]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/include/llvm/Analysis/LoopInfoImpl.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / include / llvm / Analysis / LoopInfoImpl.h
1 //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the generic implementation of LoopInfo used for both Loops and
10 // MachineLoops.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
15 #define LLVM_ANALYSIS_LOOPINFOIMPL_H
16
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/IR/Dominators.h"
23
24 namespace llvm {
25
26 //===----------------------------------------------------------------------===//
27 // APIs for simple analysis of the loop. See header notes.
28
29 /// getExitingBlocks - Return all blocks inside the loop that have successors
30 /// outside of the loop.  These are the blocks _inside of the current loop_
31 /// which branch out.  The returned list is always unique.
32 ///
33 template <class BlockT, class LoopT>
34 void LoopBase<BlockT, LoopT>::getExitingBlocks(
35     SmallVectorImpl<BlockT *> &ExitingBlocks) const {
36   assert(!isInvalid() && "Loop not in a valid state!");
37   for (const auto BB : blocks())
38     for (auto *Succ : children<BlockT *>(BB))
39       if (!contains(Succ)) {
40         // Not in current loop? It must be an exit block.
41         ExitingBlocks.push_back(BB);
42         break;
43       }
44 }
45
46 /// getExitingBlock - If getExitingBlocks would return exactly one block,
47 /// return that block. Otherwise return null.
48 template <class BlockT, class LoopT>
49 BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
50   assert(!isInvalid() && "Loop not in a valid state!");
51   SmallVector<BlockT *, 8> ExitingBlocks;
52   getExitingBlocks(ExitingBlocks);
53   if (ExitingBlocks.size() == 1)
54     return ExitingBlocks[0];
55   return nullptr;
56 }
57
58 /// getExitBlocks - Return all of the successor blocks of this loop.  These
59 /// are the blocks _outside of the current loop_ which are branched to.
60 ///
61 template <class BlockT, class LoopT>
62 void LoopBase<BlockT, LoopT>::getExitBlocks(
63     SmallVectorImpl<BlockT *> &ExitBlocks) const {
64   assert(!isInvalid() && "Loop not in a valid state!");
65   for (const auto BB : blocks())
66     for (auto *Succ : children<BlockT *>(BB))
67       if (!contains(Succ))
68         // Not in current loop? It must be an exit block.
69         ExitBlocks.push_back(Succ);
70 }
71
72 /// getExitBlock - If getExitBlocks would return exactly one block,
73 /// return that block. Otherwise return null.
74 template <class BlockT, class LoopT>
75 BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
76   assert(!isInvalid() && "Loop not in a valid state!");
77   SmallVector<BlockT *, 8> ExitBlocks;
78   getExitBlocks(ExitBlocks);
79   if (ExitBlocks.size() == 1)
80     return ExitBlocks[0];
81   return nullptr;
82 }
83
84 template <class BlockT, class LoopT>
85 bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const {
86   // Each predecessor of each exit block of a normal loop is contained
87   // within the loop.
88   SmallVector<BlockT *, 4> UniqueExitBlocks;
89   getUniqueExitBlocks(UniqueExitBlocks);
90   for (BlockT *EB : UniqueExitBlocks)
91     for (BlockT *Predecessor : children<Inverse<BlockT *>>(EB))
92       if (!contains(Predecessor))
93         return false;
94   // All the requirements are met.
95   return true;
96 }
97
98 // Helper function to get unique loop exits. Pred is a predicate pointing to
99 // BasicBlocks in a loop which should be considered to find loop exits.
