]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/include/llvm/Target/TargetMachine.h
Import tzdata 2020c
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / include / llvm / Target / TargetMachine.h
1 //===-- llvm/Target/TargetMachine.h - Target Information --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the TargetMachine and LLVMTargetMachine classes.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_TARGET_TARGETMACHINE_H
14 #define LLVM_TARGET_TARGETMACHINE_H
15
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/Pass.h"
20 #include "llvm/Support/CodeGen.h"
21 #include "llvm/Target/TargetOptions.h"
22 #include <string>
23
24 namespace llvm {
25
26 class Function;
27 class GlobalValue;
28 class MachineModuleInfoWrapperPass;
29 class Mangler;
30 class MCAsmInfo;
31 class MCContext;
32 class MCInstrInfo;
33 class MCRegisterInfo;
34 class MCSubtargetInfo;
35 class MCSymbol;
36 class raw_pwrite_stream;
37 class PassManagerBuilder;
38 struct PerFunctionMIParsingState;
39 class SMDiagnostic;
40 class SMRange;
41 class Target;
42 class TargetIntrinsicInfo;
43 class TargetIRAnalysis;
44 class TargetTransformInfo;
45 class TargetLoweringObjectFile;
46 class TargetPassConfig;
47 class TargetSubtargetInfo;
48
49 // The old pass manager infrastructure is hidden in a legacy namespace now.
50 namespace legacy {
51 class PassManagerBase;
52 }
53 using legacy::PassManagerBase;
54
55 namespace yaml {
56 struct MachineFunctionInfo;
57 }
58
59 //===----------------------------------------------------------------------===//
60 ///
61 /// Primary interface to the complete machine description for the target
62 /// machine.  All target-specific information should be accessible through this
63 /// interface.
64 ///
65 class TargetMachine {
66 protected: // Can only create subclasses.
67   TargetMachine(const Target &T, StringRef DataLayoutString,
68                 const Triple &TargetTriple, StringRef CPU, StringRef FS,
69                 const TargetOptions &Options);
70
71   /// The Target that this machine was created for.
72   const Target &TheTarget;
73
74   /// DataLayout for the target: keep ABI type size and alignment.
75   ///
76   /// The DataLayout is created based on the string representation provided
77   /// during construction. It is kept here only to avoid reparsing the string
78   /// but should not really be used during compilation, because it has an
79   /// internal cache that is context specific.
80   const DataLayout DL;
81
82   /// Triple string, CPU name, and target feature strings the TargetMachine
83   /// instance is created with.
84   Triple TargetTriple;
85   std::string TargetCPU;
86   std::string TargetFS;
87
88   Reloc::Model RM = Reloc::Static;
89   CodeModel::Model CMModel = CodeModel::Small;
90   CodeGenOpt::Level OptLevel = CodeGenOpt::Default;
91
92   /// Contains target specific asm information.
93   std::unique_ptr<const MCAsmInfo> AsmInfo;
94   std::unique_ptr<const MCRegisterInfo> MRI;
95   std::unique_ptr<const MCInstrInfo> MII;
96   std::unique_ptr<const MCSubtargetInfo> STI;
97
98   unsigned RequireStructuredCFG : 1;
99   unsigned O0WantsFastISel : 1;
100
101 public:
102   const TargetOptions DefaultOptions;
103   mutable TargetOptions Options;
104
105   TargetMachine(const TargetMachine &) = delete;
106   void operator=(const TargetMachine &) = delete;
107   virtual ~TargetMachine();
108
109   const Target &getTarget() const { return TheTarget; }
110
111   const Triple &getTargetTriple() const { return TargetTriple; }
112   StringRef getTargetCPU() const { return TargetCPU; }
113   StringRef getTargetFeatureString() const { return TargetFS; }
114
115   /// Virtual method implemented by subclasses that returns a reference to that
116   /// target's TargetSubtargetInfo-derived member variable.
117   virtual const TargetSubtargetInfo *getSubtargetImpl(const Function &) const {
118     return nullptr;
119   }
120   virtual TargetLoweringObjectFile *getObjFileLowering() const {
121     return nullptr;
122   }
123
124   /// Allocate and return a default initialized instance of the YAML
125   /// representation for the MachineFunctionInfo.
