]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Analysis/BasicAliasAnalysis.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Analysis / BasicAliasAnalysis.cpp
1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/PhiValues.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/KnownBits.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <cstdlib>
61 #include <utility>
62
63 #define DEBUG_TYPE "basicaa"
64
65 using namespace llvm;
66
67 /// Enable analysis of recursive PHI nodes.
68 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
69                                           cl::init(false));
70
71 /// By default, even on 32-bit architectures we use 64-bit integers for
72 /// calculations. This will allow us to more-aggressively decompose indexing
73 /// expressions calculated using i64 values (e.g., long long in C) which is
74 /// common enough to worry about.
75 static cl::opt<bool> ForceAtLeast64Bits("basicaa-force-at-least-64b",
76                                         cl::Hidden, cl::init(true));
77 static cl::opt<bool> DoubleCalcBits("basicaa-double-calc-bits",
78                                     cl::Hidden, cl::init(false));
79
80 /// SearchLimitReached / SearchTimes shows how often the limit of
81 /// to decompose GEPs is reached. It will affect the precision
82 /// of basic alias analysis.
83 STATISTIC(SearchLimitReached, "Number of times the limit to "
84                               "decompose GEPs is reached");
85 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
86
87 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
88 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
89 /// careful with value equivalence. We use reachability to make sure a value
90 /// cannot be involved in a cycle.
91 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
92
93 // The max limit of the search depth in DecomposeGEPExpression() and
94 // GetUnderlyingObject(), both functions need to use the same search
95 // depth otherwise the algorithm in aliasGEP will assert.
96 static const unsigned MaxLookupSearchDepth = 6;
97
98 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
99                                FunctionAnalysisManager::Invalidator &Inv) {
100   // We don't care if this analysis itself is preserved, it has no state. But
101   // we need to check that the analyses it depends on have been. Note that we
102   // may be created without handles to some analyses and in that case don't
103   // depend on them.
104   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
105       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
106       (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
107       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
108     return true;
109
110   // Otherwise this analysis result remains valid.
111   return false;
112 }
113
114 //===----------------------------------------------------------------------===//
115 // Useful predicates
116 //===----------------------------------------------------------------------===//
117
118 /// Returns true if the pointer is to a function-local object that never
119 /// escapes from the function.
120 static bool isNonEscapingLocalObject(
121     const Value *V,
122     SmallDenseMap<const Value *, bool, 8> *IsCapturedCache = nullptr) {
123   SmallDenseMap<const Value *, bool, 8>::iterator CacheIt;
124   if (IsCapturedCache) {
125     bool Inserted;
126     std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false});
127     if (!Inserted)
128       // Found cached result, return it!
129       return CacheIt->second;
130   }
131
132   // If this is a local allocation, check to see if it escapes.
133   if (isa<AllocaInst>(V) || isNoAliasCall(V)) {
134     // Set StoreCaptures to True so that we can assume in our callers that the
135     // pointer is not the result of a load instruction. Currently
136     // PointerMayBeCaptured doesn't have any special analysis for the
137     // StoreCaptures=false case; if it did, our callers could be refined to be
138     // more precise.
139     auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
140     if (IsCapturedCache)
141       CacheIt->second = Ret;
142     return Ret;
143   }
144
145   // If this is an argument that corresponds to a byval or noalias argument,
146   // then it has not escaped before entering the function.  Check if it escapes
147   // inside the function.
148   if (const Argument *A = dyn_cast<Argument>(V))
149     if (A->hasByValAttr() || A->hasNoAliasAttr()) {
150       // Note even if the argument is marked nocapture, we still need to check
151       // for copies made inside the function. The nocapture attribute only
152       // specifies that there are no copies made that outlive the function.
153       auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
154       if (IsCapturedCache)
155         CacheIt->second = Ret;
156       return Ret;
157     }
158
159   return false;
160 }
161
162 /// Returns true if the pointer is one which would have been considered an
163 /// escape by isNonEscapingLocalObject.
164 static bool isEscapeSource(const Value *V) {
165   if (isa<CallBase>(V))
166     return true;
167
168   if (isa<Argument>(V))
169     return true;
170
171   // The load case works because isNonEscapingLocalObject considers all
172   // stores to be escapes (it passes true for the StoreCaptures argument
173   // to PointerMayBeCaptured).
174   if (isa<LoadInst>(V))
175     return true;
176
177   return false;
178 }
179
180 /// Returns the size of the object specified by V or UnknownSize if unknown.
181 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
182                               const TargetLibraryInfo &TLI,
183                               bool NullIsValidLoc,
184                               bool RoundToAlign = false) {
185   uint64_t Size;
186   ObjectSizeOpts Opts;
187   Opts.RoundToAlign = RoundToAlign;
188   Opts.NullIsUnknownSize = NullIsValidLoc;
189   if (getObjectSize(V, Size, DL, &TLI, Opts))
190     return Size;
191   return MemoryLocation::UnknownSize;
192 }
193
194 /// Returns true if we can prove that the object specified by V is smaller than
195 /// Size.
196 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
197                                 const DataLayout &DL,
198                                 const TargetLibraryInfo &TLI,
199                                 bool NullIsValidLoc) {
200   // Note that the meanings of the "object" are slightly different in the
201   // following contexts:
202   //    c1: llvm::getObjectSize()
203   //    c2: llvm.objectsize() intrinsic
204   //    c3: isObjectSmallerThan()
205   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
206   // refers to the "entire object".
207   //
208   //  Consider this example:
209   //     char *p = (char*)malloc(100)
210   //     char *q = p+80;
211   //
212   //  In the context of c1 and c2, the "object" pointed by q refers to the
213   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
214   //
215   //  However, in the context of c3, the "object" refers to the chunk of memory
216   // being allocated. So, the "object" has 100 bytes, and q points to the middle
217   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
218   // parameter, before the llvm::getObjectSize() is called to get the size of
219   // entire object, we should:
220   //    - either rewind the pointer q to the base-address of the object in
221   //      question (in this case rewind to p), or
222   //    - just give up. It is up to caller to make sure the pointer is pointing
223   //      to the base address the object.
224   //
225   // We go for 2nd option for simplicity.
226   if (!isIdentifiedObject(V))
227     return false;
228
229   // This function needs to use the aligned object size because we allow
230   // reads a bit past the end given sufficient alignment.
231   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
232                                       /*RoundToAlign*/ true);
233
234   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
235 }
236
237 /// Return the minimal extent from \p V to the end of the underlying object,
238 /// assuming the result is used in an aliasing query. E.g., we do use the query
239 /// location size and the fact that null pointers cannot alias here.
240 static uint64_t getMinimalExtentFrom(const Value &V,
241                                      const LocationSize &LocSize,
242                                      const DataLayout &DL,
243                                      bool NullIsValidLoc) {
244   // If we have dereferenceability information we know a lower bound for the
245   // extent as accesses for a lower offset would be valid. We need to exclude
246   // the "or null" part if null is a valid pointer.
247   bool CanBeNull;
248   uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
249   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
250   // If queried with a precise location size, we assume that location size to be
251   // accessed, thus valid.
252   if (LocSize.isPrecise())
253     DerefBytes = std::max(DerefBytes, LocSize.getValue());
254   return DerefBytes;
255 }
256
257 /// Returns true if we can prove that the object specified by V has size Size.
258 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
259                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
260   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
261   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
262 }
263
264 //===----------------------------------------------------------------------===//
265 // GetElementPtr Instruction Decomposition and Analysis
266 //===----------------------------------------------------------------------===//
267
268 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
269 /// B are constant integers.
270 ///
271 /// Returns the scale and offset values as APInts and return V as a Value*, and
272 /// return whether we looked through any sign or zero extends.  The incoming
273 /// Value is known to have IntegerType, and it may already be sign or zero
274 /// extended.
275 ///
276 /// Note that this looks through extends, so the high bits may not be
277 /// represented in the result.
278 /*static*/ const Value *BasicAAResult::GetLinearExpression(
279     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
280     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
281     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
282   assert(V->getType()->isIntegerTy() && "Not an integer value");
283
284   // Limit our recursion depth.
285   if (Depth == 6) {
286     Scale = 1;
287     Offset = 0;
288     return V;
289   }
290
291   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
292     // If it's a constant, just convert it to an offset and remove the variable.
293     // If we've been called recursively, the Offset bit width will be greater
294     // than the constant's (the Offset's always as wide as the outermost call),
295     // so we'll zext here and process any extension in the isa<SExtInst> &
296     // isa<ZExtInst> cases below.
