]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/include/llvm/CodeGen/LiveIntervals.h
MFV r368464:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / include / llvm / CodeGen / LiveIntervals.h
1 //===- LiveIntervals.h - Live Interval Analysis -----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LiveInterval analysis pass.  Given some
10 /// numbering of each the machine instructions (in this implemention depth-first
11 /// order) an interval [i, j) is said to be a live interval for register v if
12 /// there is no instruction with number j' > j such that v is live at j' and
13 /// there is no instruction with number i' < i such that v is live at i'. In
14 /// this implementation intervals can have holes, i.e. an interval might look
15 /// like [1,20), [50,65), [1000,1001).
16 //
17 //===----------------------------------------------------------------------===//
18
19 #ifndef LLVM_CODEGEN_LIVEINTERVALS_H
20 #define LLVM_CODEGEN_LIVEINTERVALS_H
21
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/CodeGen/LiveInterval.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/SlotIndexes.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/MC/LaneBitmask.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include <cassert>
35 #include <cstdint>
36 #include <utility>
37
38 namespace llvm {
39
40 extern cl::opt<bool> UseSegmentSetForPhysRegs;
41
42 class AAResults;
43 class BitVector;
44 class LiveIntervalCalc;
45 class MachineBlockFrequencyInfo;
46 class MachineDominatorTree;
47 class MachineFunction;
48 class MachineInstr;
49 class MachineRegisterInfo;
50 class raw_ostream;
51 class TargetInstrInfo;
52 class VirtRegMap;
53
54   class LiveIntervals : public MachineFunctionPass {
55     MachineFunction* MF;
56     MachineRegisterInfo* MRI;
57     const TargetRegisterInfo* TRI;
58     const TargetInstrInfo* TII;
59     AAResults *AA;
60     SlotIndexes* Indexes;
61     MachineDominatorTree *DomTree = nullptr;
62     LiveIntervalCalc *LICalc = nullptr;
63
64     /// Special pool allocator for VNInfo's (LiveInterval val#).
65     VNInfo::Allocator VNInfoAllocator;
66
67     /// Live interval pointers for all the virtual registers.
68     IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;
69
70     /// Sorted list of instructions with register mask operands. Always use the
71     /// 'r' slot, RegMasks are normal clobbers, not early clobbers.
72     SmallVector<SlotIndex, 8> RegMaskSlots;
73
74     /// This vector is parallel to RegMaskSlots, it holds a pointer to the
75     /// corresponding register mask.  This pointer can be recomputed as:
76     ///
77     ///   MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
78     ///   unsigned OpNum = findRegMaskOperand(MI);
79     ///   RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
80     ///
81     /// This is kept in a separate vector partly because some standard
82     /// libraries don't support lower_bound() with mixed objects, partly to
83     /// improve locality when searching in RegMaskSlots.
84     /// Also see the comment in LiveInterval::find().
85     SmallVector<const uint32_t*, 8> RegMaskBits;
86
87     /// For each basic block number, keep (begin, size) pairs indexing into the
88     /// RegMaskSlots and RegMaskBits arrays.
89     /// Note that basic block numbers may not be layout contiguous, that's why
90     /// we can't just keep track of the first register mask in each basic
91     /// block.
92     SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
93
94     /// Keeps a live range set for each register unit to track fixed physreg
95     /// interference.
96     SmallVector<LiveRange*, 0> RegUnitRanges;
97
98   public:
99     static char ID;
100
101     LiveIntervals();
102     ~LiveIntervals() override;
103
104     /// Calculate the spill weight to assign to a single instruction.
105     static float getSpillWeight(bool isDef, bool isUse,
106                                 const MachineBlockFrequencyInfo *MBFI,
107                                 const MachineInstr &MI);
108
109     /// Calculate the spill weight to assign to a single instruction.
110     static float getSpillWeight(bool isDef, bool isUse,
111                                 const MachineBlockFrequencyInfo *MBFI,
112                                 const MachineBasicBlock *MBB);
113
114     LiveInterval &getInterval(Register Reg) {
115       if (hasInterval(Reg))
116         return *VirtRegIntervals[Reg.id()];
117       else
118         return createAndComputeVirtRegInterval(Reg);
119     }
120
121     const LiveInterval &getInterval(Register Reg) const {
122       return const_cast<LiveIntervals*>(this)->getInterval(Reg);
123     }
124
125     bool hasInterval(Register Reg) const {
126       return VirtRegIntervals.inBounds(Reg.id()) &&
127              VirtRegIntervals[Reg.id()];
128     }
129
130     /// Interval creation.
