]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/include/llvm/IR/ValueMap.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / include / llvm / IR / ValueMap.h
1 //===- ValueMap.h - Safe map from Values to data ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the ValueMap class.  ValueMap maps Value* or any subclass
10 // to an arbitrary other type.  It provides the DenseMap interface but updates
11 // itself to remain safe when keys are RAUWed or deleted.  By default, when a
12 // key is RAUWed from V1 to V2, the old mapping V1->target is removed, and a new
13 // mapping V2->target is added.  If V2 already existed, its old target is
14 // overwritten.  When a key is deleted, its mapping is removed.
15 //
16 // You can override a ValueMap's Config parameter to control exactly what
17 // happens on RAUW and destruction and to get called back on each event.  It's
18 // legal to call back into the ValueMap from a Config's callbacks.  Config
19 // parameters should inherit from ValueMapConfig<KeyT> to get default
20 // implementations of all the methods ValueMap uses.  See ValueMapConfig for
21 // documentation of the functions you can override.
22 //
23 //===----------------------------------------------------------------------===//
24
25 #ifndef LLVM_IR_VALUEMAP_H
26 #define LLVM_IR_VALUEMAP_H
27
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/DenseMapInfo.h"
30 #include "llvm/ADT/None.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/TrackingMDRef.h"
33 #include "llvm/IR/ValueHandle.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Mutex.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstddef>
39 #include <iterator>
40 #include <mutex>
41 #include <type_traits>
42 #include <utility>
43
44 namespace llvm {
45
46 template<typename KeyT, typename ValueT, typename Config>
47 class ValueMapCallbackVH;
48 template<typename DenseMapT, typename KeyT>
49 class ValueMapIterator;
50 template<typename DenseMapT, typename KeyT>
51 class ValueMapConstIterator;
52
53 /// This class defines the default behavior for configurable aspects of
54 /// ValueMap<>.  User Configs should inherit from this class to be as compatible
55 /// as possible with future versions of ValueMap.
56 template<typename KeyT, typename MutexT = sys::Mutex>
57 struct ValueMapConfig {
58   using mutex_type = MutexT;
59
60   /// If FollowRAUW is true, the ValueMap will update mappings on RAUW. If it's
61   /// false, the ValueMap will leave the original mapping in place.
62   enum { FollowRAUW = true };
63
64   // All methods will be called with a first argument of type ExtraData.  The
65   // default implementations in this class take a templated first argument so
66   // that users' subclasses can use any type they want without having to
67   // override all the defaults.
68   struct ExtraData {};
69
70   template<typename ExtraDataT>
71   static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {}
72   template<typename ExtraDataT>
73   static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {}
74
75   /// Returns a mutex that should be acquired around any changes to the map.
76   /// This is only acquired from the CallbackVH (and held around calls to onRAUW
77   /// and onDelete) and not inside other ValueMap methods.  NULL means that no
78   /// mutex is necessary.
79   template<typename ExtraDataT>
80   static mutex_type *getMutex(const ExtraDataT &/*Data*/) { return nullptr; }
81 };
82
83 /// See the file comment.
84 template<typename KeyT, typename ValueT, typename Config =ValueMapConfig<KeyT>>
85 class ValueMap {
86   friend class ValueMapCallbackVH<KeyT, ValueT, Config>;
87
88   using ValueMapCVH = ValueMapCallbackVH<KeyT, ValueT, Config>;
89   using MapT = DenseMap<ValueMapCVH, ValueT, DenseMapInfo<ValueMapCVH>>;
90   using MDMapT = DenseMap<const Metadata *, TrackingMDRef>;
91   using ExtraData = typename Config::ExtraData;
92
93   MapT Map;
94   Optional<MDMapT> MDMap;
95   ExtraData Data;
96
97 public:
98   using key_type = KeyT;
99   using mapped_type = ValueT;
100   using value_type = std::pair<KeyT, ValueT>;
101   using size_type = unsigned;
102
103   explicit ValueMap(unsigned NumInitBuckets = 64)
104       : Map(NumInitBuckets), Data() {}
105   explicit ValueMap(const ExtraData &Data, unsigned NumInitBuckets = 64)
106       : Map(NumInitBuckets), Data(Data) {}
107   // ValueMap can't be copied nor moved, beucase the callbacks store pointer
108   // to it.