297     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
298     assert(Scale == 0 && "Constant values don't have a scale");
299     return V;
300   }
301
302   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
303     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
304       // If we've been called recursively, then Offset and Scale will be wider
305       // than the BOp operands. We'll always zext it here as we'll process sign
306       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
307       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
308
309       switch (BOp->getOpcode()) {
310       default:
311         // We don't understand this instruction, so we can't decompose it any
312         // further.
313         Scale = 1;
314         Offset = 0;
315         return V;
316       case Instruction::Or:
317         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
318         // analyze it.
319         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
320                                BOp, DT)) {
321           Scale = 1;
322           Offset = 0;
323           return V;
324         }
325         LLVM_FALLTHROUGH;
326       case Instruction::Add:
327         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
328                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
329         Offset += RHS;
330         break;
331       case Instruction::Sub:
332         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
333                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
334         Offset -= RHS;
335         break;
336       case Instruction::Mul:
337         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
338                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
339         Offset *= RHS;
340         Scale *= RHS;
341         break;
342       case Instruction::Shl:
343         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
344                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
345
346         // We're trying to linearize an expression of the kind:
347         //   shl i8 -128, 36
348         // where the shift count exceeds the bitwidth of the type.
349         // We can't decompose this further (the expression would return
350         // a poison value).
351         if (Offset.getBitWidth() < RHS.getLimitedValue() ||
352             Scale.getBitWidth() < RHS.getLimitedValue()) {
353           Scale = 1;
354           Offset = 0;
355           return V;
356         }
357
358         Offset <<= RHS.getLimitedValue();
359         Scale <<= RHS.getLimitedValue();
360         // the semantics of nsw and nuw for left shifts don't match those of
361         // multiplications, so we won't propagate them.
362         NSW = NUW = false;
363         return V;
364       }
365
366       if (isa<OverflowingBinaryOperator>(BOp)) {
367         NUW &= BOp->hasNoUnsignedWrap();
368         NSW &= BOp->hasNoSignedWrap();
369       }
370       return V;
371     }
372   }
373
374   // Since GEP indices are sign extended anyway, we don't care about the high
375   // bits of a sign or zero extended value - just scales and offsets.  The
376   // extensions have to be consistent though.
377   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
378     Value *CastOp = cast<CastInst>(V)->getOperand(0);
379     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
380     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
381     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
382     const Value *Result =
383         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
384                             Depth + 1, AC, DT, NSW, NUW);
385
386     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
387     // by just incrementing the number of bits we've extended by.
388     unsigned ExtendedBy = NewWidth - SmallWidth;
389
390     if (isa<SExtInst>(V) && ZExtBits == 0) {
391       // sext(sext(%x, a), b) == sext(%x, a + b)
392
393       if (NSW) {
394         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
395         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
396         unsigned OldWidth = Offset.getBitWidth();
397         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
398       } else {
399         // We may have signed-wrapped, so don't decompose sext(%x + c) into
400         // sext(%x) + sext(c)
401         Scale = 1;
402         Offset = 0;
403         Result = CastOp;
404         ZExtBits = OldZExtBits;
405         SExtBits = OldSExtBits;
406       }
407       SExtBits += ExtendedBy;
408     } else {
409       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
410
411       if (!NUW) {
412         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
413         // zext(%x) + zext(c)
414         Scale = 1;
415         Offset = 0;
416         Result = CastOp;
417         ZExtBits = OldZExtBits;
418         SExtBits = OldSExtBits;
419       }
420       ZExtBits += ExtendedBy;
421     }
422
423     return Result;
424   }
425
426   Scale = 1;
427   Offset = 0;
428   return V;
429 }
430
431 /// To ensure a pointer offset fits in an integer of size PointerSize
432 /// (in bits) when that size is smaller than the maximum pointer size. This is
433 /// an issue, for example, in particular for 32b pointers with negative indices
434 /// that rely on two's complement wrap-arounds for precise alias information
435 /// where the maximum pointer size is 64b.
436 static APInt adjustToPointerSize(APInt Offset, unsigned PointerSize) {
437   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
438   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
439   return (Offset << ShiftBits).ashr(ShiftBits);
440 }
441
442 static unsigned getMaxPointerSize(const DataLayout &DL) {
443   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
444   if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
445   if (DoubleCalcBits) MaxPointerSize *= 2;
446
447   return MaxPointerSize;
448 }
449
450 /// If V is a symbolic pointer expression, decompose it into a base pointer
451 /// with a constant offset and a number of scaled symbolic offsets.
452 ///
453 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
454 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
455 /// specified amount, but which may have other unrepresented high bits. As
456 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
457 ///
458 /// When DataLayout is around, this function is capable of analyzing everything
459 /// that GetUnderlyingObject can look through. To be able to do that
460 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
461 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
462 /// through pointer casts.
463 bool BasicAAResult::DecomposeGEPExpression(const Value *V,
464        DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
465        DominatorTree *DT) {
466   // Limit recursion depth to limit compile time in crazy cases.
467   unsigned MaxLookup = MaxLookupSearchDepth;
468   SearchTimes++;
469
470   unsigned MaxPointerSize = getMaxPointerSize(DL);
471   Decomposed.VarIndices.clear();
472   do {
473     // See if this is a bitcast or GEP.
474     const Operator *Op = dyn_cast<Operator>(V);
475     if (!Op) {
476       // The only non-operator case we can handle are GlobalAliases.
477       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
478         if (!GA->isInterposable()) {
479           V = GA->getAliasee();
480           continue;
481         }
482       }
483       Decomposed.Base = V;
484       return false;
485     }
486
487     if (Op->getOpcode() == Instruction::BitCast ||
488         Op->getOpcode() == Instruction::AddrSpaceCast) {
489       V = Op->getOperand(0);
490       continue;
491     }
492
493     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
494     if (!GEPOp) {
495       if (const auto *Call = dyn_cast<CallBase>(V)) {
496         // CaptureTracking can know about special capturing properties of some
497         // intrinsics like launder.invariant.group, that can't be expressed with
498         // the attributes, but have properties like returning aliasing pointer.
499         // Because some analysis may assume that nocaptured pointer is not
500         // returned from some special intrinsic (because function would have to
501         // be marked with returns attribute), it is crucial to use this function
502         // because it should be in sync with CaptureTracking. Not using it may
503         // cause weird miscompilations where 2 aliasing pointers are assumed to
504         // noalias.
505         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
506           V = RP;
507           continue;
508         }
509       }
510
511       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
512       // can come up with something. This matches what GetUnderlyingObject does.
513       if (const Instruction *I = dyn_cast<Instruction>(V))
514         // TODO: Get a DominatorTree and AssumptionCache and use them here
515         // (these are both now available in this function, but this should be
516         // updated when GetUnderlyingObject is updated). TLI should be
517         // provided also.
518         if (const Value *Simplified =
519                 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
520           V = Simplified;
521           continue;
522         }
523
524       Decomposed.Base = V;
525       return false;
526     }
527
528     // Don't attempt to analyze GEPs over unsized objects.
529     if (!GEPOp->getSourceElementType()->isSized()) {
530       Decomposed.Base = V;
531       return false;
532     }
533
534     unsigned AS = GEPOp->getPointerAddressSpace();
535     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
536     gep_type_iterator GTI = gep_type_begin(GEPOp);
537     unsigned PointerSize = DL.getPointerSizeInBits(AS);
538     // Assume all GEP operands are constants until proven otherwise.
539     bool GepHasConstantOffset = true;
540     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
541          I != E; ++I, ++GTI) {
542       const Value *Index = *I;
543       // Compute the (potentially symbolic) offset in bytes for this index.
544       if (StructType *STy = GTI.getStructTypeOrNull()) {
545         // For a struct, add the member offset.
546         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
547         if (FieldNo == 0)
548           continue;
549
550         Decomposed.StructOffset +=
551           DL.getStructLayout(STy)->getElementOffset(FieldNo);
552         continue;
553       }
554
555       // For an array/pointer, add the element offset, explicitly scaled.
556       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
557         if (CIdx->isZero())
558           continue;
559         Decomposed.OtherOffset +=
560           (DL.getTypeAllocSize(GTI.getIndexedType()) *
561             CIdx->getValue().sextOrSelf(MaxPointerSize))
562               .sextOrTrunc(MaxPointerSize);
563         continue;
564       }
565
566       GepHasConstantOffset = false;
567
568       APInt Scale(MaxPointerSize, DL.getTypeAllocSize(GTI.getIndexedType()));
569       unsigned ZExtBits = 0, SExtBits = 0;
570
571       // If the integer type is smaller than the pointer size, it is implicitly
572       // sign extended to pointer size.