131     LiveInterval &createEmptyInterval(Register Reg) {
132       assert(!hasInterval(Reg) && "Interval already exists!");
133       VirtRegIntervals.grow(Reg.id());
134       VirtRegIntervals[Reg.id()] = createInterval(Reg);
135       return *VirtRegIntervals[Reg.id()];
136     }
137
138     LiveInterval &createAndComputeVirtRegInterval(Register Reg) {
139       LiveInterval &LI = createEmptyInterval(Reg);
140       computeVirtRegInterval(LI);
141       return LI;
142     }
143
144     /// Interval removal.
145     void removeInterval(unsigned Reg) {
146       delete VirtRegIntervals[Reg];
147       VirtRegIntervals[Reg] = nullptr;
148     }
149
150     /// Given a register and an instruction, adds a live segment from that
151     /// instruction to the end of its MBB.
152     LiveInterval::Segment addSegmentToEndOfBlock(unsigned reg,
153                                                  MachineInstr &startInst);
154
155     /// After removing some uses of a register, shrink its live range to just
156     /// the remaining uses. This method does not compute reaching defs for new
157     /// uses, and it doesn't remove dead defs.
158     /// Dead PHIDef values are marked as unused. New dead machine instructions
159     /// are added to the dead vector. Returns true if the interval may have been
160     /// separated into multiple connected components.
161     bool shrinkToUses(LiveInterval *li,
162                       SmallVectorImpl<MachineInstr*> *dead = nullptr);
163
164     /// Specialized version of
165     /// shrinkToUses(LiveInterval *li, SmallVectorImpl<MachineInstr*> *dead)
166     /// that works on a subregister live range and only looks at uses matching
167     /// the lane mask of the subregister range.
168     /// This may leave the subrange empty which needs to be cleaned up with
169     /// LiveInterval::removeEmptySubranges() afterwards.
170     void shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg);
171
172     /// Extend the live range \p LR to reach all points in \p Indices. The
173     /// points in the \p Indices array must be jointly dominated by the union
174     /// of the existing defs in \p LR and points in \p Undefs.
175     ///
176     /// PHI-defs are added as needed to maintain SSA form.
177     ///
178     /// If a SlotIndex in \p Indices is the end index of a basic block, \p LR
179     /// will be extended to be live out of the basic block.
180     /// If a SlotIndex in \p Indices is jointy dominated only by points in
181     /// \p Undefs, the live range will not be extended to that point.
182     ///
183     /// See also LiveRangeCalc::extend().
184     void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices,
185                          ArrayRef<SlotIndex> Undefs);
186
187     void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices) {
188       extendToIndices(LR, Indices, /*Undefs=*/{});
189     }
190
191     /// If \p LR has a live value at \p Kill, prune its live range by removing
192     /// any liveness reachable from Kill. Add live range end points to
193     /// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
194     /// value's live range.
195     ///
196     /// Calling pruneValue() and extendToIndices() can be used to reconstruct
197     /// SSA form after adding defs to a virtual register.
198     void pruneValue(LiveRange &LR, SlotIndex Kill,
199                     SmallVectorImpl<SlotIndex> *EndPoints);
200
201     /// This function should not be used. Its intent is to tell you that you are
202     /// doing something wrong if you call pruneValue directly on a
203     /// LiveInterval. Indeed, you are supposed to call pruneValue on the main
204     /// LiveRange and all the LiveRanges of the subranges if any.
205     LLVM_ATTRIBUTE_UNUSED void pruneValue(LiveInterval &, SlotIndex,
206                                           SmallVectorImpl<SlotIndex> *) {
207       llvm_unreachable(
208           "Use pruneValue on the main LiveRange and on each subrange");
209     }
210
211     SlotIndexes *getSlotIndexes() const {
212       return Indexes;
213     }
214
215     AAResults *getAliasAnalysis() const {
216       return AA;
217     }
218
219     /// Returns true if the specified machine instr has been removed or was
220     /// never entered in the map.
221     bool isNotInMIMap(const MachineInstr &Instr) const {
222       return !Indexes->hasIndex(Instr);
223     }
224
225     /// Returns the base index of the given instruction.
226     SlotIndex getInstructionIndex(const MachineInstr &Instr) const {
227       return Indexes->getInstructionIndex(Instr);
228     }
229
230     /// Returns the instruction associated with the given index.
231     MachineInstr* getInstructionFromIndex(SlotIndex index) const {
232       return Indexes->getInstructionFromIndex(index);
233     }
234
235     /// Return the first index in the given basic block.
236     SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
237       return Indexes->getMBBStartIdx(mbb);
238     }
239
240     /// Return the last index in the given basic block.
