]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Analysis/LegacyDivergenceAnalysis.cpp
Merge llvm-project main llvmorg-15-init-17485-ga3e38b4a206b
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Analysis / LegacyDivergenceAnalysis.cpp
1 //===- LegacyDivergenceAnalysis.cpp --------- Legacy Divergence Analysis
2 //Implementation -==//
3 //
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements divergence analysis which determines whether a branch
11 // in a GPU program is divergent.It can help branch optimizations such as jump
12 // threading and loop unswitching to make better decisions.
13 //
14 // GPU programs typically use the SIMD execution model, where multiple threads
15 // in the same execution group have to execute in lock-step. Therefore, if the
16 // code contains divergent branches (i.e., threads in a group do not agree on
17 // which path of the branch to take), the group of threads has to execute all
18 // the paths from that branch with different subsets of threads enabled until
19 // they converge at the immediately post-dominating BB of the paths.
20 //
21 // Due to this execution model, some optimizations such as jump
22 // threading and loop unswitching can be unfortunately harmful when performed on
23 // divergent branches. Therefore, an analysis that computes which branches in a
24 // GPU program are divergent can help the compiler to selectively run these
25 // optimizations.
26 //
27 // This file defines divergence analysis which computes a conservative but
28 // non-trivial approximation of all divergent branches in a GPU program. It
29 // partially implements the approach described in
30 //
31 //   Divergence Analysis
32 //   Sampaio, Souza, Collange, Pereira
33 //   TOPLAS '13
34 //
35 // The divergence analysis identifies the sources of divergence (e.g., special
36 // variables that hold the thread ID), and recursively marks variables that are
37 // data or sync dependent on a source of divergence as divergent.
38 //
39 // While data dependency is a well-known concept, the notion of sync dependency
40 // is worth more explanation. Sync dependence characterizes the control flow
41 // aspect of the propagation of branch divergence. For example,
42 //
43 //   %cond = icmp slt i32 %tid, 10
44 //   br i1 %cond, label %then, label %else
45 // then:
46 //   br label %merge
47 // else:
48 //   br label %merge
49 // merge:
50 //   %a = phi i32 [ 0, %then ], [ 1, %else ]
51 //
52 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
53 // because %tid is not on its use-def chains, %a is sync dependent on %tid
54 // because the branch "br i1 %cond" depends on %tid and affects which value %a
55 // is assigned to.
56 //
57 // The current implementation has the following limitations:
58 // 1. intra-procedural. It conservatively considers the arguments of a
59 //    non-kernel-entry function and the return value of a function call as
60 //    divergent.
61 // 2. memory as black box. It conservatively considers values loaded from
62 //    generic or local address as divergent. This can be improved by leveraging
63 //    pointer analysis.
64 //
65 //===----------------------------------------------------------------------===//
66
67 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
68 #include "llvm/ADT/PostOrderIterator.h"
69 #include "llvm/Analysis/CFG.h"
70 #include "llvm/Analysis/DivergenceAnalysis.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/Passes.h"
73 #include "llvm/Analysis/PostDominators.h"
74 #include "llvm/Analysis/TargetTransformInfo.h"
75 #include "llvm/IR/Dominators.h"
76 #include "llvm/IR/InstIterator.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/Value.h"
79 #include "llvm/InitializePasses.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include <vector>
84 using namespace llvm;
85
86 #define DEBUG_TYPE "divergence"
87
88 // transparently use the GPUDivergenceAnalysis
89 static cl::opt<bool> UseGPUDA("use-gpu-divergence-analysis", cl::init(false),
90                               cl::Hidden,
91                               cl::desc("turn the LegacyDivergenceAnalysis into "
92                                        "a wrapper for GPUDivergenceAnalysis"));
93
94 namespace {
95
96 class DivergencePropagator {
97 public:
98   DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
99                        PostDominatorTree &PDT, DenseSet<const Value *> &DV,
100                        DenseSet<const Use *> &DU)
101       : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV), DU(DU) {}
102   void populateWithSourcesOfDivergence();
103   void propagate();
104
105 private:
106   // A helper function that explores data dependents of V.