100 template <class BlockT, class LoopT, typename PredicateT>
101 void getUniqueExitBlocksHelper(const LoopT *L,
102                                SmallVectorImpl<BlockT *> &ExitBlocks,
103                                PredicateT Pred) {
104   assert(!L->isInvalid() && "Loop not in a valid state!");
105   SmallPtrSet<BlockT *, 32> Visited;
106   auto Filtered = make_filter_range(L->blocks(), Pred);
107   for (BlockT *BB : Filtered)
108     for (BlockT *Successor : children<BlockT *>(BB))
109       if (!L->contains(Successor))
110         if (Visited.insert(Successor).second)
111           ExitBlocks.push_back(Successor);
112 }
113
114 template <class BlockT, class LoopT>
115 void LoopBase<BlockT, LoopT>::getUniqueExitBlocks(
116     SmallVectorImpl<BlockT *> &ExitBlocks) const {
117   getUniqueExitBlocksHelper(this, ExitBlocks,
118                             [](const BlockT *BB) { return true; });
119 }
120
121 template <class BlockT, class LoopT>
122 void LoopBase<BlockT, LoopT>::getUniqueNonLatchExitBlocks(
123     SmallVectorImpl<BlockT *> &ExitBlocks) const {
124   const BlockT *Latch = getLoopLatch();
125   assert(Latch && "Latch block must exists");
126   getUniqueExitBlocksHelper(this, ExitBlocks,
127                             [Latch](const BlockT *BB) { return BB != Latch; });
128 }
129
130 template <class BlockT, class LoopT>
131 BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const {
132   SmallVector<BlockT *, 8> UniqueExitBlocks;
133   getUniqueExitBlocks(UniqueExitBlocks);
134   if (UniqueExitBlocks.size() == 1)
135     return UniqueExitBlocks[0];
136   return nullptr;
137 }
138
139 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
140 template <class BlockT, class LoopT>
141 void LoopBase<BlockT, LoopT>::getExitEdges(
142     SmallVectorImpl<Edge> &ExitEdges) const {
143   assert(!isInvalid() && "Loop not in a valid state!");
144   for (const auto BB : blocks())
145     for (auto *Succ : children<BlockT *>(BB))
146       if (!contains(Succ))
147         // Not in current loop? It must be an exit block.
148         ExitEdges.emplace_back(BB, Succ);
149 }
150
151 /// getLoopPreheader - If there is a preheader for this loop, return it.  A
152 /// loop has a preheader if there is only one edge to the header of the loop
153 /// from outside of the loop and it is legal to hoist instructions into the
154 /// predecessor. If this is the case, the block branching to the header of the
155 /// loop is the preheader node.
156 ///
157 /// This method returns null if there is no preheader for the loop.
158 ///
159 template <class BlockT, class LoopT>
160 BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
161   assert(!isInvalid() && "Loop not in a valid state!");
162   // Keep track of nodes outside the loop branching to the header...
163   BlockT *Out = getLoopPredecessor();
164   if (!Out)
165     return nullptr;
166
167   // Make sure we are allowed to hoist instructions into the predecessor.
168   if (!Out->isLegalToHoistInto())
169     return nullptr;
170
171   // Make sure there is only one exit out of the preheader.
172   typedef GraphTraits<BlockT *> BlockTraits;
173   typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
174   ++SI;
175   if (SI != BlockTraits::child_end(Out))
176     return nullptr; // Multiple exits from the block, must not be a preheader.
177
178   // The predecessor has exactly one successor, so it is a preheader.
179   return Out;
180 }
181
182 /// getLoopPredecessor - If the given loop's header has exactly one unique
183 /// predecessor outside the loop, return it. Otherwise return null.
184 /// This is less strict that the loop "preheader" concept, which requires
185 /// the predecessor to have exactly one successor.
186 ///
187 template <class BlockT, class LoopT>
188 BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
189   assert(!isInvalid() && "Loop not in a valid state!");
190   // Keep track of nodes outside the loop branching to the header...
191   BlockT *Out = nullptr;
192
193   // Loop over the predecessors of the header node...
194   BlockT *Header = getHeader();
195   for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
196     if (!contains(Pred)) { // If the block is not in the loop...
197       if (Out && Out != Pred)
198         return nullptr; // Multiple predecessors outside the loop
199       Out = Pred;
200     }
201   }
202
203   return Out;
204 }
205
206 /// getLoopLatch - If there is a single latch block for this loop, return it.
207 /// A latch block is a block that contains a branch back to the header.
