]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Analysis/LoopInfo.cpp
Merge ^/vendor/llvm/dist up to its last change, and resolve conflicts.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Analysis / LoopInfo.cpp
1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the LoopInfo class that is used to identify natural loops
10 // and determine the loop depth of various nodes of the CFG.  Note that the
11 // loops identified may actually be several natural loops that share the same
12 // header node... not just a single natural loop.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/IVDescriptors.h"
21 #include "llvm/Analysis/LoopInfoImpl.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DebugLoc.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/IRPrintingPasses.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/PassManager.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 using namespace llvm;
42
43 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
44 template class llvm::LoopBase<BasicBlock, Loop>;
45 template class llvm::LoopInfoBase<BasicBlock, Loop>;
46
47 // Always verify loopinfo if expensive checking is enabled.
48 #ifdef EXPENSIVE_CHECKS
49 bool llvm::VerifyLoopInfo = true;
50 #else
51 bool llvm::VerifyLoopInfo = false;
52 #endif
53 static cl::opt<bool, true>
54     VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
55                     cl::Hidden, cl::desc("Verify loop info (time consuming)"));
56
57 //===----------------------------------------------------------------------===//
58 // Loop implementation
59 //
60
61 bool Loop::isLoopInvariant(const Value *V) const {
62   if (const Instruction *I = dyn_cast<Instruction>(V))
63     return !contains(I);
64   return true; // All non-instructions are loop invariant
65 }
66
67 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
68   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
69 }
70
71 bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt,
72                              MemorySSAUpdater *MSSAU) const {
73   if (Instruction *I = dyn_cast<Instruction>(V))
74     return makeLoopInvariant(I, Changed, InsertPt, MSSAU);
75   return true; // All non-instructions are loop-invariant.
76 }
77
78 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
79                              Instruction *InsertPt,
80                              MemorySSAUpdater *MSSAU) const {
81   // Test if the value is already loop-invariant.
82   if (isLoopInvariant(I))
83     return true;
84   if (!isSafeToSpeculativelyExecute(I))
85     return false;
86   if (I->mayReadFromMemory())
87     return false;
88   // EH block instructions are immobile.
89   if (I->isEHPad())
90     return false;
91   // Determine the insertion point, unless one was given.
92   if (!InsertPt) {
93     BasicBlock *Preheader = getLoopPreheader();
94     // Without a preheader, hoisting is not feasible.
95     if (!Preheader)
96       return false;
97     InsertPt = Preheader->getTerminator();
98   }
99   // Don't hoist instructions with loop-variant operands.
100   for (Value *Operand : I->operands())
101     if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU))
102       return false;
103
104   // Hoist.
105   I->moveBefore(InsertPt);
106   if (MSSAU)
107     if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I))
108       MSSAU->moveToPlace(MUD, InsertPt->getParent(), MemorySSA::End);
109
110   // There is possibility of hoisting this instruction above some arbitrary
111   // condition. Any metadata defined on it can be control dependent on this
112   // condition. Conservatively strip it here so that we don't give any wrong
113   // information to the optimizer.
114   I->dropUnknownNonDebugMetadata();
115
116   Changed = true;
117   return true;
118 }
119
120 bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming,
121                                   BasicBlock *&Backedge) const {
122   BasicBlock *H = getHeader();
123
124   Incoming = nullptr;
125   Backedge = nullptr;
126   pred_iterator PI = pred_begin(H);
127   assert(PI != pred_end(H) && "Loop must have at least one backedge!");
128   Backedge = *PI++;
129   if (PI == pred_end(H))
130     return false; // dead loop
131   Incoming = *PI++;
132   if (PI != pred_end(H))
133     return false; // multiple backedges?
134
135   if (contains(Incoming)) {
136     if (contains(Backedge))
137       return false;
138     std::swap(Incoming, Backedge);
139   } else if (!contains(Backedge))
140     return false;
141
142   assert(Incoming && Backedge && "expected non-null incoming and backedges");
143   return true;
144 }
145
146 PHINode *Loop::getCanonicalInductionVariable() const {
147   BasicBlock *H = getHeader();
148
149   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
150   if (!getIncomingAndBackEdge(Incoming, Backedge))
151     return nullptr;
152
153   // Loop over all of the PHI nodes, looking for a canonical indvar.