109   ValueMap(const ValueMap &) = delete;
110   ValueMap(ValueMap &&) = delete;
111   ValueMap &operator=(const ValueMap &) = delete;
112   ValueMap &operator=(ValueMap &&) = delete;
113
114   bool hasMD() const { return bool(MDMap); }
115   MDMapT &MD() {
116     if (!MDMap)
117       MDMap.emplace();
118     return *MDMap;
119   }
120   Optional<MDMapT> &getMDMap() { return MDMap; }
121
122   /// Get the mapped metadata, if it's in the map.
123   Optional<Metadata *> getMappedMD(const Metadata *MD) const {
124     if (!MDMap)
125       return None;
126     auto Where = MDMap->find(MD);
127     if (Where == MDMap->end())
128       return None;
129     return Where->second.get();
130   }
131
132   using iterator = ValueMapIterator<MapT, KeyT>;
133   using const_iterator = ValueMapConstIterator<MapT, KeyT>;
134
135   inline iterator begin() { return iterator(Map.begin()); }
136   inline iterator end() { return iterator(Map.end()); }
137   inline const_iterator begin() const { return const_iterator(Map.begin()); }
138   inline const_iterator end() const { return const_iterator(Map.end()); }
139
140   bool empty() const { return Map.empty(); }
141   size_type size() const { return Map.size(); }
142
143   /// Grow the map so that it has at least Size buckets. Does not shrink
144   void resize(size_t Size) { Map.resize(Size); }
145
146   void clear() {
147     Map.clear();
148     MDMap.reset();
149   }
150
151   /// Return 1 if the specified key is in the map, 0 otherwise.
152   size_type count(const KeyT &Val) const {
153     return Map.find_as(Val) == Map.end() ? 0 : 1;
154   }
155
156   iterator find(const KeyT &Val) {
157     return iterator(Map.find_as(Val));
158   }
159   const_iterator find(const KeyT &Val) const {
160     return const_iterator(Map.find_as(Val));
161   }
162
163   /// lookup - Return the entry for the specified key, or a default
164   /// constructed value if no such entry exists.
165   ValueT lookup(const KeyT &Val) const {
166     typename MapT::const_iterator I = Map.find_as(Val);
167     return I != Map.end() ? I->second : ValueT();
168   }
169
170   // Inserts key,value pair into the map if the key isn't already in the map.
171   // If the key is already in the map, it returns false and doesn't update the
172   // value.
173   std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
174     auto MapResult = Map.insert(std::make_pair(Wrap(KV.first), KV.second));
175     return std::make_pair(iterator(MapResult.first), MapResult.second);
176   }
177
178   std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
179     auto MapResult =
180         Map.insert(std::make_pair(Wrap(KV.first), std::move(KV.second)));
181     return std::make_pair(iterator(MapResult.first), MapResult.second);
182   }
183
184   /// insert - Range insertion of pairs.
185   template<typename InputIt>
186   void insert(InputIt I, InputIt E) {
187     for (; I != E; ++I)
188       insert(*I);
189   }
190
191   bool erase(const KeyT &Val) {
192     typename MapT::iterator I = Map.find_as(Val);
193     if (I == Map.end())
194       return false;
195
196     Map.erase(I);
197     return true;
198   }
199   void erase(iterator I) {
200     return Map.erase(I.base());
201   }
202
203   value_type& FindAndConstruct(const KeyT &Key) {
204     return Map.FindAndConstruct(Wrap(Key));
205   }
206
207   ValueT &operator[](const KeyT &Key) {
208     return Map[Wrap(Key)];
209   }
210
211   /// isPointerIntoBucketsArray - Return true if the specified pointer points
212   /// somewhere into the ValueMap's array of buckets (i.e. either to a key or
213   /// value in the ValueMap).
