]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/include/llvm/ADT/SmallBitVector.h
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / include / llvm / ADT / SmallBitVector.h
1 //===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SmallBitVector class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_ADT_SMALLBITVECTOR_H
14 #define LLVM_ADT_SMALLBITVECTOR_H
15
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/Support/MathExtras.h"
19 #include <algorithm>
20 #include <cassert>
21 #include <climits>
22 #include <cstddef>
23 #include <cstdint>
24 #include <limits>
25 #include <utility>
26
27 namespace llvm {
28
29 /// This is a 'bitvector' (really, a variable-sized bit array), optimized for
30 /// the case when the array is small. It contains one pointer-sized field, which
31 /// is directly used as a plain collection of bits when possible, or as a
32 /// pointer to a larger heap-allocated array when necessary. This allows normal
33 /// "small" cases to be fast without losing generality for large inputs.
34 class SmallBitVector {
35   // TODO: In "large" mode, a pointer to a BitVector is used, leading to an
36   // unnecessary level of indirection. It would be more efficient to use a
37   // pointer to memory containing size, allocation size, and the array of bits.
38   uintptr_t X = 1;
39
40   enum {
41     // The number of bits in this class.
42     NumBaseBits = sizeof(uintptr_t) * CHAR_BIT,
43
44     // One bit is used to discriminate between small and large mode. The
45     // remaining bits are used for the small-mode representation.
46     SmallNumRawBits = NumBaseBits - 1,
47
48     // A few more bits are used to store the size of the bit set in small mode.
49     // Theoretically this is a ceil-log2. These bits are encoded in the most
50     // significant bits of the raw bits.
51     SmallNumSizeBits = (NumBaseBits == 32 ? 5 :
52                         NumBaseBits == 64 ? 6 :
53                         SmallNumRawBits),
54
55     // The remaining bits are used to store the actual set in small mode.
56     SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits
57   };
58
59   static_assert(NumBaseBits == 64 || NumBaseBits == 32,
60                 "Unsupported word size");
61
62 public:
63   using size_type = unsigned;
64
65   // Encapsulation of a single bit.
66   class reference {
67     SmallBitVector &TheVector;
68     unsigned BitPos;
69
70   public:
71     reference(SmallBitVector &b, unsigned Idx) : TheVector(b), BitPos(Idx) {}
72
73     reference(const reference&) = default;
74
75     reference& operator=(reference t) {
76       *this = bool(t);
77       return *this;
78     }
79
80     reference& operator=(bool t) {
81       if (t)
82         TheVector.set(BitPos);
83       else
84         TheVector.reset(BitPos);
85       return *this;
86     }
87
88     operator bool() const {
89       return const_cast<const SmallBitVector &>(TheVector).operator[](BitPos);
90     }
91   };
92
93 private:
94   BitVector *getPointer() const {
95     assert(!isSmall());
96     return reinterpret_cast<BitVector *>(X);
97   }
98
99   void switchToSmall(uintptr_t NewSmallBits, size_t NewSize) {
100     X = 1;
101     setSmallSize(NewSize);
102     setSmallBits(NewSmallBits);
103   }
104
105   void switchToLarge(BitVector *BV) {
106     X = reinterpret_cast<uintptr_t>(BV);
107     assert(!isSmall() && "Tried to use an unaligned pointer");
108   }
109
110   // Return all the bits used for the "small" representation; this includes
111   // bits for the size as well as the element bits.
112   uintptr_t getSmallRawBits() const {
113     assert(isSmall());
114     return X >> 1;
115   }
116
117   void setSmallRawBits(uintptr_t NewRawBits) {
118     assert(isSmall());
119     X = (NewRawBits << 1) | uintptr_t(1);
120   }
121
122   // Return the size.
123   size_t getSmallSize() const { return getSmallRawBits() >> SmallNumDataBits; }
124
125   void setSmallSize(size_t Size) {
126     setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits));
127   }
128
129   // Return the element bits.
130   uintptr_t getSmallBits() const {
131     return getSmallRawBits() & ~(~uintptr_t(0) << getSmallSize());
132   }
133
134   void setSmallBits(uintptr_t NewBits) {
135     setSmallRawBits((NewBits & ~(~uintptr_t(0) << getSmallSize())) |
136                     (getSmallSize() << SmallNumDataBits));
137   }
138
139 public:
140   /// Creates an empty bitvector.
141   SmallBitVector() = default;
142
143   /// Creates a bitvector of specified number of bits. All bits are initialized
144   /// to the specified value.