208 template <class BlockT, class LoopT>
209 BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
210   assert(!isInvalid() && "Loop not in a valid state!");
211   BlockT *Header = getHeader();
212   BlockT *Latch = nullptr;
213   for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
214     if (contains(Pred)) {
215       if (Latch)
216         return nullptr;
217       Latch = Pred;
218     }
219   }
220
221   return Latch;
222 }
223
224 //===----------------------------------------------------------------------===//
225 // APIs for updating loop information after changing the CFG
226 //
227
228 /// addBasicBlockToLoop - This method is used by other analyses to update loop
229 /// information.  NewBB is set to be a new member of the current loop.
230 /// Because of this, it is added as a member of all parent loops, and is added
231 /// to the specified LoopInfo object as being in the current basic block.  It
232 /// is not valid to replace the loop header with this method.
233 ///
234 template <class BlockT, class LoopT>
235 void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
236     BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
237   assert(!isInvalid() && "Loop not in a valid state!");
238 #ifndef NDEBUG
239   if (!Blocks.empty()) {
240     auto SameHeader = LIB[getHeader()];
241     assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
242            "Incorrect LI specified for this loop!");
243   }
244 #endif
245   assert(NewBB && "Cannot add a null basic block to the loop!");
246   assert(!LIB[NewBB] && "BasicBlock already in the loop!");
247
248   LoopT *L = static_cast<LoopT *>(this);
249
250   // Add the loop mapping to the LoopInfo object...
251   LIB.BBMap[NewBB] = L;
252
253   // Add the basic block to this loop and all parent loops...
254   while (L) {
255     L->addBlockEntry(NewBB);
256     L = L->getParentLoop();
257   }
258 }
259
260 /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
261 /// the OldChild entry in our children list with NewChild, and updates the
262 /// parent pointer of OldChild to be null and the NewChild to be this loop.
263 /// This updates the loop depth of the new child.
264 template <class BlockT, class LoopT>
265 void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
266                                                    LoopT *NewChild) {
267   assert(!isInvalid() && "Loop not in a valid state!");
268   assert(OldChild->ParentLoop == this && "This loop is already broken!");
269   assert(!NewChild->ParentLoop && "NewChild already has a parent!");
270   typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
271   assert(I != SubLoops.end() && "OldChild not in loop!");
272   *I = NewChild;
273   OldChild->ParentLoop = nullptr;
274   NewChild->ParentLoop = static_cast<LoopT *>(this);
275 }
276
277 /// verifyLoop - Verify loop structure
278 template <class BlockT, class LoopT>
279 void LoopBase<BlockT, LoopT>::verifyLoop() const {
280   assert(!isInvalid() && "Loop not in a valid state!");
281 #ifndef NDEBUG
282   assert(!Blocks.empty() && "Loop header is missing");
283
284   // Setup for using a depth-first iterator to visit every block in the loop.
285   SmallVector<BlockT *, 8> ExitBBs;
286   getExitBlocks(ExitBBs);
287   df_iterator_default_set<BlockT *> VisitSet;
288   VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
289   df_ext_iterator<BlockT *, df_iterator_default_set<BlockT *>>
290       BI = df_ext_begin(getHeader(), VisitSet),
291       BE = df_ext_end(getHeader(), VisitSet);
292
293   // Keep track of the BBs visited.
294   SmallPtrSet<BlockT *, 8> VisitedBBs;
295
296   // Check the individual blocks.
297   for (; BI != BE; ++BI) {
298     BlockT *BB = *BI;
299
300     assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB),
301                        GraphTraits<BlockT *>::child_end(BB),
302                        [&](BlockT *B) { return contains(B); }) &&
303            "Loop block has no in-loop successors!");
304
305     assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
306                        GraphTraits<Inverse<BlockT *>>::child_end(BB),
307                        [&](BlockT *B) { return contains(B); }) &&
308            "Loop block has no in-loop predecessors!");
309
310     SmallVector<BlockT *, 2> OutsideLoopPreds;
311     std::for_each(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
312                   GraphTraits<Inverse<BlockT *>>::child_end(BB),
313                   [&](BlockT *B) {
314                     if (!contains(B))
315                       OutsideLoopPreds.push_back(B);
316                   });
317
318     if (BB == getHeader()) {
319       assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
320     } else if (!OutsideLoopPreds.empty()) {
321       // A non-header loop shouldn't be reachable from outside the loop,
322       // though it is permitted if the predecessor is not itself actually
323       // reachable.
