]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Analysis/GlobalsModRef.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Analysis / GlobalsModRef.cpp
1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This simple pass provides alias and mod/ref information for global values
10 // that do not have their address taken, and keeps track of whether functions
11 // read or write memory (are "pure").  For this simple (but very common) case,
12 // we can provide pretty accurate and useful information.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Analysis/GlobalsModRef.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InstIterator.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/CommandLine.h"
30 using namespace llvm;
31
32 #define DEBUG_TYPE "globalsmodref-aa"
33
34 STATISTIC(NumNonAddrTakenGlobalVars,
35           "Number of global vars without address taken");
36 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
37 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
38 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
39 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
40
41 // An option to enable unsafe alias results from the GlobalsModRef analysis.
42 // When enabled, GlobalsModRef will provide no-alias results which in extremely
43 // rare cases may not be conservatively correct. In particular, in the face of
44 // transforms which cause assymetry between how effective GetUnderlyingObject
45 // is for two pointers, it may produce incorrect results.
46 //
47 // These unsafe results have been returned by GMR for many years without
48 // causing significant issues in the wild and so we provide a mechanism to
49 // re-enable them for users of LLVM that have a particular performance
50 // sensitivity and no known issues. The option also makes it easy to evaluate
51 // the performance impact of these results.
52 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
53     "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
54
55 /// The mod/ref information collected for a particular function.
56 ///
57 /// We collect information about mod/ref behavior of a function here, both in
58 /// general and as pertains to specific globals. We only have this detailed
59 /// information when we know *something* useful about the behavior. If we
60 /// saturate to fully general mod/ref, we remove the info for the function.
61 class GlobalsAAResult::FunctionInfo {
62   typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
63
64   /// Build a wrapper struct that has 8-byte alignment. All heap allocations
65   /// should provide this much alignment at least, but this makes it clear we
66   /// specifically rely on this amount of alignment.
67   struct alignas(8) AlignedMap {
68     AlignedMap() {}
69     AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {}
70     GlobalInfoMapType Map;
71   };
72
73   /// Pointer traits for our aligned map.
74   struct AlignedMapPointerTraits {
75     static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
76     static inline AlignedMap *getFromVoidPointer(void *P) {
77       return (AlignedMap *)P;
78     }
79     enum { NumLowBitsAvailable = 3 };
80     static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable),
81                   "AlignedMap insufficiently aligned to have enough low bits.");
82   };
83
84   /// The bit that flags that this function may read any global. This is
85   /// chosen to mix together with ModRefInfo bits.
86   /// FIXME: This assumes ModRefInfo lattice will remain 4 bits!
87   /// It overlaps with ModRefInfo::Must bit!
88   /// FunctionInfo.getModRefInfo() masks out everything except ModRef so
89   /// this remains correct, but the Must info is lost.
90   enum { MayReadAnyGlobal = 4 };
91
92   /// Checks to document the invariants of the bit packing here.
93   static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::MustModRef)) ==
94                     0,
95                 "ModRef and the MayReadAnyGlobal flag bits overlap.");
96   static_assert(((MayReadAnyGlobal |
97                   static_cast<int>(ModRefInfo::MustModRef)) >>
98                  AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
99                 "Insufficient low bits to store our flag and ModRef info.");
100
101 public:
102   FunctionInfo() : Info() {}
103   ~FunctionInfo() {
104     delete Info.getPointer();
105   }
106   // Spell out the copy ond move constructors and assignment operators to get
107   // deep copy semantics and correct move semantics in the face of the
108   // pointer-int pair.
109   FunctionInfo(const FunctionInfo &Arg)
110       : Info(nullptr, Arg.Info.getInt()) {
111     if (const auto *ArgPtr = Arg.Info.getPointer())
112       Info.setPointer(new AlignedMap(*ArgPtr));
113   }
114   FunctionInfo(FunctionInfo &&Arg)
115       : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
116     Arg.Info.setPointerAndInt(nullptr, 0);
117   }
118   FunctionInfo &operator=(const FunctionInfo &RHS) {
119     delete Info.getPointer();
120     Info.setPointerAndInt(nullptr, RHS.Info.getInt());
121     if (const auto *RHSPtr = RHS.Info.getPointer())
122       Info.setPointer(new AlignedMap(*RHSPtr));
123     return *this;
124   }
125   FunctionInfo &operator=(FunctionInfo &&RHS) {
126     delete Info.getPointer();
127     Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
128     RHS.Info.setPointerAndInt(nullptr, 0);
129     return *this;
130   }
131
132   /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return
133   /// the corresponding ModRefInfo. It must align in functionality with
134   /// clearMust().