107   void exploreDataDependency(Value *V);
108   // A helper function that explores sync dependents of TI.
109   void exploreSyncDependency(Instruction *TI);
110   // Computes the influence region from Start to End. This region includes all
111   // basic blocks on any simple path from Start to End.
112   void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
113                               DenseSet<BasicBlock *> &InfluenceRegion);
114   // Finds all users of I that are outside the influence region, and add these
115   // users to Worklist.
116   void findUsersOutsideInfluenceRegion(
117       Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
118
119   Function &F;
120   TargetTransformInfo &TTI;
121   DominatorTree &DT;
122   PostDominatorTree &PDT;
123   std::vector<Value *> Worklist; // Stack for DFS.
124   DenseSet<const Value *> &DV;   // Stores all divergent values.
125   DenseSet<const Use *> &DU;   // Stores divergent uses of possibly uniform
126                                // values.
127 };
128
129 void DivergencePropagator::populateWithSourcesOfDivergence() {
130   Worklist.clear();
131   DV.clear();
132   DU.clear();
133   for (auto &I : instructions(F)) {
134     if (TTI.isSourceOfDivergence(&I)) {
135       Worklist.push_back(&I);
136       DV.insert(&I);
137     }
138   }
139   for (auto &Arg : F.args()) {
140     if (TTI.isSourceOfDivergence(&Arg)) {
141       Worklist.push_back(&Arg);
142       DV.insert(&Arg);
143     }
144   }
145 }
146
147 void DivergencePropagator::exploreSyncDependency(Instruction *TI) {
148   // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
149   // immediate post dominator are divergent. This rule handles if-then-else
150   // patterns. For example,
151   //
152   // if (tid < 5)
153   //   a1 = 1;
154   // else
155   //   a2 = 2;
156   // a = phi(a1, a2); // sync dependent on (tid < 5)
157   BasicBlock *ThisBB = TI->getParent();
158
159   // Unreachable blocks may not be in the dominator tree.
160   if (!DT.isReachableFromEntry(ThisBB))
161     return;
162
163   // If the function has no exit blocks or doesn't reach any exit blocks, the
164   // post dominator may be null.
165   DomTreeNode *ThisNode = PDT.getNode(ThisBB);
166   if (!ThisNode)
167     return;
168
169   BasicBlock *IPostDom = ThisNode->getIDom()->getBlock();
170   if (IPostDom == nullptr)
171     return;
172
173   for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
174     // A PHINode is uniform if it returns the same value no matter which path is
175     // taken.
176     if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second)
177       Worklist.push_back(&*I);
178   }
179
180   // Propagation rule 2: if a value defined in a loop is used outside, the user
181   // is sync dependent on the condition of the loop exits that dominate the
182   // user. For example,
183   //
184   // int i = 0;
185   // do {
186   //   i++;
187   //   if (foo(i)) ... // uniform
188   // } while (i < tid);
189   // if (bar(i)) ...   // divergent
190   //
191   // A program may contain unstructured loops. Therefore, we cannot leverage
192   // LoopInfo, which only recognizes natural loops.
193   //
194   // The algorithm used here handles both natural and unstructured loops.  Given
195   // a branch TI, we first compute its influence region, the union of all simple
196   // paths from TI to its immediate post dominator (IPostDom). Then, we search
197   // for all the values defined in the influence region but used outside. All
198   // these users are sync dependent on TI.
199   DenseSet<BasicBlock *> InfluenceRegion;
200   computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
201   // An insight that can speed up the search process is that all the in-region
202   // values that are used outside must dominate TI. Therefore, instead of
203   // searching every basic blocks in the influence region, we search all the
204   // dominators of TI until it is outside the influence region.