324       BlockT *EntryBB = &BB->getParent()->front();
325       for (BlockT *CB : depth_first(EntryBB))
326         for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
327           assert(CB != OutsideLoopPreds[i] &&
328                  "Loop has multiple entry points!");
329     }
330     assert(BB != &getHeader()->getParent()->front() &&
331            "Loop contains function entry block!");
332
333     VisitedBBs.insert(BB);
334   }
335
336   if (VisitedBBs.size() != getNumBlocks()) {
337     dbgs() << "The following blocks are unreachable in the loop: ";
338     for (auto BB : Blocks) {
339       if (!VisitedBBs.count(BB)) {
340         dbgs() << *BB << "\n";
341       }
342     }
343     assert(false && "Unreachable block in loop");
344   }
345
346   // Check the subloops.
347   for (iterator I = begin(), E = end(); I != E; ++I)
348     // Each block in each subloop should be contained within this loop.
349     for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
350          BI != BE; ++BI) {
351       assert(contains(*BI) &&
352              "Loop does not contain all the blocks of a subloop!");
353     }
354
355   // Check the parent loop pointer.
356   if (ParentLoop) {
357     assert(is_contained(*ParentLoop, this) &&
358            "Loop is not a subloop of its parent!");
359   }
360 #endif
361 }
362
363 /// verifyLoop - Verify loop structure of this loop and all nested loops.
364 template <class BlockT, class LoopT>
365 void LoopBase<BlockT, LoopT>::verifyLoopNest(
366     DenseSet<const LoopT *> *Loops) const {
367   assert(!isInvalid() && "Loop not in a valid state!");
368   Loops->insert(static_cast<const LoopT *>(this));
369   // Verify this loop.
370   verifyLoop();
371   // Verify the subloops.
372   for (iterator I = begin(), E = end(); I != E; ++I)
373     (*I)->verifyLoopNest(Loops);
374 }
375
376 template <class BlockT, class LoopT>
377 void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth,
378                                     bool Verbose) const {
379   OS.indent(Depth * 2);
380   if (static_cast<const LoopT *>(this)->isAnnotatedParallel())
381     OS << "Parallel ";
382   OS << "Loop at depth " << getLoopDepth() << " containing: ";
383
384   BlockT *H = getHeader();
385   for (unsigned i = 0; i < getBlocks().size(); ++i) {
386     BlockT *BB = getBlocks()[i];
387     if (!Verbose) {
388       if (i)
389         OS << ",";
390       BB->printAsOperand(OS, false);
391     } else
392       OS << "\n";
393
394     if (BB == H)
395       OS << "<header>";
396     if (isLoopLatch(BB))
397       OS << "<latch>";
398     if (isLoopExiting(BB))
399       OS << "<exiting>";
400     if (Verbose)
401       BB->print(OS);
402   }
403   OS << "\n";
404
405   for (iterator I = begin(), E = end(); I != E; ++I)
406     (*I)->print(OS, Depth + 2);
407 }
408
409 //===----------------------------------------------------------------------===//
410 /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
411 /// result does / not depend on use list (block predecessor) order.
412 ///
413
414 /// Discover a subloop with the specified backedges such that: All blocks within
415 /// this loop are mapped to this loop or a subloop. And all subloops within this
416 /// loop have their parent loop set to this loop or a subloop.
417 template <class BlockT, class LoopT>
418 static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
419                                   LoopInfoBase<BlockT, LoopT> *LI,
420                                   const DomTreeBase<BlockT> &DomTree) {
421   typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
422
423   unsigned NumBlocks = 0;
424   unsigned NumSubloops = 0;
425
426   // Perform a backward CFG traversal using a worklist.