135   ModRefInfo globalClearMayReadAnyGlobal(int I) const {
136     return ModRefInfo((I & static_cast<int>(ModRefInfo::ModRef)) |
137                       static_cast<int>(ModRefInfo::NoModRef));
138   }
139
140   /// Returns the \c ModRefInfo info for this function.
141   ModRefInfo getModRefInfo() const {
142     return globalClearMayReadAnyGlobal(Info.getInt());
143   }
144
145   /// Adds new \c ModRefInfo for this function to its state.
146   void addModRefInfo(ModRefInfo NewMRI) {
147     Info.setInt(Info.getInt() | static_cast<int>(setMust(NewMRI)));
148   }
149
150   /// Returns whether this function may read any global variable, and we don't
151   /// know which global.
152   bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
153
154   /// Sets this function as potentially reading from any global.
155   void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
156
157   /// Returns the \c ModRefInfo info for this function w.r.t. a particular
158   /// global, which may be more precise than the general information above.
159   ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
160     ModRefInfo GlobalMRI =
161         mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef;
162     if (AlignedMap *P = Info.getPointer()) {
163       auto I = P->Map.find(&GV);
164       if (I != P->Map.end())
165         GlobalMRI = unionModRef(GlobalMRI, I->second);
166     }
167     return GlobalMRI;
168   }
169
170   /// Add mod/ref info from another function into ours, saturating towards
171   /// ModRef.
172   void addFunctionInfo(const FunctionInfo &FI) {
173     addModRefInfo(FI.getModRefInfo());
174
175     if (FI.mayReadAnyGlobal())
176       setMayReadAnyGlobal();
177
178     if (AlignedMap *P = FI.Info.getPointer())
179       for (const auto &G : P->Map)
180         addModRefInfoForGlobal(*G.first, G.second);
181   }
182
183   void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
184     AlignedMap *P = Info.getPointer();
185     if (!P) {
186       P = new AlignedMap();
187       Info.setPointer(P);
188     }
189     auto &GlobalMRI = P->Map[&GV];
190     GlobalMRI = unionModRef(GlobalMRI, NewMRI);
191   }
192
193   /// Clear a global's ModRef info. Should be used when a global is being
194   /// deleted.
195   void eraseModRefInfoForGlobal(const GlobalValue &GV) {
196     if (AlignedMap *P = Info.getPointer())
197       P->Map.erase(&GV);
198   }
199
200 private:
201   /// All of the information is encoded into a single pointer, with a three bit
202   /// integer in the low three bits. The high bit provides a flag for when this
203   /// function may read any global. The low two bits are the ModRefInfo. And
204   /// the pointer, when non-null, points to a map from GlobalValue to
205   /// ModRefInfo specific to that GlobalValue.
206   PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
207 };
208
209 void GlobalsAAResult::DeletionCallbackHandle::deleted() {
210   Value *V = getValPtr();
211   if (auto *F = dyn_cast<Function>(V))
212     GAR->FunctionInfos.erase(F);
213
214   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
215     if (GAR->NonAddressTakenGlobals.erase(GV)) {
216       // This global might be an indirect global.  If so, remove it and
217       // remove any AllocRelatedValues for it.
218       if (GAR->IndirectGlobals.erase(GV)) {
219         // Remove any entries in AllocsForIndirectGlobals for this global.
220         for (auto I = GAR->AllocsForIndirectGlobals.begin(),
221                   E = GAR->AllocsForIndirectGlobals.end();
222              I != E; ++I)
223           if (I->second == GV)
224             GAR->AllocsForIndirectGlobals.erase(I);
225       }
226
227       // Scan the function info we have collected and remove this global
228       // from all of them.
229       for (auto &FIPair : GAR->FunctionInfos)
230         FIPair.second.eraseModRefInfoForGlobal(*GV);
231     }
232   }
233
234   // If this is an allocation related to an indirect global, remove it.
235   GAR->AllocsForIndirectGlobals.erase(V);
236
237   // And clear out the handle.
238   setValPtr(nullptr);
239   GAR->Handles.erase(I);
240   // This object is now destroyed!
241 }
242
243 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) {
244   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
245
246   if (FunctionInfo *FI = getFunctionInfo(F)) {
247     if (!isModOrRefSet(FI->getModRefInfo()))
248       Min = FMRB_DoesNotAccessMemory;
249     else if (!isModSet(FI->getModRefInfo()))
250       Min = FMRB_OnlyReadsMemory;
251   }
252
253   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
254 }
255
256 FunctionModRefBehavior
257 GlobalsAAResult::getModRefBehavior(const CallBase *Call) {
258   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
259
260   if (!Call->hasOperandBundles())
261     if (const Function *F = Call->getCalledFunction())
262       if (FunctionInfo *FI = getFunctionInfo(F)) {
263         if (!isModOrRefSet(FI->getModRefInfo()))
264           Min = FMRB_DoesNotAccessMemory;
265         else if (!isModSet(FI->getModRefInfo()))
266           Min = FMRB_OnlyReadsMemory;
267       }
268
269   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min);
270 }
271
272 /// Returns the function info for the function, or null if we don't have
273 /// anything useful to say about it.
