]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/include/llvm/Analysis/LoopUnrollAnalyzer.h
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / include / llvm / Analysis / LoopUnrollAnalyzer.h
1 //===- llvm/Analysis/LoopUnrollAnalyzer.h - Loop Unroll Analyzer-*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements UnrolledInstAnalyzer class. It's used for predicting
10 // potential effects that loop unrolling might have, such as enabling constant
11 // propagation and other optimizations.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_ANALYSIS_LOOPUNROLLANALYZER_H
16 #define LLVM_ANALYSIS_LOOPUNROLLANALYZER_H
17
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/IR/InstVisitor.h"
21
22 // This class is used to get an estimate of the optimization effects that we
23 // could get from complete loop unrolling. It comes from the fact that some
24 // loads might be replaced with concrete constant values and that could trigger
25 // a chain of instruction simplifications.
26 //
27 // E.g. we might have:
28 //   int a[] = {0, 1, 0};
29 //   v = 0;
30 //   for (i = 0; i < 3; i ++)
31 //     v += b[i]*a[i];
32 // If we completely unroll the loop, we would get:
33 //   v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2]
34 // Which then will be simplified to:
35 //   v = b[0]* 0 + b[1]* 1 + b[2]* 0
36 // And finally:
37 //   v = b[1]
38 namespace llvm {
39 class UnrolledInstAnalyzer : private InstVisitor<UnrolledInstAnalyzer, bool> {
40   typedef InstVisitor<UnrolledInstAnalyzer, bool> Base;
41   friend class InstVisitor<UnrolledInstAnalyzer, bool>;
42   struct SimplifiedAddress {
43     Value *Base = nullptr;
44     ConstantInt *Offset = nullptr;
45   };
46
47 public:
48   UnrolledInstAnalyzer(unsigned Iteration,
49                        DenseMap<Value *, Constant *> &SimplifiedValues,
50                        ScalarEvolution &SE, const Loop *L)
51       : SimplifiedValues(SimplifiedValues), SE(SE), L(L) {
52       IterationNumber = SE.getConstant(APInt(64, Iteration));
53   }
54
55   // Allow access to the initial visit method.
56   using Base::visit;
57
58 private:
59   /// A cache of pointer bases and constant-folded offsets corresponding
60   /// to GEP (or derived from GEP) instructions.
61   ///
62   /// In order to find the base pointer one needs to perform non-trivial
63   /// traversal of the corresponding SCEV expression, so it's good to have the
64   /// results saved.
65   DenseMap<Value *, SimplifiedAddress> SimplifiedAddresses;
66
67   /// SCEV expression corresponding to number of currently simulated
68   /// iteration.
69   const SCEV *IterationNumber;
70
71   /// A Value->Constant map for keeping values that we managed to
72   /// constant-fold on the given iteration.
73   ///
74   /// While we walk the loop instructions, we build up and maintain a mapping
75   /// of simplified values specific to this iteration.  The idea is to propagate
76   /// any special information we have about loads that can be replaced with
77   /// constants after complete unrolling, and account for likely simplifications
78   /// post-unrolling.
79   DenseMap<Value *, Constant *> &SimplifiedValues;
80
81   ScalarEvolution &SE;
82   const Loop *L;
83
84   bool simplifyInstWithSCEV(Instruction *I);
85
86   bool visitInstruction(Instruction &I) { return simplifyInstWithSCEV(&I); }
87   bool visitBinaryOperator(BinaryOperator &I);
88   bool visitLoad(LoadInst &I);
89   bool visitCastInst(CastInst &I);
90   bool visitCmpInst(CmpInst &I);
91   bool visitPHINode(PHINode &PN);
92 };
93 }
94 #endif