573       unsigned Width = Index->getType()->getIntegerBitWidth();
574       if (PointerSize > Width)
575         SExtBits += PointerSize - Width;
576
577       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
578       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
579       bool NSW = true, NUW = true;
580       const Value *OrigIndex = Index;
581       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
582                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
583
584       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
585       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
586
587       // It can be the case that, even through C1*V+C2 does not overflow for
588       // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
589       // decompose the expression in this way.
590       //
591       // FIXME: C1*Scale and the other operations in the decomposed
592       // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
593       // possibility.
594       APInt WideScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize*2) *
595                                  Scale.sext(MaxPointerSize*2);
596       if (WideScaledOffset.getMinSignedBits() > MaxPointerSize) {
597         Index = OrigIndex;
598         IndexScale = 1;
599         IndexOffset = 0;
600
601         ZExtBits = SExtBits = 0;
602         if (PointerSize > Width)
603           SExtBits += PointerSize - Width;
604       } else {
605         Decomposed.OtherOffset += IndexOffset.sextOrTrunc(MaxPointerSize) * Scale;
606         Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
607       }
608
609       // If we already had an occurrence of this index variable, merge this
610       // scale into it.  For example, we want to handle:
611       //   A[x][x] -> x*16 + x*4 -> x*20
612       // This also ensures that 'x' only appears in the index list once.
613       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
614         if (Decomposed.VarIndices[i].V == Index &&
615             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
616             Decomposed.VarIndices[i].SExtBits == SExtBits) {
617           Scale += Decomposed.VarIndices[i].Scale;
618           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
619           break;
620         }
621       }
622
623       // Make sure that we have a scale that makes sense for this target's
624       // pointer size.
625       Scale = adjustToPointerSize(Scale, PointerSize);
626
627       if (!!Scale) {
628         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale};
629         Decomposed.VarIndices.push_back(Entry);
630       }
631     }
632
633     // Take care of wrap-arounds
634     if (GepHasConstantOffset) {
635       Decomposed.StructOffset =
636           adjustToPointerSize(Decomposed.StructOffset, PointerSize);
637       Decomposed.OtherOffset =
638           adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
639     }
640
641     // Analyze the base pointer next.
642     V = GEPOp->getOperand(0);
643   } while (--MaxLookup);
644
645   // If the chain of expressions is too deep, just return early.
646   Decomposed.Base = V;
647   SearchLimitReached++;
648   return true;
649 }
650
651 /// Returns whether the given pointer value points to memory that is local to
652 /// the function, with global constants being considered local to all
653 /// functions.
654 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
655                                            AAQueryInfo &AAQI, bool OrLocal) {
656   assert(Visited.empty() && "Visited must be cleared after use!");
657
658   unsigned MaxLookup = 8;
659   SmallVector<const Value *, 16> Worklist;
660   Worklist.push_back(Loc.Ptr);
661   do {
662     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
663     if (!Visited.insert(V).second) {
664       Visited.clear();
665       return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
666     }
667
668     // An alloca instruction defines local memory.
669     if (OrLocal && isa<AllocaInst>(V))
670       continue;
671
672     // A global constant counts as local memory for our purposes.
673     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
674       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
675       // global to be marked constant in some modules and non-constant in
676       // others.  GV may even be a declaration, not a definition.
677       if (!GV->isConstant()) {
678         Visited.clear();
679         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
680       }
681       continue;
682     }
683
684     // If both select values point to local memory, then so does the select.
685     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
686       Worklist.push_back(SI->getTrueValue());
687       Worklist.push_back(SI->getFalseValue());
688       continue;
689     }
690
691     // If all values incoming to a phi node point to local memory, then so does
692     // the phi.
693     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
694       // Don't bother inspecting phi nodes with many operands.
695       if (PN->getNumIncomingValues() > MaxLookup) {
696         Visited.clear();
697         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
698       }
699       for (Value *IncValue : PN->incoming_values())
700         Worklist.push_back(IncValue);
701       continue;
702     }
703
704     // Otherwise be conservative.
705     Visited.clear();
706     return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
707   } while (!Worklist.empty() && --MaxLookup);
708
709   Visited.clear();
710   return Worklist.empty();
711 }
712
713 /// Returns the behavior when calling the given call site.
714 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
715   if (Call->doesNotAccessMemory())
716     // Can't do better than this.
717     return FMRB_DoesNotAccessMemory;
718
719   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
720
721   // If the callsite knows it only reads memory, don't return worse
722   // than that.
723   if (Call->onlyReadsMemory())
724     Min = FMRB_OnlyReadsMemory;
725   else if (Call->doesNotReadMemory())
726     Min = FMRB_DoesNotReadMemory;
727
728   if (Call->onlyAccessesArgMemory())
729     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
730   else if (Call->onlyAccessesInaccessibleMemory())
731     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
732   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
733     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
734
735   // If the call has operand bundles then aliasing attributes from the function
736   // it calls do not directly apply to the call.  This can be made more precise
737   // in the future.
738   if (!Call->hasOperandBundles())
739     if (const Function *F = Call->getCalledFunction())
740       Min =
741           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
742
743   return Min;
744 }
745
746 /// Returns the behavior when calling the given function. For use when the call
747 /// site is not known.
748 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
749   // If the function declares it doesn't access memory, we can't do better.
750   if (F->doesNotAccessMemory())
751     return FMRB_DoesNotAccessMemory;
752
753   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
754
755   // If the function declares it only reads memory, go with that.
756   if (F->onlyReadsMemory())
757     Min = FMRB_OnlyReadsMemory;
758   else if (F->doesNotReadMemory())
759     Min = FMRB_DoesNotReadMemory;
760
761   if (F->onlyAccessesArgMemory())
762     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
763   else if (F->onlyAccessesInaccessibleMemory())
764     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
765   else if (F->onlyAccessesInaccessibleMemOrArgMem())
766     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
767
768   return Min;
769 }
770
771 /// Returns true if this is a writeonly (i.e Mod only) parameter.
772 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
773                              const TargetLibraryInfo &TLI) {
774   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
775     return true;
776
777   // We can bound the aliasing properties of memset_pattern16 just as we can
778   // for memcpy/memset.  This is particularly important because the
779   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
780   // whenever possible.
781   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
782   // attributes.
783   LibFunc F;
784   if (Call->getCalledFunction() &&
785       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
786       F == LibFunc_memset_pattern16 && TLI.has(F))
787     if (ArgIdx == 0)
788       return true;
789
790   // TODO: memset_pattern4, memset_pattern8
791   // TODO: _chk variants
792   // TODO: strcmp, strcpy
793
794   return false;
795 }
796
797 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
798                                            unsigned ArgIdx) {
799   // Checking for known builtin intrinsics and target library functions.
800   if (isWriteOnlyParam(Call, ArgIdx, TLI))
801     return ModRefInfo::Mod;
802
803   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
804     return ModRefInfo::Ref;
805
806   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
807     return ModRefInfo::NoModRef;
808
809   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
810 }
811
812 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
813   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
814   return II && II->getIntrinsicID() == IID;
815 }
816
817 #ifndef NDEBUG
818 static const Function *getParent(const Value *V) {
819   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
820     if (!inst->getParent())
821       return nullptr;
822     return inst->getParent()->getParent();
823   }
824
825   if (const Argument *arg = dyn_cast<Argument>(V))
826     return arg->getParent();
827
828   return nullptr;
829 }
830
831 static bool notDifferentParent(const Value *O1, const Value *O2) {
832
833   const Function *F1 = getParent(O1);
834   const Function *F2 = getParent(O2);
835
836   return !F1 || !F2 || F1 == F2;
837 }
838 #endif
839
840 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
841                                  const MemoryLocation &LocB,
842                                  AAQueryInfo &AAQI) {
843   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
844          "BasicAliasAnalysis doesn't support interprocedural queries.");
845
846   // If we have a directly cached entry for these locations, we have recursed
847   // through this once, so just return the cached results. Notably, when this
848   // happens, we don't clear the cache.
849   auto CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocA, LocB));
850   if (CacheIt != AAQI.AliasCache.end())
851     return CacheIt->second;
852
853   CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocB, LocA));
854   if (CacheIt != AAQI.AliasCache.end())
855     return CacheIt->second;
856
857   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
858                                  LocB.Size, LocB.AATags, AAQI);
859
860   VisitedPhiBBs.clear();
861   return Alias;
862 }
863
864 /// Checks to see if the specified callsite can clobber the specified memory
865 /// object.
866 ///
867 /// Since we only look at local properties of this function, we really can't
868 /// say much about this query.  We do, however, use simple "address taken"
869 /// analysis on local objects.