154   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
155     PHINode *PN = cast<PHINode>(I);
156     if (ConstantInt *CI =
157             dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
158       if (CI->isZero())
159         if (Instruction *Inc =
160                 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
161           if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
162             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
163               if (CI->isOne())
164                 return PN;
165   }
166   return nullptr;
167 }
168
169 /// Get the latch condition instruction.
170 static ICmpInst *getLatchCmpInst(const Loop &L) {
171   if (BasicBlock *Latch = L.getLoopLatch())
172     if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()))
173       if (BI->isConditional())
174         return dyn_cast<ICmpInst>(BI->getCondition());
175
176   return nullptr;
177 }
178
179 /// Return the final value of the loop induction variable if found.
180 static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar,
181                                const Instruction &StepInst) {
182   ICmpInst *LatchCmpInst = getLatchCmpInst(L);
183   if (!LatchCmpInst)
184     return nullptr;
185
186   Value *Op0 = LatchCmpInst->getOperand(0);
187   Value *Op1 = LatchCmpInst->getOperand(1);
188   if (Op0 == &IndVar || Op0 == &StepInst)
189     return Op1;
190
191   if (Op1 == &IndVar || Op1 == &StepInst)
192     return Op0;
193
194   return nullptr;
195 }
196
197 Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L,
198                                                        PHINode &IndVar,
199                                                        ScalarEvolution &SE) {
200   InductionDescriptor IndDesc;
201   if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc))
202     return None;
203
204   Value *InitialIVValue = IndDesc.getStartValue();
205   Instruction *StepInst = IndDesc.getInductionBinOp();
206   if (!InitialIVValue || !StepInst)
207     return None;
208
209   const SCEV *Step = IndDesc.getStep();
210   Value *StepInstOp1 = StepInst->getOperand(1);
211   Value *StepInstOp0 = StepInst->getOperand(0);
212   Value *StepValue = nullptr;
213   if (SE.getSCEV(StepInstOp1) == Step)
214     StepValue = StepInstOp1;
215   else if (SE.getSCEV(StepInstOp0) == Step)
216     StepValue = StepInstOp0;
217
218   Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst);
219   if (!FinalIVValue)
220     return None;
221
222   return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue,
223                     SE);
224 }
225
226 using Direction = Loop::LoopBounds::Direction;
227
228 ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const {
229   BasicBlock *Latch = L.getLoopLatch();
230   assert(Latch && "Expecting valid latch");
231
232   BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator());
233   assert(BI && BI->isConditional() && "Expecting conditional latch branch");
234
235   ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition());
236   assert(LatchCmpInst &&
237          "Expecting the latch compare instruction to be a CmpInst");
238
239   // Need to inverse the predicate when first successor is not the loop
240   // header
241   ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader())
242                                  ? LatchCmpInst->getPredicate()
243                                  : LatchCmpInst->getInversePredicate();
244
245   if (LatchCmpInst->getOperand(0) == &getFinalIVValue())
246     Pred = ICmpInst::getSwappedPredicate(Pred);
247
248   // Need to flip strictness of the predicate when the latch compare instruction
249   // is not using StepInst
250   if (LatchCmpInst->getOperand(0) == &getStepInst() ||
251       LatchCmpInst->getOperand(1) == &getStepInst())
252     return Pred;
253
254   // Cannot flip strictness of NE and EQ
255   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
256     return ICmpInst::getFlippedStrictnessPredicate(Pred);
257
258   Direction D = getDirection();
259   if (D == Direction::Increasing)
260     return ICmpInst::ICMP_SLT;
261
262   if (D == Direction::Decreasing)
263     return ICmpInst::ICMP_SGT;
264
265   // If cannot determine the direction, then unable to find the canonical
266   // predicate
267   return ICmpInst::BAD_ICMP_PREDICATE;
268 }
269
270 Direction Loop::LoopBounds::getDirection() const {
271   if (const SCEVAddRecExpr *StepAddRecExpr =
272           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst())))
273     if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) {
274       if (SE.isKnownPositive(StepRecur))
275         return Direction::Increasing;
276       if (SE.isKnownNegative(StepRecur))
277         return Direction::Decreasing;
278     }
279
280   return Direction::Unknown;
281 }
282
283 Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const {
284   if (PHINode *IndVar = getInductionVariable(SE))