241     SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
242       return Indexes->getMBBEndIdx(mbb);
243     }
244
245     bool isLiveInToMBB(const LiveRange &LR,
246                        const MachineBasicBlock *mbb) const {
247       return LR.liveAt(getMBBStartIdx(mbb));
248     }
249
250     bool isLiveOutOfMBB(const LiveRange &LR,
251                         const MachineBasicBlock *mbb) const {
252       return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot());
253     }
254
255     MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
256       return Indexes->getMBBFromIndex(index);
257     }
258
259     void insertMBBInMaps(MachineBasicBlock *MBB,
260                          MachineInstr *InsertionPoint = nullptr) {
261       Indexes->insertMBBInMaps(MBB, InsertionPoint);
262       assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
263              "Blocks must be added in order.");
264       RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
265     }
266
267     SlotIndex InsertMachineInstrInMaps(MachineInstr &MI) {
268       return Indexes->insertMachineInstrInMaps(MI);
269     }
270
271     void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,
272                                        MachineBasicBlock::iterator E) {
273       for (MachineBasicBlock::iterator I = B; I != E; ++I)
274         Indexes->insertMachineInstrInMaps(*I);
275     }
276
277     void RemoveMachineInstrFromMaps(MachineInstr &MI) {
278       Indexes->removeMachineInstrFromMaps(MI);
279     }
280
281     SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) {
282       return Indexes->replaceMachineInstrInMaps(MI, NewMI);
283     }
284
285     VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
286
287     void getAnalysisUsage(AnalysisUsage &AU) const override;
288     void releaseMemory() override;
289
290     /// Pass entry point; Calculates LiveIntervals.
291     bool runOnMachineFunction(MachineFunction&) override;
292
293     /// Implement the dump method.
294     void print(raw_ostream &O, const Module* = nullptr) const override;
295
296     /// If LI is confined to a single basic block, return a pointer to that
297     /// block.  If LI is live in to or out of any block, return NULL.
298     MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
299
300     /// Returns true if VNI is killed by any PHI-def values in LI.
301     /// This may conservatively return true to avoid expensive computations.
302     bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;
303
304     /// Add kill flags to any instruction that kills a virtual register.
305     void addKillFlags(const VirtRegMap*);
306
307     /// Call this method to notify LiveIntervals that instruction \p MI has been
308     /// moved within a basic block. This will update the live intervals for all
309     /// operands of \p MI. Moves between basic blocks are not supported.
310     ///
311     /// \param UpdateFlags Update live intervals for nonallocatable physregs.
312     void handleMove(MachineInstr &MI, bool UpdateFlags = false);
313
314     /// Update intervals of operands of all instructions in the newly
315     /// created bundle specified by \p BundleStart.
316     ///
317     /// \param UpdateFlags Update live intervals for nonallocatable physregs.
318     ///
319     /// Assumes existing liveness is accurate.
320     /// \pre BundleStart should be the first instruction in the Bundle.
321     /// \pre BundleStart should not have a have SlotIndex as one will be assigned.
322     void handleMoveIntoNewBundle(MachineInstr &BundleStart,
323                                  bool UpdateFlags = false);
324
325     /// Update live intervals for instructions in a range of iterators. It is
326     /// intended for use after target hooks that may insert or remove
327     /// instructions, and is only efficient for a small number of instructions.
328     ///
329     /// OrigRegs is a vector of registers that were originally used by the
330     /// instructions in the range between the two iterators.
331     ///
332     /// Currently, the only only changes that are supported are simple removal
333     /// and addition of uses.
334     void repairIntervalsInRange(MachineBasicBlock *MBB,
335                                 MachineBasicBlock::iterator Begin,
336                                 MachineBasicBlock::iterator End,
337                                 ArrayRef<Register> OrigRegs);
338
339     // Register mask functions.
340     //
341     // Machine instructions may use a register mask operand to indicate that a
342     // large number of registers are clobbered by the instruction.  This is
343     // typically used for calls.
344     //
345     // For compile time performance reasons, these clobbers are not recorded in
346     // the live intervals for individual physical registers.  Instead,
347     // LiveIntervalAnalysis maintains a sorted list of instructions with
348     // register mask operands.
349
350     /// Returns a sorted array of slot indices of all instructions with
351     /// register mask operands.
352     ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
353
354     /// Returns a sorted array of slot indices of all instructions with register
355     /// mask operands in the basic block numbered \p MBBNum.
356     ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
357       std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
358       return getRegMaskSlots().slice(P.first, P.second);
359     }
360
361     /// Returns an array of register mask pointers corresponding to
362     /// getRegMaskSlots().
363     ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
364
365     /// Returns an array of mask pointers corresponding to
366     /// getRegMaskSlotsInBlock(MBBNum).
367     ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
368       std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
369       return getRegMaskBits().slice(P.first, P.second);
370     }
371
372     /// Test if \p LI is live across any register mask instructions, and
373     /// compute a bit mask of physical registers that are not clobbered by any
374     /// of them.
375     ///
376     /// Returns false if \p LI doesn't cross any register mask instructions. In
377     /// that case, the bit vector is not filled in.
378     bool checkRegMaskInterference(LiveInterval &LI,
379                                   BitVector &UsableRegs);
380
381     // Register unit functions.