870 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
871                                         const MemoryLocation &Loc,
872                                         AAQueryInfo &AAQI) {
873   assert(notDifferentParent(Call, Loc.Ptr) &&
874          "AliasAnalysis query involving multiple functions!");
875
876   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
877
878   // Calls marked 'tail' cannot read or write allocas from the current frame
879   // because the current frame might be destroyed by the time they run. However,
880   // a tail call may use an alloca with byval. Calling with byval copies the
881   // contents of the alloca into argument registers or stack slots, so there is
882   // no lifetime issue.
883   if (isa<AllocaInst>(Object))
884     if (const CallInst *CI = dyn_cast<CallInst>(Call))
885       if (CI->isTailCall() &&
886           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
887         return ModRefInfo::NoModRef;
888
889   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
890   // modify them even though the alloca is not escaped.
891   if (auto *AI = dyn_cast<AllocaInst>(Object))
892     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
893       return ModRefInfo::Mod;
894
895   // If the pointer is to a locally allocated object that does not escape,
896   // then the call can not mod/ref the pointer unless the call takes the pointer
897   // as an argument, and itself doesn't capture it.
898   if (!isa<Constant>(Object) && Call != Object &&
899       isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
900
901     // Optimistically assume that call doesn't touch Object and check this
902     // assumption in the following loop.
903     ModRefInfo Result = ModRefInfo::NoModRef;
904     bool IsMustAlias = true;
905
906     unsigned OperandNo = 0;
907     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
908          CI != CE; ++CI, ++OperandNo) {
909       // Only look at the no-capture or byval pointer arguments.  If this
910       // pointer were passed to arguments that were neither of these, then it
911       // couldn't be no-capture.
912       if (!(*CI)->getType()->isPointerTy() ||
913           (!Call->doesNotCapture(OperandNo) &&
914            OperandNo < Call->getNumArgOperands() &&
915            !Call->isByValArgument(OperandNo)))
916         continue;
917
918       // Call doesn't access memory through this operand, so we don't care
919       // if it aliases with Object.
920       if (Call->doesNotAccessMemory(OperandNo))
921         continue;
922
923       // If this is a no-capture pointer argument, see if we can tell that it
924       // is impossible to alias the pointer we're checking.
925       AliasResult AR = getBestAAResults().alias(MemoryLocation(*CI),
926                                                 MemoryLocation(Object), AAQI);
927       if (AR != MustAlias)
928         IsMustAlias = false;
929       // Operand doesn't alias 'Object', continue looking for other aliases
930       if (AR == NoAlias)
931         continue;
932       // Operand aliases 'Object', but call doesn't modify it. Strengthen
933       // initial assumption and keep looking in case if there are more aliases.
934       if (Call->onlyReadsMemory(OperandNo)) {
935         Result = setRef(Result);
936         continue;
937       }
938       // Operand aliases 'Object' but call only writes into it.
939       if (Call->doesNotReadMemory(OperandNo)) {
940         Result = setMod(Result);
941         continue;
942       }
943       // This operand aliases 'Object' and call reads and writes into it.
944       // Setting ModRef will not yield an early return below, MustAlias is not
945       // used further.
946       Result = ModRefInfo::ModRef;
947       break;
948     }
949
950     // No operand aliases, reset Must bit. Add below if at least one aliases
951     // and all aliases found are MustAlias.
952     if (isNoModRef(Result))
953       IsMustAlias = false;
954
955     // Early return if we improved mod ref information
956     if (!isModAndRefSet(Result)) {
957       if (isNoModRef(Result))
958         return ModRefInfo::NoModRef;
959       return IsMustAlias ? setMust(Result) : clearMust(Result);
960     }
961   }
962
963   // If the call is to malloc or calloc, we can assume that it doesn't
964   // modify any IR visible value.  This is only valid because we assume these
965   // routines do not read values visible in the IR.  TODO: Consider special
966   // casing realloc and strdup routines which access only their arguments as
967   // well.  Or alternatively, replace all of this with inaccessiblememonly once
968   // that's implemented fully.
969   if (isMallocOrCallocLikeFn(Call, &TLI)) {
970     // Be conservative if the accessed pointer may alias the allocation -
971     // fallback to the generic handling below.
972     if (getBestAAResults().alias(MemoryLocation(Call), Loc, AAQI) == NoAlias)
973       return ModRefInfo::NoModRef;
974   }
975
976   // The semantics of memcpy intrinsics forbid overlap between their respective
977   // operands, i.e., source and destination of any given memcpy must no-alias.
978   // If Loc must-aliases either one of these two locations, then it necessarily
979   // no-aliases the other.
980   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
981     AliasResult SrcAA, DestAA;
982
983     if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst),
984                                           Loc, AAQI)) == MustAlias)
985       // Loc is exactly the memcpy source thus disjoint from memcpy dest.
986       return ModRefInfo::Ref;
987     if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst),
988                                            Loc, AAQI)) == MustAlias)
989       // The converse case.
990       return ModRefInfo::Mod;
991
992     // It's also possible for Loc to alias both src and dest, or neither.
993     ModRefInfo rv = ModRefInfo::NoModRef;
994     if (SrcAA != NoAlias)
995       rv = setRef(rv);
996     if (DestAA != NoAlias)
997       rv = setMod(rv);
998     return rv;
999   }
1000
1001   // While the assume intrinsic is marked as arbitrarily writing so that
1002   // proper control dependencies will be maintained, it never aliases any
1003   // particular memory location.
1004   if (isIntrinsicCall(Call, Intrinsic::assume))
1005     return ModRefInfo::NoModRef;
1006
1007   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1008   // that proper control dependencies are maintained but they never mods any
1009   // particular memory location.
1010   //
1011   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1012   // heap state at the point the guard is issued needs to be consistent in case
1013   // the guard invokes the "deopt" continuation.
1014   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
1015     return ModRefInfo::Ref;
1016
1017   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
1018   // writing so that proper control dependencies are maintained but they never
1019   // mod any particular memory location visible to the IR.
1020   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
1021   // intrinsic is now modeled as reading memory. This prevents hoisting the
1022   // invariant.start intrinsic over stores. Consider:
1023   // *ptr = 40;
1024   // *ptr = 50;
1025   // invariant_start(ptr)
1026   // int val = *ptr;
1027   // print(val);
1028   //
1029   // This cannot be transformed to:
1030   //
1031   // *ptr = 40;
1032   // invariant_start(ptr)
1033   // *ptr = 50;
1034   // int val = *ptr;
1035   // print(val);
1036   //
1037   // The transformation will cause the second store to be ignored (based on
1038   // rules of invariant.start)  and print 40, while the first program always
1039   // prints 50.
1040   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
1041     return ModRefInfo::Ref;
1042
1043   // The AAResultBase base class has some smarts, lets use them.
1044   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
1045 }
1046
1047 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
1048                                         const CallBase *Call2,
1049                                         AAQueryInfo &AAQI) {
1050   // While the assume intrinsic is marked as arbitrarily writing so that
1051   // proper control dependencies will be maintained, it never aliases any
1052   // particular memory location.
1053   if (isIntrinsicCall(Call1, Intrinsic::assume) ||
1054       isIntrinsicCall(Call2, Intrinsic::assume))
1055     return ModRefInfo::NoModRef;
1056
1057   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1058   // that proper control dependencies are maintained but they never mod any
1059   // particular memory location.
1060   //
1061   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1062   // heap state at the point the guard is issued needs to be consistent in case
1063   // the guard invokes the "deopt" continuation.
1064
1065   // NB! This function is *not* commutative, so we special case two
1066   // possibilities for guard intrinsics.
1067
1068   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1069     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1070                ? ModRefInfo::Ref
1071                : ModRefInfo::NoModRef;
1072
1073   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1074     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1075                ? ModRefInfo::Mod
1076                : ModRefInfo::NoModRef;
1077
1078   // The AAResultBase base class has some smarts, lets use them.
1079   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1080 }
1081
1082 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
1083 /// both having the exact same pointer operand.
1084 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
1085                                             LocationSize MaybeV1Size,
1086                                             const GEPOperator *GEP2,
1087                                             LocationSize MaybeV2Size,
1088                                             const DataLayout &DL) {
1089   assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1090              GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1091          GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
1092          "Expected GEPs with the same pointer operand");
1093
1094   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
1095   // such that the struct field accesses provably cannot alias.
1096   // We also need at least two indices (the pointer, and the struct field).
1097   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
1098       GEP1->getNumIndices() < 2)
1099     return MayAlias;
1100
1101   // If we don't know the size of the accesses through both GEPs, we can't
1102   // determine whether the struct fields accessed can't alias.
