]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Analysis/CFG.cpp
THIS BRANCH IS OBSOLETE, PLEASE READ:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Analysis / CFG.cpp
1 //===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions performs analyses on basic blocks, and instructions
10 // contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/CFG.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/IR/Dominators.h"
17
18 using namespace llvm;
19
20 /// FindFunctionBackedges - Analyze the specified function to find all of the
21 /// loop backedges in the function and return them.  This is a relatively cheap
22 /// (compared to computing dominators and loop info) analysis.
23 ///
24 /// The output is added to Result, as pairs of <from,to> edge info.
25 void llvm::FindFunctionBackedges(const Function &F,
26      SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
27   const BasicBlock *BB = &F.getEntryBlock();
28   if (succ_empty(BB))
29     return;
30
31   SmallPtrSet<const BasicBlock*, 8> Visited;
32   SmallVector<std::pair<const BasicBlock *, const_succ_iterator>, 8> VisitStack;
33   SmallPtrSet<const BasicBlock*, 8> InStack;
34
35   Visited.insert(BB);
36   VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
37   InStack.insert(BB);
38   do {
39     std::pair<const BasicBlock *, const_succ_iterator> &Top = VisitStack.back();
40     const BasicBlock *ParentBB = Top.first;
41     const_succ_iterator &I = Top.second;
42
43     bool FoundNew = false;
44     while (I != succ_end(ParentBB)) {
45       BB = *I++;
46       if (Visited.insert(BB).second) {
47         FoundNew = true;
48         break;
49       }
50       // Successor is in VisitStack, it's a back edge.
51       if (InStack.count(BB))
52         Result.push_back(std::make_pair(ParentBB, BB));
53     }
54
55     if (FoundNew) {
56       // Go down one level if there is a unvisited successor.
57       InStack.insert(BB);
58       VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
59     } else {
60       // Go up one level.
61       InStack.erase(VisitStack.pop_back_val().first);
62     }
63   } while (!VisitStack.empty());
64 }
65
66 /// GetSuccessorNumber - Search for the specified successor of basic block BB
67 /// and return its position in the terminator instruction's list of
68 /// successors.  It is an error to call this with a block that is not a
69 /// successor.
70 unsigned llvm::GetSuccessorNumber(const BasicBlock *BB,
71     const BasicBlock *Succ) {
72   const Instruction *Term = BB->getTerminator();
73 #ifndef NDEBUG
74   unsigned e = Term->getNumSuccessors();
75 #endif
76   for (unsigned i = 0; ; ++i) {
77     assert(i != e && "Didn't find edge?");
78     if (Term->getSuccessor(i) == Succ)
79       return i;
80   }
81 }
82
83 /// isCriticalEdge - Return true if the specified edge is a critical edge.
84 /// Critical edges are edges from a block with multiple successors to a block
85 /// with multiple predecessors.
86 bool llvm::isCriticalEdge(const Instruction *TI, unsigned SuccNum,
87                           bool AllowIdenticalEdges) {
88   assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
89   return isCriticalEdge(TI, TI->getSuccessor(SuccNum), AllowIdenticalEdges);
90 }
91
92 bool llvm::isCriticalEdge(const Instruction *TI, const BasicBlock *Dest,
93                           bool AllowIdenticalEdges) {
94   assert(TI->isTerminator() && "Must be a terminator to have successors!");
95   if (TI->getNumSuccessors() == 1) return false;
96
97   assert(find(predecessors(Dest), TI->getParent()) != pred_end(Dest) &&
98          "No edge between TI's block and Dest.");
99
100   const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
101
102   // If there is more than one predecessor, this is a critical edge...
103   assert(I != E && "No preds, but we have an edge to the block?");
104   const BasicBlock *FirstPred = *I;
105   ++I;        // Skip one edge due to the incoming arc from TI.
106   if (!AllowIdenticalEdges)
107     return I != E;
108
109   // If AllowIdenticalEdges is true, then we allow this edge to be considered
110   // non-critical iff all preds come from TI's block.
111   for (; I != E; ++I)
112     if (*I != FirstPred)
113       return true;
114   return false;
115 }
116
117 // LoopInfo contains a mapping from basic block to the innermost loop. Find
118 // the outermost loop in the loop nest that contains BB.
119 static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
120   const Loop *L = LI->getLoopFor(BB);
121   if (L) {
122     while (const Loop *Parent = L->getParentLoop())
123       L = Parent;
124   }
125   return L;
126 }
127
128 bool llvm::isPotentiallyReachableFromMany(
129     SmallVectorImpl<BasicBlock *> &Worklist, BasicBlock *StopBB,
130     const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
131     const LoopInfo *LI) {
132   // When the stop block is unreachable, it's dominated from everywhere,
133   // regardless of whether there's a path between the two blocks.
134   if (DT && !DT->isReachableFromEntry(StopBB))
135     DT = nullptr;
136
137   // We can't skip directly from a block that dominates the stop block if the
138   // exclusion block is potentially in between.
139   if (ExclusionSet && !ExclusionSet->empty())
140     DT = nullptr;
141
142   // Normally any block in a loop is reachable from any other block in a loop,
143   // however excluded blocks might partition the body of a loop to make that
144   // untrue.