145   explicit SmallBitVector(unsigned s, bool t = false) {
146     if (s <= SmallNumDataBits)
147       switchToSmall(t ? ~uintptr_t(0) : 0, s);
148     else
149       switchToLarge(new BitVector(s, t));
150   }
151
152   /// SmallBitVector copy ctor.
153   SmallBitVector(const SmallBitVector &RHS) {
154     if (RHS.isSmall())
155       X = RHS.X;
156     else
157       switchToLarge(new BitVector(*RHS.getPointer()));
158   }
159
160   SmallBitVector(SmallBitVector &&RHS) : X(RHS.X) {
161     RHS.X = 1;
162   }
163
164   ~SmallBitVector() {
165     if (!isSmall())
166       delete getPointer();
167   }
168
169   using const_set_bits_iterator = const_set_bits_iterator_impl<SmallBitVector>;
170   using set_iterator = const_set_bits_iterator;
171
172   const_set_bits_iterator set_bits_begin() const {
173     return const_set_bits_iterator(*this);
174   }
175
176   const_set_bits_iterator set_bits_end() const {
177     return const_set_bits_iterator(*this, -1);
178   }
179
180   iterator_range<const_set_bits_iterator> set_bits() const {
181     return make_range(set_bits_begin(), set_bits_end());
182   }
183
184   bool isSmall() const { return X & uintptr_t(1); }
185
186   /// Tests whether there are no bits in this bitvector.
187   bool empty() const {
188     return isSmall() ? getSmallSize() == 0 : getPointer()->empty();
189   }
190
191   /// Returns the number of bits in this bitvector.
192   size_t size() const {
193     return isSmall() ? getSmallSize() : getPointer()->size();
194   }
195
196   /// Returns the number of bits which are set.
197   size_type count() const {
198     if (isSmall()) {
199       uintptr_t Bits = getSmallBits();
200       return countPopulation(Bits);
201     }
202     return getPointer()->count();
203   }
204
205   /// Returns true if any bit is set.
206   bool any() const {
207     if (isSmall())
208       return getSmallBits() != 0;
209     return getPointer()->any();
210   }
211
212   /// Returns true if all bits are set.
213   bool all() const {
214     if (isSmall())
215       return getSmallBits() == (uintptr_t(1) << getSmallSize()) - 1;
216     return getPointer()->all();
217   }
218
219   /// Returns true if none of the bits are set.
220   bool none() const {
221     if (isSmall())
222       return getSmallBits() == 0;
223     return getPointer()->none();
224   }
225
226   /// Returns the index of the first set bit, -1 if none of the bits are set.
227   int find_first() const {
228     if (isSmall()) {
229       uintptr_t Bits = getSmallBits();
230       if (Bits == 0)
231         return -1;
232       return countTrailingZeros(Bits);
233     }
234     return getPointer()->find_first();
235   }
236
237   int find_last() const {
238     if (isSmall()) {
239       uintptr_t Bits = getSmallBits();
240       if (Bits == 0)
241         return -1;
242       return NumBaseBits - countLeadingZeros(Bits) - 1;
243     }
244     return getPointer()->find_last();
245   }
246
247   /// Returns the index of the first unset bit, -1 if all of the bits are set.
248   int find_first_unset() const {
249     if (isSmall()) {
250       if (count() == getSmallSize())
251         return -1;
252
253       uintptr_t Bits = getSmallBits();
254       return countTrailingOnes(Bits);
255     }
256     return getPointer()->find_first_unset();
257   }
258
259   int find_last_unset() const {
260     if (isSmall()) {
261       if (count() == getSmallSize())
262         return -1;
263
264       uintptr_t Bits = getSmallBits();
265       // Set unused bits.
266       Bits |= ~uintptr_t(0) << getSmallSize();
267       return NumBaseBits - countLeadingOnes(Bits) - 1;
268     }
269     return getPointer()->find_last_unset();
270   }
271
272   /// Returns the index of the next set bit following the "Prev" bit.
273   /// Returns -1 if the next set bit is not found.
274   int find_next(unsigned Prev) const {
275     if (isSmall()) {
276       uintptr_t Bits = getSmallBits();
277       // Mask off previous bits.
278       Bits &= ~uintptr_t(0) << (Prev + 1);
279       if (Bits == 0 || Prev + 1 >= getSmallSize())
280         return -1;
281       return countTrailingZeros(Bits);
282     }
283     return getPointer()->find_next(Prev);
284   }
285
286   /// Returns the index of the next unset bit following the "Prev" bit.
287   /// Returns -1 if the next unset bit is not found.
288   int find_next_unset(unsigned Prev) const {
289     if (isSmall()) {
290       ++Prev;
291       uintptr_t Bits = getSmallBits();
292       // Mask in previous bits.