285     return LoopBounds::getBounds(*this, *IndVar, SE);
286
287   return None;
288 }
289
290 PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const {
291   if (!isLoopSimplifyForm())
292     return nullptr;
293
294   BasicBlock *Header = getHeader();
295   assert(Header && "Expected a valid loop header");
296   ICmpInst *CmpInst = getLatchCmpInst(*this);
297   if (!CmpInst)
298     return nullptr;
299
300   Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0));
301   Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1));
302
303   for (PHINode &IndVar : Header->phis()) {
304     InductionDescriptor IndDesc;
305     if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc))
306       continue;
307
308     Instruction *StepInst = IndDesc.getInductionBinOp();
309
310     // case 1:
311     // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
312     // StepInst = IndVar + step
313     // cmp = StepInst < FinalValue
314     if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1)
315       return &IndVar;
316
317     // case 2:
318     // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
319     // StepInst = IndVar + step
320     // cmp = IndVar < FinalValue
321     if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1)
322       return &IndVar;
323   }
324
325   return nullptr;
326 }
327
328 bool Loop::getInductionDescriptor(ScalarEvolution &SE,
329                                   InductionDescriptor &IndDesc) const {
330   if (PHINode *IndVar = getInductionVariable(SE))
331     return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc);
332
333   return false;
334 }
335
336 bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar,
337                                         ScalarEvolution &SE) const {
338   // Located in the loop header
339   BasicBlock *Header = getHeader();
340   if (AuxIndVar.getParent() != Header)
341     return false;
342
343   // No uses outside of the loop
344   for (User *U : AuxIndVar.users())
345     if (const Instruction *I = dyn_cast<Instruction>(U))
346       if (!contains(I))
347         return false;
348
349   InductionDescriptor IndDesc;
350   if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc))
351     return false;
352
353   // The step instruction opcode should be add or sub.
354   if (IndDesc.getInductionOpcode() != Instruction::Add &&
355       IndDesc.getInductionOpcode() != Instruction::Sub)
356     return false;
357
358   // Incremented by a loop invariant step for each loop iteration
359   return SE.isLoopInvariant(IndDesc.getStep(), this);
360 }
361
362 BranchInst *Loop::getLoopGuardBranch() const {
363   if (!isLoopSimplifyForm())
364     return nullptr;
365
366   BasicBlock *Preheader = getLoopPreheader();
367   BasicBlock *Latch = getLoopLatch();
368   assert(Preheader && Latch &&
369          "Expecting a loop with valid preheader and latch");
370
371   // Loop should be in rotate form.
372   if (!isLoopExiting(Latch))
373     return nullptr;
374
375   // Disallow loops with more than one unique exit block, as we do not verify
376   // that GuardOtherSucc post dominates all exit blocks.
377   BasicBlock *ExitFromLatch = getUniqueExitBlock();
378   if (!ExitFromLatch)
379     return nullptr;
380
381   BasicBlock *ExitFromLatchSucc = ExitFromLatch->getUniqueSuccessor();
382   if (!ExitFromLatchSucc)
383     return nullptr;
384
385   BasicBlock *GuardBB = Preheader->getUniquePredecessor();
386   if (!GuardBB)
387     return nullptr;
388
389   assert(GuardBB->getTerminator() && "Expecting valid guard terminator");
390
391   BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator());
392   if (!GuardBI || GuardBI->isUnconditional())
393     return nullptr;
394
395   BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader)
396                                    ? GuardBI->getSuccessor(1)
397                                    : GuardBI->getSuccessor(0);
398   return (GuardOtherSucc == ExitFromLatchSucc) ? GuardBI : nullptr;
399 }
400
401 bool Loop::isCanonical(ScalarEvolution &SE) const {
402   InductionDescriptor IndDesc;
403   if (!getInductionDescriptor(SE, IndDesc))
404     return false;
405
406   ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue());
407   if (!Init || !Init->isZero())
408     return false;
409
410   if (IndDesc.getInductionOpcode() != Instruction::Add)
411     return false;
412
413   ConstantInt *Step = IndDesc.getConstIntStepValue();
414   if (!Step || !Step->isOne())
415     return false;
416
417   return true;
418 }
419
420 // Check that 'BB' doesn't have any uses outside of the 'L'
421 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
422                                DominatorTree &DT) {
423   for (const Instruction &I : BB) {
424     // Tokens can't be used in PHI nodes and live-out tokens prevent loop
425     // optimizations, so for the purposes of considered LCSSA form, we
426     // can ignore them.
