]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/include/llvm/Analysis/CFG.h
Fix a memory leak in if_delgroups() introduced in r334118.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / include / llvm / Analysis / CFG.h
1 //===-- Analysis/CFG.h - BasicBlock Analyses --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions performs analyses on basic blocks, and instructions
10 // contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ANALYSIS_CFG_H
15 #define LLVM_ANALYSIS_CFG_H
16
17 #include "llvm/IR/BasicBlock.h"
18 #include "llvm/IR/CFG.h"
19
20 namespace llvm {
21
22 class BasicBlock;
23 class DominatorTree;
24 class Function;
25 class Instruction;
26 class LoopInfo;
27
28 /// Analyze the specified function to find all of the loop backedges in the
29 /// function and return them.  This is a relatively cheap (compared to
30 /// computing dominators and loop info) analysis.
31 ///
32 /// The output is added to Result, as pairs of <from,to> edge info.
33 void FindFunctionBackedges(
34     const Function &F,
35     SmallVectorImpl<std::pair<const BasicBlock *, const BasicBlock *> > &
36         Result);
37
38 /// Search for the specified successor of basic block BB and return its position
39 /// in the terminator instruction's list of successors.  It is an error to call
40 /// this with a block that is not a successor.
41 unsigned GetSuccessorNumber(const BasicBlock *BB, const BasicBlock *Succ);
42
43 /// Return true if the specified edge is a critical edge. Critical edges are
44 /// edges from a block with multiple successors to a block with multiple
45 /// predecessors.
46 ///
47 bool isCriticalEdge(const Instruction *TI, unsigned SuccNum,
48                     bool AllowIdenticalEdges = false);
49
50 /// Determine whether instruction 'To' is reachable from 'From', without passing
51 /// through any blocks in ExclusionSet, returning true if uncertain.
52 ///
53 /// Determine whether there is a path from From to To within a single function.
54 /// Returns false only if we can prove that once 'From' has been executed then
55 /// 'To' can not be executed. Conservatively returns true.
56 ///
57 /// This function is linear with respect to the number of blocks in the CFG,
58 /// walking down successors from From to reach To, with a fixed threshold.
59 /// Using DT or LI allows us to answer more quickly. LI reduces the cost of
60 /// an entire loop of any number of blocks to be the same as the cost of a
61 /// single block. DT reduces the cost by allowing the search to terminate when
62 /// we find a block that dominates the block containing 'To'. DT is most useful
63 /// on branchy code but not loops, and LI is most useful on code with loops but
64 /// does not help on branchy code outside loops.
65 bool isPotentiallyReachable(
66     const Instruction *From, const Instruction *To,
67     const SmallPtrSetImpl<BasicBlock *> *ExclusionSet = nullptr,
68     const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr);
69
70 /// Determine whether block 'To' is reachable from 'From', returning
71 /// true if uncertain.
72 ///
73 /// Determine whether there is a path from From to To within a single function.
74 /// Returns false only if we can prove that once 'From' has been reached then
75 /// 'To' can not be executed. Conservatively returns true.
76 bool isPotentiallyReachable(const BasicBlock *From, const BasicBlock *To,
77                             const DominatorTree *DT = nullptr,
78                             const LoopInfo *LI = nullptr);
79
80 /// Determine whether there is at least one path from a block in
81 /// 'Worklist' to 'StopBB', returning true if uncertain.
82 ///
83 /// Determine whether there is a path from at least one block in Worklist to
84 /// StopBB within a single function. Returns false only if we can prove that
85 /// once any block in 'Worklist' has been reached then 'StopBB' can not be
86 /// executed. Conservatively returns true.
87 bool isPotentiallyReachableFromMany(SmallVectorImpl<BasicBlock *> &Worklist,
88                                     BasicBlock *StopBB,
89                                     const DominatorTree *DT = nullptr,
90                                     const LoopInfo *LI = nullptr);
91
92 /// Determine whether there is at least one path from a block in
93 /// 'Worklist' to 'StopBB' without passing through any blocks in
94 /// 'ExclusionSet', returning true if uncertain.
