag>::value,
1632         void>::type * = nullptr) {
1633   for (; N; --N, ++Begin)
1634     if (Begin == End)
1635       return false; // Too few.
1636   return true;
1637 }
1638
1639 /// Returns a raw pointer that represents the same address as the argument.
1640 ///
1641 /// The late bound return should be removed once we move to C++14 to better
1642 /// align with the C++20 declaration. Also, this implementation can be removed
1643 /// once we move to C++20 where it's defined as std::to_addres()
1644 ///
1645 /// The std::pointer_traits<>::to_address(p) variations of these overloads has
1646 /// not been implemented.
1647 template <class Ptr> auto to_address(const Ptr &P) -> decltype(P.operator->()) {
1648   return P.operator->();
1649 }
1650 template <class T> constexpr T *to_address(T *P) { return P; }
1651
1652 } // end namespace llvm
1653
1654 #endif // LLVM_ADT_STLEXTRAS_H