382     //
383     // Fixed interference occurs when MachineInstrs use physregs directly
384     // instead of virtual registers. This typically happens when passing
385     // arguments to a function call, or when instructions require operands in
386     // fixed registers.
387     //
388     // Each physreg has one or more register units, see MCRegisterInfo. We
389     // track liveness per register unit to handle aliasing registers more
390     // efficiently.
391
392     /// Return the live range for register unit \p Unit. It will be computed if
393     /// it doesn't exist.
394     LiveRange &getRegUnit(unsigned Unit) {
395       LiveRange *LR = RegUnitRanges[Unit];
396       if (!LR) {
397         // Compute missing ranges on demand.
398         // Use segment set to speed-up initial computation of the live range.
399         RegUnitRanges[Unit] = LR = new LiveRange(UseSegmentSetForPhysRegs);
400         computeRegUnitRange(*LR, Unit);
401       }
402       return *LR;
403     }
404
405     /// Return the live range for register unit \p Unit if it has already been
406     /// computed, or nullptr if it hasn't been computed yet.
407     LiveRange *getCachedRegUnit(unsigned Unit) {
408       return RegUnitRanges[Unit];
409     }
410
411     const LiveRange *getCachedRegUnit(unsigned Unit) const {
412       return RegUnitRanges[Unit];
413     }
414
415     /// Remove computed live range for register unit \p Unit. Subsequent uses
416     /// should rely on on-demand recomputation.
417     void removeRegUnit(unsigned Unit) {
418       delete RegUnitRanges[Unit];
419       RegUnitRanges[Unit] = nullptr;
420     }
421
422     /// Remove associated live ranges for the register units associated with \p
423     /// Reg. Subsequent uses should rely on on-demand recomputation.  \note This
424     /// method can result in inconsistent liveness tracking if multiple phyical
425     /// registers share a regunit, and should be used cautiously.
426     void removeAllRegUnitsForPhysReg(unsigned Reg) {
427       for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
428         removeRegUnit(*Units);
429     }
430
431     /// Remove value numbers and related live segments starting at position
432     /// \p Pos that are part of any liverange of physical register \p Reg or one
433     /// of its subregisters.
434     void removePhysRegDefAt(unsigned Reg, SlotIndex Pos);
435
436     /// Remove value number and related live segments of \p LI and its subranges
437     /// that start at position \p Pos.
438     void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos);
439
440     /// Split separate components in LiveInterval \p LI into separate intervals.
441     void splitSeparateComponents(LiveInterval &LI,
442                                  SmallVectorImpl<LiveInterval*> &SplitLIs);
443
444     /// For live interval \p LI with correct SubRanges construct matching
445     /// information for the main live range. Expects the main live range to not
446     /// have any segments or value numbers.
447     void constructMainRangeFromSubranges(LiveInterval &LI);
448
449   private:
450     /// Compute live intervals for all virtual registers.
451     void computeVirtRegs();
452
453     /// Compute RegMaskSlots and RegMaskBits.
454     void computeRegMasks();
455
456     /// Walk the values in \p LI and check for dead values:
457     /// - Dead PHIDef values are marked as unused.
458     /// - Dead operands are marked as such.
459     /// - Completely dead machine instructions are added to the \p dead vector
460     ///   if it is not nullptr.
461     /// Returns true if any PHI value numbers have been removed which may
462     /// have separated the interval into multiple connected components.
463     bool computeDeadValues(LiveInterval &LI,
464                            SmallVectorImpl<MachineInstr*> *dead);
465
466     static LiveInterval* createInterval(unsigned Reg);
467
468     void printInstrs(raw_ostream &O) const;
469     void dumpInstrs() const;
470
471     void computeLiveInRegUnits();
472     void computeRegUnitRange(LiveRange&, unsigned Unit);
473     bool computeVirtRegInterval(LiveInterval&);
474
475     using ShrinkToUsesWorkList = SmallVector<std::pair<SlotIndex, VNInfo*>, 16>;
476     void extendSegmentsToUses(LiveRange &Segments,
477                               ShrinkToUsesWorkList &WorkList, unsigned Reg,
478                               LaneBitmask LaneMask);
479
480     /// Helper function for repairIntervalsInRange(), walks backwards and
481     /// creates/modifies live segments in \p LR to match the operands found.
482     /// Only full operands or operands with subregisters matching \p LaneMask
483     /// are considered.
484     void repairOldRegInRange(MachineBasicBlock::iterator Begin,
485                              MachineBasicBlock::iterator End,
486                              const SlotIndex endIdx, LiveRange &LR,
487                              unsigned Reg,
488                              LaneBitmask LaneMask = LaneBitmask::getAll());
489
490     class HMEditor;
491   };
492
493 } // end namespace llvm
494
495 #endif