274 GlobalsAAResult::FunctionInfo *
275 GlobalsAAResult::getFunctionInfo(const Function *F) {
276   auto I = FunctionInfos.find(F);
277   if (I != FunctionInfos.end())
278     return &I->second;
279   return nullptr;
280 }
281
282 /// AnalyzeGlobals - Scan through the users of all of the internal
283 /// GlobalValue's in the program.  If none of them have their "address taken"
284 /// (really, their address passed to something nontrivial), record this fact,
285 /// and record the functions that they are used directly in.
286 void GlobalsAAResult::AnalyzeGlobals(Module &M) {
287   SmallPtrSet<Function *, 32> TrackedFunctions;
288   for (Function &F : M)
289     if (F.hasLocalLinkage())
290       if (!AnalyzeUsesOfPointer(&F)) {
291         // Remember that we are tracking this global.
292         NonAddressTakenGlobals.insert(&F);
293         TrackedFunctions.insert(&F);
294         Handles.emplace_front(*this, &F);
295         Handles.front().I = Handles.begin();
296         ++NumNonAddrTakenFunctions;
297       }
298
299   SmallPtrSet<Function *, 16> Readers, Writers;
300   for (GlobalVariable &GV : M.globals())
301     if (GV.hasLocalLinkage()) {
302       if (!AnalyzeUsesOfPointer(&GV, &Readers,
303                                 GV.isConstant() ? nullptr : &Writers)) {
304         // Remember that we are tracking this global, and the mod/ref fns
305         NonAddressTakenGlobals.insert(&GV);
306         Handles.emplace_front(*this, &GV);
307         Handles.front().I = Handles.begin();
308
309         for (Function *Reader : Readers) {
310           if (TrackedFunctions.insert(Reader).second) {
311             Handles.emplace_front(*this, Reader);
312             Handles.front().I = Handles.begin();
313           }
314           FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref);
315         }
316
317         if (!GV.isConstant()) // No need to keep track of writers to constants
318           for (Function *Writer : Writers) {
319             if (TrackedFunctions.insert(Writer).second) {
320               Handles.emplace_front(*this, Writer);
321               Handles.front().I = Handles.begin();
322             }
323             FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod);
324           }
325         ++NumNonAddrTakenGlobalVars;
326
327         // If this global holds a pointer type, see if it is an indirect global.
328         if (GV.getValueType()->isPointerTy() &&
329             AnalyzeIndirectGlobalMemory(&GV))
330           ++NumIndirectGlobalVars;
331       }
332       Readers.clear();
333       Writers.clear();
334     }
335 }
336
337 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
338 /// If this is used by anything complex (i.e., the address escapes), return
339 /// true.  Also, while we are at it, keep track of those functions that read and
340 /// write to the value.
341 ///
342 /// If OkayStoreDest is non-null, stores into this global are allowed.
343 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
344                                            SmallPtrSetImpl<Function *> *Readers,
345                                            SmallPtrSetImpl<Function *> *Writers,
346                                            GlobalValue *OkayStoreDest) {
347   if (!V->getType()->isPointerTy())
348     return true;
349
350   for (Use &U : V->uses()) {
351     User *I = U.getUser();
352     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
353       if (Readers)
354         Readers->insert(LI->getParent()->getParent());
355     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
356       if (V == SI->getOperand(1)) {
357         if (Writers)
358           Writers->insert(SI->getParent()->getParent());
359       } else if (SI->getOperand(1) != OkayStoreDest) {
360         return true; // Storing the pointer
361       }
362     } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
363       if (AnalyzeUsesOfPointer(I, Readers, Writers))
364         return true;
365     } else if (Operator::getOpcode(I) == Instruction::BitCast) {
366       if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
367         return true;
368     } else if (auto *Call = dyn_cast<CallBase>(I)) {
369       // Make sure that this is just the function being called, not that it is
370       // passing into the function.
371       if (Call->isDataOperand(&U)) {
372         // Detect calls to free.
373         if (Call->isArgOperand(&U) && isFreeCall(I, &TLI)) {
374           if (Writers)
375             Writers->insert(Call->getParent()->getParent());
376         } else {
377           return true; // Argument of an unknown call.
378         }
379       }
380     } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
381       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
382         return true; // Allow comparison against null.
383     } else if (Constant *C = dyn_cast<Constant>(I)) {
384       // Ignore constants which don't have any live uses.