427   std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
428   while (!ReverseCFGWorklist.empty()) {
429     BlockT *PredBB = ReverseCFGWorklist.back();
430     ReverseCFGWorklist.pop_back();
431
432     LoopT *Subloop = LI->getLoopFor(PredBB);
433     if (!Subloop) {
434       if (!DomTree.isReachableFromEntry(PredBB))
435         continue;
436
437       // This is an undiscovered block. Map it to the current loop.
438       LI->changeLoopFor(PredBB, L);
439       ++NumBlocks;
440       if (PredBB == L->getHeader())
441         continue;
442       // Push all block predecessors on the worklist.
443       ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
444                                 InvBlockTraits::child_begin(PredBB),
445                                 InvBlockTraits::child_end(PredBB));
446     } else {
447       // This is a discovered block. Find its outermost discovered loop.
448       while (LoopT *Parent = Subloop->getParentLoop())
449         Subloop = Parent;
450
451       // If it is already discovered to be a subloop of this loop, continue.
452       if (Subloop == L)
453         continue;
454
455       // Discover a subloop of this loop.
456       Subloop->setParentLoop(L);
457       ++NumSubloops;
458       NumBlocks += Subloop->getBlocksVector().capacity();
459       PredBB = Subloop->getHeader();
460       // Continue traversal along predecessors that are not loop-back edges from
461       // within this subloop tree itself. Note that a predecessor may directly
462       // reach another subloop that is not yet discovered to be a subloop of
463       // this loop, which we must traverse.
464       for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) {
465         if (LI->getLoopFor(Pred) != Subloop)
466           ReverseCFGWorklist.push_back(Pred);
467       }
468     }
469   }
470   L->getSubLoopsVector().reserve(NumSubloops);
471   L->reserveBlocks(NumBlocks);
472 }
473
474 /// Populate all loop data in a stable order during a single forward DFS.
475 template <class BlockT, class LoopT> class PopulateLoopsDFS {
476   typedef GraphTraits<BlockT *> BlockTraits;
477   typedef typename BlockTraits::ChildIteratorType SuccIterTy;
478
479   LoopInfoBase<BlockT, LoopT> *LI;
480
481 public:
482   PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}
483
484   void traverse(BlockT *EntryBlock);
485
486 protected:
487   void insertIntoLoop(BlockT *Block);
488 };
489
490 /// Top-level driver for the forward DFS within the loop.
491 template <class BlockT, class LoopT>
492 void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
493   for (BlockT *BB : post_order(EntryBlock))
494     insertIntoLoop(BB);
495 }
496
497 /// Add a single Block to its ancestor loops in PostOrder. If the block is a
498 /// subloop header, add the subloop to its parent in PostOrder, then reverse the
499 /// Block and Subloop vectors of the now complete subloop to achieve RPO.
500 template <class BlockT, class LoopT>
501 void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
502   LoopT *Subloop = LI->getLoopFor(Block);
503   if (Subloop && Block == Subloop->getHeader()) {
504     // We reach this point once per subloop after processing all the blocks in
505     // the subloop.
506     if (Subloop->getParentLoop())
507       Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
508     else
509       LI->addTopLevelLoop(Subloop);
510
511     // For convenience, Blocks and Subloops are inserted in postorder. Reverse
512     // the lists, except for the loop header, which is always at the beginning.
513     Subloop->reverseBlock(1);
514     std::reverse(Subloop->getSubLoopsVector().begin(),
515                  Subloop->getSubLoopsVector().end());
516
517     Subloop = Subloop->getParentLoop();
518   }
519   for (; Subloop; Subloop = Subloop->getParentLoop())
520     Subloop->addBlockEntry(Block);
521 }
522
523 /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
524 /// interleaved with backward CFG traversals within each subloop
525 /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
526 /// this part of the algorithm is linear in the number of CFG edges. Subloop and
527 /// Block vectors are then populated during a single forward CFG traversal
528 /// (PopulateLoopDFS).