427     if (I.getType()->isTokenTy())
428       continue;
429
430     for (const Use &U : I.uses()) {
431       const Instruction *UI = cast<Instruction>(U.getUser());
432       const BasicBlock *UserBB = UI->getParent();
433       if (const PHINode *P = dyn_cast<PHINode>(UI))
434         UserBB = P->getIncomingBlock(U);
435
436       // Check the current block, as a fast-path, before checking whether
437       // the use is anywhere in the loop.  Most values are used in the same
438       // block they are defined in.  Also, blocks not reachable from the
439       // entry are special; uses in them don't need to go through PHIs.
440       if (UserBB != &BB && !L.contains(UserBB) &&
441           DT.isReachableFromEntry(UserBB))
442         return false;
443     }
444   }
445   return true;
446 }
447
448 bool Loop::isLCSSAForm(DominatorTree &DT) const {
449   // For each block we check that it doesn't have any uses outside of this loop.
450   return all_of(this->blocks(), [&](const BasicBlock *BB) {
451     return isBlockInLCSSAForm(*this, *BB, DT);
452   });
453 }
454
455 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const {
456   // For each block we check that it doesn't have any uses outside of its
457   // innermost loop. This process will transitively guarantee that the current
458   // loop and all of the nested loops are in LCSSA form.
459   return all_of(this->blocks(), [&](const BasicBlock *BB) {
460     return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
461   });
462 }
463
464 bool Loop::isLoopSimplifyForm() const {
465   // Normal-form loops have a preheader, a single backedge, and all of their
466   // exits have all their predecessors inside the loop.
467   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
468 }
469
470 // Routines that reform the loop CFG and split edges often fail on indirectbr.
471 bool Loop::isSafeToClone() const {
472   // Return false if any loop blocks contain indirectbrs, or there are any calls
473   // to noduplicate functions.
474   // FIXME: it should be ok to clone CallBrInst's if we correctly update the
475   // operand list to reflect the newly cloned labels.
476   for (BasicBlock *BB : this->blocks()) {
477     if (isa<IndirectBrInst>(BB->getTerminator()) ||
478         isa<CallBrInst>(BB->getTerminator()))
479       return false;
480
481     for (Instruction &I : *BB)
482       if (auto CS = CallSite(&I))
483         if (CS.cannotDuplicate())
484           return false;
485   }
486   return true;
487 }
488
489 MDNode *Loop::getLoopID() const {
490   MDNode *LoopID = nullptr;
491
492   // Go through the latch blocks and check the terminator for the metadata.
493   SmallVector<BasicBlock *, 4> LatchesBlocks;
494   getLoopLatches(LatchesBlocks);
495   for (BasicBlock *BB : LatchesBlocks) {
496     Instruction *TI = BB->getTerminator();
497     MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);
498
499     if (!MD)
500       return nullptr;
501
502     if (!LoopID)
503       LoopID = MD;
504     else if (MD != LoopID)
505       return nullptr;
506   }
507   if (!LoopID || LoopID->getNumOperands() == 0 ||
508       LoopID->getOperand(0) != LoopID)
509     return nullptr;
510   return LoopID;
511 }
512
513 void Loop::setLoopID(MDNode *LoopID) const {
514   assert((!LoopID || LoopID->getNumOperands() > 0) &&
515          "Loop ID needs at least one operand");
516   assert((!LoopID || LoopID->getOperand(0) == LoopID) &&
517          "Loop ID should refer to itself");
518
519   SmallVector<BasicBlock *, 4> LoopLatches;
520   getLoopLatches(LoopLatches);
521   for (BasicBlock *BB : LoopLatches)
522     BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
523 }
524
525 void Loop::setLoopAlreadyUnrolled() {
526   LLVMContext &Context = getHeader()->getContext();
527
528   MDNode *DisableUnrollMD =
529       MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable"));
530   MDNode *LoopID = getLoopID();
531   MDNode *NewLoopID = makePostTransformationMetadata(
532       Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD});
533   setLoopID(NewLoopID);
534 }
535
536 bool Loop::isAnnotatedParallel() const {
537   MDNode *DesiredLoopIdMetadata = getLoopID();
538
539   if (!DesiredLoopIdMetadata)
540     return false;
541
542   MDNode *ParallelAccesses =
543       findOptionMDForLoop(this, "llvm.loop.parallel_accesses");
544   SmallPtrSet<MDNode *, 4>
545       ParallelAccessGroups; // For scalable 'contains' check.
546   if (ParallelAccesses) {
547     for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) {
548       MDNode *AccGroup = cast<MDNode>(MD.get());
549       assert(isValidAsAccessGroup(AccGroup) &&
550              "List item must be an access group");
551       ParallelAccessGroups.insert(AccGroup);
552     }
553   }
554
555   // The loop branch contains the parallel loop metadata. In order to ensure
556   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
557   // dependencies (thus converted the loop back to a sequential loop), check
558   // that all the memory instructions in the loop belong to an access group that
559   // is parallel to this loop.