385       if (isa<GlobalValue>(C) || C->isConstantUsed())
386         return true;
387     } else {
388       return true;
389     }
390   }
391
392   return false;
393 }
394
395 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
396 /// which holds a pointer type.  See if the global always points to non-aliased
397 /// heap memory: that is, all initializers of the globals are allocations, and
398 /// those allocations have no use other than initialization of the global.
399 /// Further, all loads out of GV must directly use the memory, not store the
400 /// pointer somewhere.  If this is true, we consider the memory pointed to by
401 /// GV to be owned by GV and can disambiguate other pointers from it.
402 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
403   // Keep track of values related to the allocation of the memory, f.e. the
404   // value produced by the malloc call and any casts.
405   std::vector<Value *> AllocRelatedValues;
406
407   // If the initializer is a valid pointer, bail.
408   if (Constant *C = GV->getInitializer())
409     if (!C->isNullValue())
410       return false;
411
412   // Walk the user list of the global.  If we find anything other than a direct
413   // load or store, bail out.
414   for (User *U : GV->users()) {
415     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
416       // The pointer loaded from the global can only be used in simple ways:
417       // we allow addressing of it and loading storing to it.  We do *not* allow
418       // storing the loaded pointer somewhere else or passing to a function.
419       if (AnalyzeUsesOfPointer(LI))
420         return false; // Loaded pointer escapes.
421       // TODO: Could try some IP mod/ref of the loaded pointer.
422     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
423       // Storing the global itself.
424       if (SI->getOperand(0) == GV)
425         return false;
426
427       // If storing the null pointer, ignore it.
428       if (isa<ConstantPointerNull>(SI->getOperand(0)))
429         continue;
430
431       // Check the value being stored.
432       Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
433                                        GV->getParent()->getDataLayout());
434
435       if (!isAllocLikeFn(Ptr, &TLI))
436         return false; // Too hard to analyze.
437
438       // Analyze all uses of the allocation.  If any of them are used in a
439       // non-simple way (e.g. stored to another global) bail out.
440       if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
441                                GV))
442         return false; // Loaded pointer escapes.
443
444       // Remember that this allocation is related to the indirect global.
445       AllocRelatedValues.push_back(Ptr);
446     } else {
447       // Something complex, bail out.
448       return false;
449     }
450   }
451
452   // Okay, this is an indirect global.  Remember all of the allocations for
453   // this global in AllocsForIndirectGlobals.
454   while (!AllocRelatedValues.empty()) {
455     AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
456     Handles.emplace_front(*this, AllocRelatedValues.back());
457     Handles.front().I = Handles.begin();
458     AllocRelatedValues.pop_back();
459   }
460   IndirectGlobals.insert(GV);
461   Handles.emplace_front(*this, GV);
462   Handles.front().I = Handles.begin();
463   return true;
464 }
465
466 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
467   // We do a bottom-up SCC traversal of the call graph.  In other words, we
468   // visit all callees before callers (leaf-first).
469   unsigned SCCID = 0;
470   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
471     const std::vector<CallGraphNode *> &SCC = *I;
472     assert(!SCC.empty() && "SCC with no functions?");
473
474     for (auto *CGN : SCC)
475       if (Function *F = CGN->getFunction())
476         FunctionToSCCMap[F] = SCCID;
477     ++SCCID;
478   }
479 }
480
481 /// AnalyzeCallGraph - At this point, we know the functions where globals are
482 /// immediately stored to and read from.  Propagate this information up the call
483 /// graph to all callers and compute the mod/ref info for all memory for each
484 /// function.
485 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
486   // We do a bottom-up SCC traversal of the call graph.  In other words, we
487   // visit all callees before callers (leaf-first).
488   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
489     const std::vector<CallGraphNode *> &SCC = *I;
490     assert(!SCC.empty() && "SCC with no functions?");
491
492     Function *F = SCC[0]->getFunction();
493
494     if (!F || !F->isDefinitionExact()) {
495       // Calls externally or not exact - can't say anything useful. Remove any
496       // existing function records (may have been created when scanning
497       // globals).
498       for (auto *Node : SCC)
499         FunctionInfos.erase(Node->getFunction());
500       continue;
501     }
502
503     FunctionInfo &FI = FunctionInfos[F];
504     Handles.emplace_front(*this, F);
505     Handles.front().I = Handles.begin();
506     bool KnowNothing = false;
507
508     // Collect the mod/ref properties due to called functions.  We only compute
509     // one mod-ref set.
510     for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
511       if (!F) {
512         KnowNothing = true;
513         break;
514       }
515
516       if (F->isDeclaration() || F->hasOptNone()) {
517         // Try to get mod/ref behaviour from function attributes.