293       uintptr_t Mask = (1 << Prev) - 1;
294       Bits |= Mask;
295
296       if (Bits == ~uintptr_t(0) || Prev + 1 >= getSmallSize())
297         return -1;
298       return countTrailingOnes(Bits);
299     }
300     return getPointer()->find_next_unset(Prev);
301   }
302
303   /// find_prev - Returns the index of the first set bit that precedes the
304   /// the bit at \p PriorTo.  Returns -1 if all previous bits are unset.
305   int find_prev(unsigned PriorTo) const {
306     if (isSmall()) {
307       if (PriorTo == 0)
308         return -1;
309
310       --PriorTo;
311       uintptr_t Bits = getSmallBits();
312       Bits &= maskTrailingOnes<uintptr_t>(PriorTo + 1);
313       if (Bits == 0)
314         return -1;
315
316       return NumBaseBits - countLeadingZeros(Bits) - 1;
317     }
318     return getPointer()->find_prev(PriorTo);
319   }
320
321   /// Clear all bits.
322   void clear() {
323     if (!isSmall())
324       delete getPointer();
325     switchToSmall(0, 0);
326   }
327
328   /// Grow or shrink the bitvector.
329   void resize(unsigned N, bool t = false) {
330     if (!isSmall()) {
331       getPointer()->resize(N, t);
332     } else if (SmallNumDataBits >= N) {
333       uintptr_t NewBits = t ? ~uintptr_t(0) << getSmallSize() : 0;
334       setSmallSize(N);
335       setSmallBits(NewBits | getSmallBits());
336     } else {
337       BitVector *BV = new BitVector(N, t);
338       uintptr_t OldBits = getSmallBits();
339       for (size_t i = 0, e = getSmallSize(); i != e; ++i)
340         (*BV)[i] = (OldBits >> i) & 1;
341       switchToLarge(BV);
342     }
343   }
344
345   void reserve(unsigned N) {
346     if (isSmall()) {
347       if (N > SmallNumDataBits) {
348         uintptr_t OldBits = getSmallRawBits();
349         size_t SmallSize = getSmallSize();
350         BitVector *BV = new BitVector(SmallSize);
351         for (size_t i = 0; i < SmallSize; ++i)
352           if ((OldBits >> i) & 1)
353             BV->set(i);
354         BV->reserve(N);
355         switchToLarge(BV);
356       }
357     } else {
358       getPointer()->reserve(N);
359     }
360   }
361
362   // Set, reset, flip
363   SmallBitVector &set() {
364     if (isSmall())
365       setSmallBits(~uintptr_t(0));
366     else
367       getPointer()->set();
368     return *this;
369   }
370
371   SmallBitVector &set(unsigned Idx) {
372     if (isSmall()) {
373       assert(Idx <= static_cast<unsigned>(
374                         std::numeric_limits<uintptr_t>::digits) &&
375              "undefined behavior");
376       setSmallBits(getSmallBits() | (uintptr_t(1) << Idx));
377     }
378     else
379       getPointer()->set(Idx);
380     return *this;
381   }
382
383   /// Efficiently set a range of bits in [I, E)
384   SmallBitVector &set(unsigned I, unsigned E) {
385     assert(I <= E && "Attempted to set backwards range!");
386     assert(E <= size() && "Attempted to set out-of-bounds range!");
387     if (I == E) return *this;
388     if (isSmall()) {
389       uintptr_t EMask = ((uintptr_t)1) << E;
390       uintptr_t IMask = ((uintptr_t)1) << I;
391       uintptr_t Mask = EMask - IMask;
392       setSmallBits(getSmallBits() | Mask);
393     } else
394       getPointer()->set(I, E);
395     return *this;
396   }
397
398   SmallBitVector &reset() {
399     if (isSmall())
400       setSmallBits(0);
401     else
402       getPointer()->reset();
403     return *this;
404   }
405
406   SmallBitVector &reset(unsigned Idx) {
407     if (isSmall())
408       setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx));
409     else
410       getPointer()->reset(Idx);
411     return *this;
412   }
413
414   /// Efficiently reset a range of bits in [I, E)
415   SmallBitVector &reset(unsigned I, unsigned E) {
416     assert(I <= E && "Attempted to reset backwards range!");
417     assert(E <= size() && "Attempted to reset out-of-bounds range!");
418     if (I == E) return *this;
419     if (isSmall()) {
420       uintptr_t EMask = ((uintptr_t)1) << E;
421       uintptr_t IMask = ((uintptr_t)1) << I;
422       uintptr_t Mask = EMask - IMask;
423       setSmallBits(getSmallBits() & ~Mask);
424     } else
425       getPointer()->reset(I, E);
426     return *this;
427   }
428
429   SmallBitVector &flip() {
430     if (isSmall())
431       setSmallBits(~getSmallBits());
432     else
433       getPointer()->flip();
434     return *this;
435   }
436
437   SmallBitVector &flip(unsigned Idx) {
438     if (isSmall())
439       setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx));
440     else
441       getPointer()->flip(Idx);
442     return *this;
443   }
444
445   // No argument flip.