1103   if (MaybeV1Size == LocationSize::unknown() ||
1104       MaybeV2Size == LocationSize::unknown())
1105     return MayAlias;
1106
1107   const uint64_t V1Size = MaybeV1Size.getValue();
1108   const uint64_t V2Size = MaybeV2Size.getValue();
1109
1110   ConstantInt *C1 =
1111       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
1112   ConstantInt *C2 =
1113       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
1114
1115   // If the last (struct) indices are constants and are equal, the other indices
1116   // might be also be dynamically equal, so the GEPs can alias.
1117   if (C1 && C2) {
1118     unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth());
1119     if (C1->getValue().sextOrSelf(BitWidth) ==
1120         C2->getValue().sextOrSelf(BitWidth))
1121       return MayAlias;
1122   }
1123
1124   // Find the last-indexed type of the GEP, i.e., the type you'd get if
1125   // you stripped the last index.
1126   // On the way, look at each indexed type.  If there's something other
1127   // than an array, different indices can lead to different final types.
1128   SmallVector<Value *, 8> IntermediateIndices;
1129
1130   // Insert the first index; we don't need to check the type indexed
1131   // through it as it only drops the pointer indirection.
1132   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
1133   IntermediateIndices.push_back(GEP1->getOperand(1));
1134
1135   // Insert all the remaining indices but the last one.
1136   // Also, check that they all index through arrays.
1137   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
1138     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
1139             GEP1->getSourceElementType(), IntermediateIndices)))
1140       return MayAlias;
1141     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
1142   }
1143
1144   auto *Ty = GetElementPtrInst::getIndexedType(
1145     GEP1->getSourceElementType(), IntermediateIndices);
1146   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
1147
1148   if (isa<SequentialType>(Ty)) {
1149     // We know that:
1150     // - both GEPs begin indexing from the exact same pointer;
1151     // - the last indices in both GEPs are constants, indexing into a sequential
1152     //   type (array or pointer);
1153     // - both GEPs only index through arrays prior to that.
1154     //
1155     // Because array indices greater than the number of elements are valid in
1156     // GEPs, unless we know the intermediate indices are identical between
1157     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1158     // partially overlap. We also need to check that the loaded size matches
1159     // the element size, otherwise we could still have overlap.
1160     const uint64_t ElementSize =
1161         DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
1162     if (V1Size != ElementSize || V2Size != ElementSize)
1163       return MayAlias;
1164
1165     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
1166       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
1167         return MayAlias;
1168
1169     // Now we know that the array/pointer that GEP1 indexes into and that
1170     // that GEP2 indexes into must either precisely overlap or be disjoint.
1171     // Because they cannot partially overlap and because fields in an array
1172     // cannot overlap, if we can prove the final indices are different between
1173     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1174
1175     // If the last indices are constants, we've already checked they don't
1176     // equal each other so we can exit early.
1177     if (C1 && C2)
1178       return NoAlias;
1179     {
1180       Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
1181       Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
1182       if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
1183         // If one of the indices is a PHI node, be safe and only use
1184         // computeKnownBits so we don't make any assumptions about the
1185         // relationships between the two indices. This is important if we're
1186         // asking about values from different loop iterations. See PR32314.
1187         // TODO: We may be able to change the check so we only do this when
1188         // we definitely looked through a PHINode.
1189         if (GEP1LastIdx != GEP2LastIdx &&
1190             GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
1191           KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
1192           KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
1193           if (Known1.Zero.intersects(Known2.One) ||
1194               Known1.One.intersects(Known2.Zero))
1195             return NoAlias;
1196         }
1197       } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
1198         return NoAlias;
1199     }
1200     return MayAlias;
1201   } else if (!LastIndexedStruct || !C1 || !C2) {
1202     return MayAlias;
1203   }
1204
1205   if (C1->getValue().getActiveBits() > 64 ||
1206       C2->getValue().getActiveBits() > 64)
1207     return MayAlias;
1208
1209   // We know that:
1210   // - both GEPs begin indexing from the exact same pointer;
1211   // - the last indices in both GEPs are constants, indexing into a struct;
1212   // - said indices are different, hence, the pointed-to fields are different;
1213   // - both GEPs only index through arrays prior to that.
1214   //
1215   // This lets us determine that the struct that GEP1 indexes into and the
1216   // struct that GEP2 indexes into must either precisely overlap or be
1217   // completely disjoint.  Because they cannot partially overlap, indexing into
1218   // different non-overlapping fields of the struct will never alias.
1219
1220   // Therefore, the only remaining thing needed to show that both GEPs can't
1221   // alias is that the fields are not overlapping.
1222   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
1223   const uint64_t StructSize = SL->getSizeInBytes();
1224   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
1225   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
1226
1227   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
1228                                       uint64_t V2Off, uint64_t V2Size) {
1229     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
1230            ((V2Off + V2Size <= StructSize) ||
1231             (V2Off + V2Size - StructSize <= V1Off));
1232   };
1233
1234   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
1235       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
1236     return NoAlias;
1237
1238   return MayAlias;
1239 }
1240
1241 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1242 // beginning of the object the GEP points would have a negative offset with
1243 // repsect to the alloca, that means the GEP can not alias pointer (b).
1244 // Note that the pointer based on the alloca may not be a GEP. For
1245 // example, it may be the alloca itself.
1246 // The same applies if (b) is based on a GlobalVariable. Note that just being
1247 // based on isIdentifiedObject() is not enough - we need an identified object
1248 // that does not permit access to negative offsets. For example, a negative
1249 // offset from a noalias argument or call can be inbounds w.r.t the actual
1250 // underlying object.
1251 //
1252 // For example, consider:
1253 //
1254 //   struct { int f0, int f1, ...} foo;
1255 //   foo alloca;
1256 //   foo* random = bar(alloca);
1257 //   int *f0 = &alloca.f0
1258 //   int *f1 = &random->f1;
1259 //
1260 // Which is lowered, approximately, to:
1261 //
1262 //  %alloca = alloca %struct.foo
1263 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
1264 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1265 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1266 //
1267 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1268 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1269 // point into the same object. But since %f0 points to the beginning of %alloca,
1270 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1271 // than (%alloca - 1), and so is not inbounds, a contradiction.
1272 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1273       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1274       LocationSize MaybeObjectAccessSize) {
1275   // If the object access size is unknown, or the GEP isn't inbounds, bail.
1276   if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds())
1277     return false;
1278
1279   const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
1280
1281   // We need the object to be an alloca or a globalvariable, and want to know
1282   // the offset of the pointer from the object precisely, so no variable
1283   // indices are allowed.
1284   if (!(isa<AllocaInst>(DecompObject.Base) ||
1285         isa<GlobalVariable>(DecompObject.Base)) ||
1286       !DecompObject.VarIndices.empty())
1287     return false;
1288
1289   APInt ObjectBaseOffset = DecompObject.StructOffset +
1290                            DecompObject.OtherOffset;
1291
1292   // If the GEP has no variable indices, we know the precise offset
1293   // from the base, then use it. If the GEP has variable indices,
1294   // we can't get exact GEP offset to identify pointer alias. So return
1295   // false in that case.
1296   if (!DecompGEP.VarIndices.empty())
1297     return false;
1298
1299   APInt GEPBaseOffset = DecompGEP.StructOffset;
1300   GEPBaseOffset += DecompGEP.OtherOffset;
1301
1302   return GEPBaseOffset.sge(ObjectBaseOffset + (int64_t)ObjectAccessSize);
1303 }
1304
1305 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1306 /// another pointer.
1307 ///
1308 /// We know that V1 is a GEP, but we don't know anything about V2.
1309 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1310 /// V2.
1311 AliasResult BasicAAResult::aliasGEP(
1312     const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1313     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1314     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1315   DecomposedGEP DecompGEP1, DecompGEP2;
1316   unsigned MaxPointerSize = getMaxPointerSize(DL);
1317   DecompGEP1.StructOffset = DecompGEP1.OtherOffset = APInt(MaxPointerSize, 0);
1318   DecompGEP2.StructOffset = DecompGEP2.OtherOffset = APInt(MaxPointerSize, 0);
1319
1320   bool GEP1MaxLookupReached =
1321     DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1322   bool GEP2MaxLookupReached =
1323     DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1324
1325   APInt GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
1326   APInt GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
1327
1328   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1329          "DecomposeGEPExpression returned a result different from "
1330          "GetUnderlyingObject");
1331
1332   // If the GEP's offset relative to its base is such that the base would
1333   // fall below the start of the object underlying V2, then the GEP and V2
1334   // cannot alias.
1335   if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1336       isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1337     return NoAlias;
1338   // If we have two gep instructions with must-alias or not-alias'ing base
1339   // pointers, figure out if the indexes to the GEP tell us anything about the
1340   // derived pointer.
1341   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1342     // Check for the GEP base being at a negative offset, this time in the other
1343     // direction.