214   bool isPointerIntoBucketsArray(const void *Ptr) const {
215     return Map.isPointerIntoBucketsArray(Ptr);
216   }
217
218   /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
219   /// array.  In conjunction with the previous method, this can be used to
220   /// determine whether an insertion caused the ValueMap to reallocate.
221   const void *getPointerIntoBucketsArray() const {
222     return Map.getPointerIntoBucketsArray();
223   }
224
225 private:
226   // Takes a key being looked up in the map and wraps it into a
227   // ValueMapCallbackVH, the actual key type of the map.  We use a helper
228   // function because ValueMapCVH is constructed with a second parameter.
229   ValueMapCVH Wrap(KeyT key) const {
230     // The only way the resulting CallbackVH could try to modify *this (making
231     // the const_cast incorrect) is if it gets inserted into the map.  But then
232     // this function must have been called from a non-const method, making the
233     // const_cast ok.
234     return ValueMapCVH(key, const_cast<ValueMap*>(this));
235   }
236 };
237
238 // This CallbackVH updates its ValueMap when the contained Value changes,
239 // according to the user's preferences expressed through the Config object.
240 template <typename KeyT, typename ValueT, typename Config>
241 class ValueMapCallbackVH final : public CallbackVH {
242   friend class ValueMap<KeyT, ValueT, Config>;
243   friend struct DenseMapInfo<ValueMapCallbackVH>;
244
245   using ValueMapT = ValueMap<KeyT, ValueT, Config>;
246   using KeySansPointerT = typename std::remove_pointer<KeyT>::type;
247
248   ValueMapT *Map;
249
250   ValueMapCallbackVH(KeyT Key, ValueMapT *Map)
251       : CallbackVH(const_cast<Value*>(static_cast<const Value*>(Key))),
252         Map(Map) {}
253
254   // Private constructor used to create empty/tombstone DenseMap keys.
255   ValueMapCallbackVH(Value *V) : CallbackVH(V), Map(nullptr) {}
256
257 public:
258   KeyT Unwrap() const { return cast_or_null<KeySansPointerT>(getValPtr()); }
259
260   void deleted() override {
261     // Make a copy that won't get changed even when *this is destroyed.
262     ValueMapCallbackVH Copy(*this);
263     typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data);
264     std::unique_lock<typename Config::mutex_type> Guard;
265     if (M)
266       Guard = std::unique_lock<typename Config::mutex_type>(*M);
267     Config::onDelete(Copy.Map->Data, Copy.Unwrap());  // May destroy *this.
268     Copy.Map->Map.erase(Copy);  // Definitely destroys *this.
269   }
270
271   void allUsesReplacedWith(Value *new_key) override {
272     assert(isa<KeySansPointerT>(new_key) &&
273            "Invalid RAUW on key of ValueMap<>");
274     // Make a copy that won't get changed even when *this is destroyed.
275     ValueMapCallbackVH Copy(*this);
276     typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data);
277     std::unique_lock<typename Config::mutex_type> Guard;
278     if (M)
279       Guard = std::unique_lock<typename Config::mutex_type>(*M);
280
281     KeyT typed_new_key = cast<KeySansPointerT>(new_key);
282     // Can destroy *this:
283     Config::onRAUW(Copy.Map->Data, Copy.Unwrap(), typed_new_key);
284     if (Config::FollowRAUW) {
285       typename ValueMapT::MapT::iterator I = Copy.Map->Map.find(Copy);
286       // I could == Copy.Map->Map.end() if the onRAUW callback already
287       // removed the old mapping.
