]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/include/llvm/Transforms/Utils/SSAUpdaterImpl.h
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / include / llvm / Transforms / Utils / SSAUpdaterImpl.h
1 //===- SSAUpdaterImpl.h - SSA Updater Implementation ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides a template that implements the core algorithm for the
10 // SSAUpdater and MachineSSAUpdater.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
15 #define LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
16
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Support/Allocator.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/raw_ostream.h"
22
23 #define DEBUG_TYPE "ssaupdater"
24
25 namespace llvm {
26
27 template<typename T> class SSAUpdaterTraits;
28
29 template<typename UpdaterT>
30 class SSAUpdaterImpl {
31 private:
32   UpdaterT *Updater;
33
34   using Traits = SSAUpdaterTraits<UpdaterT>;
35   using BlkT = typename Traits::BlkT;
36   using ValT = typename Traits::ValT;
37   using PhiT = typename Traits::PhiT;
38
39   /// BBInfo - Per-basic block information used internally by SSAUpdaterImpl.
40   /// The predecessors of each block are cached here since pred_iterator is
41   /// slow and we need to iterate over the blocks at least a few times.
42   class BBInfo {
43   public:
44     // Back-pointer to the corresponding block.
45     BlkT *BB;
46
47     // Value to use in this block.
48     ValT AvailableVal;
49
50     // Block that defines the available value.
51     BBInfo *DefBB;
52
53     // Postorder number.
54     int BlkNum = 0;
55
56     // Immediate dominator.
57     BBInfo *IDom = nullptr;
58
59     // Number of predecessor blocks.
60     unsigned NumPreds = 0;
61
62     // Array[NumPreds] of predecessor blocks.
63     BBInfo **Preds = nullptr;
64
65     // Marker for existing PHIs that match.
66     PhiT *PHITag = nullptr;
67
68     BBInfo(BlkT *ThisBB, ValT V)
69       : BB(ThisBB), AvailableVal(V), DefBB(V ? this : nullptr) {}
70   };
71
72   using AvailableValsTy = DenseMap<BlkT *, ValT>;
73
74   AvailableValsTy *AvailableVals;
75
76   SmallVectorImpl<PhiT *> *InsertedPHIs;
77
78   using BlockListTy = SmallVectorImpl<BBInfo *>;
79   using BBMapTy = DenseMap<BlkT *, BBInfo *>;
80
81   BBMapTy BBMap;
82   BumpPtrAllocator Allocator;
83
84 public:
85   explicit SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A,
86                           SmallVectorImpl<PhiT *> *Ins) :
87     Updater(U), AvailableVals(A), InsertedPHIs(Ins) {}
88
89   /// GetValue - Check to see if AvailableVals has an entry for the specified
90   /// BB and if so, return it.  If not, construct SSA form by first
91   /// calculating the required placement of PHIs and then inserting new PHIs
92   /// where needed.
93   ValT GetValue(BlkT *BB) {
94     SmallVector<BBInfo *, 100> BlockList;
95     BBInfo *PseudoEntry = BuildBlockList(BB, &BlockList);
96
97     // Special case: bail out if BB is unreachable.
98     if (BlockList.size() == 0) {
99       ValT V = Traits::GetUndefVal(BB, Updater);
100       (*AvailableVals)[BB] = V;
101       return V;
102     }
103
104     FindDominators(&BlockList, PseudoEntry);
105     FindPHIPlacement(&BlockList);
106     FindAvailableVals(&BlockList);
107
108     return BBMap[BB]->DefBB->AvailableVal;
109   }
110
111   /// BuildBlockList - Starting from the specified basic block, traverse back
112   /// through its predecessors until reaching blocks with known values.
113   /// Create BBInfo structures for the blocks and append them to the block
114   /// list.
115   BBInfo *BuildBlockList(BlkT *BB, BlockListTy *BlockList) {
116     SmallVector<BBInfo *, 10> RootList;
117     SmallVector<BBInfo *, 64> WorkList;
118
119     BBInfo *Info = new (Allocator) BBInfo(BB, 0);
120     BBMap[BB] = Info;
121     WorkList.push_back(Info);
122
123     // Search backward from BB, creating BBInfos along the way and stopping
124     // when reaching blocks that define the value.  Record those defining
125     // blocks on the RootList.