1344     if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1345         isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1346       return NoAlias;
1347     // Do the base pointers alias?
1348     AliasResult BaseAlias =
1349         aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(),
1350                    UnderlyingV2, LocationSize::unknown(), AAMDNodes(), AAQI);
1351
1352     // Check for geps of non-aliasing underlying pointers where the offsets are
1353     // identical.
1354     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
1355       // Do the base pointers alias assuming type and size.
1356       AliasResult PreciseBaseAlias = aliasCheck(
1357           UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI);
1358       if (PreciseBaseAlias == NoAlias) {
1359         // See if the computed offset from the common pointer tells us about the
1360         // relation of the resulting pointer.
1361         // If the max search depth is reached the result is undefined
1362         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1363           return MayAlias;
1364
1365         // Same offsets.
1366         if (GEP1BaseOffset == GEP2BaseOffset &&
1367             DecompGEP1.VarIndices == DecompGEP2.VarIndices)
1368           return NoAlias;
1369       }
1370     }
1371
1372     // If we get a No or May, then return it immediately, no amount of analysis
1373     // will improve this situation.
1374     if (BaseAlias != MustAlias) {
1375       assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1376       return BaseAlias;
1377     }
1378
1379     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1380     // exactly, see if the computed offset from the common pointer tells us
1381     // about the relation of the resulting pointer.
1382     // If we know the two GEPs are based off of the exact same pointer (and not
1383     // just the same underlying object), see if that tells us anything about
1384     // the resulting pointers.
1385     if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1386             GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1387         GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
1388       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1389       // If we couldn't find anything interesting, don't abandon just yet.
1390       if (R != MayAlias)
1391         return R;
1392     }
1393
1394     // If the max search depth is reached, the result is undefined
1395     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1396       return MayAlias;
1397
1398     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1399     // symbolic difference.
1400     GEP1BaseOffset -= GEP2BaseOffset;
1401     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1402
1403   } else {
1404     // Check to see if these two pointers are related by the getelementptr
1405     // instruction.  If one pointer is a GEP with a non-zero index of the other
1406     // pointer, we know they cannot alias.
1407
1408     // If both accesses are unknown size, we can't do anything useful here.
1409     if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown())
1410       return MayAlias;
1411
1412     AliasResult R = aliasCheck(UnderlyingV1, LocationSize::unknown(),
1413                                AAMDNodes(), V2, LocationSize::unknown(),
1414                                V2AAInfo, AAQI, nullptr, UnderlyingV2);
1415     if (R != MustAlias) {
1416       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1417       // If V2 is known not to alias GEP base pointer, then the two values
1418       // cannot alias per GEP semantics: "Any memory access must be done through
1419       // a pointer value associated with an address range of the memory access,
1420       // otherwise the behavior is undefined.".
1421       assert(R == NoAlias || R == MayAlias);
1422       return R;
1423     }
1424
1425     // If the max search depth is reached the result is undefined
1426     if (GEP1MaxLookupReached)
1427       return MayAlias;
1428   }
1429
1430   // In the two GEP Case, if there is no difference in the offsets of the
1431   // computed pointers, the resultant pointers are a must alias.  This
1432   // happens when we have two lexically identical GEP's (for example).
1433   //
1434   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1435   // must aliases the GEP, the end result is a must alias also.
1436   if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1437     return MustAlias;
1438
1439   // If there is a constant difference between the pointers, but the difference
1440   // is less than the size of the associated memory object, then we know
1441   // that the objects are partially overlapping.  If the difference is
1442   // greater, we know they do not overlap.
1443   if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1444     if (GEP1BaseOffset.sge(0)) {
1445       if (V2Size != LocationSize::unknown()) {
1446         if (GEP1BaseOffset.ult(V2Size.getValue()))
1447           return PartialAlias;
1448         return NoAlias;
1449       }
1450     } else {
1451       // We have the situation where:
1452       // +                +
1453       // | BaseOffset     |
1454       // ---------------->|
1455       // |-->V1Size       |-------> V2Size
1456       // GEP1             V2
1457       // We need to know that V2Size is not unknown, otherwise we might have
1458       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1459       if (V1Size != LocationSize::unknown() &&
1460           V2Size != LocationSize::unknown()) {
1461         if ((-GEP1BaseOffset).ult(V1Size.getValue()))
1462           return PartialAlias;
1463         return NoAlias;
1464       }
1465     }
1466   }
1467
1468   if (!DecompGEP1.VarIndices.empty()) {
1469     APInt Modulo(MaxPointerSize, 0);
1470     bool AllPositive = true;
1471     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1472
1473       // Try to distinguish something like &A[i][1] against &A[42][0].
1474       // Grab the least significant bit set in any of the scales. We
1475       // don't need std::abs here (even if the scale's negative) as we'll
1476       // be ^'ing Modulo with itself later.
1477       Modulo |= DecompGEP1.VarIndices[i].Scale;
1478
1479       if (AllPositive) {
1480         // If the Value could change between cycles, then any reasoning about
1481         // the Value this cycle may not hold in the next cycle. We'll just
1482         // give up if we can't determine conditions that hold for every cycle:
1483         const Value *V = DecompGEP1.VarIndices[i].V;
1484
1485         KnownBits Known =
1486             computeKnownBits(V, DL, 0, &AC, dyn_cast<Instruction>(GEP1), DT);
1487         bool SignKnownZero = Known.isNonNegative();
1488         bool SignKnownOne = Known.isNegative();
1489
1490         // Zero-extension widens the variable, and so forces the sign
1491         // bit to zero.
1492         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1493         SignKnownZero |= IsZExt;
1494         SignKnownOne &= !IsZExt;
1495
1496         // If the variable begins with a zero then we know it's
1497         // positive, regardless of whether the value is signed or
1498         // unsigned.
1499         APInt Scale = DecompGEP1.VarIndices[i].Scale;
1500         AllPositive =
1501             (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0));
1502       }
1503     }
1504
1505     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1506
1507     // We can compute the difference between the two addresses
1508     // mod Modulo. Check whether that difference guarantees that the
1509     // two locations do not alias.
1510     APInt ModOffset = GEP1BaseOffset & (Modulo - 1);
1511     if (V1Size != LocationSize::unknown() &&
1512         V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) &&
1513         (Modulo - ModOffset).uge(V1Size.getValue()))
1514       return NoAlias;
1515
1516     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1517     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1518     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1519     if (AllPositive && GEP1BaseOffset.sgt(0) &&
1520         V2Size != LocationSize::unknown() &&
1521         GEP1BaseOffset.uge(V2Size.getValue()))
1522       return NoAlias;
1523
1524     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1525                                 GEP1BaseOffset, &AC, DT))
1526       return NoAlias;
1527   }
1528
1529   // Statically, we can see that the base objects are the same, but the
1530   // pointers have dynamic offsets which we can't resolve. And none of our
1531   // little tricks above worked.
1532   return MayAlias;
1533 }
1534
1535 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1536   // If the results agree, take it.
1537   if (A == B)
1538     return A;
1539   // A mix of PartialAlias and MustAlias is PartialAlias.
1540   if ((A == PartialAlias && B == MustAlias) ||
1541       (B == PartialAlias && A == MustAlias))
1542     return PartialAlias;
1543   // Otherwise, we don't know anything.
1544   return MayAlias;
1545 }
1546
1547 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1548 /// against another.
1549 AliasResult
1550 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1551                            const AAMDNodes &SIAAInfo, const Value *V2,
1552                            LocationSize V2Size, const AAMDNodes &V2AAInfo,
1553                            const Value *UnderV2, AAQueryInfo &AAQI) {
1554   // If the values are Selects with the same condition, we can do a more precise
1555   // check: just check for aliases between the values on corresponding arms.
1556   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1557     if (SI->getCondition() == SI2->getCondition()) {
1558       AliasResult Alias =
1559           aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(),
1560                      V2Size, V2AAInfo, AAQI);
1561       if (Alias == MayAlias)
1562         return MayAlias;
1563       AliasResult ThisAlias =
1564           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1565                      SI2->getFalseValue(), V2Size, V2AAInfo, AAQI);
1566       return MergeAliasResults(ThisAlias, Alias);
1567     }
1568
1569   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1570   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1571   AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1572                                  SISize, SIAAInfo, AAQI, UnderV2);
1573   if (Alias == MayAlias)
1574     return MayAlias;
1575
1576   AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(),
1577                                      SISize, SIAAInfo, AAQI, UnderV2);
1578   return MergeAliasResults(ThisAlias, Alias);
1579 }
1580
1581 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1582 /// another.