518         if (F->doesNotAccessMemory()) {
519           // Can't do better than that!
520         } else if (F->onlyReadsMemory()) {
521           FI.addModRefInfo(ModRefInfo::Ref);
522           if (!F->isIntrinsic() && !F->onlyAccessesArgMemory())
523             // This function might call back into the module and read a global -
524             // consider every global as possibly being read by this function.
525             FI.setMayReadAnyGlobal();
526         } else {
527           FI.addModRefInfo(ModRefInfo::ModRef);
528           // Can't say anything useful unless it's an intrinsic - they don't
529           // read or write global variables of the kind considered here.
530           KnowNothing = !F->isIntrinsic();
531         }
532         continue;
533       }
534
535       for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
536            CI != E && !KnowNothing; ++CI)
537         if (Function *Callee = CI->second->getFunction()) {
538           if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
539             // Propagate function effect up.
540             FI.addFunctionInfo(*CalleeFI);
541           } else {
542             // Can't say anything about it.  However, if it is inside our SCC,
543             // then nothing needs to be done.
544             CallGraphNode *CalleeNode = CG[Callee];
545             if (!is_contained(SCC, CalleeNode))
546               KnowNothing = true;
547           }
548         } else {
549           KnowNothing = true;
550         }
551     }
552
553     // If we can't say anything useful about this SCC, remove all SCC functions
554     // from the FunctionInfos map.
555     if (KnowNothing) {
556       for (auto *Node : SCC)
557         FunctionInfos.erase(Node->getFunction());
558       continue;
559     }
560
561     // Scan the function bodies for explicit loads or stores.
562     for (auto *Node : SCC) {
563       if (isModAndRefSet(FI.getModRefInfo()))
564         break; // The mod/ref lattice saturates here.
565
566       // Don't prove any properties based on the implementation of an optnone
567       // function. Function attributes were already used as a best approximation
568       // above.
569       if (Node->getFunction()->hasOptNone())
570         continue;
571
572       for (Instruction &I : instructions(Node->getFunction())) {
573         if (isModAndRefSet(FI.getModRefInfo()))
574           break; // The mod/ref lattice saturates here.
575
576         // We handle calls specially because the graph-relevant aspects are
577         // handled above.
578         if (auto *Call = dyn_cast<CallBase>(&I)) {
579           if (isAllocationFn(Call, &TLI) || isFreeCall(Call, &TLI)) {
580             // FIXME: It is completely unclear why this is necessary and not
581             // handled by the above graph code.
582             FI.addModRefInfo(ModRefInfo::ModRef);
583           } else if (Function *Callee = Call->getCalledFunction()) {
584             // The callgraph doesn't include intrinsic calls.
585             if (Callee->isIntrinsic()) {
586               if (isa<DbgInfoIntrinsic>(Call))
587                 // Don't let dbg intrinsics affect alias info.
588                 continue;
589
590               FunctionModRefBehavior Behaviour =
591                   AAResultBase::getModRefBehavior(Callee);
592               FI.addModRefInfo(createModRefInfo(Behaviour));
593             }
594           }
595           continue;
596         }
597
598         // All non-call instructions we use the primary predicates for whether
599         // they read or write memory.
600         if (I.mayReadFromMemory())
601           FI.addModRefInfo(ModRefInfo::Ref);
602         if (I.mayWriteToMemory())
603           FI.addModRefInfo(ModRefInfo::Mod);
604       }
605     }
606
607     if (!isModSet(FI.getModRefInfo()))
608       ++NumReadMemFunctions;
609     if (!isModOrRefSet(FI.getModRefInfo()))
610       ++NumNoMemFunctions;
611
612     // Finally, now that we know the full effect on this SCC, clone the
613     // information to each function in the SCC.
614     // FI is a reference into FunctionInfos, so copy it now so that it doesn't
615     // get invalidated if DenseMap decides to re-hash.
616     FunctionInfo CachedFI = FI;
617     for (unsigned i = 1, e = SCC.size(); i != e; ++i)
618       FunctionInfos[SCC[i]->getFunction()] = CachedFI;
619   }
620 }
621
622 // GV is a non-escaping global. V is a pointer address that has been loaded from.
623 // If we can prove that V must escape, we can conclude that a load from V cannot
624 // alias GV.
625 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
626                                                const Value *V,
627                                                int &Depth,
628                                                const DataLayout &DL) {
629   SmallPtrSet<const Value *, 8> Visited;
630   SmallVector<const Value *, 8> Inputs;
631   Visited.insert(V);
632   Inputs.push_back(V);
633   do {
634     const Value *Input = Inputs.pop_back_val();
635
636     if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
637         isa<InvokeInst>(Input))
638       // Arguments to functions or returns from functions are inherently
639       // escaping, so we can immediately classify those as not aliasing any
640       // non-addr-taken globals.