126     SmallVector<BlkT *, 10> Preds;
127     while (!WorkList.empty()) {
128       Info = WorkList.pop_back_val();
129       Preds.clear();
130       Traits::FindPredecessorBlocks(Info->BB, &Preds);
131       Info->NumPreds = Preds.size();
132       if (Info->NumPreds == 0)
133         Info->Preds = nullptr;
134       else
135         Info->Preds = static_cast<BBInfo **>(Allocator.Allocate(
136             Info->NumPreds * sizeof(BBInfo *), alignof(BBInfo *)));
137
138       for (unsigned p = 0; p != Info->NumPreds; ++p) {
139         BlkT *Pred = Preds[p];
140         // Check if BBMap already has a BBInfo for the predecessor block.
141         typename BBMapTy::value_type &BBMapBucket =
142           BBMap.FindAndConstruct(Pred);
143         if (BBMapBucket.second) {
144           Info->Preds[p] = BBMapBucket.second;
145           continue;
146         }
147
148         // Create a new BBInfo for the predecessor.
149         ValT PredVal = AvailableVals->lookup(Pred);
150         BBInfo *PredInfo = new (Allocator) BBInfo(Pred, PredVal);
151         BBMapBucket.second = PredInfo;
152         Info->Preds[p] = PredInfo;
153
154         if (PredInfo->AvailableVal) {
155           RootList.push_back(PredInfo);
156           continue;
157         }
158         WorkList.push_back(PredInfo);
159       }
160     }
161
162     // Now that we know what blocks are backwards-reachable from the starting
163     // block, do a forward depth-first traversal to assign postorder numbers
164     // to those blocks.
165     BBInfo *PseudoEntry = new (Allocator) BBInfo(nullptr, 0);
166     unsigned BlkNum = 1;
167
168     // Initialize the worklist with the roots from the backward traversal.
169     while (!RootList.empty()) {
170       Info = RootList.pop_back_val();
171       Info->IDom = PseudoEntry;
172       Info->BlkNum = -1;
173       WorkList.push_back(Info);
174     }
175
176     while (!WorkList.empty()) {
177       Info = WorkList.back();
178
179       if (Info->BlkNum == -2) {
180         // All the successors have been handled; assign the postorder number.
181         Info->BlkNum = BlkNum++;
182         // If not a root, put it on the BlockList.
183         if (!Info->AvailableVal)
184           BlockList->push_back(Info);
185         WorkList.pop_back();
186         continue;
187       }
188
189       // Leave this entry on the worklist, but set its BlkNum to mark that its
190       // successors have been put on the worklist.  When it returns to the top
191       // the list, after handling its successors, it will be assigned a
192       // number.
193       Info->BlkNum = -2;
194
195       // Add unvisited successors to the work list.
196       for (typename Traits::BlkSucc_iterator SI =
197              Traits::BlkSucc_begin(Info->BB),
198              E = Traits::BlkSucc_end(Info->BB); SI != E; ++SI) {
199         BBInfo *SuccInfo = BBMap[*SI];
200         if (!SuccInfo || SuccInfo->BlkNum)
201           continue;
202         SuccInfo->BlkNum = -1;
203         WorkList.push_back(SuccInfo);
204       }
205     }
206     PseudoEntry->BlkNum = BlkNum;
207     return PseudoEntry;
208   }
209
210   /// IntersectDominators - This is the dataflow lattice "meet" operation for
211   /// finding dominators.  Given two basic blocks, it walks up the dominator
212   /// tree until it finds a common dominator of both.  It uses the postorder
213   /// number of the blocks to determine how to do that.
214   BBInfo *IntersectDominators(BBInfo *Blk1, BBInfo *Blk2) {
215     while (Blk1 != Blk2) {
216       while (Blk1->BlkNum < Blk2->BlkNum) {
217         Blk1 = Blk1->IDom;
218         if (!Blk1)
219           return Blk2;
220       }
221       while (Blk2->BlkNum < Blk1->BlkNum) {
222         Blk2 = Blk2->IDom;
223         if (!Blk2)
224           return Blk1;
225       }
226     }
227     return Blk1;
228   }
229
230   /// FindDominators - Calculate the dominator tree for the subset of the CFG
231   /// corresponding to the basic blocks on the BlockList.  This uses the
232   /// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey
233   /// and Kennedy, published in Software--Practice and Experience, 2001,
234   /// 4:1-10.  Because the CFG subset does not include any edges leading into
235   /// blocks that define the value, the results are not the usual dominator
236   /// tree.  The CFG subset has a single pseudo-entry node with edges to a set
237   /// of root nodes for blocks that define the value.  The dominators for this
238   /// subset CFG are not the standard dominators but they are adequate for
239   /// placing PHIs within the subset CFG.