560   for (BasicBlock *BB : this->blocks()) {
561     for (Instruction &I : *BB) {
562       if (!I.mayReadOrWriteMemory())
563         continue;
564
565       if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) {
566         auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool {
567           if (AG->getNumOperands() == 0) {
568             assert(isValidAsAccessGroup(AG) && "Item must be an access group");
569             return ParallelAccessGroups.count(AG);
570           }
571
572           for (const MDOperand &AccessListItem : AG->operands()) {
573             MDNode *AccGroup = cast<MDNode>(AccessListItem.get());
574             assert(isValidAsAccessGroup(AccGroup) &&
575                    "List item must be an access group");
576             if (ParallelAccessGroups.count(AccGroup))
577               return true;
578           }
579           return false;
580         };
581
582         if (ContainsAccessGroup(AccessGroup))
583           continue;
584       }
585
586       // The memory instruction can refer to the loop identifier metadata
587       // directly or indirectly through another list metadata (in case of
588       // nested parallel loops). The loop identifier metadata refers to
589       // itself so we can check both cases with the same routine.
590       MDNode *LoopIdMD =
591           I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
592
593       if (!LoopIdMD)
594         return false;
595
596       bool LoopIdMDFound = false;
597       for (const MDOperand &MDOp : LoopIdMD->operands()) {
598         if (MDOp == DesiredLoopIdMetadata) {
599           LoopIdMDFound = true;
600           break;
601         }
602       }
603
604       if (!LoopIdMDFound)
605         return false;
606     }
607   }
608   return true;
609 }
610
611 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
612
613 Loop::LocRange Loop::getLocRange() const {
614   // If we have a debug location in the loop ID, then use it.
615   if (MDNode *LoopID = getLoopID()) {
616     DebugLoc Start;
617     // We use the first DebugLoc in the header as the start location of the loop
618     // and if there is a second DebugLoc in the header we use it as end location
619     // of the loop.
620     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
621       if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
622         if (!Start)
623           Start = DebugLoc(L);
624         else
625           return LocRange(Start, DebugLoc(L));
626       }
627     }
628
629     if (Start)
630       return LocRange(Start);
631   }
632
633   // Try the pre-header first.
634   if (BasicBlock *PHeadBB = getLoopPreheader())
635     if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
636       return LocRange(DL);
637
638   // If we have no pre-header or there are no instructions with debug
639   // info in it, try the header.
640   if (BasicBlock *HeadBB = getHeader())
641     return LocRange(HeadBB->getTerminator()->getDebugLoc());
642
643   return LocRange();
644 }
645
646 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
647 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
648
649 LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
650   print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
651 }
652 #endif
653
654 //===----------------------------------------------------------------------===//
655 // UnloopUpdater implementation
656 //
657
658 namespace {
659 /// Find the new parent loop for all blocks within the "unloop" whose last
660 /// backedges has just been removed.
661 class UnloopUpdater {
662   Loop &Unloop;
663   LoopInfo *LI;
664
665   LoopBlocksDFS DFS;
666
667   // Map unloop's immediate subloops to their nearest reachable parents. Nested
668   // loops within these subloops will not change parents. However, an immediate
669   // subloop's new parent will be the nearest loop reachable from either its own
670   // exits *or* any of its nested loop's exits.
671   DenseMap<Loop *, Loop *> SubloopParents;
672
673   // Flag the presence of an irreducible backedge whose destination is a block
674   // directly contained by the original unloop.
675   bool FoundIB;
676
677 public:
678   UnloopUpdater(Loop *UL, LoopInfo *LInfo)
679       : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
680
681   void updateBlockParents();
682
683   void removeBlocksFromAncestors();
684
685   void updateSubloopParents();
686
687 protected:
688   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
689 };
690 } // end anonymous namespace
691
692 /// Update the parent loop for all blocks that are directly contained within the
693 /// original "unloop".
694 void UnloopUpdater::updateBlockParents() {
695   if (Unloop.getNumBlocks()) {
696     // Perform a post order CFG traversal of all blocks within this loop,
697     // propagating the nearest loop from successors to predecessors.