641       //
642       // (Transitive) loads from a global are also safe - if this aliased
643       // another global, its address would escape, so no alias.
644       continue;
645
646     // Recurse through a limited number of selects, loads and PHIs. This is an
647     // arbitrary depth of 4, lower numbers could be used to fix compile time
648     // issues if needed, but this is generally expected to be only be important
649     // for small depths.
650     if (++Depth > 4)
651       return false;
652
653     if (auto *LI = dyn_cast<LoadInst>(Input)) {
654       Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL));
655       continue;
656     }
657     if (auto *SI = dyn_cast<SelectInst>(Input)) {
658       const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
659       const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
660       if (Visited.insert(LHS).second)
661         Inputs.push_back(LHS);
662       if (Visited.insert(RHS).second)
663         Inputs.push_back(RHS);
664       continue;
665     }
666     if (auto *PN = dyn_cast<PHINode>(Input)) {
667       for (const Value *Op : PN->incoming_values()) {
668         Op = GetUnderlyingObject(Op, DL);
669         if (Visited.insert(Op).second)
670           Inputs.push_back(Op);
671       }
672       continue;
673     }
674
675     return false;
676   } while (!Inputs.empty());
677
678   // All inputs were known to be no-alias.
679   return true;
680 }
681
682 // There are particular cases where we can conclude no-alias between
683 // a non-addr-taken global and some other underlying object. Specifically,
684 // a non-addr-taken global is known to not be escaped from any function. It is
685 // also incorrect for a transformation to introduce an escape of a global in
686 // a way that is observable when it was not there previously. One function
687 // being transformed to introduce an escape which could possibly be observed
688 // (via loading from a global or the return value for example) within another
689 // function is never safe. If the observation is made through non-atomic
690 // operations on different threads, it is a data-race and UB. If the
691 // observation is well defined, by being observed the transformation would have
692 // changed program behavior by introducing the observed escape, making it an
693 // invalid transform.
694 //
695 // This property does require that transformations which *temporarily* escape
696 // a global that was not previously escaped, prior to restoring it, cannot rely
697 // on the results of GMR::alias. This seems a reasonable restriction, although
698 // currently there is no way to enforce it. There is also no realistic
699 // optimization pass that would make this mistake. The closest example is
700 // a transformation pass which does reg2mem of SSA values but stores them into
701 // global variables temporarily before restoring the global variable's value.
702 // This could be useful to expose "benign" races for example. However, it seems
703 // reasonable to require that a pass which introduces escapes of global
704 // variables in this way to either not trust AA results while the escape is
705 // active, or to be forced to operate as a module pass that cannot co-exist
706 // with an alias analysis such as GMR.
707 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
708                                                  const Value *V) {
709   // In order to know that the underlying object cannot alias the
710   // non-addr-taken global, we must know that it would have to be an escape.
711   // Thus if the underlying object is a function argument, a load from
712   // a global, or the return of a function, it cannot alias. We can also
713   // recurse through PHI nodes and select nodes provided all of their inputs
714   // resolve to one of these known-escaping roots.
715   SmallPtrSet<const Value *, 8> Visited;
716   SmallVector<const Value *, 8> Inputs;
717   Visited.insert(V);
718   Inputs.push_back(V);
719   int Depth = 0;
720   do {
721     const Value *Input = Inputs.pop_back_val();
722
723     if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
724       // If one input is the very global we're querying against, then we can't
725       // conclude no-alias.
726       if (InputGV == GV)
727         return false;
728
729       // Distinct GlobalVariables never alias, unless overriden or zero-sized.
730       // FIXME: The condition can be refined, but be conservative for now.
731       auto *GVar = dyn_cast<GlobalVariable>(GV);
732       auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
733       if (GVar && InputGVar &&
734           !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
735           !GVar->isInterposable() && !InputGVar->isInterposable()) {
736         Type *GVType = GVar->getInitializer()->getType();
737         Type *InputGVType = InputGVar->getInitializer()->getType();
738         if (GVType->isSized() && InputGVType->isSized() &&
739             (DL.getTypeAllocSize(GVType) > 0) &&
740             (DL.getTypeAllocSize(InputGVType) > 0))
741           continue;
742       }
743
744       // Conservatively return false, even though we could be smarter
745       // (e.g. look through GlobalAliases).
746       return false;
747     }
748
749     if (isa<Argument>(Input) || isa<CallInst>(Input) ||
750         isa<InvokeInst>(Input)) {
751       // Arguments to functions or returns from functions are inherently
752       // escaping, so we can immediately classify those as not aliasing any
753       // non-addr-taken globals.