529 ///
530 /// During the two CFG traversals each block is seen three times:
531 /// 1) Discovered and mapped by a reverse CFG traversal.
532 /// 2) Visited during a forward DFS CFG traversal.
533 /// 3) Reverse-inserted in the loop in postorder following forward DFS.
534 ///
535 /// The Block vectors are inclusive, so step 3 requires loop-depth number of
536 /// insertions per block.
537 template <class BlockT, class LoopT>
538 void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
539   // Postorder traversal of the dominator tree.
540   const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
541   for (auto DomNode : post_order(DomRoot)) {
542
543     BlockT *Header = DomNode->getBlock();
544     SmallVector<BlockT *, 4> Backedges;
545
546     // Check each predecessor of the potential loop header.
547     for (const auto Backedge : children<Inverse<BlockT *>>(Header)) {
548       // If Header dominates predBB, this is a new loop. Collect the backedges.
549       if (DomTree.dominates(Header, Backedge) &&
550           DomTree.isReachableFromEntry(Backedge)) {
551         Backedges.push_back(Backedge);
552       }
553     }
554     // Perform a backward CFG traversal to discover and map blocks in this loop.
555     if (!Backedges.empty()) {
556       LoopT *L = AllocateLoop(Header);
557       discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
558     }
559   }
560   // Perform a single forward CFG traversal to populate block and subloop
561   // vectors for all loops.
562   PopulateLoopsDFS<BlockT, LoopT> DFS(this);
563   DFS.traverse(DomRoot->getBlock());
564 }
565
566 template <class BlockT, class LoopT>
567 SmallVector<LoopT *, 4> LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() {
568   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
569   // The outer-most loop actually goes into the result in the same relative
570   // order as we walk it. But LoopInfo stores the top level loops in reverse
571   // program order so for here we reverse it to get forward program order.
572   // FIXME: If we change the order of LoopInfo we will want to remove the
573   // reverse here.
574   for (LoopT *RootL : reverse(*this)) {
575     auto PreOrderLoopsInRootL = RootL->getLoopsInPreorder();
576     PreOrderLoops.append(PreOrderLoopsInRootL.begin(),
577                          PreOrderLoopsInRootL.end());
578   }
579
580   return PreOrderLoops;
581 }
582
583 template <class BlockT, class LoopT>
584 SmallVector<LoopT *, 4>
585 LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() {
586   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
587   // The outer-most loop actually goes into the result in the same relative
588   // order as we walk it. LoopInfo stores the top level loops in reverse
589   // program order so we walk in order here.
590   // FIXME: If we change the order of LoopInfo we will want to add a reverse
591   // here.
592   for (LoopT *RootL : *this) {
593     assert(PreOrderWorklist.empty() &&
594            "Must start with an empty preorder walk worklist.");
595     PreOrderWorklist.push_back(RootL);
596     do {
597       LoopT *L = PreOrderWorklist.pop_back_val();
598       // Sub-loops are stored in forward program order, but will process the
599       // worklist backwards so we can just append them in order.