1583 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1584                                     const AAMDNodes &PNAAInfo, const Value *V2,
1585                                     LocationSize V2Size,
1586                                     const AAMDNodes &V2AAInfo,
1587                                     const Value *UnderV2, AAQueryInfo &AAQI) {
1588   // Track phi nodes we have visited. We use this information when we determine
1589   // value equivalence.
1590   VisitedPhiBBs.insert(PN->getParent());
1591
1592   // If the values are PHIs in the same block, we can do a more precise
1593   // as well as efficient check: just check for aliases between the values
1594   // on corresponding edges.
1595   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1596     if (PN2->getParent() == PN->getParent()) {
1597       AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1598                                 MemoryLocation(V2, V2Size, V2AAInfo));
1599       if (PN > V2)
1600         std::swap(Locs.first, Locs.second);
1601       // Analyse the PHIs' inputs under the assumption that the PHIs are
1602       // NoAlias.
1603       // If the PHIs are May/MustAlias there must be (recursively) an input
1604       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1605       // there must be an operation on the PHIs within the PHIs' value cycle
1606       // that causes a MayAlias.
1607       // Pretend the phis do not alias.
1608       AliasResult Alias = NoAlias;
1609       AliasResult OrigAliasResult;
1610       {
1611         // Limited lifetime iterator invalidated by the aliasCheck call below.
1612         auto CacheIt = AAQI.AliasCache.find(Locs);
1613         assert((CacheIt != AAQI.AliasCache.end()) &&
1614                "There must exist an entry for the phi node");
1615         OrigAliasResult = CacheIt->second;
1616         CacheIt->second = NoAlias;
1617       }
1618
1619       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1620         AliasResult ThisAlias =
1621             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1622                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1623                        V2Size, V2AAInfo, AAQI);
1624         Alias = MergeAliasResults(ThisAlias, Alias);
1625         if (Alias == MayAlias)
1626           break;
1627       }
1628
1629       // Reset if speculation failed.
1630       if (Alias != NoAlias) {
1631         auto Pair =
1632             AAQI.AliasCache.insert(std::make_pair(Locs, OrigAliasResult));
1633         assert(!Pair.second && "Entry must have existed");
1634         Pair.first->second = OrigAliasResult;
1635       }
1636       return Alias;
1637     }
1638
1639   SmallVector<Value *, 4> V1Srcs;
1640   bool isRecursive = false;
1641   if (PV)  {
1642     // If we have PhiValues then use it to get the underlying phi values.
1643     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1644     // If we have more phi values than the search depth then return MayAlias
1645     // conservatively to avoid compile time explosion. The worst possible case
1646     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1647     // where 'm' and 'n' are the number of PHI sources.
1648     if (PhiValueSet.size() > MaxLookupSearchDepth)
1649       return MayAlias;
1650     // Add the values to V1Srcs
1651     for (Value *PV1 : PhiValueSet) {
1652       if (EnableRecPhiAnalysis) {
1653         if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1654           // Check whether the incoming value is a GEP that advances the pointer
1655           // result of this PHI node (e.g. in a loop). If this is the case, we
1656           // would recurse and always get a MayAlias. Handle this case specially
1657           // below.
1658           if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1659               isa<ConstantInt>(PV1GEP->idx_begin())) {
1660             isRecursive = true;
1661             continue;
1662           }
1663         }
1664       }
1665       V1Srcs.push_back(PV1);
1666     }
1667   } else {
1668     // If we don't have PhiInfo then just look at the operands of the phi itself
1669     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1670     SmallPtrSet<Value *, 4> UniqueSrc;
1671     for (Value *PV1 : PN->incoming_values()) {
1672       if (isa<PHINode>(PV1))
1673         // If any of the source itself is a PHI, return MayAlias conservatively
1674         // to avoid compile time explosion. The worst possible case is if both
1675         // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1676         // and 'n' are the number of PHI sources.
1677         return MayAlias;
1678
1679       if (EnableRecPhiAnalysis)
1680         if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1681           // Check whether the incoming value is a GEP that advances the pointer
1682           // result of this PHI node (e.g. in a loop). If this is the case, we
1683           // would recurse and always get a MayAlias. Handle this case specially
1684           // below.
1685           if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1686               isa<ConstantInt>(PV1GEP->idx_begin())) {
1687             isRecursive = true;
1688             continue;
1689           }
1690         }
1691
1692       if (UniqueSrc.insert(PV1).second)
1693         V1Srcs.push_back(PV1);
1694     }
1695   }
1696
1697   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1698   // value. This should only be possible in blocks unreachable from the entry
1699   // block, but return MayAlias just in case.
1700   if (V1Srcs.empty())
1701     return MayAlias;
1702
1703   // If this PHI node is recursive, set the size of the accessed memory to
1704   // unknown to represent all the possible values the GEP could advance the
1705   // pointer to.
1706   if (isRecursive)
1707     PNSize = LocationSize::unknown();
1708
1709   AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize,
1710                                  PNAAInfo, AAQI, UnderV2);
1711
1712   // Early exit if the check of the first PHI source against V2 is MayAlias.
1713   // Other results are not possible.
1714   if (Alias == MayAlias)
1715     return MayAlias;
1716
1717   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1718   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1719   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1720     Value *V = V1Srcs[i];
1721
1722     AliasResult ThisAlias =
1723         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, AAQI, UnderV2);
1724     Alias = MergeAliasResults(ThisAlias, Alias);
1725     if (Alias == MayAlias)
1726       break;
1727   }
1728
1729   return Alias;
1730 }
1731
1732 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1733 /// array references.
1734 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1735                                       AAMDNodes V1AAInfo, const Value *V2,
1736                                       LocationSize V2Size, AAMDNodes V2AAInfo,
1737                                       AAQueryInfo &AAQI, const Value *O1,
1738                                       const Value *O2) {
1739   // If either of the memory references is empty, it doesn't matter what the
1740   // pointer values are.
1741   if (V1Size.isZero() || V2Size.isZero())
1742     return NoAlias;
1743
1744   // Strip off any casts if they exist.
1745   V1 = V1->stripPointerCastsAndInvariantGroups();
1746   V2 = V2->stripPointerCastsAndInvariantGroups();
1747
1748   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1749   // value for undef that aliases nothing in the program.
1750   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1751     return NoAlias;
1752
1753   // Are we checking for alias of the same value?
1754   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1755   // different iterations. We must therefore make sure that this is not the
1756   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1757   // happen by looking at the visited phi nodes and making sure they cannot
1758   // reach the value.
1759   if (isValueEqualInPotentialCycles(V1, V2))
1760     return MustAlias;
1761
1762   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1763     return NoAlias; // Scalars cannot alias each other
1764
1765   // Figure out what objects these things are pointing to if we can.
1766   if (O1 == nullptr)
1767     O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1768
1769   if (O2 == nullptr)
1770     O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1771
1772   // Null values in the default address space don't point to any object, so they
1773   // don't alias any other pointer.
1774   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1775     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1776       return NoAlias;
1777   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1778     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1779       return NoAlias;
1780
1781   if (O1 != O2) {
1782     // If V1/V2 point to two different objects, we know that we have no alias.
1783     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1784       return NoAlias;
1785
1786     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1787     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1788         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1789       return NoAlias;
1790
1791     // Function arguments can't alias with things that are known to be
1792     // unambigously identified at the function level.
1793     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1794         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1795       return NoAlias;
1796
1797     // If one pointer is the result of a call/invoke or load and the other is a
1798     // non-escaping local object within the same function, then we know the
1799     // object couldn't escape to a point where the call could return it.
1800     //
1801     // Note that if the pointers are in different functions, there are a
1802     // variety of complications. A call with a nocapture argument may still
1803     // temporary store the nocapture argument's value in a temporary memory
1804     // location if that memory location doesn't escape. Or it may pass a
1805     // nocapture value to other functions as long as they don't capture it.
1806     if (isEscapeSource(O1) &&
1807         isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
1808       return NoAlias;
1809     if (isEscapeSource(O2) &&
1810         isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
1811       return NoAlias;
1812   }
1813
1814   // If the size of one access is larger than the entire object on the other
1815   // side, then we know such behavior is undefined and can assume no alias.
1816   bool NullIsValidLocation = NullPointerIsDefined(&F);
1817   if ((isObjectSmallerThan(
1818           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1819           TLI, NullIsValidLocation)) ||
1820       (isObjectSmallerThan(
1821           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1822           TLI, NullIsValidLocation)))
1823     return NoAlias;
1824
1825   // Check the cache before climbing up use-def chains. This also terminates
1826   // otherwise infinitely recursive queries.