205   BasicBlock *InfluencedBB = ThisBB;
206   while (InfluenceRegion.count(InfluencedBB)) {
207     for (auto &I : *InfluencedBB) {
208       if (!DV.count(&I))
209         findUsersOutsideInfluenceRegion(I, InfluenceRegion);
210     }
211     DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
212     if (IDomNode == nullptr)
213       break;
214     InfluencedBB = IDomNode->getBlock();
215   }
216 }
217
218 void DivergencePropagator::findUsersOutsideInfluenceRegion(
219     Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
220   for (Use &Use : I.uses()) {
221     Instruction *UserInst = cast<Instruction>(Use.getUser());
222     if (!InfluenceRegion.count(UserInst->getParent())) {
223       DU.insert(&Use);
224       if (DV.insert(UserInst).second)
225         Worklist.push_back(UserInst);
226     }
227   }
228 }
229
230 // A helper function for computeInfluenceRegion that adds successors of "ThisBB"
231 // to the influence region.
232 static void
233 addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End,
234                                DenseSet<BasicBlock *> &InfluenceRegion,
235                                std::vector<BasicBlock *> &InfluenceStack) {
236   for (BasicBlock *Succ : successors(ThisBB)) {
237     if (Succ != End && InfluenceRegion.insert(Succ).second)
238       InfluenceStack.push_back(Succ);
239   }
240 }
241
242 void DivergencePropagator::computeInfluenceRegion(
243     BasicBlock *Start, BasicBlock *End,
244     DenseSet<BasicBlock *> &InfluenceRegion) {
245   assert(PDT.properlyDominates(End, Start) &&
246          "End does not properly dominate Start");
247
248   // The influence region starts from the end of "Start" to the beginning of
249   // "End". Therefore, "Start" should not be in the region unless "Start" is in
250   // a loop that doesn't contain "End".
251   std::vector<BasicBlock *> InfluenceStack;
252   addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack);
253   while (!InfluenceStack.empty()) {
254     BasicBlock *BB = InfluenceStack.back();
255     InfluenceStack.pop_back();
256     addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack);
257   }
258 }
259
260 void DivergencePropagator::exploreDataDependency(Value *V) {
261   // Follow def-use chains of V.
262   for (User *U : V->users()) {
263     if (!TTI.isAlwaysUniform(U) && DV.insert(U).second)
264       Worklist.push_back(U);
265   }
266 }
267
268 void DivergencePropagator::propagate() {
269   // Traverse the dependency graph using DFS.
270   while (!Worklist.empty()) {
271     Value *V = Worklist.back();
272     Worklist.pop_back();
273     if (Instruction *I = dyn_cast<Instruction>(V)) {
274       // Terminators with less than two successors won't introduce sync
275       // dependency. Ignore them.
276       if (I->isTerminator() && I->getNumSuccessors() > 1)
277         exploreSyncDependency(I);
278     }
279     exploreDataDependency(V);
280   }
281 }
282
283 } // namespace
284
285 // Register this pass.
286 char LegacyDivergenceAnalysis::ID = 0;
287 LegacyDivergenceAnalysis::LegacyDivergenceAnalysis() : FunctionPass(ID) {
288   initializeLegacyDivergenceAnalysisPass(*PassRegistry::getPassRegistry());
289 }
290 INITIALIZE_PASS_BEGIN(LegacyDivergenceAnalysis, "divergence",
291                       "Legacy Divergence Analysis", false, true)
292 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
293 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
294 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
295 INITIALIZE_PASS_END(LegacyDivergenceAnalysis, "divergence",
296                     "Legacy Divergence Analysis", false, true)
297
298 FunctionPass *llvm::createLegacyDivergenceAnalysisPass() {
299   return new LegacyDivergenceAnalysis();
300 }
301
302 void LegacyDivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
303   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
304   AU.addRequiredTransitive<PostDominatorTreeWrapperPass>();
305   AU.addRequiredTransitive<LoopInfoWrapperPass>();
306   AU.setPreservesAll();
307 }
308
309 bool LegacyDivergenceAnalysis::shouldUseGPUDivergenceAnalysis(
310     const Function &F, const TargetTransformInfo &TTI) const {
311   if (!(UseGPUDA || TTI.useGPUDivergenceAnalysis()))
312     return false;
313
314   // GPUDivergenceAnalysis requires a reducible CFG.