126   virtual yaml::MachineFunctionInfo *createDefaultFuncInfoYAML() const {
127     return nullptr;
128   }
129
130   /// Allocate and initialize an instance of the YAML representation of the
131   /// MachineFunctionInfo.
132   virtual yaml::MachineFunctionInfo *
133   convertFuncInfoToYAML(const MachineFunction &MF) const {
134     return nullptr;
135   }
136
137   /// Parse out the target's MachineFunctionInfo from the YAML reprsentation.
138   virtual bool parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,
139                                         PerFunctionMIParsingState &PFS,
140                                         SMDiagnostic &Error,
141                                         SMRange &SourceRange) const {
142     return false;
143   }
144
145   /// This method returns a pointer to the specified type of
146   /// TargetSubtargetInfo.  In debug builds, it verifies that the object being
147   /// returned is of the correct type.
148   template <typename STC> const STC &getSubtarget(const Function &F) const {
149     return *static_cast<const STC*>(getSubtargetImpl(F));
150   }
151
152   /// Create a DataLayout.
153   const DataLayout createDataLayout() const { return DL; }
154
155   /// Test if a DataLayout if compatible with the CodeGen for this target.
156   ///
157   /// The LLVM Module owns a DataLayout that is used for the target independent
158   /// optimizations and code generation. This hook provides a target specific
159   /// check on the validity of this DataLayout.
160   bool isCompatibleDataLayout(const DataLayout &Candidate) const {
161     return DL == Candidate;
162   }
163
164   /// Get the pointer size for this target.
165   ///
166   /// This is the only time the DataLayout in the TargetMachine is used.
167   unsigned getPointerSize(unsigned AS) const {
168     return DL.getPointerSize(AS);
169   }
170
171   unsigned getPointerSizeInBits(unsigned AS) const {
172     return DL.getPointerSizeInBits(AS);
173   }
174
175   unsigned getProgramPointerSize() const {
176     return DL.getPointerSize(DL.getProgramAddressSpace());
177   }
178
179   unsigned getAllocaPointerSize() const {
180     return DL.getPointerSize(DL.getAllocaAddrSpace());
181   }
182
183   /// Reset the target options based on the function's attributes.
184   // FIXME: Remove TargetOptions that affect per-function code generation
185   // from TargetMachine.
186   void resetTargetOptions(const Function &F) const;
187
188   /// Return target specific asm information.
189   const MCAsmInfo *getMCAsmInfo() const { return AsmInfo.get(); }
190
191   const MCRegisterInfo *getMCRegisterInfo() const { return MRI.get(); }
192   const MCInstrInfo *getMCInstrInfo() const { return MII.get(); }
193   const MCSubtargetInfo *getMCSubtargetInfo() const { return STI.get(); }
194
195   /// If intrinsic information is available, return it.  If not, return null.
196   virtual const TargetIntrinsicInfo *getIntrinsicInfo() const {
197     return nullptr;
198   }
199
200   bool requiresStructuredCFG() const { return RequireStructuredCFG; }
201   void setRequiresStructuredCFG(bool Value) { RequireStructuredCFG = Value; }
202
203   /// Returns the code generation relocation model. The choices are static, PIC,
204   /// and dynamic-no-pic, and target default.
205   Reloc::Model getRelocationModel() const;
206
207   /// Returns the code model. The choices are small, kernel, medium, large, and
208   /// target default.
209   CodeModel::Model getCodeModel() const;
210
211   bool isPositionIndependent() const;
212
213   bool shouldAssumeDSOLocal(const Module &M, const GlobalValue *GV) const;
214
215   /// Returns true if this target uses emulated TLS.
216   bool useEmulatedTLS() const;
217
218   /// Returns the TLS model which should be used for the given global variable.
219   TLSModel::Model getTLSModel(const GlobalValue *GV) const;
220
221   /// Returns the optimization level: None, Less, Default, or Aggressive.
222   CodeGenOpt::Level getOptLevel() const;
223
224   /// Overrides the optimization level.