446   SmallBitVector operator~() const {
447     return SmallBitVector(*this).flip();
448   }
449
450   // Indexing.
451   reference operator[](unsigned Idx) {
452     assert(Idx < size() && "Out-of-bounds Bit access.");
453     return reference(*this, Idx);
454   }
455
456   bool operator[](unsigned Idx) const {
457     assert(Idx < size() && "Out-of-bounds Bit access.");
458     if (isSmall())
459       return ((getSmallBits() >> Idx) & 1) != 0;
460     return getPointer()->operator[](Idx);
461   }
462
463   bool test(unsigned Idx) const {
464     return (*this)[Idx];
465   }
466
467   // Push single bit to end of vector.
468   void push_back(bool Val) {
469     resize(size() + 1, Val);
470   }
471
472   /// Test if any common bits are set.
473   bool anyCommon(const SmallBitVector &RHS) const {
474     if (isSmall() && RHS.isSmall())
475       return (getSmallBits() & RHS.getSmallBits()) != 0;
476     if (!isSmall() && !RHS.isSmall())
477       return getPointer()->anyCommon(*RHS.getPointer());
478
479     for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
480       if (test(i) && RHS.test(i))
481         return true;
482     return false;
483   }
484
485   // Comparison operators.
486   bool operator==(const SmallBitVector &RHS) const {
487     if (size() != RHS.size())
488       return false;
489     if (isSmall() && RHS.isSmall())
490       return getSmallBits() == RHS.getSmallBits();
491     else if (!isSmall() && !RHS.isSmall())
492       return *getPointer() == *RHS.getPointer();
493     else {
494       for (size_t i = 0, e = size(); i != e; ++i) {
495         if ((*this)[i] != RHS[i])
496           return false;
497       }
498       return true;
499     }
500   }
501
502   bool operator!=(const SmallBitVector &RHS) const {
503     return !(*this == RHS);
504   }
505
506   // Intersection, union, disjoint union.
507   // FIXME BitVector::operator&= does not resize the LHS but this does
508   SmallBitVector &operator&=(const SmallBitVector &RHS) {
509     resize(std::max(size(), RHS.size()));
510     if (isSmall() && RHS.isSmall())
511       setSmallBits(getSmallBits() & RHS.getSmallBits());
512     else if (!isSmall() && !RHS.isSmall())
513       getPointer()->operator&=(*RHS.getPointer());
514     else {
515       size_t i, e;
516       for (i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
517         (*this)[i] = test(i) && RHS.test(i);
518       for (e = size(); i != e; ++i)
519         reset(i);
520     }
521     return *this;
522   }
523
524   /// Reset bits that are set in RHS. Same as *this &= ~RHS.
525   SmallBitVector &reset(const SmallBitVector &RHS) {
526     if (isSmall() && RHS.isSmall())
527       setSmallBits(getSmallBits() & ~RHS.getSmallBits());
528     else if (!isSmall() && !RHS.isSmall())
529       getPointer()->reset(*RHS.getPointer());
530     else
531       for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
532         if (RHS.test(i))
533           reset(i);
534
535     return *this;
536   }
537
538   /// Check if (This - RHS) is zero. This is the same as reset(RHS) and any().