698     LoopBlocksTraversal Traversal(DFS, LI);
699     for (BasicBlock *POI : Traversal) {
700
701       Loop *L = LI->getLoopFor(POI);
702       Loop *NL = getNearestLoop(POI, L);
703
704       if (NL != L) {
705         // For reducible loops, NL is now an ancestor of Unloop.
706         assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
707                "uninitialized successor");
708         LI->changeLoopFor(POI, NL);
709       } else {
710         // Or the current block is part of a subloop, in which case its parent
711         // is unchanged.
712         assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
713       }
714     }
715   }
716   // Each irreducible loop within the unloop induces a round of iteration using
717   // the DFS result cached by Traversal.
718   bool Changed = FoundIB;
719   for (unsigned NIters = 0; Changed; ++NIters) {
720     assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
721
722     // Iterate over the postorder list of blocks, propagating the nearest loop
723     // from successors to predecessors as before.
724     Changed = false;
725     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
726                                    POE = DFS.endPostorder();
727          POI != POE; ++POI) {
728
729       Loop *L = LI->getLoopFor(*POI);
730       Loop *NL = getNearestLoop(*POI, L);
731       if (NL != L) {
732         assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
733                "uninitialized successor");
734         LI->changeLoopFor(*POI, NL);
735         Changed = true;
736       }
737     }
738   }
739 }
740
741 /// Remove unloop's blocks from all ancestors below their new parents.
742 void UnloopUpdater::removeBlocksFromAncestors() {
743   // Remove all unloop's blocks (including those in nested subloops) from
744   // ancestors below the new parent loop.
745   for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end();
746        BI != BE; ++BI) {
747     Loop *OuterParent = LI->getLoopFor(*BI);
748     if (Unloop.contains(OuterParent)) {
749       while (OuterParent->getParentLoop() != &Unloop)
750         OuterParent = OuterParent->getParentLoop();
751       OuterParent = SubloopParents[OuterParent];
752     }
753     // Remove blocks from former Ancestors except Unloop itself which will be
754     // deleted.
755     for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
756          OldParent = OldParent->getParentLoop()) {
757       assert(OldParent && "new loop is not an ancestor of the original");
758       OldParent->removeBlockFromLoop(*BI);
759     }
760   }
761 }
762
763 /// Update the parent loop for all subloops directly nested within unloop.
764 void UnloopUpdater::updateSubloopParents() {
765   while (!Unloop.empty()) {
766     Loop *Subloop = *std::prev(Unloop.end());
767     Unloop.removeChildLoop(std::prev(Unloop.end()));
768
769     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
770     if (Loop *Parent = SubloopParents[Subloop])
771       Parent->addChildLoop(Subloop);
772     else
773       LI->addTopLevelLoop(Subloop);
774   }
775 }
776
777 /// Return the nearest parent loop among this block's successors. If a successor
778 /// is a subloop header, consider its parent to be the nearest parent of the
779 /// subloop's exits.
780 ///
781 /// For subloop blocks, simply update SubloopParents and return NULL.
782 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
783
784   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
785   // is considered uninitialized.
786   Loop *NearLoop = BBLoop;
787
788   Loop *Subloop = nullptr;
789   if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
790     Subloop = NearLoop;
791     // Find the subloop ancestor that is directly contained within Unloop.
792     while (Subloop->getParentLoop() != &Unloop) {
793       Subloop = Subloop->getParentLoop();
794       assert(Subloop && "subloop is not an ancestor of the original loop");
795     }
796     // Get the current nearest parent of the Subloop exits, initially Unloop.
797     NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
798   }
799
800   succ_iterator I = succ_begin(BB), E = succ_end(BB);
801   if (I == E) {
802     assert(!Subloop && "subloop blocks must have a successor");
803     NearLoop = nullptr; // unloop blocks may now exit the function.
804   }
805   for (; I != E; ++I) {
806     if (*I == BB)
807       continue; // self loops are uninteresting
808
809     Loop *L = LI->getLoopFor(*I);
810     if (L == &Unloop) {
811       // This successor has not been processed. This path must lead to an
812       // irreducible backedge.
813       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
814       FoundIB = true;
815     }
816     if (L != &Unloop && Unloop.contains(L)) {
817       // Successor is in a subloop.
818       if (Subloop)
819         continue; // Branching within subloops. Ignore it.
820
821       // BB branches from the original into a subloop header.
822       assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
823
824       // Get the current nearest parent of the Subloop's exits.
825       L = SubloopParents[L];
826       // L could be Unloop if the only exit was an irreducible backedge.