600       PreOrderWorklist.append(L->begin(), L->end());
601       PreOrderLoops.push_back(L);
602     } while (!PreOrderWorklist.empty());
603   }
604
605   return PreOrderLoops;
606 }
607
608 // Debugging
609 template <class BlockT, class LoopT>
610 void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
611   for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
612     TopLevelLoops[i]->print(OS);
613 #if 0
614   for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
615          E = BBMap.end(); I != E; ++I)
616     OS << "BB '" << I->first->getName() << "' level = "
617        << I->second->getLoopDepth() << "\n";
618 #endif
619 }
620
621 template <typename T>
622 bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
623   llvm::sort(BB1);
624   llvm::sort(BB2);
625   return BB1 == BB2;
626 }
627
628 template <class BlockT, class LoopT>
629 void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
630                                const LoopInfoBase<BlockT, LoopT> &LI,
631                                const LoopT &L) {
632   LoopHeaders[L.getHeader()] = &L;
633   for (LoopT *SL : L)
634     addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
635 }
636
637 #ifndef NDEBUG
638 template <class BlockT, class LoopT>
639 static void compareLoops(const LoopT *L, const LoopT *OtherL,
640                          DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
641   BlockT *H = L->getHeader();
642   BlockT *OtherH = OtherL->getHeader();
643   assert(H == OtherH &&
644          "Mismatched headers even though found in the same map entry!");
645
646   assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
647          "Mismatched loop depth!");
648   const LoopT *ParentL = L, *OtherParentL = OtherL;
649   do {
650     assert(ParentL->getHeader() == OtherParentL->getHeader() &&
651            "Mismatched parent loop headers!");
652     ParentL = ParentL->getParentLoop();
653     OtherParentL = OtherParentL->getParentLoop();
654   } while (ParentL);
655
656   for (const LoopT *SubL : *L) {
657     BlockT *SubH = SubL->getHeader();
658     const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
659     assert(OtherSubL && "Inner loop is missing in computed loop info!");
660     OtherLoopHeaders.erase(SubH);
661     compareLoops(SubL, OtherSubL, OtherLoopHeaders);
662   }
663
664   std::vector<BlockT *> BBs = L->getBlocks();
665   std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
666   assert(compareVectors(BBs, OtherBBs) &&
667          "Mismatched basic blocks in the loops!");
668
669   const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet();
670   const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet = L->getBlocksSet();
671   assert(BlocksSet.size() == OtherBlocksSet.size() &&
672          std::all_of(BlocksSet.begin(), BlocksSet.end(),
673                      [&OtherBlocksSet](const BlockT *BB) {
674                        return OtherBlocksSet.count(BB);
675                      }) &&
676          "Mismatched basic blocks in BlocksSets!");
677 }
678 #endif
679
680 template <class BlockT, class LoopT>
681 void LoopInfoBase<BlockT, LoopT>::verify(
682     const DomTreeBase<BlockT> &DomTree) const {
683   DenseSet<const LoopT *> Loops;
684   for (iterator I = begin(), E = end(); I != E; ++I) {
685     assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
686     (*I)->verifyLoopNest(&Loops);
687   }
688
689 // Verify that blocks are mapped to valid loops.
690 #ifndef NDEBUG
691   for (auto &Entry : BBMap) {
692     const BlockT *BB = Entry.first;
693     LoopT *L = Entry.second;
694     assert(Loops.count(L) && "orphaned loop");
695     assert(L->contains(BB) && "orphaned block");
696     for (LoopT *ChildLoop : *L)
697       assert(!ChildLoop->contains(BB) &&
698              "BBMap should point to the innermost loop containing BB");
699   }
700
701   // Recompute LoopInfo to verify loops structure.
702   LoopInfoBase<BlockT, LoopT> OtherLI;
703   OtherLI.analyze(DomTree);
704
705   // Build a map we can use to move from our LI to the computed one. This
706   // allows us to ignore the particular order in any layer of the loop forest
707   // while still comparing the structure.
708   DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
709   for (LoopT *L : OtherLI)
710     addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);
711
712   // Walk the top level loops and ensure there is a corresponding top-level
713   // loop in the computed version and then recursively compare those loop
714   // nests.
715   for (LoopT *L : *this) {
716     BlockT *Header = L->getHeader();
717     const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
718     assert(OtherL && "Top level loop is missing in computed loop info!");
719     // Now that we've matched this loop, erase its header from the map.
720     OtherLoopHeaders.erase(Header);
721     // And recursively compare these loops.
722     compareLoops(L, OtherL, OtherLoopHeaders);
723   }
724
725   // Any remaining entries in the map are loops which were found when computing
726   // a fresh LoopInfo but not present in the current one.
727   if (!OtherLoopHeaders.empty()) {
728     for (const auto &HeaderAndLoop : OtherLoopHeaders)
729       dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
730     llvm_unreachable("Found new loops when recomputing LoopInfo!");
731   }
732 #endif
733 }
734
735 } // End llvm namespace
736
737 #endif