95 ///
96 /// Determine whether there is a path from at least one block in Worklist to
97 /// StopBB within a single function without passing through any of the blocks
98 /// in 'ExclusionSet'. Returns false only if we can prove that once any block
99 /// in 'Worklist' has been reached then 'StopBB' can not be executed.
100 /// Conservatively returns true.
101 bool isPotentiallyReachableFromMany(
102     SmallVectorImpl<BasicBlock *> &Worklist, BasicBlock *StopBB,
103     const SmallPtrSetImpl<BasicBlock *> *ExclusionSet,
104     const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr);
105
106 /// Return true if the control flow in \p RPOTraversal is irreducible.
107 ///
108 /// This is a generic implementation to detect CFG irreducibility based on loop
109 /// info analysis. It can be used for any kind of CFG (Loop, MachineLoop,
110 /// Function, MachineFunction, etc.) by providing an RPO traversal (\p
111 /// RPOTraversal) and the loop info analysis (\p LI) of the CFG. This utility
112 /// function is only recommended when loop info analysis is available. If loop
113 /// info analysis isn't available, please, don't compute it explicitly for this
114 /// purpose. There are more efficient ways to detect CFG irreducibility that
115 /// don't require recomputing loop info analysis (e.g., T1/T2 or Tarjan's
116 /// algorithm).
117 ///
118 /// Requirements:
119 ///   1) GraphTraits must be implemented for NodeT type. It is used to access
120 ///      NodeT successors.
121 //    2) \p RPOTraversal must be a valid reverse post-order traversal of the
122 ///      target CFG with begin()/end() iterator interfaces.
123 ///   3) \p LI must be a valid LoopInfoBase that contains up-to-date loop
124 ///      analysis information of the CFG.
125 ///
126 /// This algorithm uses the information about reducible loop back-edges already
127 /// computed in \p LI. When a back-edge is found during the RPO traversal, the
128 /// algorithm checks whether the back-edge is one of the reducible back-edges in
129 /// loop info. If it isn't, the CFG is irreducible. For example, for the CFG
130 /// below (canonical irreducible graph) loop info won't contain any loop, so the
131 /// algorithm will return that the CFG is irreducible when checking the B <-
132 /// -> C back-edge.
133 ///
134 /// (A->B, A->C, B->C, C->B, C->D)
135 ///    A
136 ///  /   \
137 /// B<- ->C
138 ///       |
139 ///       D
140 ///
141 template <class NodeT, class RPOTraversalT, class LoopInfoT,
142           class GT = GraphTraits<NodeT>>
143 bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI) {
144   /// Check whether the edge (\p Src, \p Dst) is a reducible loop backedge
145   /// according to LI. I.e., check if there exists a loop that contains Src and
146   /// where Dst is the loop header.
147   auto isProperBackedge = [&](NodeT Src, NodeT Dst) {
148     for (const auto *Lp = LI.getLoopFor(Src); Lp; Lp = Lp->getParentLoop()) {
149       if (Lp->getHeader() == Dst)
150         return true;
151     }
152     return false;
153   };
154
155   SmallPtrSet<NodeT, 32> Visited;
156   for (NodeT Node : RPOTraversal) {
157     Visited.insert(Node);
158     for (NodeT Succ : make_range(GT::child_begin(Node), GT::child_end(Node))) {
159       // Succ hasn't been visited yet
160       if (!Visited.count(Succ))
161         continue;
162       // We already visited Succ, thus Node->Succ must be a backedge. Check that
163       // the head matches what we have in the loop information. Otherwise, we
164       // have an irreducible graph.
165       if (!isProperBackedge(Node, Succ))
166         return true;
167     }
168   }
169
170   return false;
171 }
172 } // End llvm namespace
173
174 #endif