827     }
828     if (L == &Unloop) {
829       continue;
830     }
831     // Handle critical edges from Unloop into a sibling loop.
832     if (L && !L->contains(&Unloop)) {
833       L = L->getParentLoop();
834     }
835     // Remember the nearest parent loop among successors or subloop exits.
836     if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
837       NearLoop = L;
838   }
839   if (Subloop) {
840     SubloopParents[Subloop] = NearLoop;
841     return BBLoop;
842   }
843   return NearLoop;
844 }
845
846 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
847
848 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
849                           FunctionAnalysisManager::Invalidator &) {
850   // Check whether the analysis, all analyses on functions, or the function's
851   // CFG have been preserved.
852   auto PAC = PA.getChecker<LoopAnalysis>();
853   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
854            PAC.preservedSet<CFGAnalyses>());
855 }
856
857 void LoopInfo::erase(Loop *Unloop) {
858   assert(!Unloop->isInvalid() && "Loop has already been erased!");
859
860   auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
861
862   // First handle the special case of no parent loop to simplify the algorithm.
863   if (!Unloop->getParentLoop()) {
864     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
865     for (Loop::block_iterator I = Unloop->block_begin(),
866                               E = Unloop->block_end();
867          I != E; ++I) {
868
869       // Don't reparent blocks in subloops.
870       if (getLoopFor(*I) != Unloop)
871         continue;
872
873       // Blocks no longer have a parent but are still referenced by Unloop until
874       // the Unloop object is deleted.
875       changeLoopFor(*I, nullptr);
876     }
877
878     // Remove the loop from the top-level LoopInfo object.
879     for (iterator I = begin();; ++I) {
880       assert(I != end() && "Couldn't find loop");
881       if (*I == Unloop) {
882         removeLoop(I);
883         break;
884       }
885     }
886
887     // Move all of the subloops to the top-level.
888     while (!Unloop->empty())
889       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
890
891     return;
892   }
893
894   // Update the parent loop for all blocks within the loop. Blocks within
895   // subloops will not change parents.
896   UnloopUpdater Updater(Unloop, this);
897   Updater.updateBlockParents();
898
899   // Remove blocks from former ancestor loops.
900   Updater.removeBlocksFromAncestors();
901
902   // Add direct subloops as children in their new parent loop.
903   Updater.updateSubloopParents();
904
905   // Remove unloop from its parent loop.
906   Loop *ParentLoop = Unloop->getParentLoop();
907   for (Loop::iterator I = ParentLoop->begin();; ++I) {
908     assert(I != ParentLoop->end() && "Couldn't find loop");
909     if (*I == Unloop) {
910       ParentLoop->removeChildLoop(I);
911       break;
912     }
913   }
914 }
915
916 AnalysisKey LoopAnalysis::Key;
917
918 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
919   // FIXME: Currently we create a LoopInfo from scratch for every function.
920   // This may prove to be too wasteful due to deallocating and re-allocating
921   // memory each time for the underlying map and vector datastructures. At some
922   // point it may prove worthwhile to use a freelist and recycle LoopInfo
923   // objects. I don't want to add that kind of complexity until the scope of
924   // the problem is better understood.
925   LoopInfo LI;
926   LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
927   return LI;
928 }
929
930 PreservedAnalyses LoopPrinterPass::run(Function &F,
931                                        FunctionAnalysisManager &AM) {
932   AM.getResult<LoopAnalysis>(F).print(OS);
933   return PreservedAnalyses::all();
934 }
935
936 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
937
938   if (forcePrintModuleIR()) {
939     // handling -print-module-scope
940     OS << Banner << " (loop: ";
941     L.getHeader()->printAsOperand(OS, false);
942     OS << ")\n";
943
944     // printing whole module
945     OS << *L.getHeader()->getModule();
946     return;
947   }
948
949   OS << Banner;
950
951   auto *PreHeader = L.getLoopPreheader();
952   if (PreHeader) {
953     OS << "\n; Preheader:";
954     PreHeader->print(OS);
955     OS << "\n; Loop:";
956   }
957
958   for (auto *Block : L.blocks())
959     if (Block)
960       Block->print(OS);
961     else
962       OS << "Printing <null> block";
963
964   SmallVector<BasicBlock *, 8> ExitBlocks;
965   L.getExitBlocks(ExitBlocks);
966   if (!ExitBlocks.empty()) {
967     OS << "\n; Exit blocks";
968     for (auto *Block : ExitBlocks)
969       if (Block)
970         Block->print(OS);
971       else
972         OS << "Printing <null> block";
973   }
974 }
975
976 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) {
977   // No loop metadata node, no loop properties.