240   void FindDominators(BlockListTy *BlockList, BBInfo *PseudoEntry) {
241     bool Changed;
242     do {
243       Changed = false;
244       // Iterate over the list in reverse order, i.e., forward on CFG edges.
245       for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
246              E = BlockList->rend(); I != E; ++I) {
247         BBInfo *Info = *I;
248         BBInfo *NewIDom = nullptr;
249
250         // Iterate through the block's predecessors.
251         for (unsigned p = 0; p != Info->NumPreds; ++p) {
252           BBInfo *Pred = Info->Preds[p];
253
254           // Treat an unreachable predecessor as a definition with 'undef'.
255           if (Pred->BlkNum == 0) {
256             Pred->AvailableVal = Traits::GetUndefVal(Pred->BB, Updater);
257             (*AvailableVals)[Pred->BB] = Pred->AvailableVal;
258             Pred->DefBB = Pred;
259             Pred->BlkNum = PseudoEntry->BlkNum;
260             PseudoEntry->BlkNum++;
261           }
262
263           if (!NewIDom)
264             NewIDom = Pred;
265           else
266             NewIDom = IntersectDominators(NewIDom, Pred);
267         }
268
269         // Check if the IDom value has changed.
270         if (NewIDom && NewIDom != Info->IDom) {
271           Info->IDom = NewIDom;
272           Changed = true;
273         }
274       }
275     } while (Changed);
276   }
277
278   /// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
279   /// any blocks containing definitions of the value.  If one is found, then
280   /// the successor of Pred is in the dominance frontier for the definition,
281   /// and this function returns true.
282   bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom) {
283     for (; Pred != IDom; Pred = Pred->IDom) {
284       if (Pred->DefBB == Pred)
285         return true;
286     }
287     return false;
288   }
289
290   /// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers
291   /// of the known definitions.  Iteratively add PHIs in the dom frontiers
292   /// until nothing changes.  Along the way, keep track of the nearest
293   /// dominating definitions for non-PHI blocks.
294   void FindPHIPlacement(BlockListTy *BlockList) {
295     bool Changed;
296     do {
297       Changed = false;
298       // Iterate over the list in reverse order, i.e., forward on CFG edges.
299       for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
300              E = BlockList->rend(); I != E; ++I) {
301         BBInfo *Info = *I;
302
303         // If this block already needs a PHI, there is nothing to do here.
304         if (Info->DefBB == Info)
305           continue;
306
307         // Default to use the same def as the immediate dominator.
308         BBInfo *NewDefBB = Info->IDom->DefBB;
309         for (unsigned p = 0; p != Info->NumPreds; ++p) {
310           if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
311             // Need a PHI here.
312             NewDefBB = Info;
313             break;
314           }
315         }
316
317         // Check if anything changed.
318         if (NewDefBB != Info->DefBB) {
319           Info->DefBB = NewDefBB;
320           Changed = true;
321         }
322       }
323     } while (Changed);
324   }
325
326   /// FindAvailableVal - If this block requires a PHI, first check if an
327   /// existing PHI matches the PHI placement and reaching definitions computed
328   /// earlier, and if not, create a new PHI.  Visit all the block's
329   /// predecessors to calculate the available value for each one and fill in
330   /// the incoming values for a new PHI.
331   void FindAvailableVals(BlockListTy *BlockList) {
332     // Go through the worklist in forward order (i.e., backward through the CFG)
333     // and check if existing PHIs can be used.  If not, create empty PHIs where
334     // they are needed.
335     for (typename BlockListTy::iterator I = BlockList->begin(),
336            E = BlockList->end(); I != E; ++I) {
337       BBInfo *Info = *I;
338       // Check if there needs to be a PHI in BB.
339       if (Info->DefBB != Info)
340         continue;
341
342       // Look for an existing PHI.
343       FindExistingPHI(Info->BB, BlockList);
344       if (Info->AvailableVal)
345         continue;
346
347       ValT PHI = Traits::CreateEmptyPHI(Info->BB, Info->NumPreds, Updater);
348       Info->AvailableVal = PHI;
349       (*AvailableVals)[Info->BB] = PHI;
350     }
351
352     // Now go back through the worklist in reverse order to fill in the
353     // arguments for any new PHIs added in the forward traversal.