225   void setOptLevel(CodeGenOpt::Level Level);
226
227   void setFastISel(bool Enable) { Options.EnableFastISel = Enable; }
228   bool getO0WantsFastISel() { return O0WantsFastISel; }
229   void setO0WantsFastISel(bool Enable) { O0WantsFastISel = Enable; }
230   void setGlobalISel(bool Enable) { Options.EnableGlobalISel = Enable; }
231   void setGlobalISelAbort(GlobalISelAbortMode Mode) {
232     Options.GlobalISelAbort = Mode;
233   }
234   void setMachineOutliner(bool Enable) {
235     Options.EnableMachineOutliner = Enable;
236   }
237   void setSupportsDefaultOutlining(bool Enable) {
238     Options.SupportsDefaultOutlining = Enable;
239   }
240   void setSupportsDebugEntryValues(bool Enable) {
241     Options.SupportsDebugEntryValues = Enable;
242   }
243
244   bool shouldPrintMachineCode() const { return Options.PrintMachineCode; }
245
246   bool getUniqueSectionNames() const { return Options.UniqueSectionNames; }
247
248   /// Return true if unique basic block section names must be generated.
249   bool getUniqueBasicBlockSectionNames() const {
250     return Options.UniqueBasicBlockSectionNames;
251   }
252
253   /// Return true if data objects should be emitted into their own section,
254   /// corresponds to -fdata-sections.
255   bool getDataSections() const {
256     return Options.DataSections;
257   }
258
259   /// Return true if functions should be emitted into their own section,
260   /// corresponding to -ffunction-sections.
261   bool getFunctionSections() const {
262     return Options.FunctionSections;
263   }
264
265   /// If basic blocks should be emitted into their own section,
266   /// corresponding to -fbasic-block-sections.
267   llvm::BasicBlockSection getBBSectionsType() const {
268     return Options.BBSections;
269   }
270
271   /// Get the list of functions and basic block ids that need unique sections.
272   const MemoryBuffer *getBBSectionsFuncListBuf() const {
273     return Options.BBSectionsFuncListBuf.get();
274   }
275
276   /// Get a \c TargetIRAnalysis appropriate for the target.
277   ///
278   /// This is used to construct the new pass manager's target IR analysis pass,
279   /// set up appropriately for this target machine. Even the old pass manager
280   /// uses this to answer queries about the IR.
281   TargetIRAnalysis getTargetIRAnalysis();
282
283   /// Return a TargetTransformInfo for a given function.
284   ///
285   /// The returned TargetTransformInfo is specialized to the subtarget
286   /// corresponding to \p F.
287   virtual TargetTransformInfo getTargetTransformInfo(const Function &F);
288
289   /// Allow the target to modify the pass manager, e.g. by calling
290   /// PassManagerBuilder::addExtension.
291   virtual void adjustPassManager(PassManagerBuilder &) {}
292
293   /// Add passes to the specified pass manager to get the specified file
294   /// emitted.  Typically this will involve several steps of code generation.
295   /// This method should return true if emission of this file type is not
296   /// supported, or false on success.
297   /// \p MMIWP is an optional parameter that, if set to non-nullptr,
298   /// will be used to set the MachineModuloInfo for this PM.
299   virtual bool
300   addPassesToEmitFile(PassManagerBase &, raw_pwrite_stream &,
301                       raw_pwrite_stream *, CodeGenFileType,
302                       bool /*DisableVerify*/ = true,
303                       MachineModuleInfoWrapperPass *MMIWP = nullptr) {
304     return true;
305   }
306
307   /// Add passes to the specified pass manager to get machine code emitted with
308   /// the MCJIT. This method returns true if machine code is not supported. It
309   /// fills the MCContext Ctx pointer which can be used to build custom
310   /// MCStreamer.
311   ///
312   virtual bool addPassesToEmitMC(PassManagerBase &, MCContext *&,
313                                  raw_pwrite_stream &,
314                                  bool /*DisableVerify*/ = true) {
315     return true;
316   }
317
318   /// True if subtarget inserts the final scheduling pass on its own.
319   ///
320   /// Branch relaxation, which must happen after block placement, can
321   /// on some targets (e.g. SystemZ) expose additional post-RA
322   /// scheduling opportunities.
323   virtual bool targetSchedulesPostRAScheduling() const { return false; };
324
325   void getNameWithPrefix(SmallVectorImpl<char> &Name, const GlobalValue *GV,
326                          Mangler &Mang, bool MayAlwaysUsePrivate = false) const;
327   MCSymbol *getSymbol(const GlobalValue *GV) const;
328
329   /// The integer bit size to use for SjLj based exception handling.