978   if (!LoopID)
979     return nullptr;
980
981   // First operand should refer to the metadata node itself, for legacy reasons.
982   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
983   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
984
985   // Iterate over the metdata node operands and look for MDString metadata.
986   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
987     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
988     if (!MD || MD->getNumOperands() < 1)
989       continue;
990     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
991     if (!S)
992       continue;
993     // Return the operand node if MDString holds expected metadata.
994     if (Name.equals(S->getString()))
995       return MD;
996   }
997
998   // Loop property not found.
999   return nullptr;
1000 }
1001
1002 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) {
1003   return findOptionMDForLoopID(TheLoop->getLoopID(), Name);
1004 }
1005
1006 bool llvm::isValidAsAccessGroup(MDNode *Node) {
1007   return Node->getNumOperands() == 0 && Node->isDistinct();
1008 }
1009
1010 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context,
1011                                              MDNode *OrigLoopID,
1012                                              ArrayRef<StringRef> RemovePrefixes,
1013                                              ArrayRef<MDNode *> AddAttrs) {
1014   // First remove any existing loop metadata related to this transformation.
1015   SmallVector<Metadata *, 4> MDs;
1016
1017   // Reserve first location for self reference to the LoopID metadata node.
1018   TempMDTuple TempNode = MDNode::getTemporary(Context, None);
1019   MDs.push_back(TempNode.get());
1020
1021   // Remove metadata for the transformation that has been applied or that became
1022   // outdated.
1023   if (OrigLoopID) {
1024     for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) {
1025       bool IsVectorMetadata = false;
1026       Metadata *Op = OrigLoopID->getOperand(i);
1027       if (MDNode *MD = dyn_cast<MDNode>(Op)) {
1028         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1029         if (S)
1030           IsVectorMetadata =
1031               llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool {
1032                 return S->getString().startswith(Prefix);
1033               });
1034       }
1035       if (!IsVectorMetadata)
1036         MDs.push_back(Op);
1037     }
1038   }
1039
1040   // Add metadata to avoid reapplying a transformation, such as
1041   // llvm.loop.unroll.disable and llvm.loop.isvectorized.
1042   MDs.append(AddAttrs.begin(), AddAttrs.end());
1043
1044   MDNode *NewLoopID = MDNode::getDistinct(Context, MDs);
1045   // Replace the temporary node with a self-reference.
1046   NewLoopID->replaceOperandWith(0, NewLoopID);
1047   return NewLoopID;
1048 }
1049
1050 //===----------------------------------------------------------------------===//
1051 // LoopInfo implementation
1052 //
1053
1054 char LoopInfoWrapperPass::ID = 0;
1055 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
1056                       true, true)
1057 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1058 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
1059                     true, true)
1060
1061 bool LoopInfoWrapperPass::runOnFunction(Function &) {
1062   releaseMemory();
1063   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
1064   return false;
1065 }
1066
1067 void LoopInfoWrapperPass::verifyAnalysis() const {
1068   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
1069   // function each time verifyAnalysis is called is very expensive. The
1070   // -verify-loop-info option can enable this. In order to perform some
1071   // checking by default, LoopPass has been taught to call verifyLoop manually
1072   // during loop pass sequences.
1073   if (VerifyLoopInfo) {
1074     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1075     LI.verify(DT);
1076   }
1077 }
1078
1079 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1080   AU.setPreservesAll();
1081   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1082 }
1083
1084 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
1085   LI.print(OS);
1086 }
1087
1088 PreservedAnalyses LoopVerifierPass::run(Function &F,
1089                                         FunctionAnalysisManager &AM) {
1090   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1091   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1092   LI.verify(DT);
1093   return PreservedAnalyses::all();
1094 }
1095
1096 //===----------------------------------------------------------------------===//
1097 // LoopBlocksDFS implementation
1098 //
1099
1100 /// Traverse the loop blocks and store the DFS result.
1101 /// Useful for clients that just want the final DFS result and don't need to
1102 /// visit blocks during the initial traversal.
1103 void LoopBlocksDFS::perform(LoopInfo *LI) {
1104   LoopBlocksTraversal Traversal(*this, LI);
1105   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
1106                                         POE = Traversal.end();
1107        POI != POE; ++POI)
1108     ;
1109 }