754       continue;
755     }
756
757     // Recurse through a limited number of selects, loads and PHIs. This is an
758     // arbitrary depth of 4, lower numbers could be used to fix compile time
759     // issues if needed, but this is generally expected to be only be important
760     // for small depths.
761     if (++Depth > 4)
762       return false;
763
764     if (auto *LI = dyn_cast<LoadInst>(Input)) {
765       // A pointer loaded from a global would have been captured, and we know
766       // that the global is non-escaping, so no alias.
767       const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL);
768       if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
769         // The load does not alias with GV.
770         continue;
771       // Otherwise, a load could come from anywhere, so bail.
772       return false;
773     }
774     if (auto *SI = dyn_cast<SelectInst>(Input)) {
775       const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
776       const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
777       if (Visited.insert(LHS).second)
778         Inputs.push_back(LHS);
779       if (Visited.insert(RHS).second)
780         Inputs.push_back(RHS);
781       continue;
782     }
783     if (auto *PN = dyn_cast<PHINode>(Input)) {
784       for (const Value *Op : PN->incoming_values()) {
785         Op = GetUnderlyingObject(Op, DL);
786         if (Visited.insert(Op).second)
787           Inputs.push_back(Op);
788       }
789       continue;
790     }
791
792     // FIXME: It would be good to handle other obvious no-alias cases here, but
793     // it isn't clear how to do so reasonably without building a small version
794     // of BasicAA into this code. We could recurse into AAResultBase::alias
795     // here but that seems likely to go poorly as we're inside the
796     // implementation of such a query. Until then, just conservatively return
797     // false.
798     return false;
799   } while (!Inputs.empty());
800
801   // If all the inputs to V were definitively no-alias, then V is no-alias.
802   return true;
803 }
804
805 /// alias - If one of the pointers is to a global that we are tracking, and the
806 /// other is some random pointer, we know there cannot be an alias, because the
807 /// address of the global isn't taken.
808 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
809                                    const MemoryLocation &LocB,
810                                    AAQueryInfo &AAQI) {
811   // Get the base object these pointers point to.
812   const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL);
813   const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL);
814
815   // If either of the underlying values is a global, they may be non-addr-taken
816   // globals, which we can answer queries about.
817   const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
818   const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
819   if (GV1 || GV2) {
820     // If the global's address is taken, pretend we don't know it's a pointer to
821     // the global.
822     if (GV1 && !NonAddressTakenGlobals.count(GV1))
823       GV1 = nullptr;
824     if (GV2 && !NonAddressTakenGlobals.count(GV2))
825       GV2 = nullptr;
826
827     // If the two pointers are derived from two different non-addr-taken
828     // globals we know these can't alias.
829     if (GV1 && GV2 && GV1 != GV2)
830       return NoAlias;
831
832     // If one is and the other isn't, it isn't strictly safe but we can fake
833     // this result if necessary for performance. This does not appear to be
834     // a common problem in practice.
835     if (EnableUnsafeGlobalsModRefAliasResults)
836       if ((GV1 || GV2) && GV1 != GV2)
837         return NoAlias;
838
839     // Check for a special case where a non-escaping global can be used to
840     // conclude no-alias.
841     if ((GV1 || GV2) && GV1 != GV2) {
842       const GlobalValue *GV = GV1 ? GV1 : GV2;
843       const Value *UV = GV1 ? UV2 : UV1;
844       if (isNonEscapingGlobalNoAlias(GV, UV))
845         return NoAlias;
846     }
847
848     // Otherwise if they are both derived from the same addr-taken global, we
849     // can't know the two accesses don't overlap.
850   }
851
852   // These pointers may be based on the memory owned by an indirect global.  If
853   // so, we may be able to handle this.  First check to see if the base pointer
854   // is a direct load from an indirect global.
855   GV1 = GV2 = nullptr;
856   if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
857     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
858       if (IndirectGlobals.count(GV))
859         GV1 = GV;
860   if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
861     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
862       if (IndirectGlobals.count(GV))
863         GV2 = GV;
864
865   // These pointers may also be from an allocation for the indirect global.  If
866   // so, also handle them.
867   if (!GV1)
868     GV1 = AllocsForIndirectGlobals.lookup(UV1);
869   if (!GV2)
870     GV2 = AllocsForIndirectGlobals.lookup(UV2);
871
872   // Now that we know whether the two pointers are related to indirect globals,
873   // use this to disambiguate the pointers. If the pointers are based on
874   // different indirect globals they cannot alias.
875   if (GV1 && GV2 && GV1 != GV2)
876     return NoAlias;
877
878   // If one is based on an indirect global and the other isn't, it isn't
879   // strictly safe but we can fake this result if necessary for performance.
880   // This does not appear to be a common problem in practice.