288       if (I != Copy.Map->Map.end()) {
289         ValueT Target(std::move(I->second));
290         Copy.Map->Map.erase(I);  // Definitely destroys *this.
291         Copy.Map->insert(std::make_pair(typed_new_key, std::move(Target)));
292       }
293     }
294   }
295 };
296
297 template<typename KeyT, typename ValueT, typename Config>
298 struct DenseMapInfo<ValueMapCallbackVH<KeyT, ValueT, Config>> {
299   using VH = ValueMapCallbackVH<KeyT, ValueT, Config>;
300
301   static inline VH getEmptyKey() {
302     return VH(DenseMapInfo<Value *>::getEmptyKey());
303   }
304
305   static inline VH getTombstoneKey() {
306     return VH(DenseMapInfo<Value *>::getTombstoneKey());
307   }
308
309   static unsigned getHashValue(const VH &Val) {
310     return DenseMapInfo<KeyT>::getHashValue(Val.Unwrap());
311   }
312
313   static unsigned getHashValue(const KeyT &Val) {
314     return DenseMapInfo<KeyT>::getHashValue(Val);
315   }
316
317   static bool isEqual(const VH &LHS, const VH &RHS) {
318     return LHS == RHS;
319   }
320
321   static bool isEqual(const KeyT &LHS, const VH &RHS) {
322     return LHS == RHS.getValPtr();
323   }
324 };
325
326 template<typename DenseMapT, typename KeyT>
327 class ValueMapIterator :
328     public std::iterator<std::forward_iterator_tag,
329                          std::pair<KeyT, typename DenseMapT::mapped_type>,
330                          ptrdiff_t> {
331   using BaseT = typename DenseMapT::iterator;
332   using ValueT = typename DenseMapT::mapped_type;
333
334   BaseT I;
335
336 public:
337   ValueMapIterator() : I() {}
338   ValueMapIterator(BaseT I) : I(I) {}
339
340   BaseT base() const { return I; }
341
342   struct ValueTypeProxy {
343     const KeyT first;
344     ValueT& second;
345
346     ValueTypeProxy *operator->() { return this; }
347
348     operator std::pair<KeyT, ValueT>() const {
349       return std::make_pair(first, second);
350     }
351   };
352
353   ValueTypeProxy operator*() const {
354     ValueTypeProxy Result = {I->first.Unwrap(), I->second};
355     return Result;
356   }
357
358   ValueTypeProxy operator->() const {
359     return operator*();
360   }
361
362   bool operator==(const ValueMapIterator &RHS) const {
363     return I == RHS.I;
364   }
365   bool operator!=(const ValueMapIterator &RHS) const {
366     return I != RHS.I;
367   }
368
369   inline ValueMapIterator& operator++() {  // Preincrement
370     ++I;
371     return *this;
372   }
373   ValueMapIterator operator++(int) {  // Postincrement
374     ValueMapIterator tmp = *this; ++*this; return tmp;
375   }
376 };
377
378 template<typename DenseMapT, typename KeyT>
379 class ValueMapConstIterator :
380     public std::iterator<std::forward_iterator_tag,
381                          std::pair<KeyT, typename DenseMapT::mapped_type>,
382                          ptrdiff_t> {
383   using BaseT = typename DenseMapT::const_iterator;
384   using ValueT = typename DenseMapT::mapped_type;
385
386   BaseT I;
387
388 public:
389   ValueMapConstIterator() : I() {}
390   ValueMapConstIterator(BaseT I) : I(I) {}
391   ValueMapConstIterator(ValueMapIterator<DenseMapT, KeyT> Other)
392     : I(Other.base()) {}
393
394   BaseT base() const { return I; }
395
396   struct ValueTypeProxy {
397     const KeyT first;
398     const ValueT& second;
399     ValueTypeProxy *operator->() { return this; }
400     operator std::pair<KeyT, ValueT>() const {
401       return std::make_pair(first, second);
402     }
403   };
404
405   ValueTypeProxy operator*() const {
406     ValueTypeProxy Result = {I->first.Unwrap(), I->second};
407     return Result;
408   }
409
410   ValueTypeProxy operator->() const {
411     return operator*();
412   }
413
414   bool operator==(const ValueMapConstIterator &RHS) const {
415     return I == RHS.I;
416   }
417   bool operator!=(const ValueMapConstIterator &RHS) const {
418     return I != RHS.I;
419   }
420
421   inline ValueMapConstIterator& operator++() {  // Preincrement
422     ++I;
423     return *this;
424   }
425   ValueMapConstIterator operator++(int) {  // Postincrement
426     ValueMapConstIterator tmp = *this; ++*this; return tmp;
427   }
428 };
429
430 } // end namespace llvm
431
432 #endif // LLVM_IR_VALUEMAP_H