354     for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
355            E = BlockList->rend(); I != E; ++I) {
356       BBInfo *Info = *I;
357
358       if (Info->DefBB != Info) {
359         // Record the available value to speed up subsequent uses of this
360         // SSAUpdater for the same value.
361         (*AvailableVals)[Info->BB] = Info->DefBB->AvailableVal;
362         continue;
363       }
364
365       // Check if this block contains a newly added PHI.
366       PhiT *PHI = Traits::ValueIsNewPHI(Info->AvailableVal, Updater);
367       if (!PHI)
368         continue;
369
370       // Iterate through the block's predecessors.
371       for (unsigned p = 0; p != Info->NumPreds; ++p) {
372         BBInfo *PredInfo = Info->Preds[p];
373         BlkT *Pred = PredInfo->BB;
374         // Skip to the nearest preceding definition.
375         if (PredInfo->DefBB != PredInfo)
376           PredInfo = PredInfo->DefBB;
377         Traits::AddPHIOperand(PHI, PredInfo->AvailableVal, Pred);
378       }
379
380       LLVM_DEBUG(dbgs() << "  Inserted PHI: " << *PHI << "\n");
381
382       // If the client wants to know about all new instructions, tell it.
383       if (InsertedPHIs) InsertedPHIs->push_back(PHI);
384     }
385   }
386
387   /// FindExistingPHI - Look through the PHI nodes in a block to see if any of
388   /// them match what is needed.
389   void FindExistingPHI(BlkT *BB, BlockListTy *BlockList) {
390     for (auto &SomePHI : BB->phis()) {
391       if (CheckIfPHIMatches(&SomePHI)) {
392         RecordMatchingPHIs(BlockList);
393         break;
394       }
395       // Match failed: clear all the PHITag values.
396       for (typename BlockListTy::iterator I = BlockList->begin(),
397              E = BlockList->end(); I != E; ++I)
398         (*I)->PHITag = nullptr;
399     }
400   }
401
402   /// CheckIfPHIMatches - Check if a PHI node matches the placement and values
403   /// in the BBMap.
404   bool CheckIfPHIMatches(PhiT *PHI) {
405     SmallVector<PhiT *, 20> WorkList;
406     WorkList.push_back(PHI);
407
408     // Mark that the block containing this PHI has been visited.
409     BBMap[PHI->getParent()]->PHITag = PHI;
410
411     while (!WorkList.empty()) {
412       PHI = WorkList.pop_back_val();
413
414       // Iterate through the PHI's incoming values.
415       for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
416              E = Traits::PHI_end(PHI); I != E; ++I) {
417         ValT IncomingVal = I.getIncomingValue();
418         BBInfo *PredInfo = BBMap[I.getIncomingBlock()];
419         // Skip to the nearest preceding definition.
420         if (PredInfo->DefBB != PredInfo)
421           PredInfo = PredInfo->DefBB;
422
423         // Check if it matches the expected value.
424         if (PredInfo->AvailableVal) {
425           if (IncomingVal == PredInfo->AvailableVal)
426             continue;
427           return false;
428         }
429
430         // Check if the value is a PHI in the correct block.
431         PhiT *IncomingPHIVal = Traits::ValueIsPHI(IncomingVal, Updater);
432         if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
433           return false;
434
435         // If this block has already been visited, check if this PHI matches.
436         if (PredInfo->PHITag) {
437           if (IncomingPHIVal == PredInfo->PHITag)
438             continue;
439           return false;
440         }
441         PredInfo->PHITag = IncomingPHIVal;
442
443         WorkList.push_back(IncomingPHIVal);
444       }
445     }
446     return true;
447   }
448
449   /// RecordMatchingPHIs - For each PHI node that matches, record it in both
450   /// the BBMap and the AvailableVals mapping.
451   void RecordMatchingPHIs(BlockListTy *BlockList) {
452     for (typename BlockListTy::iterator I = BlockList->begin(),
453            E = BlockList->end(); I != E; ++I)
454       if (PhiT *PHI = (*I)->PHITag) {
455         BlkT *BB = PHI->getParent();
456         ValT PHIVal = Traits::GetPHIValue(PHI);
457         (*AvailableVals)[BB] = PHIVal;
458         BBMap[BB]->AvailableVal = PHIVal;
459       }
460   }
461 };
462
463 } // end namespace llvm
464
465 #undef DEBUG_TYPE // "ssaupdater"
466
467 #endif // LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H