330   static constexpr unsigned DefaultSjLjDataSize = 32;
331   virtual unsigned getSjLjDataSize() const { return DefaultSjLjDataSize; }
332 };
333
334 /// This class describes a target machine that is implemented with the LLVM
335 /// target-independent code generator.
336 ///
337 class LLVMTargetMachine : public TargetMachine {
338 protected: // Can only create subclasses.
339   LLVMTargetMachine(const Target &T, StringRef DataLayoutString,
340                     const Triple &TT, StringRef CPU, StringRef FS,
341                     const TargetOptions &Options, Reloc::Model RM,
342                     CodeModel::Model CM, CodeGenOpt::Level OL);
343
344   void initAsmInfo();
345
346 public:
347   /// Get a TargetTransformInfo implementation for the target.
348   ///
349   /// The TTI returned uses the common code generator to answer queries about
350   /// the IR.
351   TargetTransformInfo getTargetTransformInfo(const Function &F) override;
352
353   /// Create a pass configuration object to be used by addPassToEmitX methods
354   /// for generating a pipeline of CodeGen passes.
355   virtual TargetPassConfig *createPassConfig(PassManagerBase &PM);
356
357   /// Add passes to the specified pass manager to get the specified file
358   /// emitted.  Typically this will involve several steps of code generation.
359   /// \p MMIWP is an optional parameter that, if set to non-nullptr,
360   /// will be used to set the MachineModuloInfo for this PM.
361   bool
362   addPassesToEmitFile(PassManagerBase &PM, raw_pwrite_stream &Out,
363                       raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
364                       bool DisableVerify = true,
365                       MachineModuleInfoWrapperPass *MMIWP = nullptr) override;
366
367   /// Add passes to the specified pass manager to get machine code emitted with
368   /// the MCJIT. This method returns true if machine code is not supported. It
369   /// fills the MCContext Ctx pointer which can be used to build custom
370   /// MCStreamer.
371   bool addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
372                          raw_pwrite_stream &Out,
373                          bool DisableVerify = true) override;
374
375   /// Returns true if the target is expected to pass all machine verifier
376   /// checks. This is a stopgap measure to fix targets one by one. We will
377   /// remove this at some point and always enable the verifier when
378   /// EXPENSIVE_CHECKS is enabled.
379   virtual bool isMachineVerifierClean() const { return true; }
380
381   /// Adds an AsmPrinter pass to the pipeline that prints assembly or
382   /// machine code from the MI representation.
383   bool addAsmPrinter(PassManagerBase &PM, raw_pwrite_stream &Out,
384                      raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
385                      MCContext &Context);
386
387   /// True if the target uses physical regs (as nearly all targets do). False
388   /// for stack machines such as WebAssembly and other virtual-register
389   /// machines. If true, all vregs must be allocated before PEI. If false, then
390   /// callee-save register spilling and scavenging are not needed or used. If
391   /// false, implicitly defined registers will still be assumed to be physical
392   /// registers, except that variadic defs will be allocated vregs.
393   virtual bool usesPhysRegsForValues() const { return true; }
394
395   /// True if the target wants to use interprocedural register allocation by
396   /// default. The -enable-ipra flag can be used to override this.
397   virtual bool useIPRA() const {
398     return false;
399   }
400 };
401
402 /// Helper method for getting the code model, returning Default if
403 /// CM does not have a value. The tiny and kernel models will produce
404 /// an error, so targets that support them or require more complex codemodel
405 /// selection logic should implement and call their own getEffectiveCodeModel.
406 inline CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM,
407                                               CodeModel::Model Default) {
408   if (CM) {
409     // By default, targets do not support the tiny and kernel models.
410     if (*CM == CodeModel::Tiny)
411       report_fatal_error("Target does not support the tiny CodeModel", false);
412     if (*CM == CodeModel::Kernel)
413       report_fatal_error("Target does not support the kernel CodeModel", false);
414     return *CM;
415   }
416   return Default;
417 }
418
419 } // end namespace llvm
420
421 #endif // LLVM_TARGET_TARGETMACHINE_H