145   SmallPtrSet<const Loop *, 8> LoopsWithHoles;
146   if (LI && ExclusionSet) {
147     for (auto BB : *ExclusionSet) {
148       if (const Loop *L = getOutermostLoop(LI, BB))
149         LoopsWithHoles.insert(L);
150     }
151   }
152
153   const Loop *StopLoop = LI ? getOutermostLoop(LI, StopBB) : nullptr;
154
155   // Limit the number of blocks we visit. The goal is to avoid run-away compile
156   // times on large CFGs without hampering sensible code. Arbitrarily chosen.
157   unsigned Limit = 32;
158   SmallPtrSet<const BasicBlock*, 32> Visited;
159   do {
160     BasicBlock *BB = Worklist.pop_back_val();
161     if (!Visited.insert(BB).second)
162       continue;
163     if (BB == StopBB)
164       return true;
165     if (ExclusionSet && ExclusionSet->count(BB))
166       continue;
167     if (DT && DT->dominates(BB, StopBB))
168       return true;
169
170     const Loop *Outer = nullptr;
171     if (LI) {
172       Outer = getOutermostLoop(LI, BB);
173       // If we're in a loop with a hole, not all blocks in the loop are
174       // reachable from all other blocks. That implies we can't simply jump to
175       // the loop's exit blocks, as that exit might need to pass through an
176       // excluded block. Clear Outer so we process BB's successors.
177       if (LoopsWithHoles.count(Outer))
178         Outer = nullptr;
179       if (StopLoop && Outer == StopLoop)
180         return true;
181     }
182
183     if (!--Limit) {
184       // We haven't been able to prove it one way or the other. Conservatively
185       // answer true -- that there is potentially a path.
186       return true;
187     }
188
189     if (Outer) {
190       // All blocks in a single loop are reachable from all other blocks. From
191       // any of these blocks, we can skip directly to the exits of the loop,
192       // ignoring any other blocks inside the loop body.
193       Outer->getExitBlocks(Worklist);
194     } else {
195       Worklist.append(succ_begin(BB), succ_end(BB));
196     }
197   } while (!Worklist.empty());
198
199   // We have exhausted all possible paths and are certain that 'To' can not be
200   // reached from 'From'.
201   return false;
202 }
203
204 bool llvm::isPotentiallyReachable(const BasicBlock *A, const BasicBlock *B,
205                                   const DominatorTree *DT, const LoopInfo *LI) {
206   assert(A->getParent() == B->getParent() &&
207          "This analysis is function-local!");
208
209   SmallVector<BasicBlock*, 32> Worklist;
210   Worklist.push_back(const_cast<BasicBlock*>(A));
211
212   return isPotentiallyReachableFromMany(Worklist, const_cast<BasicBlock *>(B),
213                                         nullptr, DT, LI);
214 }
215
216 bool llvm::isPotentiallyReachable(
217     const Instruction *A, const Instruction *B,
218     const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
219     const LoopInfo *LI) {
220   assert(A->getParent()->getParent() == B->getParent()->getParent() &&
221          "This analysis is function-local!");
222
223   SmallVector<BasicBlock*, 32> Worklist;
224
225   if (A->getParent() == B->getParent()) {
226     // The same block case is special because it's the only time we're looking
227     // within a single block to see which instruction comes first. Once we
228     // start looking at multiple blocks, the first instruction of the block is
229     // reachable, so we only need to determine reachability between whole
230     // blocks.
231     BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
232
233     // If the block is in a loop then we can reach any instruction in the block
234     // from any other instruction in the block by going around a backedge.
235     if (LI && LI->getLoopFor(BB) != nullptr)
236       return true;
237
238     // Linear scan, start at 'A', see whether we hit 'B' or the end first.
239     for (BasicBlock::const_iterator I = A->getIterator(), E = BB->end(); I != E;
240          ++I) {
241       if (&*I == B)
242         return true;
243     }
244
245     // Can't be in a loop if it's the entry block -- the entry block may not
246     // have predecessors.
247     if (BB == &BB->getParent()->getEntryBlock())
248       return false;
249
250     // Otherwise, continue doing the normal per-BB CFG walk.
251     Worklist.append(succ_begin(BB), succ_end(BB));
252
253     if (Worklist.empty()) {
254       // We've proven that there's no path!
255       return false;
256     }
257   } else {
258     Worklist.push_back(const_cast<BasicBlock*>(A->getParent()));
259   }
260
261   if (DT) {
262     if (DT->isReachableFromEntry(A->getParent()) &&
263         !DT->isReachableFromEntry(B->getParent()))
264       return false;
265     if (!ExclusionSet || ExclusionSet->empty()) {
266       if (A->getParent() == &A->getParent()->getParent()->getEntryBlock() &&
267           DT->isReachableFromEntry(B->getParent()))
268         return true;
269       if (B->getParent() == &A->getParent()->getParent()->getEntryBlock() &&
270           DT->isReachableFromEntry(A->getParent()))
271         return false;
272     }
273   }
274
275   return isPotentiallyReachableFromMany(
276       Worklist, const_cast<BasicBlock *>(B->getParent()), ExclusionSet, DT, LI);
277 }