1827   AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1828                             MemoryLocation(V2, V2Size, V2AAInfo));
1829   if (V1 > V2)
1830     std::swap(Locs.first, Locs.second);
1831   std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair =
1832       AAQI.AliasCache.try_emplace(Locs, MayAlias);
1833   if (!Pair.second)
1834     return Pair.first->second;
1835
1836   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1837   // GEP can't simplify, we don't even look at the PHI cases.
1838   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1839     std::swap(V1, V2);
1840     std::swap(V1Size, V2Size);
1841     std::swap(O1, O2);
1842     std::swap(V1AAInfo, V2AAInfo);
1843   }
1844   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1845     AliasResult Result =
1846         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
1847     if (Result != MayAlias) {
1848       auto ItInsPair = AAQI.AliasCache.insert(std::make_pair(Locs, Result));
1849       assert(!ItInsPair.second && "Entry must have existed");
1850       ItInsPair.first->second = Result;
1851       return Result;
1852     }
1853   }
1854
1855   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1856     std::swap(V1, V2);
1857     std::swap(O1, O2);
1858     std::swap(V1Size, V2Size);
1859     std::swap(V1AAInfo, V2AAInfo);
1860   }
1861   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1862     AliasResult Result =
1863         aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1864     if (Result != MayAlias) {
1865       Pair = AAQI.AliasCache.try_emplace(Locs, Result);
1866       assert(!Pair.second && "Entry must have existed");
1867       return Pair.first->second = Result;
1868     }
1869   }
1870
1871   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1872     std::swap(V1, V2);
1873     std::swap(O1, O2);
1874     std::swap(V1Size, V2Size);
1875     std::swap(V1AAInfo, V2AAInfo);
1876   }
1877   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1878     AliasResult Result =
1879         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1880     if (Result != MayAlias) {
1881       Pair = AAQI.AliasCache.try_emplace(Locs, Result);
1882       assert(!Pair.second && "Entry must have existed");
1883       return Pair.first->second = Result;
1884     }
1885   }
1886
1887   // If both pointers are pointing into the same object and one of them
1888   // accesses the entire object, then the accesses must overlap in some way.
1889   if (O1 == O2)
1890     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1891         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1892          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) {
1893       Pair = AAQI.AliasCache.try_emplace(Locs, PartialAlias);
1894       assert(!Pair.second && "Entry must have existed");
1895       return Pair.first->second = PartialAlias;
1896     }
1897
1898   // Recurse back into the best AA results we have, potentially with refined
1899   // memory locations. We have already ensured that BasicAA has a MayAlias
1900   // cache result for these, so any recursion back into BasicAA won't loop.
1901   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI);
1902   Pair = AAQI.AliasCache.try_emplace(Locs, Result);
1903   assert(!Pair.second && "Entry must have existed");
1904   return Pair.first->second = Result;
1905 }
1906
1907 /// Check whether two Values can be considered equivalent.
1908 ///
1909 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1910 /// they can not be part of a cycle in the value graph by looking at all
1911 /// visited phi nodes an making sure that the phis cannot reach the value. We
1912 /// have to do this because we are looking through phi nodes (That is we say
1913 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1914 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1915                                                   const Value *V2) {
1916   if (V != V2)
1917     return false;
1918
1919   const Instruction *Inst = dyn_cast<Instruction>(V);
1920   if (!Inst)
1921     return true;
1922
1923   if (VisitedPhiBBs.empty())
1924     return true;
1925
1926   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1927     return false;
1928
1929   // Make sure that the visited phis cannot reach the Value. This ensures that
1930   // the Values cannot come from different iterations of a potential cycle the
1931   // phi nodes could be involved in.
1932   for (auto *P : VisitedPhiBBs)
1933     if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI))
1934       return false;
1935
1936   return true;
1937 }
1938
1939 /// Computes the symbolic difference between two de-composed GEPs.
1940 ///
1941 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1942 /// instructions GEP1 and GEP2 which have common base pointers.
1943 void BasicAAResult::GetIndexDifference(
1944     SmallVectorImpl<VariableGEPIndex> &Dest,
1945     const SmallVectorImpl<VariableGEPIndex> &Src) {
1946   if (Src.empty())
1947     return;
1948
1949   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1950     const Value *V = Src[i].V;
1951     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1952     APInt Scale = Src[i].Scale;
1953
1954     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1955     // than a few variable indexes.
1956     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1957       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1958           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1959         continue;
1960
1961       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1962       // goes to zero, remove the entry.
1963       if (Dest[j].Scale != Scale)
1964         Dest[j].Scale -= Scale;
1965       else
1966         Dest.erase(Dest.begin() + j);
1967       Scale = 0;
1968       break;
1969     }
1970
1971     // If we didn't consume this entry, add it to the end of the Dest list.
1972     if (!!Scale) {
1973       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1974       Dest.push_back(Entry);
1975     }
1976   }
1977 }
1978
1979 bool BasicAAResult::constantOffsetHeuristic(
1980     const SmallVectorImpl<VariableGEPIndex> &VarIndices,
1981     LocationSize MaybeV1Size, LocationSize MaybeV2Size, APInt BaseOffset,
1982     AssumptionCache *AC, DominatorTree *DT) {
1983   if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() ||
1984       MaybeV2Size == LocationSize::unknown())
1985     return false;
1986
1987   const uint64_t V1Size = MaybeV1Size.getValue();
1988   const uint64_t V2Size = MaybeV2Size.getValue();
1989
1990   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1991
1992   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1993       Var0.Scale != -Var1.Scale)
1994     return false;
1995
1996   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1997
1998   // We'll strip off the Extensions of Var0 and Var1 and do another round
1999   // of GetLinearExpression decomposition. In the example above, if Var0
2000   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
2001
2002   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
2003       V1Offset(Width, 0);
2004   bool NSW = true, NUW = true;
2005   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
2006   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
2007                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
2008   NSW = true;
2009   NUW = true;
2010   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
2011                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
2012
2013   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
2014       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
2015     return false;
2016
2017   // We have a hit - Var0 and Var1 only differ by a constant offset!
2018
2019   // If we've been sext'ed then zext'd the maximum difference between Var0 and
2020   // Var1 is possible to calculate, but we're just interested in the absolute
2021   // minimum difference between the two. The minimum distance may occur due to
2022   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
2023   // the minimum distance between %i and %i + 5 is 3.
2024   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
2025   MinDiff = APIntOps::umin(MinDiff, Wrapped);
2026   APInt MinDiffBytes =
2027     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
2028
2029   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
2030   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
2031   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
2032   // V2Size can fit in the MinDiffBytes gap.
2033   return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
2034          MinDiffBytes.uge(V2Size + BaseOffset.abs());
2035 }
2036
2037 //===----------------------------------------------------------------------===//
2038 // BasicAliasAnalysis Pass
2039 //===----------------------------------------------------------------------===//
2040
2041 AnalysisKey BasicAA::Key;
2042
2043 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
2044   return BasicAAResult(F.getParent()->getDataLayout(),
2045                        F,
2046                        AM.getResult<TargetLibraryAnalysis>(F),
2047                        AM.getResult<AssumptionAnalysis>(F),
2048                        &AM.getResult<DominatorTreeAnalysis>(F),
2049                        AM.getCachedResult<LoopAnalysis>(F),
2050                        AM.getCachedResult<PhiValuesAnalysis>(F));
2051 }
2052
2053 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
2054   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
2055 }
2056
2057 char BasicAAWrapperPass::ID = 0;
2058
2059 void BasicAAWrapperPass::anchor() {}
2060
2061 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
2062                       "Basic Alias Analysis (stateless AA impl)", false, true)
2063 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2064 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2065 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2066 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
2067                     "Basic Alias Analysis (stateless AA impl)", false, true)
2068
2069 FunctionPass *llvm::createBasicAAWrapperPass() {
2070   return new BasicAAWrapperPass();
2071 }
2072
2073 bool BasicAAWrapperPass::runOnFunction(Function &F) {
2074   auto &ACT = getAnalysis<AssumptionCacheTracker>();
2075   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
2076   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
2077   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2078   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
2079
2080   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
2081                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
2082                                  &DTWP.getDomTree(),
2083                                  LIWP ? &LIWP->getLoopInfo() : nullptr,
2084                                  PVWP ? &PVWP->getResult() : nullptr));
2085
2086   return false;
2087 }
2088
2089 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2090   AU.setPreservesAll();
2091   AU.addRequired<AssumptionCacheTracker>();
2092   AU.addRequired<DominatorTreeWrapperPass>();
2093   AU.addRequired<TargetLibraryInfoWrapperPass>();
2094   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
2095 }
2096
2097 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
2098   return BasicAAResult(
2099       F.getParent()->getDataLayout(), F,
2100       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
2101       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
2102 }