539   bool test(const SmallBitVector &RHS) const {
540     if (isSmall() && RHS.isSmall())
541       return (getSmallBits() & ~RHS.getSmallBits()) != 0;
542     if (!isSmall() && !RHS.isSmall())
543       return getPointer()->test(*RHS.getPointer());
544
545     unsigned i, e;
546     for (i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
547       if (test(i) && !RHS.test(i))
548         return true;
549
550     for (e = size(); i != e; ++i)
551       if (test(i))
552         return true;
553
554     return false;
555   }
556
557   SmallBitVector &operator|=(const SmallBitVector &RHS) {
558     resize(std::max(size(), RHS.size()));
559     if (isSmall() && RHS.isSmall())
560       setSmallBits(getSmallBits() | RHS.getSmallBits());
561     else if (!isSmall() && !RHS.isSmall())
562       getPointer()->operator|=(*RHS.getPointer());
563     else {
564       for (size_t i = 0, e = RHS.size(); i != e; ++i)
565         (*this)[i] = test(i) || RHS.test(i);
566     }
567     return *this;
568   }
569
570   SmallBitVector &operator^=(const SmallBitVector &RHS) {
571     resize(std::max(size(), RHS.size()));
572     if (isSmall() && RHS.isSmall())
573       setSmallBits(getSmallBits() ^ RHS.getSmallBits());
574     else if (!isSmall() && !RHS.isSmall())
575       getPointer()->operator^=(*RHS.getPointer());
576     else {
577       for (size_t i = 0, e = RHS.size(); i != e; ++i)
578         (*this)[i] = test(i) != RHS.test(i);
579     }
580     return *this;
581   }
582
583   SmallBitVector &operator<<=(unsigned N) {
584     if (isSmall())
585       setSmallBits(getSmallBits() << N);
586     else
587       getPointer()->operator<<=(N);
588     return *this;
589   }
590
591   SmallBitVector &operator>>=(unsigned N) {
592     if (isSmall())
593       setSmallBits(getSmallBits() >> N);
594     else
595       getPointer()->operator>>=(N);
596     return *this;
597   }
598
599   // Assignment operator.
600   const SmallBitVector &operator=(const SmallBitVector &RHS) {
601     if (isSmall()) {
602       if (RHS.isSmall())
603         X = RHS.X;
604       else
605         switchToLarge(new BitVector(*RHS.getPointer()));
606     } else {
607       if (!RHS.isSmall())
608         *getPointer() = *RHS.getPointer();
609       else {
610         delete getPointer();
611         X = RHS.X;
612       }
613     }
614     return *this;
615   }
616
617   const SmallBitVector &operator=(SmallBitVector &&RHS) {
618     if (this != &RHS) {
619       clear();
620       swap(RHS);
621     }
622     return *this;
623   }
624
625   void swap(SmallBitVector &RHS) {
626     std::swap(X, RHS.X);
627   }
628
629   /// Add '1' bits from Mask to this vector. Don't resize.
630   /// This computes "*this |= Mask".
631   void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
632     if (isSmall())
633       applyMask<true, false>(Mask, MaskWords);
634     else
635       getPointer()->setBitsInMask(Mask, MaskWords);
636   }
637
638   /// Clear any bits in this vector that are set in Mask. Don't resize.
639   /// This computes "*this &= ~Mask".
640   void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
641     if (isSmall())
642       applyMask<false, false>(Mask, MaskWords);
643     else
644       getPointer()->clearBitsInMask(Mask, MaskWords);
645   }
646
647   /// Add a bit to this vector for every '0' bit in Mask. Don't resize.
648   /// This computes "*this |= ~Mask".
649   void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
650     if (isSmall())
651       applyMask<true, true>(Mask, MaskWords);
652     else
653       getPointer()->setBitsNotInMask(Mask, MaskWords);
654   }
655
656   /// Clear a bit in this vector for every '0' bit in Mask. Don't resize.
657   /// This computes "*this &= Mask".
658   void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
659     if (isSmall())
660       applyMask<false, true>(Mask, MaskWords);
661     else
662       getPointer()->clearBitsNotInMask(Mask, MaskWords);
663   }
664
665 private:
666   template <bool AddBits, bool InvertMask>
667   void applyMask(const uint32_t *Mask, unsigned MaskWords) {
668     assert(MaskWords <= sizeof(uintptr_t) && "Mask is larger than base!");
669     uintptr_t M = Mask[0];
670     if (NumBaseBits == 64)
671       M |= uint64_t(Mask[1]) << 32;
672     if (InvertMask)
673       M = ~M;
674     if (AddBits)
675       setSmallBits(getSmallBits() | M);
676     else
677       setSmallBits(getSmallBits() & ~M);
678   }
679 };
680
681 inline SmallBitVector
682 operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) {
683   SmallBitVector Result(LHS);
684   Result &= RHS;
685   return Result;
686 }
687
688 inline SmallBitVector
689 operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) {
690   SmallBitVector Result(LHS);
691   Result |= RHS;
692   return Result;
693 }
694
695 inline SmallBitVector
696 operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) {
697   SmallBitVector Result(LHS);
698   Result ^= RHS;
699   return Result;
700 }
701
702 } // end namespace llvm
703
704 namespace std {
705
706 /// Implement std::swap in terms of BitVector swap.
707 inline void
708 swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) {
709   LHS.swap(RHS);
710 }
711
712 } // end namespace std
713
714 #endif // LLVM_ADT_SMALLBITVECTOR_H