315   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
316   using RPOTraversal = ReversePostOrderTraversal<const Function *>;
317   RPOTraversal FuncRPOT(&F);
318   return !containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
319                                  const LoopInfo>(FuncRPOT, LI);
320 }
321
322 bool LegacyDivergenceAnalysis::runOnFunction(Function &F) {
323   auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
324   if (TTIWP == nullptr)
325     return false;
326
327   TargetTransformInfo &TTI = TTIWP->getTTI(F);
328   // Fast path: if the target does not have branch divergence, we do not mark
329   // any branch as divergent.
330   if (!TTI.hasBranchDivergence())
331     return false;
332
333   DivergentValues.clear();
334   DivergentUses.clear();
335   gpuDA = nullptr;
336
337   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
338   auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
339
340   if (shouldUseGPUDivergenceAnalysis(F, TTI)) {
341     // run the new GPU divergence analysis
342     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
343     gpuDA = std::make_unique<DivergenceInfo>(F, DT, PDT, LI, TTI,
344                                              /* KnownReducible  = */ true);
345
346   } else {
347     // run LLVM's existing DivergenceAnalysis
348     DivergencePropagator DP(F, TTI, DT, PDT, DivergentValues, DivergentUses);
349     DP.populateWithSourcesOfDivergence();
350     DP.propagate();
351   }
352
353   LLVM_DEBUG(dbgs() << "\nAfter divergence analysis on " << F.getName()
354                     << ":\n";
355              print(dbgs(), F.getParent()));
356
357   return false;
358 }
359
360 bool LegacyDivergenceAnalysis::isDivergent(const Value *V) const {
361   if (gpuDA) {
362     return gpuDA->isDivergent(*V);
363   }
364   return DivergentValues.count(V);
365 }
366
367 bool LegacyDivergenceAnalysis::isDivergentUse(const Use *U) const {
368   if (gpuDA) {
369     return gpuDA->isDivergentUse(*U);
370   }
371   return DivergentValues.count(U->get()) || DivergentUses.count(U);
372 }
373
374 void LegacyDivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
375   if ((!gpuDA || !gpuDA->hasDivergence()) && DivergentValues.empty())
376     return;
377
378   const Function *F = nullptr;
379   if (!DivergentValues.empty()) {
380     const Value *FirstDivergentValue = *DivergentValues.begin();
381     if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
382       F = Arg->getParent();
383     } else if (const Instruction *I =
384                    dyn_cast<Instruction>(FirstDivergentValue)) {
385       F = I->getParent()->getParent();
386     } else {
387       llvm_unreachable("Only arguments and instructions can be divergent");
388     }
389   } else if (gpuDA) {
390     F = &gpuDA->getFunction();
391   }
392   if (!F)
393     return;
394
395   // Dumps all divergent values in F, arguments and then instructions.
396   for (const auto &Arg : F->args()) {
397     OS << (isDivergent(&Arg) ? "DIVERGENT: " : "           ");
398     OS << Arg << "\n";
399   }
400   // Iterate instructions using instructions() to ensure a deterministic order.
401   for (const BasicBlock &BB : *F) {
402     OS << "\n           " << BB.getName() << ":\n";
403     for (const auto &I : BB.instructionsWithoutDebug()) {
404       OS << (isDivergent(&I) ? "DIVERGENT:     " : "               ");
405       OS << I << "\n";
406     }
407   }
408   OS << "\n";
409 }