881   if (EnableUnsafeGlobalsModRefAliasResults)
882     if ((GV1 || GV2) && GV1 != GV2)
883       return NoAlias;
884
885   return AAResultBase::alias(LocA, LocB, AAQI);
886 }
887
888 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call,
889                                                      const GlobalValue *GV,
890                                                      AAQueryInfo &AAQI) {
891   if (Call->doesNotAccessMemory())
892     return ModRefInfo::NoModRef;
893   ModRefInfo ConservativeResult =
894       Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef;
895
896   // Iterate through all the arguments to the called function. If any argument
897   // is based on GV, return the conservative result.
898   for (auto &A : Call->args()) {
899     SmallVector<const Value*, 4> Objects;
900     GetUnderlyingObjects(A, Objects, DL);
901
902     // All objects must be identified.
903     if (!all_of(Objects, isIdentifiedObject) &&
904         // Try ::alias to see if all objects are known not to alias GV.
905         !all_of(Objects, [&](const Value *V) {
906           return this->alias(MemoryLocation(V), MemoryLocation(GV), AAQI) ==
907                  NoAlias;
908         }))
909       return ConservativeResult;
910
911     if (is_contained(Objects, GV))
912       return ConservativeResult;
913   }
914
915   // We identified all objects in the argument list, and none of them were GV.
916   return ModRefInfo::NoModRef;
917 }
918
919 ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call,
920                                           const MemoryLocation &Loc,
921                                           AAQueryInfo &AAQI) {
922   ModRefInfo Known = ModRefInfo::ModRef;
923
924   // If we are asking for mod/ref info of a direct call with a pointer to a
925   // global we are tracking, return information if we have it.
926   if (const GlobalValue *GV =
927           dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
928     if (GV->hasLocalLinkage())
929       if (const Function *F = Call->getCalledFunction())
930         if (NonAddressTakenGlobals.count(GV))
931           if (const FunctionInfo *FI = getFunctionInfo(F))
932             Known = unionModRef(FI->getModRefInfoForGlobal(*GV),
933                                 getModRefInfoForArgument(Call, GV, AAQI));
934
935   if (!isModOrRefSet(Known))
936     return ModRefInfo::NoModRef; // No need to query other mod/ref analyses
937   return intersectModRef(Known, AAResultBase::getModRefInfo(Call, Loc, AAQI));
938 }
939
940 GlobalsAAResult::GlobalsAAResult(const DataLayout &DL,
941                                  const TargetLibraryInfo &TLI)
942     : AAResultBase(), DL(DL), TLI(TLI) {}
943
944 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
945     : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI),
946       NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
947       IndirectGlobals(std::move(Arg.IndirectGlobals)),
948       AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
949       FunctionInfos(std::move(Arg.FunctionInfos)),
950       Handles(std::move(Arg.Handles)) {
951   // Update the parent for each DeletionCallbackHandle.
952   for (auto &H : Handles) {
953     assert(H.GAR == &Arg);
954     H.GAR = this;
955   }
956 }
957
958 GlobalsAAResult::~GlobalsAAResult() {}
959
960 /*static*/ GlobalsAAResult
961 GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI,
962                                CallGraph &CG) {
963   GlobalsAAResult Result(M.getDataLayout(), TLI);
964
965   // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
966   Result.CollectSCCMembership(CG);
967
968   // Find non-addr taken globals.
969   Result.AnalyzeGlobals(M);
970
971   // Propagate on CG.
972   Result.AnalyzeCallGraph(CG, M);
973
974   return Result;
975 }
976
977 AnalysisKey GlobalsAA::Key;
978
979 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) {
980   return GlobalsAAResult::analyzeModule(M,
981                                         AM.getResult<TargetLibraryAnalysis>(M),
982                                         AM.getResult<CallGraphAnalysis>(M));
983 }
984
985 char GlobalsAAWrapperPass::ID = 0;
986 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
987                       "Globals Alias Analysis", false, true)
988 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
989 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
990 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
991                     "Globals Alias Analysis", false, true)
992
993 ModulePass *llvm::createGlobalsAAWrapperPass() {
994   return new GlobalsAAWrapperPass();
995 }
996
997 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
998   initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
999 }
1000
1001 bool GlobalsAAWrapperPass::runOnModule(Module &M) {
1002   Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
1003       M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
1004       getAnalysis<CallGraphWrapperPass>().getCallGraph())));
1005   return false;
1006 }
1007
1008 bool GlobalsAAWrapperPass::doFinalization(Module &M) {
1009   Result.reset();
1010   return false;
1011 }
1012
1013 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1014   AU.setPreservesAll();
1015   AU.addRequired<CallGraphWrapperPass>();
1016   AU.addRequired<TargetLibraryInfoWrapperPass>();
1017 }